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Abstract. We prove a conjecture of Stanley on the cd-index of the semisuspension of 
the face poset of a simplicial shelling component. We give a new signed generalization of 
Andr6 permutations, together with a new notion of cd-variation for signed permutations. 
This generalization not only allows us to compute the cd-index of the face poset of a 
cube, but also occurs as a natural set of orbit representatives for a signed generalization of 
the Foata-Strehl commutative group action on the symmetric group. From the induction 
techniques used, it becomes clear that there is more than one way to define classes of 
permutations and cd-vadation such that they allow us to compute the cd-index of the same 
poset. 

Introduction 

In this paper we investigate the relationship between the cd-vafiation monomials  of  
certain classes of  Andr6 and simsun permutations, and the cd-indices of  various Eulerian 
posets. Our most important result is the proof  of  a conjecture of  Stanley, stated in [11] 
as Conjecture 3.1, about the cd-index of  the semisuspended shelling components of  a 
simplicial complex. This conjecture refines Purtill 's theorem on the cd-index of the face 
poset of  an (n - 1)-dimensional simplex [10, Theorem 6.1]. We also give a new signed 
generalization of  Andr~ permutations which allows us to compute the cd-index of  the 
face poset of the n-cube, and to prove a signed analogue of Foata and Strehl 's result in 
[8] about the augmented Andr6 permutations being a natural set of orbit representatives 
for a commutative group action on the symmetric group. 

* This research was supported by the UQAM Foundation. 
t On leave from the Mathematical Research Institute of the Hungarian Academy of Sciences. 
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Most of our proofs have the following simple structure. We have a set {Pi: i �9 I} 
of Eulerian posets, where I is some well-ordered index set, and a set {Ci: i �9 I} of 
sets of (signed or unsigned) permutations, with indices from the same set I. We want 
to show that (given a definition of cd-variation for signed permutations) the cd-index 
�9 p~(c, d) of Pi is equal to the cd-variation polynomial Vcd(Ci) of Ci for each i. We 
prove the equality by showing a recursion formula which is satisfied by both families of 
polynomials {epe~ (c, d): i �9 I} and {Vcd(Ci): i �9 I}, and then we check the equality of 
�9 p~ (c, d) and Vcd(Ci) for the necessary initial values of i. 

Using this approach, once we have a proof for one class of permutations, we need only 
perform a few modifications in order to obtain a similar result for a "slightly different" 
class. The fact that we are able to apply such induction proofs with a separate cd- 
index part and cd-variation part, indicates also that the currently discovered connections 
between cd-indices and cd-variations are not "canonical": there is no apparent reason to 
prefer one class of permutations together with one notion of cd-variation over another, 
if they allow us to compute the cd-index of the same poset with the same difficulty. 

In Section 1 we introduce the notion of the cd-index of a poset, and we recall a very 
simple weight-calculating method, already used by Stanley in [11], which allows us to 
obtain the necessary recursion formulas for cd-indices. There is another well-known way 
to compute the cd-index of a poset, when it has an R-labeling, using a result of Bj6rner 
and Stanley [3, Theorem 2.7]. Ehrenborg and Readdy apply this theorem in [4] to prove 
those recursion formulas which we also use in the case of Boolean algebra and the face 
lattice of the cube. It is still open whether an R-labeling argument could be given for 
Stanley's conjecture. 

Section 2 is a short survey of Andr6 permutations of the first and second kind, and of 
simsun permutations. Keeping in mind the recursion formulas for cd-variations at which 
we are aiming, we focus on exposing the recursive structure of these permutations. 
While doing so, we point at a "hidden treasure" in Foata and Strehl's paper [8]. It is a 
proposition equivalent to saying that every Andr6 permutation of the second kind is a 
simsun permutation, almost two decades before simsun permutations were first defined. 
We also describe the Foata-Strehl group action on permutations introduced in [8]. 

