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Abstract. Let H be a collection ofn hyperplanes in ~a, let ,~t denote the arrangement 
of H, and let a be a ( d -  l)-dimensional algebraic surface of low degree, or the 
boundary of a convex set in ~a. The zone of a in ,4 is the collection of cells of .4 
crossed by tr. We show that the total number of faces bounding the cells of the zone 
of a is O(n a - 1 log n). More generally, if a has dimension p, 0 _< p < d, this quantity 
is O(n LId+pl/2j) for d - p  even and O(n tld+p~/2j log n) for d - p  odd. These bounds are 
tight within a logarithmic factor. 

1. Introduction 

A set H of n hyperplanes in d-dimensional  space I~ a decomposes ~a into open celk~" 
of dimension d (also called d-faces) and into relatively open faces of d imens ion  k, 
0 < k < d. These cells and faces define a cell complex which is commonly  known as 
the arrangement ~d = d ( H )  of H. We define the complexity of a cell in ,q/ to be 
the number  of faces that  are conta ined in the closure of the cell. 
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Let a be an arbitrary subset of I~ d. We define ~ (H ) ,  the zone of tr in d ,  to be 
the set of all (open) cells in ~1 that intersect tr; the complexity of a zone is the sum 
of the complexities of its constituent cells. In the following analysis we concentrate 
on the case where a is either a p-dimensional algebraic surface of degree 6 in ~ ,  
where 6 is a small constant and 0 < p < d, or the boundary of a convex set of affine 
dimension p + 1, for the same range of values ofp. However, most of our analysis, 
with the notable exception of Lemmas 2.2 and 2.3, holds for an arbitrary set a. 

For  technical reasons that will become more apparent later, we prefer to view 
d as an object in d-dimensional projective space, rather than in ~d. Equivalently, 
we regard a pair of antipodal cells in ~¢ as one cell. It is easily checked that this 
assumption does not affect the asymptotic behavior of the zone complexity; 
however, together with general position assumptions mentioned below, it allows 
us to view each face of od as a simple convex polytope, thus making separate 
treatment of unbounded faces unnecessary most of the time. 

A fundamental result on hyperplane arrangements is the Zone Theorem [7], 
in which a is assumed to be a hyperplane distinct from those in H. It asserts 
that the zone of a hyperplane in an arrangement of n hyperplanes in R ~ has 
complexity O(n a- 1). A recent proof of the Zone Theorem is given in [9]. 

In this paper we extend the Zone Theorem to cases where a is a more general 
set, as described above. Specifically, we show: 

Theorem 1.1 (Extended Zone Theorem). The complexity of  the zone of  a (d - 1)- 
dimensional surface a, which is either a small-degree algebraic surface or the 
boundary o f  an arbitrary convex set, in an arrangement of  n hyperplanes in R ~ is 
O(n d- 1 log n), where d > 3 and the constant of  proportionality depends on d and on 
the degree 6 of  a. More generally, if  tr is a p-dimensional algebraic surface of  small 
degree, or the relative boundary o f  a convex set of  affine dimension p + 1, for 
0 <_ p < d, the complexity o f  the zone o f  a is O(n L~a+p~/2j) i f  d - p  is even and 
O(n L~d+p~/zj log n) i f  it is odd. 

We note that when d = 2, a somewhat better bound of O(nct(n)) is known for 
the complexity of the zone of an algebraic curve in a line arrangement [8], where 
ct(n) is the inverse Ackermann function. We have so far been unable to obtain 
similarly improved bounds in higher dimensions. We do not even know if the 
bound O(not(n)) is tight in the worst case in the plane. The best known lower bound, 
in any dimension d, is f~(n I-~d+p~/2j) [11], so there remains a small gap between the 
lower and upper bounds. Related results for planar arrangements have been 
obtained by Bern et al. [5], and for zones of p-flats by Houle and Tokuyama [11]; 
the latter bounds are the same as we get in Theorem 1.1. It has been pointed out 
by Houle and Tokuyama [11] that the definition of the zone of a surface as a 
collection of open (rather than closed) cells of the arrangement is crucial for the 
theorem to hold for low-dimensional surfaces; with the alternative definition, in 
an arrangement n of hyperplanes passing through a common point v, the zone of 
v would include all cells of the arrangement, providing an immediate f~(n d- 1) lower 
bound on the worst-case zone complexity for a zero-dimensional object! 

