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ON THE ZETA FUNCTION OF
A COMPLETE INTERSECTION

BY ALAN ADOLPHSON* AND STEVEN SPERBER

ABSTRACT. - In this article, we compute the p-adic Dwork cohomology of a smooth complete intersection in
T^ x A" or PN over a finite field (where T^ is the m-torus). As an application, we prove the "Katz Conjecture"
(i.e., the assertion that the Newton polygon lies over the Hodge polygon) for such varieties. This result is new in
the case of T771 x A". (The case of PN is due to Mazur [14].)

1. Introduction

In [9], Dwork developed a j?-adic cohomology theory for smooth projective hypersurfaces
over finite fields. Given f e F^o, a - i , . . . , x^], a form of degree d defined over the field
oi q =. p

a elements, Dwork constructed a complex K
DW

(f) of p-adic Banach spaces.
When the hypersurface V{f) defined by the vanishing of / in P

N is nonsingular and

has nonsingular intersection with every coordinate variety HA = 0{^z == 0}. where
zCA

A C S = { 0 , . . . , N}, A -^ S, then the complex KP^^f) is acyclic except in degree 0.
The characteristic polynomial of Frobenius acting on Ho gives the primitive part of the
middle-dimensional factor of the zeta function of V{f). From this vantage point, there
remained the problems of extending this work to varieties other than hypersurfaces, as
well as to treat even in the hypersurface case open or singular varieties. Of course, the
development of crystalline cohomology and rigid cohomology provided an excellent basis
for these generalizations.

Our goal in the present paper is to use the approach of exponential modules or twisted de
Rham theory pioneered by Dwork in the hypersurface case to treat complete intersections.
In this we are continuing the early work of Ireland [11] and Barshay [4], who studied
projective and multiprojective complete intersections from this point of view also. In their
work, they constructed a complex of p-adic Banach spaces KP^ (related to the complex
K . ( S ^ S ) of section 6 below), proved the acyclicity except in degree 0 of this complex
in the smooth case, and related the characteristic polynomial of Frobenius acting on Ho

to the zeta function of the complete intersection defined by the simultaneous vanishing of
forms / i , . . . , fr € ' F q [ x o ^ . . . 5 xpf] in P

N. Specifically, they showed that this characteristic
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288 A. ADOLPHSON AND S. SPERBER

polynomial equals a product of certain factors (which the Weil conjectures imply are
polynomials), from which they concluded this polynomial has the correct degree. They
were unable to show the factors themselves are polynomials. In particular, they were
unable to construct a finite-dimensional p-adic vector space with action of Frobenius
whose characteristic polynomial is the interesting factor of the zeta function of a smooth
projective complete intersection. We construct such a theory here.

The main application of our work that we give here is a proof of the "Katz Conjecture"
(i.e., the assertion that the Newton polygon lies above the Hodge polygon: see [14]) for
general smooth complete intersections in an affine space or a torus (as well as another proof
in the projective case). Previously, such results were known only in the proper case. We
note also that our approach eliminates the need to treat separately the case of hypersurfaces
of degree divisible by p (compare [9], [10]). In a future article, we plan to describe
the relation between the theory developed here and classical de Rham cohomology. In
particular, we believe that the description we give here of middle-dimensional cohomology
and of a procedure for finding a basis for it should be useful in calculations involving
the Gauss-Manin connection.

We describe our results more precisely. In the present work we study both
open smooth complete intersections (in T^ x A71) in sections 2-5 and projective
smooth complete intersections in sections 6-7. In the open case, we let / i , . . . , /y , e
' F q [ x i , . . . , Xm-}-n, (^i • • • ^m)"1] be Laurent polynomials and V be the variety in
T771 x A71 defined by the simultaneous vanishing of the fi's. If we set g ==

'^Xm-^n+jfj{x]_,... ,Xm-{-n), then is is well-known that
j=i

L^ x A
n
x A^g'^t) = Z(V/F,;^),

ie is the zeta function of V and the left-hamwhere the right-hand side is the zeta function of V and the left-hand side is the L-function
of the exponential sum associated to g. It is also known from our earlier work [1] that,
with S = { 1 , . . . , m + n + r}, 5af = {m + 1 , . . . , m + n + r}, there is a complex of p-adic
Banach spaces K.(S^Sg,{) which satisfies

(1.1) L^ x A
n
x A7^;^-1)^7^1

 = det(J-^Frob | X.(5,5af)),

where the right-hand side is shorthand for the alternating product of characteristic series
of Frobenius acting on the complex K.{S, 5af). While we have studied L-functions such
as (1.1) in the past, our earlier results need further refinements here. Even if we make
appropriate hypothesis on the fi to ensure that g is nondegenerate (in the sense of
Kouchnirenko [13]), the polynomial g is not commode (in the sense of [1]) with respect
to the set S^u = {^ + n + l , . . . , m + n + r } (and therefore, afortiori, not commode with
respect to 5af). Setting Xm+n-^-i = • • • = = Xm-^-n-^-r = 0 in g gives the zero polynomial, i.e.,

this substitution causes the dimension of its Newton polyhedron to drop by m + n + r,
rather than simply r which is what the condition of being commode requires. We are
nevertheless able to calculate H^(K.(S, 5af)) in the open case of a smooth complete
intersection V in T^ x A71. Using this result, we are able to show that the Newton
polygon of the primitive part of the middle-dimensional factor of the zeta function of V
lies over its corresponding Hodge polygon.
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ON THE ZETA FUNCTION OF A COMPLETE INTERSECTION 289

In the projective case we change our enumeration and notation, letting f\,..., fr
r

be forms in Fq[xo,... , X N ] . Let g = ̂ XN+jfj(xo, . . . , X N ) , S = {0 ,1 , . . . ,N + r},
j=i

5sp = {O? I? • • • ? -^}» 5'du = {-^ + 1,. . . , A^ + r}. The projective case is thus more
complicated even when g is nondegenerate since the Newton polyhedron has dimension
N + r rather that N + r + 1 (= |S'|) and since g vanishes when one specializes all the
variables in either 5gp or S^u to be 0. As we noted above, Ireland [11] was able to compute
the homology of KP^ in the smooth case. Here we compute the homology of K. (6', S) and
show that the characteristic polynomial of Frobenius acting on Ho gives the primitive part
of the middle-dimensional factor of the zeta function of the smooth projective complete
intersection defined by the simultaneous vanishing of the fi's in PN

. Our main technical
tools in this analysis are some properties of Koszul complexes which we specify explicitly
in the appendix. It is interesting that these properties are, in the case of a hypersurface
defined by the vanishing of a form /, sufficient to guarantee that

det(J - tFrob | K^U)^-^
1 = Z(Y(/)/F,; qt){l - qt) . . . (1 - q

N
t)

even in the case / is singular. In the projective case, we also compare Newton and
Hodge polygons giving another proof of Mazur's theorem [14]. In the course of this, we
specify a basis (valid for a Zariski open set of the moduli space of complete intersections
with specified degrees) for the primitive middle-dimensional cohomology of a projective
complete intersection, which may prove useful in explicit calculations.

The outline of the paper is as follows. In section 2, we compute the homology of
the complex K.(S,Sg,f), which gives the zeta function of a smooth complete intersection
in T^ x A71 (Theorem 2.19). In order to estimate the Newton polygon of Frobenius
acting on homology, we need a more precise description of a basis for these homology
spaces. In section 3, we obtain such a description for K / ( S ^ S Q , { ) , the "reduction mod
p" of K.(S^Sg,f), by first obtaining such a description for its associated graded complex
K.(S, 6af) (Theorems 3.26 and 3.37). We then explain in section 4 how this lifts to a basis
for the homology of jFf.(S',5af), which in turn leads to a lower bound for the Newton
polygon of Frobenius acting on homology (Theorem 4.13). In section 5, we identify this
lower bound with a Hodge polygon by using the ideas of [6] to explicitly compute the
Hodge polygon of a general complete intersection in (T^ x A^c. In sections 6 and 7,
we repeat the above procedure for smooth complete intersections in P^. Here some of our
arguments are sketchier, because they are analogous to the case T

171
 x A71 and because the

result in the projective case is already known [14]. In section 8, we collect some general
results on complexes that are useful in sections 6 and 7.

2. Cohomology of toric and affine complete intersections

Let p be a prime number, q = p
a
, and let Fq be the finite field of q elements.

Let T771 be the m-torus over Fg (i.e., T771 is the product over ¥q of m copies of
the multiplicative group) and let A" be affine n-space over F^. Put N == m + n.

Take / i , . . . , fr <E Fj^i,... , X N , (^i • • • ̂ m)~1] and let V C T^ x A71 be the variety

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



290 A. ADOLPHSON AND S. SPERBER

fi = • • • = = fr = 0. We allow the possibility that m or n is zero. Let V(Fqs) be the
set of Fqs -rational points of V and let Ns(V) be its cardinality. The zeta function of
V is defined to be

/_° fS\

Z(V/F^)=exp [J^N^V)- .
^=i 5 ^

We begin by re-expressing Z(V/F^; t) in terms of JD-functions of certain exponential sums.
Fix a nontrivial additive character vp : Fq —^ C

x and let ^s = ̂  o Trace? ./Fg ; Fg. —^
Cx . For an Fg-regular function h on an Fg-variety X, define

^(X^)= ^ ^(^)),
a;eX(Fg.)

/00 ^\

L{X^^t)=exp(^S^X^h)-).
^s=l 8 ^

We introduce dummy variables XN-\-I^ ' . . ,a^+r and put

g = ̂ Ar+i / i ( r r i , . . . , a ;^ )+ ' - -+^N+r / r (^ i , . . . ^7v) ^ Fg[a;i,... ,XN-^-r, (^i • • •^m)" 1 ] .

It is easily seen that

(2.1) q-N^V) = Y^ ^ ^(^i,..., ̂ +,)),
.El,...,.E^eF^ .C^+l,...,.CN+rCF^

or equivalently,

(2.2) Z(Y/F,;g^) = L^ x A- x A7'^;^).

Put A' = A7' \ { ( 0 , . . . , 0)}. Since g vanishes identically on T^ x A71 x { ( 0 , . . . , 0)},
an easy calculation gives

m

(2.3) Z(y/F,;(ft) = ̂ (T- x A- x A^g^t) ̂ (l - ̂ +^)^)(-l)m-J~l.
j=o

We regroup terms as follows. Define a rational function P{t) by

, r-n-l ^(-l)^-7-1

(2.4) P(t) = ( L^ x A" x A', ̂ ; ^) ]"J (1 - q^t}^-^'
3
'
1 )

v j=o ^

so that (2.3) becomes

(2.5) Z(V/F,;^) = (P(^)(l - ̂ )(^))(-l)N-r-l lf(l - ̂ ^(.^-^(-i)—-1,

j=i

where we understand ( ) = 0 if b < 0 or b > a. We shall identify the factors on the

right-hand side with the action of Frobenius on j?-adic cohomology spaces when V is

4® SfiRIE - TOME 29 - 1996 - N° 3



ON THE ZETA FUNCTION OF A COMPLETE INTERSECTION 291

sufficiently smooth. In particular, P(t) will be the polynomial corresponding to the action
of Frobenius on the primitive part of middle-dimensional cohomology. For purposes of
induction on r, it will be convenient to allow r = 0. In this situation, we understand that
V = T^ x A71 and P(t) = 1.

We apply the theory of [1] to the L-function ^(T771 x A" x A^c^t). For a Laurent
polynomial h over any field in variables a:i, x ~ [

1
^ . . . , Xk^ a^1, we denote by supp(/i) C R^

the set of exponents of the monomials appearing in h, thought of as lattice points in R^.
Let A C R^^ be the convex hull of the origin and supp(^). Let C"(A) be the real
cone generated by A, i.e., the collection of all nonnegative real multiples of points of
A. Put M = Z^-^ n C7(A). For u = (14,... ,UN+r) € G(A), define its weight w{u)

by w(u) = UN-^-I + • • • + z^v+r.
Let f^o = Qp(CpXq-i)^ where Qp denotes the j?-adic numbers and (^p and <^-i denote

primitive p-\h and (g — l)-st roots of unity, respectively. We normalize the p-adic valuation
ord on ^o by setting ord p = 1. Let OQ be the ring of integers of ^o and let TT G OQ be
a uniformizing parameter, so ord TT = l / ( p — 1).A key role will be played by the j?-adic
Banach space B and its unit ball B(0o}\

B = {Y^ A^
ww

x
u | A^ e ^o, A, -^ 0 as u -^ oo},

u^M

B(0o) = { ̂  A^
ww

x
u € B \ A, G Oo for all ^}.