In Section 3 we reprove Purtill's result using our elementary methods, and then we 
refine the argument to give a demonstration of Stanley's conjecture. We describe in 
detail a way to establish the necessary recursive formulas for the cd-indices and for 
the cd-variation polynomials of the respective augmented Andr6 permutations. As a 
remark, we indicate how to obtain the similar recursion formulas for the cd-variation 
polynomials of the corresponding subclasses of Andr6 permutations of the second kind 
and of augmented simsun permutations. 

Finally, in Section 4 we give a new signed generalization of Andr6 permutations, 
which is different from the one introduced by Purtill in [ 10] and generalized by Ehrenborg 
and Readdy in [4]. In order still to have the cubical analogue of Purtill's theorem, we 
also modify the definition of the cd-variation for a signed permutation: it will be the 
cd-variation of the underlying signless permutation. Besides serving the same purpose 
as the signed Andr6 permutations of Purfill, our signed Andr6 permutations are also 
orbit representatives for a signed analogue of the Foata-Strehl group action defined on 
permutations. Thus we arrive at a setting in which Andr6 permutations were studied 
before their use in cd-index calculations. The natural question which arises is whether 
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the Foata--Strehl group action also has an analogue for other reflection groups such that 
an appropriate set of  orbit representatives could allow us to compute the cd-index of  
other symmetric posets. 

1. Prel iminaries  on the cd- Index  

Let P be a ranked poset of  rank n + 1 with minimum element 0, maximum element 1, 
and rank function p. Given a set S c { 1, 2 . . . . .  n}, we denote by Ps the S-rank selected 
subposet of P,  i.e., the set {x e P: p(x) e S} tO {0, 1}. We define or(S) to be the number 
of maximal chains of  Ps, and we call the vector (or(S) . . . .  ) theflag f-vector of P. We 
define the beta-invariant fl ( S) by 

fl(S) ~ ~ ( - - 1 )  Is\rj �9 ~(T) .  (1) 
TcS 

These equations are equivalent to setting fl(S) = ( - 1 )  Isl-1 �9 # (Ps ) ,  where /z  is the 
M6bius function. The vector ( . . . .  fl(S) . . . .  ) is also called theflag h-vector of P.  

The ab-index Up (a, b) of  the poset P is a polynomial in noncommufing variables a 
and b defined by the formula 

~Pp(a, b) = ~ f l(S),  us, (2) 
S_C{1.2.....n} 

where Us is the monomial  ul . . .  u, satisfying 

{b if i r  
u / =  if i e S .  

In [11] Stanley gives the following useful way to compute the ab-index. Introducing 

Tv(a, b) ~ ~s_c{1....,,l or(S) �9 us, where Us is the same as before, we have the equalities 

Up (a, b) = Tt, (a - b, b) and T p  (a, b) = We (a + b, b). (3) 

Thus we may compute Up (a, b) as follows.,We associate a weight zl "'" zn = w (xl . . . . .  
xk) tO every chain Xl < . - .  < xk in P\{0,  1} by the rule 

[b  if i E { p ( X l ) , p ( X 2 )  . . . . .  P(Xk)}, 
zi = l a - b otherwise. 

We also allow k = 0, and associate (a - b) n to the empty chain. Now the ab-index 
Up (a, b) is the sum of  the weights of  all strictly increasing chains in P \{t3, 1 }: 

Up(a, b) = xZ, ~_, W(Xl . . . . .  xk). (4) 
k=0 6<xi< - <x~<i 

It was pointed out by Stanley [ 11 ], based on the results of Bayer, B illera [ 1], and Fine 
[2], that the ab-index Up (a, b) of a Eulerian poset P may be written as a polynomial in 

c ~ a + b and d ~ ab + ba. (We remind the reader that a ranked poset is Eulerian if, for 
every subinterval [x, y] ___ P,  the value of the M6bius function # on [x, y] is given by 

#(x,  y) = (-1)P(Y)-P(X).) In this case we call ~p(C, d) do_f ~pp(a, b) the cd-index of P.  
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2. Preliminaries on Andr~ and Simsun Permutations 