The main difference between the zone of a hyperplane and that of a more 
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general surface a is in the behavior of what we call popular facets. These are facets 
(i.e., (d - 1)-dimensional faces) f that bound two adjacent cells C, C' of ~¢ so 
that both C and C' belong to the zone of a. Even though popular facets do exist in 
the zone of a hyperplane, there they must always meet the zone hyperplane, which 
is not necessarily the case for zones of curved surfaces. A main step in our analysis 
is to obtain a sharp bound on the number and complexity of the popular facets 
in a zone. To this end we extend the notion of popularity to faces of any dimension 
and derive a recurrence for the complexity of these popular faces. 

2. Proof of  the Extended Zone Theorem 

For a d-polyhedron P let fk(P) denote the number of k-faces of P (i.e., faces of 
dimension k). For 0 <_ k < d, let Zk(a; 11) denote ~ c ~ m  fk(C), where (S' denotes 
the topological closure of cell C. Finally, for n > 0, d > 0, and 0 < k < d, let 
ZtkP'b~(n, d) denote the maximum of Zk(a; H) over all p-dimensional surfaces a of 
degree at most 6 and all sets H of n hyperplanes in ~d; to reduce proliferation of 
indices, we omit the superscript (p, ~) in what follows. 

As we are interested in the asymptotic behavior of z k, we assume n > d 
throughout the proof, unless stated otherwise. 

First note that Zk(a; H) achieves its maximum when a and H are in general 
position, i.e., every j < d hyperplanes in H intersect in a (d - j ) - f l a t ,  no d + 1 
hyperplanes have a point in common, and tr is not tangent to any fiat formed by 
the intersection o f j  < d hyperplanes of H and does not meet any such j-flat, for 
0 _<j < d -  p. (Recall that .~¢(H) is viewed as a projective arrangement, so we 
require that the above general position assumptions hold at "points at infinity" 
as well.) This can be proved using a standard perturbation argument: displacing 
the hyperplanes of H slightly will put a and H in general position, and can only 
increase the complexities of the cells in ~e,(H), through vertex truncation or the 
actions dual to vertex pulling or pushing (see pp. 78-83 of [10]). 

Let H be a set of n hyperplanes in ~a, and let a be an algebraic surface as 
above, so that a and H are in general position. A k-face f in d ( H )  now lies in 
exactly d - k hyperplanes of H and is part of the boundary of 2 d-k cells of ~4(H). 
More than one of those cells can lie in ~,(H),  and thus the contribution o f f  to 
Zk(a; H) can be larger than one. In order to have entities that contribute at most 
one to the count Zk(tr; H) we define a k-border to be a pair (f,  C), wheref i s  a k-face 
in ~ ( H )  and C is a cell that h a s f o n  its boundary. Thus zk(a; H) counts all borders 
of dimension k in 5e~(H), i.e., k-borders (f, C) with C~ J~(H). More generally, 
for 0 < k < i < d, a (k, i)-border is a pair of faces (~ O) in ,~ of dimension k and i, 
respectively, withf_c g. We refer to a pair of faces,J; g, with f _~ .~, as incidentfiwes. 
Note that k-borders defined above are simply (k, d)-borders. 

We call a k-face f in o~¢ popular if all 2 d-k cells in ,cJ incident to f belong to 
~,(H). Note that a "popular  cell" is simply a zone cell, i.e., a cell oLe/met  by a. 

A (k, /)-border (f, g) is popular if g is a popular /-face. Let Ztk~(a; H) be the 
number of popular (k, /)-borders. Notice that the problem of bounding the 
COmplexity of the zone of a in ~/ reduces to bounding the quantities r~ka~(a; H), 
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for all 0 < k _< d, as Zk(a; H) = r(kd)(tr; H). We obtain such bounds by inductively 
estimating r(k ~) for all 0 < k _< i < d. We begin by providing a bound on ztkk) for all 
O < k < d .  

Lemma 2.1. Let H be a collection o f  n hyperplanes in 9eneral position in ~a. Then, 
for  an),, set X c R a and 0 <<. k <_ ,4, 

m < m. 
- \k /  

Proof  Let k < d. Recall that z~kk)(x; H) is simply the number of popular k-faces, 
i.e., k-faces f for which all 2 a-k incident cells belong to the zone of X. To 
prove the lemma, it is sufficient to associate each such face with one of the incident 
cells, and argue that no zone cell gets charged more than 2(~) times. 