H€M

The norm on B is defined by

|| ̂  A^^H = sup |A,|.
/- n^- U^Mu^M

It will be useful to consider some related spaces as well. For &, c € R, 6 > 0, define

L(b, c) = { ̂  A^ | An G f2o, ord A^ > bw(u) + c},
n€M

£(&)= U^0)'
c6R

Note that we have L(b} C B C L{l/{p - 1)) for b > l / { p - 1).
Define an operator ^ on formal power series over M by

^(^A,^)= ̂ A^.

u^M u^M

Observe that ^(£(&,c)) C L(pb^c). Associated to g is a series Fo(x) G L{p/q{p — 1),0)
(see [1, equation (1.15)]) with the following property. Put a = ̂

a o FQ, the composition of
^

a with multiplication by Fo(x), where a = [Fq : Fp]. Then a is a completely continuous
f2o-linear endomorphism of B and of L(b} for 0 < b < p / { p — 1). Furthermore,

(2.6) ^(T^^; t)(-l)N+r-l = det(J - ta)6"",

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



292 A. ADOLPHSON AND S. SPERBER

where det(J — to) is the Fredholm determinant of a as operator on B or any of the £(&),
0 < b < p / ( p - 1), and 6 is the operator on formal power series in t with constant term
1 defined by h(t)

8 == h(t)/h{qt),

We now explain how to modify this purely toric case to obtain L(T771 x A" x A7', g\ i\

Different variables will play different roles in the argument, and we index them accordingly.
The set of all variables is indexed b y 5 ' = { l , . . . , 7 V + r } . Toric variables are indexed by
the set Sfo = { ! , . . . , m}, affine variables by Saf = {m + 1, . . . , N + r}, space variables
by 5sp = { 1 , . . . , N}, dummy variables by 5'du = {N + 1, . . . , N + r}. For any subset
I C S, we use subscripts to denote its intersection with these subsets, e. g., Jio = I H Sio.

For any finite set J, we let |J| denote its cardinality.
Fix I C S with 5'to C I and let gi G Fq[{xi}i^i, {x^ , . . . ,Xm)~

1
} be the polynomial

obtained from g by setting xj = 0 for j e 5af \ J. For j c 5af, let Oj : B —> B he the

map "set xj = 0" and let 61 be the composition Oi = TT 9j. We define Bi = 0i(B),

jes^\i
BiW = W(0o)), Li(h,c) = W(&,c)), Li(b) = 0i(L(b)), and 01=^0 ^(Fo).
We observe that by [1]

(2.7) ^(Tl^;^-1)171"1 =dei(I-ta^\

where aj may be regarded as acting on Bi or any of the Li(b\ 0 < b < p / ( p - 1).
Equation (2.6) may be interpreted as follows. In [1, section 2] it is shown that there

exist elements Hi G L ( p / ( p — 1),—1) such that the (commuting) differential operators
Di == Xi9/9xi + Hi, i = 1 , . . . , N 4- r, satisfy

(2.8) a o Di = qDi o a

as operators on B or £(&), 0 < b < p / ( p - 1). Let K. = K.{B, {D,}^) be the Koszul
complex on B defined by D ^ , . . . , D^^r- For 0 <, I <^ N + r, its component of degree I is

^= ®^A,

|A|=Z

where the sum is over all subsets A C S of cardinality I and (°A is a formal symbol.
The boundary map 9i : Ki —^ A^-i is given by: if ^ e B and A = { % i , . . . ,?J with
%i < • • • < ii, then

?

^(^^^^(-ir^.^Oe^,}.
J=l

Define an endomorphism ai '. Ki —^ Ki by

a, = © ^a.

\A\=l

Then (2.8) implies that a. is a chain map on AT., hence by (2.6)

7V+-r

(2.9) LCT^1-,^-1)^'-1 = I] det(J-to, | ̂ )(-1)'.

^=0

4° SERIE - TOME 29 - 1996 - N° 3



ON THE ZETA FUNCTION OF A COMPLETE INTERSECTION 293

Passing to homology, we have

7V+r

(2.10) ^(T^^-1^"1 = I] dei{I-tai | H,(K^\

where ai is the endomorphism of Hi(K.) induced by ai on Ki.

For I C S with 5to C J, put Dj,, = Xi9/9xi + 0j(ff,). We denote by K.(I) the Koszul
complex on Bi formed by the operators Di^ for i € I . In particular,

W)= © BJCA.

ACJ, |A|=Z

We have in analogy with (2.10)

m
(2.11) L^^gi^-

1
^

1 =ndet(J-^a^ \ Hi(K.(I)))^
1
.

Usually, no confusion will result if we denote a^i simply by ai or even a.
The complexes K.(I) can be tied together by introducing some subcomplexes K.(I, J').

For I C S with 5'to C I and J' C 1^, let

< = Q ker(^ | Bj),

ier

L^., Bf7 consists of all elements of Bi that are divisible by xi for all i e F . Let -^.(-T, I ' )

be the subcomplex of K.(I) defined by

W,r)= © B^e^.

ACJ, |A|=f

Note that for i 6 -faf^ ^ 1^ there is an exact sequence

n ^^^{i} r>j' °\ ni' __. n0 -> ̂  ^ Bi -^ ^^{i} -^ 0^

which induces an exact sequence of complexes

(2.12) 0 - ̂ .(J, J' U {z}) - ̂ .(J, r) - K.(I \ {z}, J') - 0.

Using this exact sequence, equation (2.11), and induction on |J'|, the natural toric
decomposition of A!7 I gives

m
(2.13) ^(T^-IM xAl^^;^-1)171"1

 =.]^det(I-ta\Hi(K.(I^r)))^
1
.

1=0

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



294 A. ADOLPHSON AND S. SPERBER

To be precise, the left-hand side is the L-function corresponding to the exponential sum
^ ̂ (gi(x)), where xi runs over Fg for % e I ' and over F^ for % G J, % ^ F . In particular,
taking I = S, F = 5af, we have by (2.2) that

N+r

(2.14) ^(y/F,;^-1)^-1 = IJ det(J-^ | ̂ (^.(^af))/-^.
^=o

Let Aj C Rl71 be the convex hull of the origin and supp(^j). In particular, A = As.

We make two assumptions about g. We assume that for every subset I C S such that
5fo C I and Jdu 7^ 0 we have dimAj = |J|. We call g semi-convenient when this
condition is satisfied. (When g is semi-convenient, g will be "commode" in the sense of [1]
with respect to any subset I C 5af such that 5du 2: J.) When n = 0, this is equivalent
to requiring that the convex hull of supp(/,) have dimension m for i = 1 , . . . , r. When
m = 0, it is equivalent to requiring that each /, contain terms a^x^

3 for j = 1,... ,n,
with aij ^ 0 and /^ > 0, and that /,(0,... , 0) ^ 0 for i = 1, . . . , r. We also assume that
g is nondegenerate (see [1, section 2]), which implies that gi is also nondegenerate for all
I C S. Geometrically, this means that for all I C 5gp with 5'to C I and J C { 1 , . . . , r},
the equations 0i{fj) = 0 for j e J define a smooth complete intersection X in the torus
T^l and that there is a compactification Y of the torus in which its closure X is smooth
and meets all orbits transversally. This condition is generically satisfied ([3], [12]).

By [1, Theorems 2.9 and 3.13] we have the following.

THEOREM 2.15. - Suppose that g is nondegenerate and semi-convenient. For I C S with

Sto C I and F C 1^ with 1^ ^ 1^ we have Hi(K.(I, I ' ) ) = Ofor I > 0, a is invertible

on Ho{K.(I,r)\ and

(2.16) dim^o(Wn) = ^ (-l^H^lJDtVoHA^
I\I'CJCI

where Vol(Aj) denotes the volume of Aj relative to Lebesgue measure on RJ'7!. Thus

by (2.13),

LCr^-lM x A'77'^;^-1)1""1
 =dei(I-ta \ H^K^^F)))

is a polynomial whose degree is given by (2.16).
Using this theorem and induction on r, we shall compute the homology of ^.(5',5'af),

which by (2.14) is the complex that gives the zeta function Z ( V / ' F q ' , q
r
t ) . First, for later

application, we modify the formula (2.16) for dim^ Ho(K.(I,r)). For 5'to C J C 5sp,
let Af C R171 denote the convex hull of supp((9j(/,)), i = 1,... ,r. Regarding Rl'7! as
Rl^pl x Rl^l, the projection of Aj C Rl'7! on Rl^l is the simplex

A = {(A,),eJau I S ̂  < 1, A, > 0 for allj}.
j'eJdu

The fiber of Aj over (Aj^eJdu ^ A is the Minkowski sum V A^A'7813, thus

j'eJdu

Vol(A, )=/Vol (^A,A^) /\ d\^
A j'eJdu j'eJdu

46 SfiRIE - TOME 29 - 1996 - N° 3



ON THE ZETA FUNCTION OF A COMPLETE INTERSECTION 295

where Vol( V^ A^A'7815) denotes volume relative to Lebesgue measure on Rl^pl. It is
j'eJdu

a theorem of Minkowski that Vol( V^ AjA^) is a homogeneous polynomial of degree
J^Jdu

\Jsp\ in {>j}jeJa^ specifically,

Vol( ̂  A,A^) = ^ ^M({A^,},^J n ̂

i^Jdu ^ ^=|^sp| 11 r jejdu

jeJdu •7€•7du

where Mf^A^^^eJdu) denotes the Minkowski mixed volume of the collection of

|Jsp| polytopes in Rl173?! obtained by taking A^813 with multiplicity lj. Induction on [Jdu|
shows that

n ^
/ n ^ A ^=
^A -^ 7, ,c T,

L A j \ _ ^^u
11 -j / \ —J ., . | , \ ^ / M

j-eJdu j'eJdu U-'dul + ̂  ^J'
J^-Jdu

n ^11 ^— j6^"""F)'"'
hence evaluation of the above integral for Vol(Aj) gives

(2.17) (|J|)!Vol(A^) = (|Jsp|)! ^ M({A^^,},e^).

E ^-i178'

When A^ is a single point and lj = 0 for all j e Jdu, we define M^A^813, <j}^Jdu) = 1'
so that (2.17) remains valid even when Jsp = 0- (This case will arise when we try to
generalize (2.16) to the case where I ' = Jaf when m = 0.)

Substituting the right-hand side of (2.17) into the right-hand side of (2.16) gives

dim^ffo(Wn)= E (-l)111-"1^!)! E ^({A^}^).
A^CJCJ ^ |̂̂ |

To simplify this expression, we define an equivalence relation on the pairs (J, {lj}jeJdu)

with I \ F C J C I and V^ lj = |Jsp| that appear in this sum. Let J+ == {j e Jdu I
j'eJdu

(, > 0}. Define (J^-heJdJ ~ (^'J^-}^^) if Jsp = ^p, ̂  = ̂  and (, = (;. for
j € </+. When two pairs are equivalent, we have

M({A^,;,},e^) = M({A^,^.},e^)

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



296 A. ADOLPHSON AND S. SPERBER

since both collections consist of the same polytopes repeated with the same multiplicities.
Note that each equivalence class contains exactly one representative of the form
(G U Jdu, {^LeJcJ. ^ere Jsp \ ^p C G C J,p. It follows that

dim^JfoG^-O)

= ^ (-l)^l-^l(lGI)! ^ ^({A0^,},^)^^!)^!-!^!,
JspV^CGC^p ^ |̂̂ |

jeJdu

where ^/ denotes a sum over pairs {J'^l'^j^ J in the equivalence class of the

pair (G U 7du,{^}j6Jdu)- For ^^y pair (J',^}^^) in this equivalence class, the
set Jdu can be represented in the form J^ = 1^ u F for a unique subset F,
^du \ (^du u ^u^) ^ F C I^\ Jdu,+ (namely, ^ G F if and only if .̂ = 0). In
terms of F, the innermost sum in the previous equation becomes

V^ (.-nl^ul-|Jdu,+|-|^\

Jdu\(^UJdu,+)CFCJduVdu,+

Putting F' = Jdu \ (^du,+ U F), this sum becomes

E (-1)"71

0CF/CJ^Vdu,+

But this clearly vanishes unless 1^ C Jdu,+ (^., ^ > 0 for all j e Jdu)» in which case it
equals 1. We may thus restrict our sum to the classes of those pairs (G' U Jdu, {^LeJdu)
for which lj > 0 for all j e 1^ and take a single representative from each of these classes.
With a slight change in notation, the formula becomes

(2.18) dim^H^K.^IJ^

= ^ ( - 1 ) 1 ^ 1 - 1 ^ 1 ( 1 J|)! ^ M({Af^}^dJ.
^p\^pCJCJ,p ^ ^j^

^Jdu

li>l{ori€l^

Let I C S with 5to C I and let J' C 1^ When H i { K . ( I , F ) ) is finite-dimensional
for all Z, we define

1^1
x(I.I

f
)=^(-l)

l
dlm^HWI^I

f
)).

1=0

THEOREM 2.19. - Suppose that g is nondegenerate and semi-convenient. Then

(i) dmio, Hi(K.(S,S^) < oo for all I .

(ii) Hi(K\S, 5af)) = 0 for I > N - r.
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(iii) For I == 1 , . . . , N - r, dim^, Hi{K.{S, 5af)) = G+^J and Frobenius operates as

multiplication by q
1
^. In particular, det(J - ta \ Hi(K.(S, 5af))) = (1 - g^+rt)((+m-7^)

for I = l , . . . ,A^r.

(iv) det(J - ^a | ffo(^.(5, 5af))) = P{t)(l - grt)(-m-).

(v) There is a subspace H
1 C Ho(K.(S, 5af)) of dimension (^J on which Frobenius

operates as multiplication by q
r
. 7n particular, det(J - ̂ a | ff') = (1 - (f^)^-^ ^n^

P(t) is a polynomial.