It was first observed by Purtill in [10] that the cd-index of  the Boolean algebra may 
be computed by summing the cd-variation monomials of Andrdpermutations. As men- 

tioned by Stanley in [ 11], this result may be generalized to Andrd permutations of the 
second kind and simsun permutations (Stanley calls them Sundaram permutations). In 
this section we summarize the definition and basic properties of  these permutations, and 

we add a few elementary observations which will be necessary later. 
First we recall the definition of Andr6 permutations given in [6] and in [10]. Let  X 

be a linearly ordered set with IXl = n. Apermutation of  X is a word rr(1)zr(2) �9 �9 - rr(n) 
such that every letter of  X occurs exactly once. We denote the set of  permutations of  X 
by Sx.  When X = {1, 2 . . . . .  n} then we write Sn instead of  S{l.2....,n}. We allow X to 
be the empty set, the only element  of  So is the empty word, which we call the empty 
permutation. Given a (possibly empty) subinterval [i, j ]  _c {1, 2 . . . . .  n}, we define the 

restriction of Jr to [i, j] to be the permutation rrl[i.j] ~ S{Tr(i).~r(i+l),...,rr(j)} given by the 

formula rrl[i,j](k) ~ zr(i + k - 1). We say that i ~ {1, 2 . . . . .  n - 1} is a descent ofr r  i f  
we have zr(i) > Jr(i + 1) (otherwise i is an ascent), and i ~ {2 . . . . .  n} is a trough if  we 
have zr(i - 1) > n ( i )  < n(i  + 1). 

Definit ion 1, A permutation Jr 6 Sx  is an Andrdpermutation if  it satisfies the follow- 
ing conditions: 

(i) 7r has no double descents, i.e., there is no i 6 {2 . . . . .  n - 1} with zr(i - 1) > 
n(i)  > Jr(i + 1). 

(ii) Let j ,  j '  6 {2 . . . . .  n} satisfy j < j ' ,  J r ( j  - 1) = max{Tr(j - 1), r r ( j ) ,  n ( j '  - 
1), n ( j ' ) } ,  and ~r(j ' )  = min{zr ( j  - 1), r r ( j ) ,  z r ( j '  - 1), r r ( j ' )} .  Then there is a 
j "  such that j < j "  < j '  and zr( j" )  < z r ( j ' )  holds. 

In particular, we consider the empty permutation to be an Andr6 permutation. We call 
an Andre permutation augmented if  zr(n) = max X. We denote the set of  augmented 

Andr6 permutations of  X (resp. {1, 2 . . . . .  n}), by ,Ax (resp. An). 

Condition (ii) of  Definition 1 does not seem to be very intuitive.a In our calculations we 

mostly use an equivalent definition of  Andr6 permutations which relies on the following 
property (see Propri&6 3.6 of  [6] and Proposition 5.5 of  [10]): 

Propos i t ion  1. A permutation zr ~ Sx  is an Andrd permutation if and only if for 

m ~ Jr -1 (min X) the permutations zr lit.m] and 7r [[m+t,n] are Andrdpermutations. 

This proposition determines an Andr6 permutation in terms of  two Andr6 permutations 
on a smaller set, except for the case when m ----- man X is the last letter. In that case we 
may use Propri6t6 3.3 of  [6], which may be restated as follows: 

1 Foata and Schiitzenberger in [6] give the following alternative wording, which is only a little less com- 
plicated: "If j '  > j are two troughs such that rr (j) > zr (j ') and n (j - 1) > rr (j '  - 1 ) then there is a trough 
j" such that j < j"  < j '  and n(j") < ~r(j'), and the same holds when j '  = n and j '  - 1 is a descent" 
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Proposi t ion 2. Let zr E Sx be a permutation of a linearly ordered n-element set X, 
with last letter minX. Then rc is an Andr~ permutation if and only if zrl[Ln_l] is an 
augmented Andr~ permutation. 

Observe that Propositions 1 and 2 could serve as an equivalent definition of Andr6 
permutations. Although this formulation is recursive, it seems to be more natural than 
the nonrecursive definitions. 