We set up the correspondence as follows: First observe that the notion of 
popularity depends only on the set of arrangement cells that are met by X. 
Thus picking one point of X in each such cell and discarding the rest of X does 
not affect the statement of the lemma. Now construct a large simplex A in generic 
position that encloses all bounded cells and faces of d (H) ,  and meets all 
unbounded faces. We now replace ~¢(H) by d(H+) ,  where H + is obtained by 
adding to H the d + 1 hyperplanes defining A, but only consider the portion of 
d ( H  +) contained in ~. We tag each cell of ~¢(H +) within ~ as a zone cell either 
if it is a bounded cell of ~x(H) or if it is contained in an unbounded cell 
of.~x(H). Since we consider the original arrangement in projective space, it follows 
that each unbounded zone cell in ~¢(H) tags two "antipodal" bounded cells in 
d ( H  +) as zone cells. Let ~x(H +) denote the collection of all tagged zone cells in 
~¢(H+). Note that to each bounded face of ~x(H) there corresponds a unique 
bounded face of ~x(H+), and to each unbounded face of gLrx(H) there correspond 
two distinct bounded faces of d (H+) .  

Rotate the new arrangement in such a fashion that every face has a unique 
lowest vertex, with the height measured in terms of the xa coordinate. We claim 
that, since .~¢ = d ( H  +) is a simple arrangement, the lowest vertex v I of a face 
f i s  the lowest vertex of exactly one of the cells incident to f The way to see this 
is to observe that, among all cells incident to v I ,  the unique cell that has v I as its 
lowest vertex has the property that its bounding faces incident to v r are exactly 
those faces of ~d that are incident to v I and have v I as their lowest vertex. 

Note that each popular k-face in the original projective arrangement is mapped 
to one or two new popular k-faces in ~¢(H +) (two if the original face was 
unbounded). In the latter case we arbitrarily pick one of the two new faces. Each 
new popular k-face is assigned to a unique cell with which it shares its lowest 
vertex. No cell in ~x(H +) is charged more than (k d) times, as this is the total number 
of k-faces in d ( H  +) sharing its lowest vertex, since d ( H  +) is a simple arrangement. 
By the above remark, the number of cells in ~x(H +) is at most twice the number 
of cells in ~x(H), thus completing the proof of the lemma. 

I.emma 2.2. Let H be a collection o f  n hyperplanes in R d and let tr be an algebraic 
surface o f  dimension p and degree 6. Assume that H and tr are in general position, 
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Then 

T~k~(a; H)  = O(nV), 0 < k < d, 

where the constant of  proportionality depends on k, d, and 6; the dependence on 6 
is O(6a). 

Proof By Lemma 2.1, it is sufficient to show that r~d)(a; H) is O(nV), i.e., a meets 
O(n p) cells of ~'.  We charge each cell C of 5e,(H) to a k-fiat F formed by the 
intersection of some d - k hyperplanes of H, so that Fc~ cr meets (7 and k _< d is 
the smallest integer for which this property holds. It follows that k + p >__ d from 
our assumptions on general position. Thus Fcontains  a f a c e f o f  (7 of dimension k, 
so that ~r n f :~ ~ but a does not meet the relative boundary o f f  Thenfcon ta ins  
one or more connected components of ~r ~ F. However a c~ F is an algebraic surface 
in F of degree at most 6, so it has a constant number (which by Milnor's theorem 
[12] is O(6 k) = O(6d)) of connected components. Thus, over all cells C of fro(H), 
F has only a constant number of faces f of this form, and each such face bounds 
at most 2 a-k < 2 p cells of ~,(H). Since the number of k-fiats, for d - p _< k _< d, 
formed by intersections of the hyperptanes of H, is O(nP), it follows that the total 
number of cell-charges is O(nV). This establishes the claim of the lemma. [ ]  

Lemma 2.3. Let H be a collection of n hyperplanes in general position in ~a. Then 
r~k)(a; H) = O(nV), whenever cr is the boundary of an arbitrary convex set of  affine 
dimension p + 1. 