(vi) For r > 1,

X(5,5af)== ^ (-l^-^dJi)! ^ M(A^i;...;A^,).

StoCJC5sp ii +•••+^=1^1
ij > 1 for all j

Proof. - Note that assertion (iv) follows immediately from equations (2.5) and (2.14)
and assertions (ii) and (iii). We prove statements (i), (ii), (iii), (v), and (vi) by induction
on r. To simplify notation, we write H i ( I , F ) in place of Hi(K.(I,r)).

Suppose r = 0, so that 5af = {m + 1,... ,m + n}. In this case g = 0, so
A = (0 , . . . , 0) € R^, M = ( 0 , . . . , 0) G R^, B = ^o, and the differential operators are
Di = XiO/Oxi, which act trivially on «o. It follows that K.{S,S^f) is the complex with

Ki{S, 5af) = (^o)^^ and all boundary maps trivial. Thus when r = 0, ff^5,Saf) is a
space of dimension (^J with Frobenius acting as multiplication by q

1
. This is exactly

the assertion of the theorem. We observe that for r = 0,

v^. .if ^ \ f O form> 0,
(2.20) x(^ 5af) = E(-1) [ l - n ) = [ (-1)- for m = 0.

f=o v / << v /

Suppose the theorem true for r - 1. For notational convenience, put 5" = { 1 , . . . , N +

r - 1}. From (2.12) we get a short exact sequence

(2.21) 0 ̂  K.{S, 5af) -^ K.(S^ S^) -^ K.(S
1
, S^) -^ 0,

and by Theorem 2.15, Hi(S, S^) = 0 for I > 0. The associated long exact homology
sequence then gives an exact sequence

(2.22) 0 - ffi(5', S^) - ffo(5, 5af) - W, S^) -. W, 5^) - 0

and isomorphisms for I > 1

(2.23) Hi(S^S^)^Hw(S\S^).

Assertion (i) is now immediate from Theorem 2.15 and the induction hypothesis. We apply
the induction hypothesis to compute the homology of K.{S^ S^). We have Hi(S^S^) =0

for ; > N - r + 1, so by (2.23) we have Hi(S, 5af) = 0 for I > max{0, N - r}. This
establishes (ii) when N - r > 0. (The proof of (ii) when N - r < 0, i.e., the proof that
Hi{S, 5af) == 0 for all I when N - r < 0, is given below.) For 1 < ; < N - r + 1,
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H ^ S ' . S ^ ) is (^^J -dimensional with Frobenius acting as multiplication by ^+r-l,
hence for 1 < I < N-r, it follows from (2.23) that Hi{S, 5af) is (^J -dimensional with
Frobenius acting as multiplication by q1

^. This establishes assertion (iii). The space H '

of assertion (v) is the image of H ^ { S ' , 5^) under the injection ffi(5', 5^) ̂  HQ^S, 5af)
of (2.22).

To prove (vi), we observe that the short exact sequence (2.21) gives

x(5,5af)=x(^)-x(^5^).

From (2.18) and Theorem 2.15 we have

(2.24) X(S^^)= ^ (-i^-l^l(| j|)! ^ M(A^zi;...;A;7^).

5toCJC5sp ^+...4-^=|j|

i-t,...,ir-i>.l

When r > 2, the induction hypothesis gives

(2.25) x{S\S^)= ^ (-l^-^dJI)! ^ M(Af,zi;...;A^,z,_i).

5'toCJC5sp ^+...+^_i=|j|

ii,...,^-i>l

Subtracting (2.25) from (2.24) gives assertion (vi) when r > 2. When r = 1, we follow
the same argument except that x ^ ' . S ^ ) is no longer given by the induction hypothesis
but rather by the right-hand side of (2.20).

It remains to prove (ii) and (vi) when N-r < 0. Since the expression for x(S, 5af) in (vi)
vanishes for TV— r < 0, we see that (vi) follows from (ii) in this case. Suppose N—r = —1.
Then dim^ H^S, S^) = x(S^ S^) by Theorem 2.15 and dim^ Ho(S^ S^) = x(S^ S^)

since H ^ S ' , S^) = 0 for I > 0 by (ii) (in the case N - r = 0, which was already proved).
But x(S, 5^) = x ( S ' , 5^) by evaluating (2.24) and (2.25) with N - r = -1, so the map
Ho(S,S^) -^ Ho^S^S^) in (2.22) is an isomorphism. Since H^S^S^) = 0, it follows
that Ho{S, 5af) = 0, thus (ii) and (vi) are established for N - r = -1. For TV - r < -1,
we have Ho(S,S^) = 0 by (2.24), hence ^(5, 5af) = 0 by (2.22).

3. Complexes in characteristic p

From Theorem 2.19 we have

(3.1) P(t) = det(J - ta \ Ho(K.(S, 5af)))/(! - q^)^.

Our goal (Corollary 4.14 below) is to use this formula to give a lower bound for the Newton
polygon of P{t). Later, we shall identify this lower bound with the Hodge polygon
of the primitive part of middle-dimensional cohomology of the complete intersection
FI = • - = Fr = 0 in (T^ x A^c, where F, e C[x^... , X N , (^i • "x^}-

1
} is the

generic polynomial with the property that the convex hull of supp(I^) coincides with the
convex hull of supp(/^).
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The first step is to describe a basis for HQ{K.{S^Sg,f)). In fact, it is no more difficult
to do this for all I^(X.(5,5af)). We begin by considering some related complexes in
characteristic p. Let R be the ring R = Fg^ | u e M]. This ring is graded by the weight
function defined earlier, namely, let R^\ the homogeneous part of degree fc, be the span
of all monomials ^n with w{u) = k. For i = 1, . . . , N + r, put

(3.2) g ^ ^ ^ R W .

dxi

Let K. = K.(R^ {gi}^^) be the Koszul complex on R defined by ^i,. • . ,^N+r. Grade
K. so that the boundary maps 9i are homogeneous of degree 0, i.e.,

^)= © R^CA.
ACS,|A|=;

For I C S with S^o C J, we may regard 9i as an endomorphism of R, homogeneous of
degree 0, and define Ri = 0i{R). We also put

/o o\ ^9
1 /- o(l)

(3.3) ^ ̂ ^a" J

for i G J and let K.{I) = K.(Ri^ {gi,i}iei) be the Koszul complex on Ri defined by
the gi^ for i G J. For J' C Jaf» let

< = Fl ker(0, | ̂ ),

w

the elements of J?j divisible by xi for all i € I'. Let K . [ I ^ I ' ) be the subcomplex of
X.(J) defined by

(3.4) W-n= Q R^CA.

ACI,\A\=l

For % G Jaf» ^ ^ -f^ we have, as in (2.12), an exact sequence of (graded) complexes

(3.5) o ̂  K.{I, r u {i}) -^ x.(J, r) -. K.{I \ {z}, j') ̂  o.
We shall compute the dimension (over Fg) of Hi^K.^S^S^f))^, the homogeneous

component of Hi{K.(S^So,f)) of degree fc, for all I and fc and use this information to
describe a basis for Hi(K.(S, 5af)). The answer will be expressed in terms of certain
invariants of certain polyhedra. As before, let A^ be the convex hull of supp(0j^(/^)),
% == 1 , . . . , r. When m = 0 and Jgp = 0» we assume / ^ ( O , . . . , 0) 7^ O for i •= 1, . . . , r, so
that A0

 ^ 0. As before, Aj will denote the convex hull of the origin and supp(0j(^)).
For any set Y C R^, let i(Y) denote the cardinality of Y D Z^. For any subset I C S

with 5'to ^ ^, set ^(J) == { j G { 1 , . . . , r} | A^ + j G Jdu} and define a power series in
the variables tj for j G ^(J) by

(3.6) P.(^W)) = E ^ E ^^JSP) II ^ e Z[[{^.},^(,)]].
fc,=o je^J) jes{i)

forj-e6(J)

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



300 A. ADOLPHSON AND S. SPERBER

It is easily seen that

(^-^) PI
 = ̂ spU5du \tj=0 for j ^ 6 ( I } '

It is well-known that ^(fciA^ + • • • + A^A/13) is a rational polynomial of degree < |Jsp|
in f c i , . . . , fcy, say,

^(fciA^ + • . • + fc,A^) = ^ a^..e^1 ... k^ C Q[fci,..., M-

ei+..-+e^<|Jsp|

Thus

^oo _ y / a \ ej

p^u^i,...^)= E E ^^n ^^- ^•••^
fci,...,A;,=0 ei+...+e^|Zsp| j=l v 3 /

r / n \ e? / r i \= E ^.n <.|- nr^
e,+...+e,<|^l ,=1 ^ C7t^ ^^l1 ik

^

E
_ PeT-'-e^tl, ... ,tr)

- r ->

ei+-+e,<|^p| j^(l_^.)^+l

J=l

for some polynomial p^.-.e^ti, • • - ,4) € Q[^i,. . .^r]. Note that if ej > 0, then
^eslp••e^l5 • • • ,4) is divisible by tp and if e^ = 0, then tj does not appear in

P^'-e^i,..., 4). Furthermore, deg^p..e,(^l,..., tr) = ei + • • • + Or unless a
I
e\

p
...e, = 0,

in which case this polynomial vanishes. From (3.7) we have

/o o\ p / r , -i \ V^ Pe^--er[tl) ' • - •, tr)
(3.8) P,({^L€W) = ^ .

ei+...+e,<|J3p| 11 { L - t j )

ej=OforjV6(J) j-e6(J)

It is easily seen from the definitions of Aj and the weight function w that

dimp, R^ = i{k^i) - i^k - 1)A,),

00 00

(3.9) E(dimF» ̂ fc))^ = (1 - *) E ̂ W-
fc=0 k=0

We regard Rl7! as being fibered over Rl^"!. The fiber of C7(Aj) over a point

(kj)jew C Nl^l is ^ ^Aj813. Hence
J€6(J)

^A,)= ^ ^E^')-
^ fc,<fc ^^6(7) /

J € 6 ( I )
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i.e., by (3.6)

00

(3.10) (1 -t)^(fcAj)^ = Pj({^L-€6(J))k=tfor^(J).

fc=0

It now follows from (3.8) and (3.9) that

00 -^p /'-/- -i-\
(̂dimp, ̂ ^fc - ^ .̂..e ,̂...̂

fc=0 ei+---+e,<|Jsp| |^du|+]^ ej-

ector .̂ (J) (1 _ ^ ,=l

Define

(3.11) qi^W = ̂ -..^(t,..., t){i -1)178131-^!e- e Q[t].

Then

00

(3.12) E(dimF. ̂ W = (1 - t)-IJI E .̂.e.M.

fc=0 ei+---+e^<|Jsp|

ej=0 forjV6(i")

Note that if A = card{j | ej > 1}, then qi^-.e^t) is divisible by t^ Furthermore,

degg^p..e^(^) <
: \Isp\- It is clear from the definitions that po^o^i? • • • ^r) = 1. hence

q^.oW = (l-t)!7-!.

LEMMA 3.13. - Suppose that g is nonde generate and semi-convenient. Then for I C S

with 5fo C I and Jdu ¥- ^ ̂  have Hi{K.(I)) = Q for I > 0 and dimp, Ho(K.(I))W

is the coefficient of ^ m

E ^w.
ei+---+e^^|Jsp|
e,=OforjV6(J)

Proof. - The complex ^.(-Q is acyclic in positive dimension by [13] (see also
[1, Theorem 2.17]). The formula for dimp, Ho^K^I))^ follows from this acyclicity
and (3.12).

Since ^(J,!7)^ and Hi^K^I,!'}}^ are always finite-dimensional, we may define

IJI

^(JJ') = ̂ (^dim^ WJ')^

1=0

\i\

=^(-lydim^^(X(JJ/))W.

f=o
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LEMMA 3.14. - Suppose that g is nonde generate and semi-convenient. Let I C S with

5to C I and let F C J^f. Then ^{1,1') is the coefficient oft
1
' in

(3.15) E (-l)1^1-171 E <-e^)-
Isp\I^CJCI^ e,+...+e^|jj

ej=0 forjV<5(J)

e^>l forje<5(J ')

//m ^toon ^u ^ ^du, ^^ Hi{K.{I,r)) = Q for I > 0, /^nc6? dim?, Ho{K.(I,r))^
is the coefficient of t

k
 in (3.15).

Proof. - When J^ / Jdu. 9i is nondegenerate and commode (in the sense of [1]) with
respect to I\ so the complex K . ( I ^ I ' ) is acyclic in positive dimension by [1, Theorem 2.17],
and we need to prove only the formula (3.15) for ^^(J^J').

From the definitions,

K ^ I , I ' ) W = © R^'^e^.
ACJ, \A\==l

We fix a set T C V and ask for which A C J, |A| =. I , we have I ' \ A = T. Clearly, we
must have A = (F \ T) U T, where t C I \ I ' has cardinality I + |T| - |J'|. Thus

(3.i6) x^i.n = ̂ {-i)1 E C ̂ m "'in) dimF- Rw%

l=Q T C I '
 v ' 1 ' 1 1/

A formula for dimpg R^ can be obtained from (3.12). A standard inclusion-exclusion
argument shows that

00 00

^(dimp, R^^ = ^ (-l)l^l-l^l ^(dimr, R^.

k=0 I\TCJCI fc=0

Substituting from (3.12) into this formula and using (3.16) we see that ^^^(J,J') is the
coefficient of t

k in

I7! / 1 7 - 1 |r/| \

f3i7^ N r̂ iV V f \l\~\l \ }.i( ) ^( ^^v+m-iri/
x ^ (-l)l^l(i _,)-1.1 ^ ^,.^(,).