As a consequence of Propositions 1 and 2 we obtain the following recursive description 
of augmented Andr6 permutations (see Corollary 5.6 of  [10]): 

Corol lary  1. A permutation rr E Sx is an augmented Andr~ permutation if and only 

if for m ~ jr-1 (min X) the permutations zr [[Lm_l ] and zr I[,n+l.n] are augmented Andr~ 
permutations and the letter max X belongs to zr [[m+l.n]. 

Another way to describe Andr6 permutations is given by Foata and Strehl in [7]. 
We sketch their approach in order to arrive at the concept of  Andr6 permutations of  the 
second kind. 

Definition 2. Given a permutation zr = zr (1) . . -  re(n) e Sn and a letter x, we call the 
x-factorization ofzr the 5-tuple (Wl, we, w3, w4, ws) of(possibly empty) words, defined 
by the following properties: 

(i) The word zr (1) . - ,  zr(n) is equal to the word W l //)2 //)31041/35 . 
(ii) w3 consists only of the letter x. 

(iii) All letters of  w2 and w4 are greater than x. 
(iv) The last letter of Wl and the first letter of  ws is less than x. 

Every permutation has a unique x-factorization for every x e {1, 2 . . . . .  n} by 
Lemma 1 of [7]. As in [7], we denote by ~0x the involution which exchanges the per- 
mutation ofx-factorization (wl, w2, w3, w4, ws)wi th  the permutation ofx-factorization 
(wl, w4, w3, w2, ws). The involutions {~Ox: 1 < x < n - 1 }  genera tea2 n-1 element com- 
mutative group [7, Corollary 3], which we denote by G~. (Note that ~0n is the identity.) For 
eachzr ~ S ~  wedefine a functionm~: {1,2 . . . . .  n} x {1,2 . . . . .  n} ~ {1,2 . . . . .  n} 
given by 

mrt (x, y) ~ [ min rr I t~-I (X),Tr--1 (y)] 

/m in  zr I i~-, (y).zr-i (x)] 
when rr - I  (x) < :rr-I (y), 
when zr - l ( x )  > zr - l ( y ) .  

Then by Proposition 2 of [7] two permutations zr, 7r' E Sn are in the same orbit of Gn 
iff m~ = m~, holds. The action of Gn on the symmetric group allows us to defne  the 
augmented Andr6 permutations as a natural set of  orbit representatives, as it is done 
in [8], where augmented Andr6 permutations are called Andrg permutations of the first 
kind. In the language of this section, the definition of  an Andr6 permutation of the first 
kind given in [8] may be rephrased as follows: 
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Definition 3. Let X be a linearly ordered alphabet of  n letters. A permutation yr E Sx 
is an Andrdpermutation ofthefirst kind if it is empty, or satisfies the following: 

(i) zr has no double descents. 
(ii) n - 1 is not a descent, i.e., zr(n - 1) < zr(n). 

(iii) I f / E  {2 . . . . .  n} is a trough ofzr, then for the zr (i)-factorization (Wl, w2, w3, W4, 

ws) of zr the maximum letter of  w2 is less than the maximum letter of  w4. 

Augmented Andr6 permutations are exactly the same as Andr6 permutations of  the 
first kind, because they both have the same recursive description given in Corollary 1. 

We may reformulate Foata and Strehl's definition of Andr6 permutations of  the second 
kind given in [8] in the following way. 

Definition 4. Let X be a linearly ordered alphabet of  n letters. A permutation zr ~ Sx 
is an Andrgpermutation of the second kind if  it is empty or satisfies the following: 

(i) zr has no double descents. 
(ii) n - 1 is not a descent, i.e., zr(n - 1) < zr(n). 

(iii) I f  i E {2 . . . . .  n } is a trough of zr, then for the zr (i)-factorization (w l, w2, w3, w4, 
ws) of  zr the minimum letter of  w2 is larger than the minimum letter of  w4. 