Proof The claim is immediate by noting that the argument in the proof of 
Lemma 2.2 applies to the case of the boundary of a convex set as well, since the 
number of connected components of a n F, for any flat F, is at most 2. [ ]  

Note. The upper bounds in Lemmas 2.2 and 2.3 are easily seen to be asymptotic- 
ally t ight--take a to be a generic p-fiat and notice that every /-face of the 
arrangement induced by ~¢ in a corresponds to a popular ( / +  d -p ) - face  in ,4. 
It remains to argue the lower bound on r~ k) for 0 < k < d - p .  In fact, it is easily 
verified that, as long as a is a p-flat and the general position assumptions hold, 
r~)(o; H)  = 0 for k < d - p .  For  example, when p = d -  1, a hyperplane cannot 
cut all 2 d "octants"  incident to a vertex of ~ ( H ) - - h e n c e  there are no popular 
vertices. The situation changes drastically when a is allowed to be a more general 
algebraic surface. For  example, for p = d - 1, let a be the union of two parallel 
hyperplanes lying on either side of a hyperplane h ~ H and very close to it. It is 
easily checked that all vertices of sO(H) contained in h are popular, thereby 
showing Tt00)(a; H) = f~(n d- ~). The lower bound on z~ k), for k < d - p and general 
P < d - 1, can be obtained by a slight modification of this argument, with the two 
hyperplanes replaced-by a cylinder around a p-fiat of the arrangement. 

Corollary 2,4. For any algebraic surface a c ~a and a set H of  n hyperplanes, 
Zd(0"; H) ~- O(t'/dirn~r) with the constant of  proportionality depending on d and on the 
degree 6 of a. The assertion also holds for the boundary of an arbitrary convex set. 
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Proof As we already noted,  za(~r; H)  is maximized when a and H are in general 
position. N o w  recall that  zn(a; H) = Z~d~(a; H) by definition. [] 

We now proceed by induction on i, and derive a recurrence for r~(a;  H), for 
0 < k < i, using an approach  similar to that  used in [9] and also in [2]. In more 
detail,  fix a hyperplane  h e  H and consider all popula r  (k, /)-borders 0'o, go) in 
f t , (H)  with f o ¢  h. When  we remove  h, the face go becomes part  of  a possibly 
larger /-face g, which is clearly also popula r  (in the reduced arrangement). 
Moreover ,  fo  is a part  of  some k-face contained in g. So let (f, g) be a popular 
(k, /)-border in ~ , (H\{h}) ,  and consider what  happens  to it when h is reinserted 
into the ar rangement .  Let Cj, / =  1 . . . . .  2 d- ' ,  be the cells in ~ , (H\{h})  incident 
to  g. The following cases may  occur:  

h c~ 9 = ~ :  In this case g m a y  or m a y  not be popula r  in Y~,(H), but (J~ g) 
contr ibutes at most  one popu la r  (k, /)-border to this zone, namely itself. 

h n g # ~ and h c~ f = gO: Again, (f, g) can contr ibute at most  one popular 
(k, /)-border to ff,(H), namely  If, g+), where g+ is the port ion o f g  lying to the 
same side of  h as f 

h c~ g g: gO and h ~ f #-gO: Let  h +, h -  denote  the two open half-spaces 
bounded  by h, and consider the two (k, /)-borders ( f n h  +, g c~h +) and 
( f  c~ h - ,  g n h-) .  We are only interested in the case where both  of them 
become popula r  borders  in ~ , (H) ,  for only then will our  count  go up. Let 
Ct + = Ct c~ h + and C {  = Ct ~ h -  for l = 1 . . . . .  2 d-i. Thus  we are interested 
in si tuations where a meets all 2 d-;+ ~ cells Cz +, CE. Notice that  all these cells 
are incident to g c~ h, an (i - l)-face in ~ ' .  Hence g c~ h is a popu la r  face and 
I f  ~ h, g n h) is a popula r  (k - 1, i - 1)-border in &r,(H). 

To  sum up, the number  of popu la r  (k, /)-borders in ~ , (H)  which are not 
contained in h is bounded  by 

:r~,;)(a; H\{h})  + Ph, 

where p~ is the number  of  popu la r  (k - 1, i - l ) -borders  ( f ' ,  9') with g' c h. If we 
sum these bounds  over  all hyperplanes  h e l l  and observe that every popular 
{k. /)-border in ~o(H) is counted exactly n - d + k times (it is not counted if and 
only if h is one of the d - k hyperplanes  containing the k-face of the border), we 
obtain,  similar to [9], 

07 -- d + k)z~,i~(a; _< Z r~ i~(tr; H\{h})  + (d - i + l)z~i-l~(cr; H), 
h~H 

where the factor ( d -  i + 1) comes from the fact that  a popular  (k - I, i - l)- 
border  is charged d -  i + 1 times, once for each hyperptane h containing it. 