I\TCJCI ei+...+e,^|Jsp|
e,=OforjV<$(J)

Fix a subset K C Jgp and fix e i , . . . , e^ with ei + • • • + Or <, \K\. We ask for the
coefficient of q^...^) in (3.17). Let A C 5'du be the set of all indices N + j such that
ej ^ 0. The equality of (3.15) and (3.17) is equivalent to the assertion that the coefficient

of ^...e. W in (3.17) is

(3.18) { (-l)17-1-^1 it Isp \ 1^ C K C 1^ and 1^ C A C 1^
\ 0 otherwise.
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It is clear that q^...^ (t) does not appear in (3.17) unless Jsp \ I'sp
 c

 K C J^p and A C Jdu.
Assume from now on that these conditions are satisfied. Then g^...e,(<) will appear in
(3.17) for each J , I \ T C J C I , such that Jsp = K and Jdu 3 A, thus the coefficient

of <...e,W i" (3.17) is

(3.19) B-^E G^n'^i)^ S (-i)111-1^-^1.
^=0 T C I '

 v ' ' ' 1/
 I\TCJCI

Jsp==JC and Jdu=?A

We show this expression equals (-l)l^pl-l^l if j^ c A and equals 0 otherwise.
We evaluate the innermost sum in (3.19) first. Note that it is the empty sum unless

Jsp \ Tsp C K. When this condition is satisfied, it equals

(_^ ^ (-^H.(l-.)-.l

v / AU(Jdu\Tdu)C£CJdu

(-i)^'-^' 1^1 /|^u|-|Au(Jdu\rdu)|Y ^1^1-^1 _^-.
'̂ ^)^^UE^^ .-1^(^\^)| ^-1) ^-^ '

where we have set j = |£[ in the second expression. Replacing j by j + |A U (Jdu \ ^du)|
and using the fact that |Jdu| - |A U (Jdu \ Tdu)| = |Jdu \ A|, this simplifies to

(_l)l^p|-|^|Tdu\A|

( l - t ) l^ l+ l^u|•

Substitution into (3.19) transforms that expression into

m / i n ir/ i \ r r-ni^pi-i^MTckAAl

(3.20) E(-')- E , I'T, '.I >• • l-O"^-' ":•' wp c "•
<=o TCJ' v ' 1 1 ! 1/ 10 otherwise.

Interchanging the order of summation transforms this into

f32n (-1)IJSPHXI \- t^Y( I7'-'71 W
(3t21) ( l - t )W+l^l ^ r 2^+|T|-|J'|/ t j -

JspWpCK

The inner sum in (3.21) equals

I^-ITI ,... |r/| \ l1!-!^! /|r| |r/|\
v- V\-\I\ \( .M_ v^ f l7 !-!7 l^_^v+i^i-m
2^ ^+m-|J'|J(-t) ~ ^ V i )

l=\I'\-\T\ ^ ^ ' " 1 IJl 1 / ^=0 v /

=(_^/l-m(l-t)m-l^l.

Substituting this last expression into (3.21) gives

(^99} (-1)IJSPI""" ^ ^YAl.^lJ-l-m(3-22) a-t}\i'wK\-\^\ 2^
 t

 ^
 L

)
\ ) ^gj/

Isp\TspCK

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUP^RIEURE



304 A. ADOLPHSON AND S. SPERBER

The decomposition T = Tgp U Tdu induces a decomposition of the sum appearing in
(3.22) as a product of two other sums, i.e., (3.22) equals

f32T) (-1)^ f^l^p|-|Ti| V^ f\T2\A\, ,^|-|T2|

^•^ n-f^i+w-ijspi 2^ \ i ) p 2^ t ^ i '
I.p\KCT,CI^ TaCJ^

where we are implicitly using the assumption made earlier that Jsp \ ^p c
 K, otherwise

the first of these sums is empty. Evaluating the first sum we get

\I'S-

(_i\\^\-\Ti\ _ V^ ( l^spl - l-^pl-T-l^l \ ..\I'\-j

{ ) ~ 2^ [ ._ |J \-L\K\ [ )

^KCT.CI^ ,=i^|_|^V 3 l^sp|+|A| /

l^pl-l^sp|+|K|

V f.^pl-iril _ Y^ ^spl-l^spl+I^IY ^1^1-,-
2^ ^ ^ p - 2^ I . i j i . i ^ i ^"^

I^\KCT,CI^ ,=Usp|-|K| v •7 I ^ P l ^ l ^ l /

- IJSPI+IKI/ir i i, 4,\K\\y- p4pl - l^p + l^l^^l^HJspl+l^l-j
Z^ \ . /
.—n \ J /J=0

=( l_^ l^p l - l ^p |+ | ^ | ^

hence (3.23) becomes

(3.24) ^T-11 '̂ E ̂ '(-^"l-l72!.
( 1 — ^ j' du I
v ;

 T^CI^

To complete the proof of Lemma 3.14, we need to show that the sum in (3.24) equals
(1 - ̂ l^ul if l^ C A and is 0 otherwise. Putting B = T^ \ A we have

(3.25) ^ ^2\A)(_^j-|T2| ̂  V- V- (_i)I^J-|T^|J,j-|r2|+|B^

^^du BC^^\A T^CI^
T2\A=B

Putting j = \T^\ and writing T^ = B U (T^ H A), a disjoint union with T2 D A C J^ n A,
we see that the inner sum equals

|5|+|^nA| l^uHAI
V^ / l^du ' ' A! ^ (_^\I'^\-3^\-^\B\ ̂  V^ f l^du " ̂ l \ .^|J,J-,+|B|JJ,J-,

z-^ V 1 - \B\ ) z^ V ? /
J==|B| \ ^ I I / ^=o v J /

=(_l)lBl(_^IC\AI(i^)l^nA|^

Substituting this result into the right-hand side of (3.25), that expression becomes

(_^u\AI(i_^nA| ^ (_^)^

^^^u^

But this sum is clearly 0 unless 1^ C A, in which case the entire expression clearly
equals (1 - t^

1
^.
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THEOREM 3.26. - Suppose that g is nondegenerate and semi-convenient. Then

(i) Hi{K.(S,S^)) = 0 for I > N - r.

f ( m \ •f ^ - 7 -L

(ii) For I = 1,... ^ N - r, dimp, ̂ (^.(5, 5af))^ = ^ ^ + ^ _ n)
 v ' ~ t ' r?

I 0 otherwise'.

(in) dimF, HQ(K.{S, 5'af))^ ^ ̂  coefficient ofi^ in

t^3--1^}^ E (-1)^1 E .̂...w.
j=r+l v / 5'toCJCSsp ei+-+e,<|J|

ej>l for al l j

In particular, Ho(K.(S,S^f))^ = 0 for k < r or k > N.

Remark. - When r = 0, ^., 5af = {m + 1,... ,m + n}, 6'du = 0, we understand

the second sum in Theorem 3.26 (iii) to be simply ^ (-l)^"1171^.^^) =
5toCJC5sp

(-^{1 - t)^. The whole expression in (iii) is then just equal to 1 if n == 0 and

equal to 0 if n > 0.

Proof. - To simplify notation, we write H i { I , r ) in place of H i ( K . ( I , F ) ) . We note
first that by Lemma 3.14, (iii) follows from (i) and (ii).

The proof of (i) and (ii) is by induction on r. Suppose r = 0. Then K. (S, 5'af) is the

complex ^(5,5'af) = (Fg)^) with all boundary maps trivial. Hence Hi(S,S^f) = 0

for ; > N , and for 0 < I <, N we have

{ ( m \ -f L _ /
(3.27) dimp^ H^ S^ = [i _ ̂  lr k

 -
 l
-

0 otherwise.

This is exactly the assertion of the theorem when r == 0.
Suppose the theorem true for r - 1. For notational convenience, put 5" == { 1 , . . . , N +

r - 1}. From (3.5) we get an exact sequence

0 - K.(S^ 5af) -^ K.{S^ S^) -> K.{S\ S^) -. 0,

and by Lemma 3.14, Hi(S, S^) = 0 for I > 0. The associated long exact homology
sequence then gives an exact sequence

(3.28) 0 ̂  ffi(5', 5^) -. ffo(5, 5af) ̂  ffo(5, S^) -^ W, S^) -^ 0

and isomorphisms for I >: 1

(3.29) Hi(S,S^)^H^{S\S^.

By induction we have Hi{S^ S^) = 0 for I > N - r + 1, and for 1 < I < N - r + 1

^ w\ rhm ^ r ^ ' ^ / ^ ( A : ) - J ( , . ) i f k = l + r - l ,(3.30) dimp, ^^(^ , ^af) - ^ V + r - l - n /
I 0 otherwise.

Parts (i) and (ii) of the theorem now follow from (3.29).
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Let the gi^ be as in (3.3) and put

D'I-i=x^~ik+9I'i-
an operator on JZj. Let K / { I ) = K.(Ri, [D\ J^ej) be the Koszul complex on Ri defined
by the D\, for i e J. Let K . \ I , I ' ) be the subcomplex of AT/GO defined by taking

K [ { I ^ I ' ) = K i ^ I ^ I ' ) . The rings jRf have an increasing filtration F.R^ defined by taking
FkR

1
! to be the span of monomials r^, u e M, with w('u) < fc. This induces a filtration

F . { K ' { I , I ' } } on the complexes K.\I,r), namely,

F^Un- © F.-^f^CA,
ACJ,|A|==^

which in turn induces a filtration F . { H . ( K / ( I ^ J'))) on the homology spaces H . { K / { I ^ J')).
We shall compute g T ' ( H . { K / ( I , r ) ) ) , the associated graded of this filtration. It is clear
from the definitions that gr(^/(J,77)), the graded complex associated to the filtered
complex K . ' ( I ^ I

1
) , is identified with the complex K . { I , I ' } considered previously.

Associated to the filtered complex AT/(J,J') is a convergent E
1 spectral sequence

[17, Chapter 9] with

F^JWW-O)^
^=gr^+^.un).

Suppose we are in the situation of Lemma 3.14. Then E^ = 0 for k +1 > 0 or k +1 < 0,
from which it is easily seen that all the differentials d^ ^ : E^ ^ —> E^_g i ^ s - i °^ ^e

spectral sequence are 0. Hence E^ ^ E^ c^ - • - c^ E^ for all fc,( . By Lemma 3.14
we have the following.

LEMMA 3.31. - Suppose that g is nonde generate and semi-convenient. For I C S "with

5'to C I and I ' C 1^ mth 1^ / Jdu, ^e have H i { K / { I , r ) ) = 0 for I > 0 and

dimp, gr^Ho^K.^I.r)) is the coefficient oft
k
 in

^ (-1)1^1-1^1 ^ ^W.

Jsp\^pCJCJ3p ei+...+e^|J|

ej=oforj^i)
ej>iforje6{i')

Now consider the case I = S, F = 5af, so that

(3.32) Et^H^{K.{S^S^

(3.33) E^ ^ gT^H^K/^ 5af)).

We shall again show that E^ ^ E^ for all k,l. We begin by computing
dimF,^(^/(^5af)) for all L '
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LEMMA 3.34. - Suppose that g is nondegenerate and semi-convenient. Then for all I,

dimp, Hi(K.\S^ 5af)) = dimp^ Hi(K.{S^ 5af)),

hence dimp Hi{K.\S^Sy^)) can be computed from Theorem 3.26.

Proof. - The existence of the spectral sequence implies that

N+r N-\-r

^-^d^H^K/^S^)) = ̂ (-iVdim^^^.^^f)),
1=0 1=0

hence it suffices to prove the stated equality for I > 1. The proof is by induction
on r. The case r = 0 is trivial since K / { S , S ^ { ) = K.{S,Ss,f) in that case. Put
5" = { 1 , . . . , TV + r — 1}. As in (3.5), we have an exact sequence of complexes

(3.35) 0 - K.\S^ 5af) -. K.\S^ S^) - K / { S \ S^) -. 0.

By Lemma 3.31, H i { K / { S , 5^)) = 0 for I > 0, hence the long exact homology sequence
gives isomorphisms

JW/(5,5af)) ^ H^R^S^S^)

for I ^ 1. By induction we have dimp, H^K^S^ 5^)) = dimy^ H^K^S^S^))

and by (3.29) we have Hi{K.{S,S^{_)) ^ Hi^(K.{S', 5^)) for ; ^ 1. It follows that
dimp, H i ( K / ( S , 5'af)) == dimp^ Hi{K.{S, 5'af)) for < > 1. This proves Lemma 3.34.