In analogy to Corollary 1, it is straightforward to see that Andr6 permutations of  the 
second kind have the following recursive description: 

Proposi t ion 3. A permutation rc ~ Sx is an Andrg permutation of the second kind if 
and only if for m de~ r c_ l (minX ) the permutations Jrlt~.m-~l and zrl[m+l,n] are Andr~ 
permutations of the second kind, and the letter min(X\{m}) belongs to yr It.,+Lnl- 

Simsun permutations play a role in describing the action of the symmetric group on 
the maximal chains of the lattice of  partitions I-In, as observed by Sundaram and Simion 
in [12] on p. 267. The name simsun permutation occurs first on p. 6 of  [13]. They are 
defined as follows: 

Definition 5. Let X be an n-element linearly ordered set. A permutation zr ~ Sx is a 
simsun permutation if for all i, after removing the i largest letters from yr(1) �9 .. zr(n), 
the remaining word  has no double descents. Here i may be any nonnegative integer up 
to n. (In particular, for i = 0 we obtain that yr itself has no double descents.) 

Following Stanley in [11], we call a simsun permutation zr augmented if  the last letter 
of zr is the largest. 

It is worth noting that every Andr6 permutation of the second kind is also a simsun 
permutation. In fact, part (ii) of  Proposition 12 of [8] asserts that removing the largest 
letter from an Andr6 permutation of the second kind we obtain an Andr6 permutation 
of the second kind. (This is a direct consequence of Definition 4.) Hence, by repeated 
removal of  the largest letter we never leave the class of  permutations containing no 
double descents, and thus we must have started with a simsun permutation. 
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On the other hand, part (i) of  Proposition 12 of  [8] states the following. -~ Let Jr be an 
Andr6 permutation of the second kind. If  we insert a largest letter into Jr after a letter 
x for which w2 and w4 in the x-factorization of  Jr are empty, or before an x for which 
w2 is empty and w4 is nonempty, we obtain an Andr6 permutation of the second kind. 
(This statement, too, is a straightforward consequence of  Definition 4.) Hence we have 
the following proposition: 

Proposition 4. The only place to insert the letter (n + 1) into an Andr~ permutation 
of the second kind of{1 . . . . .  n} such that we obtain a simsun permutation which is not 
an Andrg permutation of  the second kind, is right before the last letter. 

Proof. Let Jr be an Andr6 permutation of the second kind on {1 . . . . .  n}. Assume we 
insert the letter (n + 1) into zr, such that we obtain a simsun permutation Jr'. Clearly, Jr' 
is simsun if and only if no double descent is created. 

If  (n + 1) is inserted right before the last letter, then Jr' is a simsun permutation, but 
not Andr6 of the second kind, because condition (ii) of Definition 4 is violated. If  (n + 1) 
is inserted as the last letter, then Jr t is an Andr6 permutation of the second kind. In all 
other cases we insert the letter (n + 1) before a letter x = 7r(i) which is followed by at 
least one more letter rr (i + 1). We must have rr (i) < rr (i + 1), otherwise we have created 
a double descent in zr t. Thus the w4 part in the x-factorization of Jr is nonempty. If  the 
w2 part is empty as well, then Jr' is an Andr6 permutation of  the second kind by part 
(i) of  Proposition 12 of  [8]. Hence we are left with the case when the w2 is nonempty 
either, i.e., x is a trough, preceded by a letter y = 7r(i - 1) satisfying y > x. There 
are no double descents in Jr, and so both the w2 and w4 parts of  its y-factorization must 
be empty. Therefore zr' is again an Andr6 permutation of  the second kind by part (i) of 
Proposition 12 of [8]. [] 

Hence Andr6 permutations of  the second kind may be characterized as exactly those 
simsun permutations which do not end with a descent, even after deleting the i largest 
letters. 3 From here it is easy to obtain the following analogue of  Propositions 1 and 2. 

Proposition 5. A permutation Jr ~ Sx  is a simsun permutation if  and only if for  
def 

m = re-1 (min X) the permutation zrl[1.m_l] is an Andr~ permutation of the second kind 
and rr I[m+l.nJ is a simsun permutation. 