For  the sake of clarity of exposition, we first solve the recurrence for p = d - 1, 
and then discuss the easy extension to general values of p. Also, we only handle 
the case of an algebraic surface, since the case of  a convex surface can be lrca[cd 
in much the same way. 

For  a tixed number  6, let us denote  by r~,i~(n, d) the m a x i m u m  of r~'~(~r; II) over 
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all choices of a set H of n hyperplanes  in ll~ a and an algebraic surface a of degree 
at most fi and dimension d - 1, with H and tr in general position. We thus have 

r~k)(n, d) = O(n a- 1), 0 <_ k <_ d, O) 

and 

n 

z~°(n, d) <_ n--- d-+ k z~°(n -- 1, d) + 
d - i + l  

n - d + k  
z~iY.~(n, d), 0 < k < i _< d. (2) 

When k = 0, the r ightmost  term in (2) vanishes, but the recurrence solves to O(n a) 
(see [2] and [9]), which is too large for our  purposes.  However ,  we observe that,  
trivially, r~)(n, d) < 2z]i)(n, d). Thus  it suffices to analyze (2) only for k > 1. 

We first t ransform the relation (2) into a simpler one, by substi tuting 

z~i)(n, d) = d - k O~°(n' d). 

(Recall that  we have assumed that  n > d.) This yields the following relations, as 
is easily verified: 

~btkk)(n, d) = O(n k- 1), 1 < k < d, 

and 

~i)(n, d) < ~i)(n - 1, d) + 
d - i + l  

d - k + l  
~k'51)(n, d), 1 < k < i < d. (3) 

Our goal is now to show that  ~ktki)(n, d ) =  O(nk-~ log n). We prove this by 
induction on i. The  base case i = 0 only allows k = 0, and we have already shown 
that Z~o°)(n, d) = O(n a- 1), and thus q/~o°)(n, d) = O(n k- 1). Similarly, the case i = 1 also 
follows from (1), since we only consider the case k > 1. 

The case i = 2 is the most  interesting one, since it is there where the log n factor 
enters our  analysis. To  be more  precise, the interesting case is i = 2, k = 1, as the 
case k = 2 has already been dealt with in (1). In this special case, (3) becomes 

q42~(n, d) _< q,]2~tn - 1, d) + 
d - 1  

~,~ol'(n, d). 
d 

However, we have already shown that  

1 
~,~ol)(n, d) = 7 - c  r~o'In, d) < ~ d )  z~l)(n' d) = 0 . 
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Thus we obtain the recurrence 

~2)(n, d ) =  ~p]2)(n- 1, d ) +  O(~) ,  

whose solution is @]2)(n, d) = O(log n), as asserted. 
For i > 2, we first ignore both cases k = 0 and k = 1. By induction hypothesis 

on i we obtain the following recurrence for k < i: 

$~i)(n, d) <_ tp~°(n - 1, d) + An k- 2 log n, 

where A is a constant depending on k, i, d, and 6. Since k >_ 2, this recurrence 
solves to O(n k- 1 log n), yielding z~i)(n, d) = O(n a- 1 log n), with a constant of pro- 
portionality depending on i, k, d, 6, as claimed. 

To complete the argument, we need to extend this bound to the case k = 1. 
For  this we recall that r~°(a; H) is the number of popular (k, /)-borders, i.e., the 
total number of k-faces of the popular /-faces in ~ ( H ) .  Since we view our 
arrangement as lying in projective d-space, each popular /-face is a simple 
i-polytope, so the number of its faces of all dimensions is at most a constant 
multiple (depending on i) of the number of its I-i/27-faces (see, for example, Problem 
6.2 in [7], or [2]). Hence rtl°(a; H ) =  O(27~I/2](o"; H)), but since i >  2 we have 
[-i/27 > 1, which implies that z~t~(n, d) is also O(n d- ~ log n). This completes the 
proof of the Extended Zone Theorem for surfaces of dimension d -  1. 