From (3.32) and Theorem 3.26, we see that E^ = 0 for all fc, I except possibly E^ _^

for ( = 1,..., N - r and E^ for fc = r , . . . , N . Therefore gT^Hk+i(K/(S, 5af)) = 0
except possibly for gr^^H^K.^S.S^)), I = 1,... ,N - r, and gT^Ho(K/(S,S^)),

k = r , . . . , TV. If I € { 1 , . . . , N - r}, it now follows from Lemma 3.34 and Theorem 3.26
that

dimp, gT^Hi{K.\S^ S^)) = dimp^ Hi{K.{S^ S^)f^.

Examining the differentials of the spectral sequence shows that E ^ _ ^ ^ E ^ _ ^ c ^ - " c ^

E^ if k / r, i.e.,

(3.36) gT^H^K/iS, 5af)) ^ ^o(^.(5,5af))(fe)

for k •=- r + 1, . . . ,7V. For fc = r, one sees that £'̂ °_y, is a quotient of £'^_y. (in
fact, £^_^ ^ E^), hence dimp^ £^_^ < dimp^ E^. But by Lemma 3.34 and
equation (3.36), we see that we must have dimp^ £^°_y, == dimp^^_y,, also. By
Theorem 3.26 we now have the following.

THEOREM 3.37. - Suppose that g is nondegenerate and semi-convenient. Then

(i) Hi{K.\S^S^} = 0 for I > N - r.

(ii) For I = 1,...,N - r,

dimp^ gr^^(J?/(^ 5af)) = { (; + m. J z f k = l + r ,

0 otherwise.
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(iii) dimp, gi^Ho^K.^S, 5'af)) is the coefficient oft
k
 in

E^^-^f^J^ E (-1)AMJI E <-^)-
J=^-l v / 5toCJC5sp ei+---+e.<|J|

ej > 1 for all j

In particular, g^Ho(K/(S, 5'af)) = 0 for k < r or k > N.

4. p-Adic estimates

We now prove a lemma on lifting homology from characteristic p to characteristic
0, which will allow us to use the results of section 3 to obtain information about the
complexes of section 2. Let 0 be a complete discrete valuation ring with uniformizer TT
and let K be an 0-module. We call K flat if multiplication by TT is injective and separated

00

if Q ̂ K == 0. A separated 0-module K has an obvious metric space structure with the
j=i

{^K} forming a fundamental system of neighborhoods of 0. We call K 0-complete if
it is complete in this metric.

LEMMA 4.1. - Let K. == { " ' ^ K ^ ^ K o ^ O } be a complex of flat, separated,

0-complete 0-modules wth 0-linear boundary maps. Let K. be the complex obtained

by reducing K. modulo TT. If Hi(K.) has dimension d over 0/(7r) and multiplication by

TT is injective on Hi(K.) and Hi-i(K.), then Hi(K.) is a finite, free 0-module of rank d.
Furthermore, any lifting of any basis for Hi(K.) is a basis for Hi(K.).

Proof. - Consider Hi(K.) == ker^/im <9^i. We claim im <^+i is complete. Let
{Qi^Zs}^-^ be a Cauchy sequence in im c^+i, say,

^+1^+1 - Ql^Zs = TT^^W^

where A{s) -^ oo as s —^ oo. Suppose we have found z ^ , . . . , Z s C ^+1 such that
Oi^Zj = Oi^Zj and ^+1 = Zj (mod 7rAO)). Then ^+1^+1 - Qi^Zs = TT^WS,

so TT^^ = 0 in Hi(K.). By the injectivity of TT on Hi(K.), Ws = 0 in Hi(K.),

i.e., Ws = ^+1^ for some ys G ^+1. Hence ^+1(^+1 - ̂  - 7^A(S)^) = 0. Put
Zs-^-i = Zs + TT^^. Then ^-n = ^ (mod Tr^^) and Qi^z^i = Oi^z^i. Since
Ki^-i is complete, the Cauchy sequence {zs} has a limit ^. It is then clear that {Qi^Zs}

converges to Q\^\z.

There is a short exact sequence of complexes

O - ^ K . ^ K . - ^ K . - ^ O ,

where the second arrow means multiplication by TT. The associated long exact homology
sequence and the hypothesis that multiplication by TT is injective on Hi^K.) imply that we
have an isomorphism Hi{K.)/7vHi(K.) ̂  Hi(K.). The completeness of im <^+i implies
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that Hi(K.) is separated. It is then straightforward to check that if ^ i , . . . , ̂  is a basis for
Hi(K.), then ^ i , . . . , ̂  is an 0-basis for Hi(K.), where ^ is any lifting of ^ to Hi{K.).

We shall apply this result in the following setting. In the definitions of our complexes
in section 2, we may replace B by its unit ball B(0o), thus obtaining complexes
Ar.(/,J';Oo) of Oo-modules. We define a reduction map p : B(0o) —^ R as follows.

If ^ = ̂  A^
ww

x
u e B(0o), then p(0 = ̂  A^ € R, where A^ e Fq is the

uCM nCM

reduction of Au modulo TT. There are induced maps p : Bf(Oo) -^ R^ for all I C S with
Sfo

 c
 I and J' C Jaf- By [1, section 2], the image of the complex K . ^ I ^ I ' ^ O o ) under /?

is the complex K . ' ^ I ^ I ' ) . Thus we have short exact sequences of complexes

(4.2) o - ̂ .(J, j'; Oo) ̂  ̂  r\ Oo) ̂  ̂ .'(^, ̂ ) -

Before we can apply Lemma 4,1, we must check that multiplication by TT is injective
on all H i ( K . ( I ^ r ' ^ O o ) ) .

LEMMA 4.3. — Suppose that g is nonde generate and semi-convenient. For I C S with

Sfo C I and I' C 1^ with 1^ ̂  1^ multiplication by TT is injective on Hi(K.(I^ J'; Oo))

for all I.

Proof. - The long exact homology sequence associated to (4.2) is

(4.4) .. . ̂  H ^ { K ' { I ^ I ' ) ) -. ̂ (^.(J,J';Oo))

^ Hi(K.(I^ J'; Oo)) -. H , { K ' { I , J')) ̂  • l • .

The result now follows immediately from Lemma 3.31.
Applying Lemma 4.1 and Lemma 3.31 gives the following.

COROLLARY 4.5. - Suppose that g is nondegenerate and semi-convenient. For I C S

with 5to C I and I ' C 1^ with 1^ ^ 1^, one has H i ( K . ( I , r ' , Oo)) = Q for I > 0 and

Ho(K.(I,r',Oo)) is a free Oo-module of finite rank.

LEMMA 4.6. - Suppose that g is nondegenerate and semi-convenient. Then for all I C S

with Sfo C I and for all I, multiplication by TT is injective on Hi(K.(I^I^Oo)).

Proof. - The proof is by induction on |Jdu|. When Jdu = 0. K.{I, Taf; Oo) is the complex

with Ki(I, Jaf; Oo) = (Oo)^
1
-^ and all boundary maps trivial. Thus Hi(K.(I, Jaf; Oo))

is a free Oo^odule of rank ( ^ m ,), so multiplication by TT is injective for all I . Now

suppose we know the result for all subsets I C S with Jdu of a given cardinality. Let
j € 5du» j ^ Idu. and put J = I U {j}. There is a short exact sequence of complexes

0 -. K.{J, Jaf; Oo) ̂  W 1^ Oo) ̂  K\I, Jaf; Oo) -. 0.

By Corollary 4.5, the associated long exact homology sequence gives an exact sequence

(4.7) 0 ̂  ffi(J, Jaf) -^ H^J, Jaf) -> H^J, Jaf) ̂  H^I\ Jaf) ̂  0
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and isomorphisms for I > 1

W,Jaf)^+l(^Jaf).

The induction hypothesis then implies that multiplication by TT is injective on ^(J,Jaf)
for / >: 1. By the induction hypothesis (resp. Lemma 4.3), multiplication by TT is injective
on ffi(J,.Zaf) (resp. Ho(J,I^)). The injectivity on HQ^J, Jaf) then follows from the exact
sequence (4.7).

By Lemma 4.6, we may apply Lemma 4.1 to obtain a basis for Ho(K.(S,S^Oo))

by lifting a basis for H o ( K / { S , Saf)). We choose a basis for H o ( K / ( S , Saf)) as follows.
For k = r , . . . , 7V, let B^ = {^\...,^)} be a set of monomials of weight k

in {x
u
 \ u (E M} such that their images in gT^Ho(K/(S,S^)) form a basis. By

Theorem 3.37,

N . .

(4.8) d(fc) = coefficient of ^ in V^ (-1V-7'-1 ( . m }t
3

Z—^ \ i _ n /

j=r+l w /

+ E (-1)"-1" E <-w-
StoCJCSsp e^+...+e^^|J|

ej > 1 for all j

N

Clearly then, the set B = |j B^ is a basis for H o ( K / ( S , Saf)), so by Lemma 4.1, B is
fc=r

also a basis for fio(^.(5',5af;0o)).
Let W be the ^o-span of B and set VF(6, c) = W n L{b, c). From the above remarks,

we have

/ 1 \ Jv+r

(4.9) BJ-W = ̂ f——p0) C ̂  AB^^Oo),

^ / i==i
AT+r

(4.10) B^ = W C E ̂ ^aA{l}-
1=1

Let £f(6,c) = rizer '̂"(^ I L
I(

b
^

c
))' Set e = 6 - l/(p - 1). Repeating the proofs of

[1, Proposition 3.6 and Theorem 3.8] (for a somewhat improved version of these arguments,
see [2, Lemma 3.3 and Theorem 3.14]), we get the following.

THEOREM 4.11. - For b, c € R with l / ( p - 1) < b ^ p / ( p - 1),

N-^-r

£^(6, c) = W(b^ c) + ̂  D.L^^ c + e),
1=1

N+r

L^^^^^^^^aAM^^

1=1

We now follow the method of [10, section 7]. Put f^i = Qp(Q and let r e Gal(^o/^i)
be a lifting of the Frobenius automorphism of Gal(F^/Fp). By [1, section I], there exists
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F{x) e L{l/{p-1), 0) such that the operator /? = r~1 o^oF, an Oi-linear endomorphism
of B and of £(b) for 0 < 6 < p/(p - 1), satisfies ^ = a. Let {^}?=i be an integral

basis for ^o over Oi. For ^.fc/) € B^, write

a TV d{k} , N+r x

/^'a.^) = ̂ ^^A^k^j^k'^a^ (mod^ A^H.
^=1 k=r j=l

 x t=l /

By (4.10), the A(j,fc^;jf ' , &',<') are uniquely determined by this relation.

LEMMA 4.12. - ord A^j.k^j'.k'.V) > k.

Proof. - Since TT^^/^.P e L{l/{p - 1),0), it follows that ^kl
 (TV^^} G

L ( p / ( p — 1),0). The lemma is then an immediate consequence of Theorem 4.11.
Let ordg be the y-adic valuation normalized by requiring ordg 9 = 1 . We compute

all Newton polygons with respect to this valuation. By the argument that establishes
[10, equation (7.7)], we now have the following. (See the two paragraphs preceding [10,
Theorem 7.1] for the assertion about the endpoints.)

THEOREM 4.13. - Suppose that g is nondegenerate and semi-convenient. Then the Nekton

(
 N+r

 \
polygon ofthe polynomial det ( I—ta | B J ^ / ̂  DiB^"' ) lies on or above the Newton

v i=i /

N

polygon of the polynomial | | (1 — qkt)d{k) and their endpoints coincide.

fc==r

By Theorem 2.19 (iv), we finally have:

COROLLARY 4.14. - The Nekton polygon of the polynomial P(t) lies on or above the
N

Newton polygon of the polynomial (1 — ^^"^-^([(l — q1^^^ and their endpoints

fc=r

coincide.

Remark. - Note that, in view of (2.5), the corresponding factor of Z(V/Fg; t) is P^"^),
N-r

which has lower bound determined by the polynomial (1 — t)"^-71) TT (1 — q
k
t)

d
^

k
~

}
~

r
\

fc=0

5. Hodge polygon

The purpose of this section is to identify the lower bounds of Theorem 4.13 and
Corollary 4.14 with certain Hodge polygons of toric and affine complete intersections. This
is a rather straightforward calculation, based on the results of [6]. We begin by recalling
the definition of Hodge polygon.

Let X be a complex variety and let H[{X^ Q) denote rational cohomology with
compact supports. By Deligne [7, 8], there is a mixed Hodge structure on ff^(X,Q),
in particular, there is a decreasing (Hodge) filtration F ' on H[{X^ C). The Hodge numbers

/^(^(X,C)) are defined by

h\H[{X, C)) = dime F^^X, C^F^H^X, C),
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and the Hodge polygon of H[{X, C) is defined to be the Newton polygon of the polynomial

JJ(1 - q
k
t)

hk(
<

Hl
^

x
^\ Alternatively, there is also an increasing (weight) filtration W.

k>0

on H[(X, Q) such that the Hodge filtration F ' induces a pure Hodge structure of weight
s on W,H[(X^C)IW^H[{X^C\ i^

W,H[{X^}IW^H[{X^C)^ © jr^
a+6==s

where ̂  = H^ and H^ is the complex conjugate ofH^. If we put h^^H^X, C)) =
dimc^0'6, then

^(^(X,C))=^^(^(X,C)).^(X,C))=^^^

6>0

Consider the case where F, e C[a:i,..., XN, (^i • • • ^m)~1], % = 1, . . . , r, is the generic
polynomial with the property that the convex hull of supp(F,) equals A5813 and let
X C (T"" x A^c be the smooth complete intersection Fi = . . . = = Fr = 0. Since
^ is affine, of complex dimension N - r, we have 7^(X,C) = 0 for I < N - r or
1>2N - 2r. Furthermore, the Gysin map H^-^^X, C) -^ H^r^z^m ^ A^c, C)
is an isomorphism for i = 1,... ,N - r and is surjective for % = 0. It is a morphism
of mixed Hodge structures sending H^^X) to [{^^((T^ x A^c), and by [6] we
have for i = 0 , . . . , N

( ( m \
(5.1) /^(^((T- x A^c, C))=^[^^)

 if a
 = b = z,

I r» _ A.I- ^ —_ • -0 otherwise.