In particular, augmented simsun permutations have the following recursive description: 

Corol lary  2. A permutation Jr E Sx  is an augmented simsun permutation if and only 
def 

if for  m = re-1 (min X) the permutation zr I[z.,n-1] is an Andrg permutation of the second 

2 We warn the reader that there is typographical error in the statement. The article [8] uses the terms 
"peak," "trough," "rise," and "descent" in a nonstandard way. In order to avoid confusion, we do not cite the 
proposition literally. 

3 In the manuscript of Foata and Schiitzenberger [5, Dtfinition 4.11] Andr6 permutations of the second 
type are defined by this property. 
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kind, yr [[m+l,n] is an augmented simsun permutation, and the letter max X belongs to 

2"/" [ [m+ 1,n]- 

Remark .  All permutations introduced in this section have a very similar recursive 
structure. This similarity may be made explicit by using the language of  the theory o f  
Andrg complexes which is developed in the paper by Foata and SchiJtzenberger [6]. 

3. The cd-Index of  a Boolean Algebra 

In this section we give an elementary proof of  Purtill 's result about the cd-index of  
a Boolean algebra. We then refine the argument to show Conjecture 3.1 of  [11] for 
augmented Andr6 permutations. At the end of  this section, we also indicate how to modify 
the presented proofs in order to get a proof of  this conjecture for Andr6 permutations of  
the second kind and for augmented simsun permutations. 

Let Jr E S~. The ab-variation monomial Vab(rt) of Jr is a word vl " "  vn-1 in non- 
commuting variables a and b such that for every i E {1, 2 . . . . .  n - 1} we have 

b if i is an ascent, 
Pi = if i is a descent. 

The cd-variation monomial Vca(Zr) is the word in noncommuting variables c and d 
obtained from Vab(~r) by first replacing every pair ba with d and then replacing the 
remaining letters with c. For the empty permutation, we define its ab-variation monomial, 
as well as its cd-variation monomial, to be 1. These variations were first defined by Foata 
and Schi~tzenberger in [6] to encode the peak and trough statistics of  permutations with 
no double descents. 4 

For a set C of permutations without double descents, we define its cd-variation poly- 
nomial Vcd (C) tO be the sum 

Vcd(C) def = Vcd(~r). 
rr ~C 

Now we may state Purtill's result [10, Theorem 6.1] as follows: 

Theorem 1. The cd-index of the Boolean algebra Bn is the sum of the cd-variation 
monomials of the augmented Andr~ permutations of {1, 2 . . . . .  n}. That is, we have 

�9 B,,(c, d) = Veal(An). 

We present an elementary proof to this statement, which--unlike Purtill's original 
argument--does not involve constructing a bijection. 

4 In [6] the characters +, - ,  s, and t are used instead of a, b, c, and d, respectively. We modified the 
notation the same way as Purtill does in [10] and Ehrenborg and Rea6dy in [4], in order to bring it closer to 
the standard notation used in the study of cd-indices of Eulerian posets. 
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Proof. We denote ~PR, (c, d) by Un and Vca(.An) by On. We only need to establish the 
following recursion formula for/.In: 

i=l 

for n > 1. (5) 

In fact, it is an easy consequence of Corollary 1 that the polynomials U, satisfy 

i=l  

for n > l .  

(This is Lemme 3.7 and Propri6t6 3.10 of [6] or Corollary 5.8 of  [10].) Thus, considering 
also the trivial equalities U1 = 01 = 1 and U2 = 02 = c, we are done by induction. 

To show (5) we use (4). We represent B,+z as the set of subsets of  {1, 2 . . . . .  n + 2}, 
ordered by inclusion. We divide the chains tel C x2 C . - .  C Xk of  proper subsets of 
{1, 2 . . . . .  n} into two classes: the chains of  the first kind are those which contain an 
element xt such that n + 2 ~ Kt but n + 1 r K1, while the other chains (including the 
empty chain) are of  the second kind. 