For the more general case of the zone of a p-dimensional algebraic or convex 
surface, for 0 < p < d, let z~i)(n, d, p) be the maximum of {kl)(a; H) over all choices of 
H and of a surface a of dimension p which is either convex or algebraic of degree 
at most some small fixed 6. The functions r obey (2), but (1) is replaced by 

r~k)(n, d, p) = O(n p) for all 0 < k < at. (4) 

We again introduce tk[i~(n, d, p) such that 

and obtain a relation identical to (3). We proceed by induction on i. Assume 
first i < d - p. In this case the number of popular/-faces is r!i~(n, d, p) = O(nP). The 
maximum complexity of an /-polyhedron bounded by at most n facets is 
O(n Li/zj) = O(nLla-p~/2J). Therefore, for every k < i < d - p, {k/)(n, d, p) = O(n L d+pl:2j) 

Assume now that d - p  is even. For i > d - p  we solve the recurrence (2) 
assuming k > [ ( d - p ) / 2 q .  Assume that the bound holds inductively, so 
$~klY~(n, d , p ) =  O(nk-l-r~a-P~/27). Inserting this bound in (3), we obtain $~ki)(n, d, 
p) = ~ n  k - F ( d - p ) / 2 7 )  which gives the desired bound Z~ki~(n, d , p ) =  (~L(d+p)/2J) • For 
k < F(d - p)/27 we have k < l-(d - p)/27 < [i/27. As noted above, the number of 
faces of any dimension bounding a simple i-polytope is, up to a multiplicative 
constant, dominated by the number of its Fi/2q-faces, and since we are in projective 
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space, popular /-borders are simple i-polytopes, so for all k, "c~°(n,d,p)= 
O(~:2~n, d, p)) = O(n L~a + pl/2j). 

For d - p odd, we first handle the case when i = d - p + I, k = V(d - p)/27 = 
Fi/27. By induction hypothesis, we have ~p~i-~)(n, d, p) = O(n ~- ~-r~'/-pl'27) = O(n- l), 
so (3) solves to ~b~(n, d, p) = O(log n), or z~i)(n, d, p) = O(n Lt's+p~zj log n). By the 
same reasoning that we used above, this implies that, for any 0 _.< k < i, we 
have z~i)(n,d,p)= O(nLId+P)/2Jlogn). (Actually, for k > [ i / 2 7 ,  (3) solves to 
#~i)(n, d, p) = O(nk-I(d-P)/23), SO that z~i ) (n ,d ,p)= O(nLId+pl2J.) For i_> d - p  + 2 
we solve the recurrence for k > [-(d - p)/27 as in the case of d - p even, to obtain 
z~i)(n, d, p) = O(nL~d+PV2Jlogn) (where, again, if k is sufficiently large, that is, 
k > i  - [ ( d -  p)/2J, the bound is only O(nLld+~'~2J)). If k < t - ( d -  p)/27, then 
k < r ( i -  2)/27 < Vi/27 and again the Dehn-Sommervitle relations extend the 
bound for all 0_< k _<i. This completes the proof of the Extended Zone 
Theorem. []  

3. Discussion 

The following immediate application of the Extended Zone Theorem is obtained 
from an observation of Pellegrini [13], [ t4],  as also discussed in [2]: 

Theorem 3.1. Given n triangles in three-dimensional space and an), e > 0, we can 
preprocess them in randomized expected tone O(n 4 +~) into a data structure o f  size 
O(n4+~), so that, for  a query ray p, we can compute the first triangle met by p in 
time O(log n). 

This result improves the preprocessing and space complexity of the best 
previous solution, given in [2], by a factor of roughly n ~/2. A related application 
of the Extended Zone Theorem is also given by de Berg et al. [6]. 

Agarwal and Matou~ek [1] have applied our result to the same problem, 
using a different technique, to obtain 

Theorem 3.2. Given n triangles in three-dimensional space and any ~. > O, we can 
preprocess them in randomized expected time O(n ~ +~) into a data structure o f  size 
O(n ~ +~), so that, for  a query ray p, the first triangle met by p can be computed in 
time 0(n3/4 +~). 

These applications use only the Extended Zone Theorem for p = d - 1 (the 
surface in question is the so-called Pliicker surface, which is a four-dimensional 
quadric in ~5; see, for example, [13]). It would be interesting to find applications 
of the theorem forp  < d - 1. In terms of further extending the Zone Theorem, we 
plan to investigate the class of surfaces for which the complexity of the zone in 
an arrangement of n hyperplanes in Nd is close to O(n ~-t). One immediate 
observation is that any surface whose intersection with an arbitrary k-flat in Nd, 
0 < k < d, has a bounded number of components falls into this category. Another 
intriguing and largely unexplored area is that of replacing hyperplane arrange- 
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ments by arrangements of more general algebraic surfaces or some other classes 
of objects--one such situation is discussed in [4]. Finally, it would be interesting 
to settle the problem of whether the complexity of the zone of an algebraic surface 
in a hyperplane arrangement in R a can be larger than O(n n- t). This problem is 
open even in the plane. 
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