Hence for i == 1 , . . . , N — r

( ( m \ .m

% -
0 otherwise,

fs 9} ha^b( tfN-r+i/ Y r^\\ — J . if a == & = z,v0'^ /l v^c ^^^ - ^ ^+%-^y
I /~t ..1 •

in particular,

Thus the only nontrivial case is the middle-dimensional cohomology H^^^X, C). The
primitive part P-ff^-^X, C) of middle-dimensional cohomology is defined to be the
kernel of the (surjective) Gysin map H^-^X, C) -^ ^^((T771 x A^c, C). By (5.1),

PH^-^X^C) has codimension f m
 } in H^-^X.C). More precisely,\r — n) c v 7 / r- j ^

CAW-^O) ifk^O,
(5.4) ^(Pff""(X, C)) ̂  ,.̂ ».,̂  ̂  _ ( ,n ^ ,„. ̂

^ ^ , ( A , C } ) i f f c ^ O ,
^(P^-.^c))=Lo.^-.^F^ ^ rn \\ n [H^ (A,C)}- i f f c ^ o .

I \r-n}<r-n.
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In [6] is described a procedure for computing the Hodge-Deligne numbers of X in terms
of invariants of the polytopes Af, Sio ^ I

 c
 Ssp, i = 1 , . . . , r. We carry out part of this

procedure in order to verify the following.

THEOREM 5.5. - The lower bound for the Newton polygon of the polynomial P^"^)
given by Corollary 4.14 is the Hodge polygon of PffN-r(X, C).

Proof. - In view of (5.4) and the remark following Corollary 4.14, the theorem is
equivalent to the assertion that

(5.6) h^H^-^X, C)) = d(k + r)

for all &, where d(k) is given by (4.8).
Following [6], we set

(5.7) e
k
(X)=^(-l)

l
h

k
{Hl{X,C)).

l>0

Consider first the case r = 1, n = 0, i.e., X is the hypersurface Fi == 0 in T^. From
section 3, we have

oo m

^^Af«°)^ = (1 - t)-"1-1 ̂  q^.-oW-
k=0 ei=0

One of the basic results of [6] is the following.

THEOREM 5.8 ([6, Remark 4.6]). - If X is the hypersurface Fi = 0 in T^, then

(
\ rn

(-ir-'e^X) = (-If m ] + coefficient oft^1 in ̂  q^...,{t).

K ~ T l y ei=0

This result may be generalized to complete intersections.

PROPOSITION 5.9. - IfX is the complete intersection Fi = • • • = Fr == 0 in (T^ x A^c,
then

(-^-e^X) = coefficient of t^ in ^ (-1)^-1^1 ^ <...e^).
5toCJCSsp ei+.- .+er^l^l

ej > 1 for all j

Remark. - This proposition implies Theorem 5.5, because it is now straightforward to
prove (5.6) using (5.3) and (4.8).

Proof of Proposition 5.9. - We follow the outline given in [6, section 6]. Put

G = a^+iFi + • • • + XN-^-rFr - 1

and let Y be the hypersurface G = 0 in (T771 x A71 x A^c. By [6, section 6.2],

(5.10) e^X) = e^T" x A^c) - e^-^V),
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and by (5.1),

(5.11) ^((T- x A^c) = (-^-'(^V

We cannot apply Theorem 5.8 directly to compute e
k+r

~
l
^Y) because Y is not a

hypersurface in a torus but rather a hypersurface in (T771
 x A

n
 x A

r
)c. So for I C S

with S'to C J we put Gi = ̂  a:,(9j^(F,_^) - 1 and let Vj be the hypersurface Gi = 0
ze^du

in T^. (Note that Vj = 0 if Jdu = 0.) Then V = (J Yi (a disjoint union) and by
StoCICS

[6, Proposition 1.6],

(5.12) e\Y)= ^ e^V,).
5toCJC5

We shall apply Theorem 5.8 to each Yi to compute e^yj), then substitute into (5.12) to
find e^V) and substitute into (5.10) to find e^X).

The convex hull of supp(C?j) is Aj. By (3.9) and (3.12),

00

^(fcA,)^ = (1 - t)-^-
1 ^ q^t).

k=0 ei+---+er<|^p|
e^=OforjV<5(J)

So by Theorem 5.8,

(_l)l^l-i^(y,) = (- l)^1 7 1) + coefficient of t^ in V qi^W.
\ r^ ~T~ -L /

/ ei+---+er<|^sp|
ej=0 forj^6(J)

From (5.12),

(5.13) e^Y)^ ^ (-l)l^-if I7! )
5toCJC5 \ A C + i /

+ coefficient of ^+1 in ^ (-1)171-1 ^ ql^-e^t).
StaCICS ei+...4-e^|j^|

e,=OforjY6(J)

Using the decomposition 5' = Ssp U S'du we have

^ (-I)!7!-1 ^ gj-..,(t)

StaCICS ei+...+e^|j^|

e^=OforjY<5(J)

= E E (-i)'71^'72'-1 E ^...e.w
5toCJiC5sp J-2C5du ei+...+e,<|Ji|

e^=Ofor j^6(J2)

= E (-i)'711^-1 E <1-^)
5toCJiC5sp e^+...+e^<|j^|

ej > 1 for all j
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by a standard inclusion-exclusion argument. We also have

y (-i)i^-f I7' ̂ E^^f^V^)
s^cs '< f c+ l^ ,- ^-^+v

-(_iyv-^-if m ')- v / ^ f c + l - r - n y

by a straightforward combinatorial argument. Thus (5.13) becomes

ek(Y)-(-l'}N~r+k+l( m ^e v y ; - v ; Yfc+l - r - -^

+ coefficient of t^1 in ^ (_i)l^l+'-^ ^ ^...e^t).
StoC/i^S.p ei+.-+e,,^|Ii|

ej^l for all j

Combining this with (5.10) and (5.11) yields Proposition 5.9.

6. Cohomology of projective complete intersections

In this section we change notation slightly. Let fi,...,fr £ Fja-o,... ,XN\ be
homogeneous polynomials with deg /. == d, for i = 1,.. . , r. Let V C P^ be the projective

variety A = • • • = fr = 0. Put g = a-jv+iA + • • • + x^+rfr € Fja;o, • • • , XN+r}- Let
y* Q A^"^1 be the affine variety /i = • • • = /r = 0. As in (2.2),

(6.1) ^7F,; (ft) = ̂ (A^1 x A^ ff; *).

On the other hand, ^(V) = (g3 - l)^(^) + 1. hence

(6.2) Z^/F^t) = Z(V/Fy;qt)Z(V/F^t)-\l-t)-1.

Write ^ p^C-i)—-1

Z(Y/F,;t) = ( i _ ^ ) ( i _ ^ ) . . . ( i _ ^ v - ^ ) -

Then (6.1) and (6.2) imply that

(6.3) L^^^-^^^-^.

LetS={0,l,...,N+r},S^=[0,...,N],Sdn={N+l,...,N+r}.By(2A3),

N+l+r ^

(6.4) ^(A^xA^ff;^-1^^ 11 det{I-ta,\Hi(K.(S,S)))^.
1=0

For purposes of induction, we shall have occasion to consider cases where Ssp = 0 or
Sdu = 0. Although such cases have no geometric interpretation in terms of complete
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intersections, the L-function I^A^1 x A
7
' , g ' , t ) is still defined. Recall [1] that we say fi

is commode if it contains each of the monomials x ^ , . . . , x^ with nonzero coefficient.

THEOREM 6.5. - Suppose that r < N, g is nonde generate, and fi is commode for

i = 1 , . . . , r. Then

(i) dim^ Hi(K.(S,S)) < oo for all I .

(ii) Hi{K.(S,S)) = Q for I / 0,1, TV + 1 - r.

(iii) Suppose N — r > 0. TTz^n dim^ H^-^-i-r^K.^S^S)) = 1 a/i^ Frobenius acts on

HN+i-r(K.(S, S)) as multiplication by q
N
^

l
. The space H^(K.(S, S)) with Frobenius ai

is isomorphic (as Frobenius module) to Ho(K.(S^ S)) with Frobenius qao.

(iv) Suppose N — r = 0. Then H-[_(K.(S^ S)) with Frobenius ai is isomorphic to a direct

sum Ho(K.{S, S)) C H ' , dim^ H
1
 = 1, with Frobenius acting on Ho(K.(S, S)) by qao

and acting on H ' by multiplication by •q
N
^

l
.

(v) The Frobenius endomorphism ao is invertible on Ho(K.(S^S)) and

dim^H^K.(S^S))

N+l / / V - 4 - 1 \

=(_l)^+i(^V-,+!)+(-l)^i ^(-l)^"^1) ^ dl1...^.

l=r-\-l v / ii+...+^=f-l

i j ^ 1 for all j

Comparing the right-hand sides of (6.3) and (6.4), we have immediately the following.

COROLLARY 6.6. - Suppose that r < N, g is nonde generate, and fi is commode for

i = 1 , . . . , r. Then

P^t) = det(J - too | Ho(K.(S, 5))),

in particular, P(t) is a polynomial. Its degree is given by Theorem 6.5 (v).

Remark. - If fi = 0, % = 1, . . . , r, are smooth hypersurfaces in P^ in general position,
then one can always make a coordinate change on P^ (defined over a finite extension of
Fg) so that g is nondegenerate and all fi's are commode. (See [3])

The proof of Theorem 6.5 will require several steps. First observe that the homogeneity
condition on the fi's implies that every monomial x^ - • -x^x^^ • • • x1

^^ appearing
in g satisfies

G^O + • • • + 0'N = d\b^ + • • • + drbr.

This in turn implies that every u G M = Z^^^ D C(A) satisfies the same condition.
It follows that

(6.7) Do + • . • + DN - ^I-DN+I - • • • - drDN^r = 0

as operator on B or L(b}. More generally, for I C S we have

(6.8) ^ Di^ - ̂  d^Di^ = 0

ieisp iddu
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as operator on Bi or Lj(&). This relation implies that for I ' C J, the map from

WJ7) = B
1
/ e0 to K , ( I ^ r ) = ©Bf^0

 e^ defined by
id

(6.9) $e0 ̂  ̂  $e^ + ̂  (-d,-7v)$e^

zdsp ^e-^du

has image lying in the set of 1-cycles. Suppose ^e^ is a 0-boundary, L^., there exist

^,G B
1
^ such that $ - ̂ Dj,^). Put

zeJ

_ f 1 if i C Jsp,
61 ~~ \ -di-N if ^ € Jdu,

and define ̂  = c^ - 6,^ G Bf^'^ for ij G J. Then {^}z,,ei is a skew-symmetric

set and ^Dij(rnj) = 6,$, L^., the image of ^0 under the map (6.9) is a 1-boundary.

jeJ
Thus (6.9) induces a map

^ :ffo(^.(^)-^i(wn)-
It is clear that (^/ o 900 = ai o ^f, ;.^., (^f respects the Frobenius structure.

PROPOSITION 6.10. - Suppose that g is nonde generate and ji is commode/or i == 1 , . . . , r.

Then for F C I C S with 1^ / Jsp and 1^ + Jdu, we have Hi(K.(I, F)) = Q for I > 1,

(6.11) dim^ H^I^) = ^ (-l)l^l-l.l ^ ( J] ̂

^sp\^pCJCJsp ^ ^=|J|-1 tejdu

^du

^,^1 fone^du

ao ^ invertible on Ho(K.(I,r)), and ^f is an isomorphism.

Proof. - The proof is by induction on |J'|. When I ' = 0, Proposition 8.3 of the appendix
says that Hi{K.{I,I')) = 0 for I > 1 and ^ is an isomorphism. The invertibility of
ao is given by [1, Theorem 3.13] and the formula for dim^ Ho(K.(I,r)) follows from
[1, Theorem 2.9] and a calculation as in the derivation of (2.18).

Suppose | r | > 0 and let i e I ' . Then there is a short exact sequence of complexes

o -. ̂ .(J, r) -. w r \ {i}) -^ K.(I \ {z}, r \ {i}) -^ o.