Given a chain K1 C . . -  C xk of the first kind, let )- denote the smallest element 
of  the chain which contains n + 2, and set i ~ I)-\{n + 2}1. The possible values of i 
are 0, 1 . . . . .  n. For a fixed i, there are (7) ways to choose )-\{n + 2}. For a fixed )-, 
the elements of  the chain below )-\{n + 2} belong to the Boolean algebra on the set 
)-\{n + 2} (or there is nothing below )- if i = 0 and )- = {n + 2}). When i is positive, 
the element )-\{n + 2} may or may not be included in the chain, independently of  the 
other decisions. The elements of  the chain above )- are identifiable with proper subsets 
of { 1, 2 . . . . .  n}\)~. Thus the sum of weights of the chains of  the first kind is 

)--~ ( 7 )  " Ui " a " b . U,,+l-i + b . Un+l. 
i=l  

(6) 

Note that the factors b in formula (6) are contributed by the )-'s, while the factors 
a = (a - b) + b correspond to the )-\{n + 2}'s which may or may not be included in the 
chain, independently of  all the other choices. 

The calculation of the total weight of  the chains of the second kind may be done in a 
very similar way. Here we denote by )- the last element of  the chain not containing n + 1, 

and I)-I by i. (If there is no such )-, we set )- ~ 13.) Now we have )- _.c {1, 2 . . . . .  n}, and 
0 < i < n. The elements of  the chain below )- belong to the Boolean algebra on the set 
of  )-, those above ). tO {n + 1} are identifiable with subsets of {1, 2 . . . . .  n, n + 2}\).}, 
while the set )- tO {n + 1} may or may not be included in the chain, independently of all 
other choices. Therefore the sum of weights of  the chains of  the second kind is 

~-"]~(7) . U i . b . a - U n + l _ i + a .  Un+l. 
j = l  

(7) 

Here the b 's  correspond to the ).'s, and the a ' s  are produced by the )- U {n + 1}'s. 
The polynomial Un+2 is the sum of (6) and (7), and so we obtain (5). [] 
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Remark .  Ehrenborg and Readdy [4, Section 3, equation (1)] found a shorter proof of  
(5) using R-labeling. 

In Conjecture 3.1 of [ 11 ] Stanley makes a conjecture which refines Theorem 1. He fixes 
any shelling ~r0, al . . . . .  crn of  the boundary complex A n of  an n-dimensional simplex. 
Then he denotes the semisuspension of  the face poset of~00 tO ~ tO . . .  U ~//by A/ .  He 

defines ~7 to be the difference of the cd-index of  A7 and the cd-index of  AT_ 1, i.e., he 
def v n 

sets ~n = ~A7 _ q~aT_ . His conjecture is that (l) i is equal to the sum of variations of  
those augmented Andr6 permutations in ~-~n+l w h i c h  s a t i s f y  7 / ' ( n )  = n - -  i .  

We advise the reader to refer to [11] for the exact definition of the terms involved in 
stating Stanley's conjecture. Here we give a reformulation, which does not involve the 
notion of  shelling or semisuspension, but is easily seen to be equivalent to his wording. 

Definition 6. For i = 0, 1 . . . . .  n - 1 we denote by tri the coatom {1, 2 . . . . .  n}\{i} in 
the Boolean algebra Bn of the subsets of  {1, 2 . . . . .  n}. For k = 1, 2 . . . . .  n we define 
B,,k to be the poset obtained from the subposet [6, trl] to [6, al]  t.J �9 �9 �9 U [6, ak] to {1} by 
adding an extra coatom tr~ which covers exactly the sets of  the form {1, 2 . . . . .  n}\{l, m} 
with I < k and m > k. We denote the cd-index of  B,,k by Un.k. 

Note that in the terms of  Stanley's notation Un,k is obviously equal to the cd-index of  
n-I  v . _ ,  v . - 1  Ak_ 1, or to the sum + (I)1 "~- " " " + ~k- l"  Observe also that Bn,n-1 is isomorphic 

to Bn and so we have 

Un,n-1 = U, for n > 2. (8) 

Definition 7. For 1 < i < n - 1 we define .A/ to  be the set of those augmented Andr6 
permutations Jr o f{ l ,  2 . . . . .  n} which satisfy ~r(n - 1) = n - i. 