The vanishing of H i ( K . ( I , r ) ) for ; > 1 follows immediately from the associated long
exact homology sequence and application of the induction hypothesis to K . ( I , F \ {%})

and K.(I \ {i}, I ' \ {%}). The maps ^f^0 and (f)1
^ are isomorphisms by the induction

hypothesis, so Proposition 8.6 of the appendix implies that ^\ is an isomorphism and

that the sequence

o - ̂ o(W i ' ) ) - H^K.(I^ r \ {z})) - H,(K.(I \ {Q, r \ {z})) - o
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is exact. By induction, ao on Ho{K.{I,r \ {%})) and on Ho{K.{I \ {i},F \ {?})) is an
isomorphism, hence ao on Ho{K.(I,r)) is also an isomorphism. We also get

dim^ Ho(K.(I^ J')) = dim^ ffo(W I ' \ {z})) - dim^ H^{K.{I \ {z}, I ' \ {z})),

so the desired formula for dim^o Ho{K.{I,r)) follows from the induction hypothesis.

Remark. - Note that in the case |J^J >_ \Isp\, the proposition implies all homology
vanishes since the index set for the inner sum on the right-hand side of (6.11) is empty.

PROPOSITION 6.12. - Suppose that g is nonde generate and fi is commode for i = 1, . . . , r.

Let F C I C S with J^p = Isp but 1^ / Jdu- For notational convenience, set

l^dul - 1-41 = k and \I^\ - \I^\ = k Then ^(^.(J,J')) = 0 if

^ { 0 , l } U { f c , f c + l , . . . , f c } .

If in addition k >_ 0, then

(6.13) Hi{K.(I^ I ' ) ) = 0 y ^ { f c , f c + l , . . . , k},

(6.14) Hi(K.(I^ JQ) ̂  (Oo)^^) r ^ { f c , f c + l , . . . , k}.

Proof. - The proof is by induction on |Jgp|. When Jgp = 0. one has

r.r\A _ f ^o if r C A,
1
 ~ \ 0 if J' g A,

hence

W^)- © "OCA
J'CACJ, |A|=^

and all boundary maps of the complex K . { I ^ I ' ) are zero. Thus

(\i\-\i'\\
(6.15) ^(^.(J,J'))^(no)^-^i),

which implies the proposition when |Jgp| = 0.
If |Jsp| > 0, let i € Isp and consider the short exact sequence

(6.16) 0 - K.(I^ J') -. K.{I, I
1
 \ {i}) -. K.(I \ {z}, r \ {z}) - 0.

The complex K . ( I ^ I ' \ {%}) satisfies the hypotheses of Proposition 6.10, so H i [ K . ( I ^ I ' \

{%})) = 0 if I 7^ 0,1. Thus the long exact homology sequence associated to (6.16) gives
isomorphisms

(6.17) H^{K.{I \ {z},r \ {z})) ^ Hi{K.(I^I
1
))

for / > 1. The assertion for Hi(K.{I^r)) now follows by applying the induction
hypothesis to Hi^{K.(I \ {i},F \ {%})) . Suppose in addition that |J^| >_ \Isp\. Then
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Hi{K.{I, I ' \ {%})) = 0 for all; by equation (6.11), so (6.17) holds for all; ^ 0. Induction
on |Jsp| now reduces (6.13) and (6.14) to the case Jsp = 0, where the result follows

from (6.15).

When Jsp = I'sp and |Jdu| = l^dul + 1- there is a simPle wa^ to check when ^ is

an isomorphism. To fix ideas, suppose Jdu = 1'^ U {N + r} and let 2 = ]̂  ̂  e^ G

JCi(J,J') be a 1-cycle. Then ^ € B1
^, in particular, ^v+r e Bf. If the homology

class represented by this 1-cycle lies in the image of <^f, then there exists $ G B\ such

that S is homologous to the 1-cycle ^ $e^} + ̂  (-^-^qz}. Thus there is a
i^Isp i^Idu

skew-symmetric set T^ e B1
^^ such that

Y- n ( \ i: ^ if % e Jsp?

^I5,(^)=^-^_^_^ if, e Jdu.

Taking % = ^V + r we get y/N+rj e fif^^ such that

^+r + dr£, = ̂  Dj{rfN^rj)-

jel

But this equation says that ^v+^ and -c^ are homologous 0-cycles in JJo(JC.(J,J')). In
other words, the map defined by sending 5 to (-l/^)$N+r is, by the argument above,
defined on homology classes in the image of ^\ and is a left inverse to ^\:

^ o ̂  = identity : JJo(X.(J,J')) ̂  JJo(J^.(J,J')).

Thus (f)
1
]' is an isomorphism whenever

dim^ JJo(JC.(J,J')) = dim^ JJi(X.(J,J')) < oo.

COROLLARY 6.18. - Suppose that g is nondegenerate and fz is commode/or i = 1,. . . , r.

Let r C I C S with 1^ = Jsp and |Jdu| = l^dul + 1 = l^pl + 1. Then JJ,(JC.(J, J')) = 0

/or < > 1, ̂  ^ an isomorphism, and dim^o JJo(J^.(J,J')) == 1.

Pr^/. - It follows from (6.13) that Hi{K.{I, J')) = 0 for ( > 1. To prove the remaining
assertions, we see by the above discussion that it suffices to check that

dim^ JJo^JJ')) = dim^ JJi(JC.(JJ')) = 1.

But this follows from (6.14).
We now analyze the case J = 5, F = S \ {N + r} in more detail.

COROLLARY 6.19. - Suppose that 1 < r ^ N + 2, g is nondegenerate and fi is

commode for i = 1,..., r. Then Hi{K.{S^ S \ {N + r})) = 0 if I > 1 and ̂
{ r }

 is

an isomorphism. Furthermore,

(6.20) dim^ JJo(^.(^ 5 \ {7V + r}))

^V+l / / V - J - 1 \=(_l)^+(_l)^l^(_l)<( y v+ l ^ ^...d^.
f=r v / ii+...+^=^-l

ii,...,ir_i>l
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Proof. - For notational convenience, we put S ' = S \ {N + r}. The vanishing of
H I ^ K . ^ S . S ' ) ) for I > 1 is an immediate consequence of Proposition 6.12 and the
hypothesis that r ^ N + 2. We prove that ^j' is an isomorphism by induction on
N + 2 - r. Suppose that r < N + 2 and consider the short exact sequence

(6.21) 0 -^ K.{S, S ' ) -^ K.(S^ S ' \ {N}) -^ K.(S \ {TV}, 5' \ {N}) -^ 0.

By Proposition 6.10, (^ ̂
N} is an isomorphism, so by Proposition 8.6 of the appendix,

^ will be an isomorphism provided ^^V^ is. Thus by induction it suffices to establish
the result when r = N 4- 2. But I = S, I ' = S\ r = N + 2, is exactly the case covered by
Corollary 6.18. Note that Corollary 6.18 also establishes (6.20) when r = N + 2. We also
prove (6.20) by induction on N + 2 - r. Since ^^V^ is an isomorphism. Proposition
8.6 of the appendix implies that the connecting homomorphism in the exact homology
sequence associated to (6.21) is zero, hence

dim^ ffo(^.(5, S ' ) ) = dim^ H^K.{S, S ' \ {TV})) - dim^ H^K.{S \ {TV}, S ' \ {TV})).

The value of the first term on the right-hand side is given by (6.11). The desired expression
for the left-hand side then follows by applying the induction hypothesis to the second
term on the right-hand side.

Proof of Theorem 6.5. - Note that Theorem 6.5 (i) is a consequence of Theorem 6.5 (ii)-
(v), so we need only prove parts (ii)-(v). We proceed by induction on r, proving additionally
that when TV - r > 0, c/)j is an isomorphism. When r == 0, i.e., S = { 0 , 1 , . . . , TV}, it
is straightforward to check that K . ( S , S ) is the complex with KN^S.S) = Qo and
Ki{S^ S) == 0 for I 7^ TV + 1, where all boundary maps are zero and Frobenius acts on
K N ^ ( S ^ S ) as multiplication by g^1. This establishes Theorem 6.5 in that case (when
one interprets appropriately the sum appearing in Theorem 6.5 (v)).

Suppose r > 1. We again put 5" = S \ {TV + r}. There is a short exact sequence
of complexes

(6.22) 0 -^ K.(S, S) -^ K.{S, S ' ) -^ K . { S ' , S ' ) -^ 0.

By Corollary 6.19, Hi{K.{S,S'}) = 0 if I / 0,1, and by the induction hypothesis,
Hi(K.(S^ 5")) = 0 if I / 0,1, TV+2—r. It follows from the associated long exact homology
sequence that Hi(K.(S, S)) = 0 if I ^ 0,1, TV + 1 - r, establishing Theorem 6.5 (ii).

If TV -- r > 0, then the long exact homology sequence gives an isomorphism

H^-r^K^S^S^ ^ H^-r(K.(S^S))^

hence, by the induction hypothesis, dim^o HN-^i-r{K.(S, S)) = 1 and Frobenius acts
as multiplication by ^7V+1. When TV - r > 0, we also have by the induction hypothesis
that H^{K.{S

1
\S')) = 0 and <^ is an isomorphism. By Corollary 6.19, ^j' is also

an isomorphism, hence (f>j is an isomorphism by Proposition 8.6 of the appendix. This
establishes Theorem 6.5(iii).

Now suppose TV - r = 0. By the induction hypothesis, (f)j', is an isomorphism, and
by Corollary 6.19, (f)j is an isomorphism. Hence by Proposition 8.6 of the appendix, the
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connecting homomorphism H ^ K ^ S ' . S ' ) ) —^ HQ{K.{S^S)) of the long exact homology
sequence associated to (6.22) is zero. Thus the nontrivial terms of the long exact homology
sequence give us a commutative diagram with exact rows (For typographical convenience,
in this diagram we denote Hi{K.(I,r)) by Hi{K^'}.)\

0 - H,{KJ:)^H,(KJ) -. H ^ K J ' ) -. H,{KJ:) -. 0

(6.23) ^|t ^T ^T

0 -. H^KJ) -. H ^ K J ' ) -^ Ho{KJ',) -^ 0.

By the induction hypothesis, dim^p H^K.^S^S^) = 1 and Frobenius acts on it
as multiplication by g7^1. Thus r^H^K.^S^S'))) is a one-dimensional subspace of
H^{K.(S,S)) with Frobenius acting as multiplication by ^N+l. A diagram chase, using
the above observation that the two right-most vertical arrows in (6.23) are isomorphisms,
now shows that

(6.24) H,(K.(S, S)) ̂  r{H^K.(S^ 57))) 9 ̂ (ffo(^.(5,5))),

which establishes Theorem 6.5(iv).
What we have done so far implies that

dim^ Ho(K.(S^ S)) = dim^ H^K.{S^ S ' ) ) - dim^ H^K.{S', S'}}.

Evaluating the first term on the right-hand side by Corollary 6.19 and the second term on
the right-hand side by the induction hypothesis establishes Theorem 6.5 (v).

7. Newton and Hodge polygons in the projective case

The calculation of a lower bound for the Newton polygon of P(t} proceeds exactly as in
sections 3 and 4, therefore we just summarize results while pointing out some differences
in the projective case.

Let the ring R be defined as in section 3 and let K. = K.(R^ {gi}^^) be the
Koszul complex on R defined by g o ^ . . . , gN-\-r' As in section 3, one can define the related
complexes K.(I), K.{I^ F) for I ' C I C S. All these complexes are graded as in section 3.

Let I C S with Jsp / 0. The homogeneity condition on /i , . . . , /r implies that the
polytopes A^815 , . . . ̂ ^ are (\Isp\ — 1)-dimensional (instead of |Jgp| -dimensional). Thus

^(fciA^ + • • • + ferA^) is a rational polynomial of degree ^ |Jsp| — 1 in k\,..., kr, say,

^(fciA^ + . • . + fc,A^) = ^ ai^e^ . • . k^ e Q[fc i , . . . , fc,].
ei+---+e^<|Jsp|-l

The hypothesis that g is commode implies that for each j, A sp is the (\Isp\ — l)-simplex
in Rl^pl with vertices (dj^ 0 , . . . , 0 ) , . . . , (0 , . . . , 0, dj), so, in fact,

^Af- + ... + k^) = (
kldl +

•••
+ krdr+ 1^1 - 1).

\ Mspl — 1 /
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This formula shows that the lattice point function on the left-hand side depends only on
|Jsp|, not on Isp itself, thus the same is tme for the formulas that follow.

The polynomials ^..e.^i,..., tr) can be defined as before and we have

Y>mF R^ = Y P ^ - e ^ . t )

&o q ' ) .....^i-id-t)17-1^^^
e,=OforjV6(J)

Define

q^W = Pe7...e^ ' . . ̂ )(l - ̂ Jsp1-1-^ e- C Q[t}.

Then

(7.1) f;(dim^ R^ = (1 - t)-^
1 ^ ^.,^).

^^ ei+.-.+e^IJspl-l
e,=OforjY6(J)

Using induction on |J'|, as in the proof of Proposition 6.10, gives the following. (The
case |J'| = 0 is Proposition 8.4 of the appendix.)

PROPOSITION 7.2. - Suppose that g is nondegenerate and fi is commode for i = 1, . . . , r.
Then for F C I C S with 1^ ^ 1^ and 1^ ^ 1^ we have Hi(K.(I, F)) = Q for I > 1,

dimp, H,{K.{I^I')}W ^ ^im^ H^K^IJ^-
1
^

and dimF, Ho{K.(I,r))W is the coefficient oft
1
' in

E (-i)17-'-'7' E <•-.%•
^pV^CJCJ^p ei+...+e,=|J|-l

e,==Oif^<$(J)

e^l i f^e6(J / )

Arguing as in the proof of Proposition 6.12 gives the following.

PROPOSITION 7.3. - Suppose that g is nondegenerate and fi is commode for i = 1, . . . , r.
Let F C I C S with 1^ = J,p but 1^ ^ 1^. Then Hi{K.{I,F)) = 0 if

I ^ {0,1} U {|J,J - |J,p|, |J,J - |J |̂ + 1 , . . . , |J |̂ - |J^|}.

If in addition \I^\ ̂  [J,p|, then H ^ K ^ I ^ I ' ) ) = Qfor I ^ {|^J - |J^ . . . , |J^| - |J^|}
and

dim^Hi{K.{I^r))W

=[d ̂  ~\w |) tf1 e {l^ul - 1-U . • . , |^du| - l^spl} ̂  fc = Z + IJ Î,
V ' Pspj l^dul/

^ 0 otherwise.

We record a special case of this result, an analogue of Corollary 6.18.
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COROLLARY 7.4. - Suppose that g is nondegenerate and fi is commode for i = 1,... , r.
Let F C I C S with 1^ = Jsp and \I^\ = \I^\ + 1 = |Jsp| + 1. Then Hi(K.{I, F)) = 0 if

I > 1, dimp^i^JJ'))^) = dimF^Ho^K^I.r))^-^, and

rlim U ( J^ ( T T'^W — ) IJ == \Wdimp, Ho(K.{I,I ))^ - ̂  Q ifk^\I^\.

Following the proof of Corollary 6.19, we arrive at the following.

COROLLARY 7.5. - Suppose that 1 < r < N + 2, g is nondegenerate, and fi is commode

for i = 1,..., r. Then Hi(K.(S, S \ [N + r})) = 0 if I > 1,

dimF, Hi(K.(S, S\{N+ r}))W = dim?, Ho{K.{S, S\{N+ r}))^-1),

and dimr, Ho(K.(S, S \ {N + T-}))^ is the coefficient oft1' in

(-l)^^-1 + ̂  (-1)^1-1^1 ^ g^..,^(,).

^C5sp ei+...+e^|J|-l
ej ̂  1 for all j

We finally arrive at the analogue of Theorem 6.5.

THEOREM 7.6. - Suppose that 1 <, r < N, g is nondegenerate, and fi is commode for

i = 1,..., r. Then

(i) dimp, Hi{K.(S, S)) = 0 for I -^ 0,1, TV + 1 - r.

(ii) dim?, Ho{K.{S,S)Y^ is the coefficient ofi
k
 in

(7.7) (-l)^-^1^ + t^1 + • . . + ̂ ) 4- ̂  (-l)^1-!^ ^ <...e^)-
^C5sp ei+...+e^|J|-l

ej ̂  1 for all j

(iii) IfN - r > 0, r/^n dimp, H^K.(S,S))^ = dimp, Ho{K.{S, 5))^-1) ^d

^im «• r ^ ^ ^ W J1
 i f k = N - ^ - l ,dimp ^^v+i-y.^A.^,^)^ = i n .79 L O otherwise.

(iv) If N - r = 0, then

din,?. 7W.(S, S))W = d,m,. ff,,(^.(S,S))<>-> + { ; ̂ ;̂ + 1.

The generalization of the rest of sections 3 and 4 is straightforward. Let d{k) be the
coefficient of ^ in expression (7.7).

THEOREM 7.8. - Suppose that 1 <^ r <^ N, g is nondegenerate, and fi is commode

for i = 1 , . . . ,r. Then the Newton polygon of the polynomial P{t) = det( I — tao \

N+r ^ N

Bj/ V^ DiB^^ ) lies on or above the Newton polygon of the polynomial TT(l-gfc^)d(fc)

i=o
 /

 k=r
and their endpoints coincide.
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Remark. - The corresponding factor of Z(y/Vq\t) is P{q~
r
t), which has lower bound

N-r

determined by the polynomial TT (1 - q
k
t)

d{k+r
\

k=0K—U

We now describe the Hodge polygon in the projective case. Let F ^ ^ . ^ F r G
C[XQ^ . . . , XN} be the generic homogeneous polynomials of degrees d i , . . . , dr, respectively,
and let X C P^ be the smooth complete intersection F^ = • • • = Fr = 0. For J C 5gp,
let Uj C P^ be the subset consisting of those points whose homogeneous coordinates

(^o , . . . , ^7v) satisfy xj -^ 0 if and only if j e J . Thus Uj ^ T^~1 and there is a

decomposition of P^ as P^ = N [7j. Putting Xj = XnUj, we get a decomposition
07^"sp

(7.9) Z= U X^.

0^^C5sp

For each J C 5gp, J ^ 0, let ^/ be the dehomogenization of 1̂  with respect to any
Xj, j G J, and let Af C Rl'7!"1 be the polytope and q^...e^W be the polynomials
associated to F/ as in section 3. The genericity of F^ implies that these are independent
of the choice of xj. In fact, Af is the (|J| - 1)-simplex with vertices at the origin and
(d, ,0, . . . , 0 ) , . . . , (0 , . . . ,0,^). By Proposition 5.9, (-l)!17!-1-7^^/) is the coefficient
of t

k in

E e-e^)-
ei+---+e.^|J|-l

ej > 1 for all j

It is easily checked that q^...e,W = q^...e,(t) for all J and all e i , . . . ,e^. Furthermore,

the decomposition (7.9) implies that ek
(X) = V^ ^(Xj), hence (-l)7v-reA'(X) is

07^C5sp

the coefficient of t
k in

E (-i)^1-'-7' E <-^)-
^T^^C^sp ei+...+e^<|J|-l

ej ̂  1 for all j

Using well-known facts about the cohomology of smooth complete intersections in P^,
we conclude that

h^PH^-^X, C)) = d(k + r).

COROLLARY 7.10. - The lower bound for the Newton polygon of the polynomial P{q~
r
t)

given by Theorem 7.8 is the Hodge polygon of PH
N
~

r
(X, C).
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8. Appendix

We begin by proving an elementary result about Koszul complexes for which we do
not know a reference. Let A be a commutative ring, M an A-module, and ai, . . . ,(7n

commuting endomorphisms of M as A-module. We compare the homology of the Koszul
complexes X.(M,{^}^i) and K.(M, {a}^) under the assumption that there is a

relation

(8.1) ^=^GW, di € A.

n-1

y^QZ<T,,
i=l

Clearly this implies that Ho(K.(M^{a,}^)) = Ho(K.(M^ {a,}^)). It also implies

that the map

n-l

me0 t-^ me^n} + ̂ (-o^)^^}
1=1

induces a homomorphism (f) : Ho(K.{M, {aj^i)) -^ H^{K.(M, {aj^i)).

PROPOSITION 8.2. - Suppose Hi(K.{M^{<r^)) = Q for I > 0. Then

Hi(K.{M, {ai}^)) == Ofor I > 1 and ^ is an isomorphism.

Proof. - Let K.^\M, {a,}^) be the complex ^.(M,{^}^1) shifted one position

to the left, i.e.,

K^\M^ {^=i1) - ̂ -i(^ {^}^=ll)t

There is a short exact sequence of complexes

o - X.(M, {^}r=i1) - K.(M^ {a,}r=i) - ̂ ^(M, {^}r=i1) - o.
where the map ^(M,{aJ^i1) ^ ^(MJ^}^i) is the natural inclusion defined by
^^T ^ meT forT C {! , . . . , n- 1}, |T| = (, and the map

^(M, {a,}^i) - ̂ (M, {aj^i1) == ̂ -i(^ M î1)

is defined by

f 0 if n i T,
meT^lme^n} i fnOT,

for T C { 1 , . . . , n}, |T| = I . Since Hi(K.(M, {or,}^1)) = 0 for 0 0, the associated long
exact homology sequence immediately implies that Hi(K.(M, {o-i}^)) = 0 for I > 1.

The connecting homomorphism

H^K.^\M^ {a.}^1)) = ffo(^.(M, {a,}^!1)) - ̂ o(^(M, {a,}^1))= ̂ o^.^, V.J^i1)) ̂  ̂ o(^.(M, {a,}^
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sends the homology class of m C M to the homology class of cr^(m) e M. But
n-l

(Tn{m) = ̂  ai(Ti(m), so this homology class is trivial, i.e., the connecting homomorphism
1=1

is zero. Thus the long exact homology sequence gives isomorphisms

H,(K.(M^ {ajr=i)) ^ H^K.^\M^ {<r,}^1)) = H,(K.{M^ {a,}^)),

^o(AW {a,}^)) ^ ffo(^.(M, {^HL-i1)),

hence an isomorphism

Hi(K.(M, {<7,}^i)) ̂  ffo(^.(M, {<r,}^i)).

n

From the definitions, one checks that this isomorphism sends a 1-cycle V^m, e^} to the

0-cycle mn e^. The map (f) defined above is inverse to this isomorphism.
We apply this result in the setting of section 6. Assume that g is nondegenerate and that

fi is homogeneous of degree di and commode, i = 1, . . . , r. Consider the Koszul complex
AT.(5,0) == K.^B^Di}^). The homogeneity condition implies that dim A = N + r,
hence by [1, Theorem 2.9] there is a subset S ' C S of cardinality 7V+r, say, S ' = 5'\{%o},
such that K.{B, {Di}^'} is acyclic in positive dimension and D^ is a linear combination

of the D^s, % G 5", say D^ = S,̂  al£)l?
 ^

 G ^o. Thus by Proposition 8.2, the map
(where ^ e B)

^0 ̂  ^o e {^o} + ̂ (-^^M

Z65'

is an isomorphism of Ho(K.(S,9)) and ffi(^.(S',0)). From (6.7) we see that the map
<^ defined by (6.9) is just a nonzero scalar multiple of this isomorphism (in fact, the
scalar is e^, where e, is defined following (6.9)), hence <^ is also an isomorphism. More
generally, one has the following.

PROPOSITION 8.3. - Suppose that g is nondegenerate and fi is commode for i = 1 , . . . , r.
Then for I C S with Jsp / 0 and Jdu + 0 we have ff^.(J,0)) = Q for I > 1 and ̂
is an isomorphism.

Proof. - The hypothesis on I implies that dimAj = |J| - 1, hence one can repeat the
argument given above for the case I = S.

There is a modification for the Koszul complex K. = K.^R^gi}^) of section 7.
The results of [I], together with Proposition 8.2, imply that there is an isomorphism
(homogeneous of degree 1) from Ho(K.) onto H^K.). The dimension of HQ^K.Y^ can
then be calculated from (7.1). However, note that the map <^ defined by (6.9) need not be
an isomorphism unless c ? i , . . . , dr are all prime to p. So in general, we have the following
weaker version of Proposition 8.3.

PROPOSITION 8.4. - Suppose that g is nondegenerate and fi is commode for i = 1 , . . . , r.
Then for I C S with Jsp ^ 0 and 1^ ^ 0 we have Hi(K.(I,9)) = 0 for I > 1,
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dimF^H^(K.(I,W> = dimF^o^.C^))^"1^ ^d dimp^o^.^)/^ ^ the
coefficient of t

k
 in

E ^..e.W.

ei+...+e^=|J,p|-l

e,=0 if N+î Jdu

We prove another simple lemma on complexes. Let

0 -> £. -> M. -^ N. -^ 0

be a short exact sequence of complexes of A-modules. Suppose that p : Lo —> Li,
<^) : Mo —> Mi, and ^ : NQ —^ TVi are A-module homomorphisms with image
contained in the space of 1-cycles and sending 0-boundaries to 1-boundaries (hence
they induce homomorphisms p : Ho{L.) —> jy"i(L.), (f) : Ho{M.) —^ I?i(M.), and
-0 : Ho(N.) -» H^{N.)) such that the diagram

^ ̂  Mi -^ Ni

(8.5) p ^ < A ^ ^

£o -^ Afo ̂  A^o

commutes.

PROPOSITION 8.6. - If ^ is surjective, then the connecting homomorphism H^(N.) —»
Ho{L.) is z.ero. If in addition H^(N.) = 0 and cj) and ^ are isomorphisms, then p is also

an isomorphism.

Proof. - We first show that the conecting homomorphism is zero. Let ^ G A^i be a
1-cycle. Since ^ is surjective, we may choose 77 e No such that ^(r]} is homologous
to ^. Choose C, € Mo such that C, maps to 77 under the surjection Mo — ^ T V o - B y the
commutativity of (8.5), <^(C) € Mi maps to '^(^) ^ - î under the surjection Mi —> A^i.
But ^)(C) is a 1-cycle in Mi, so by definition of the connecting homomorphism, ^ maps to
0 in HQ^L.). If H^{N.) = 0, one then has a commutative diagram with exact rows:

0 -> i?i(L.) -^ ffi(M.) -^ ^i(^.) ̂  0

p ^ 4> t ^ t

0 -. JIo(^.) -^ ^o(M.) -^ ffo(^V.) ̂  0.

Since (j) and ^ are both isomorphisms, p must also be an isomorphism.
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