Now we can reformulate Stanley's conjecture about the refinement of  Theorem 1 as 
follows: 

Theorem 2. We have 

k 

Un,k = ~ Vcd(.Ai.) for 1 <_ k < n. (9) 
i = l  

In words, the cd-index of Bn, k is equal to the sum of the cd-variation monomials of all 
augmented Andr~ permutations re E ,An satisfying rc(n - 1) > n - k. 

Proof. In analogy to our proof of Theorem 1, we show the theorem by induction. We 
denote the right-hand side Y]~=I Vcd(.Ai) by /]n,k for 1 < k < n. The last letter of  
an augmented Andr6 permutation of {1, 2 . . . . .  n} is always n, and so we have .An = 

U i ~  .A~, implying 

t ) . ,n -1  = t ) .  = un .  ( l o )  

(The last equality follows from Theorem 1.) 
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We show that the polynomials Un.k and U,.k satisfy the same recursion formula. This 
is done in Propositions 6 and 7. Our induction basis is (8) and (10). [] 

Proposi t ion 6. The polynomials Un,k satisfy 

) i=0  j--o " J "Ui+j 'd 'Un+l- i - j 'k- i"}-c 'Un+l 'k  

j:r 

for 

(Observe that the condition in the second sum excludes only i = j = 0.) 

l < k < n .  

(11) 

Proof. As in the proof of  Theorem 1, we use (4). Assume we are given Bn+2,k, where 
1 < k < n. We divide again the chains xl < g2 < "" " < Kk into the same two classes: the 
chains of  the first kind are those which contain an element xt ~ a~ such that n + 2 ~ xi 
but n + 1 r xl, and the other chains (including the empty chain) are of  the second kind. 

We compute the total weight of the chains of  the first kind. Let ~. denote the smallest 
element containing n + 2 in a chain of  the first kind. By the definition of the chains 

of  the first kind, we must have ~. r a~ and n + 1 r ~., implying )~ < cr[. Let i ~ 

I), N {1, 2 . . . . .  k}l and j ~ I~- M {k + 1 . . . . .  n}l. Then ~ ~ B,+z.k is equivalent to 
the conditions 0 < i < k - 1 and 0 _< j < n - k. For a fixed pair (i, j ) ,  there are 

/ ' " / \C7) . ( cn;  k )  Ways to choose ;~ M { 1, 2 . . . . .  n}. (The set)~ is then uniquely determined, 
k l X ~ l 

because n + 1 ~ ~. and n -4- 2 ~ ;~.) When i -4- j is positive then ~.\{n + 2} may be included 
in the chain or not, independently of the other decisions, and the elements of  the chain 
below ~.\{n + 2} belong to a Boolean algebra of  rank i + j .  The interval [~., ]] C B,+z.~ 
is isomorphic to Bn+l-i-j,k-i. Hence the sum of weights of  the chains of the first kind is 

j r  -i 

(12) 

Again, the b 's  in the above formula correspond to the )Cs and the a ' s  to the )~\{n -4- 2}'s. 
Consider now the chains of  the second kind. Let ;~ be the largest element satisfying 

), r tr[ and n -4- 1 ~ ), in such a chain. (We set ), 0~ 0 if there is no such element in the 
chain.) Then we must have ;~ c {1, 2 . . . . .  n}, where equality is only possible if  k = n. 

We set i ~-f I), t3 {1, 2 . . . . .  k}l and j ~ I)~ tq {k + 1, k + 2 . . . . .  n}l. Again we must have 
0 < i  < k -  l a n d 0 <  j < n - k .  I f i + j  r 0 then the interval [6, )~] C Bn+2.kis 
isomorphic to Bi+j, contributing a factor Ui+ j. Every element of the chain above ), is 
either tr[ or a set containing n + 1. Because n + 2 r ;~, the set )~ U {n + 1 } belongs to Bn+2.k, 
and the interval [;~ tO {n + 1}] C Bn+2., is isomorphic to Bn+l_i_j.k_i, contributing a 
factor U,+l - i - j .k - i .  ThUS the sum of weights of the chains of the second kind is 

(:) E E . n k . Ui+j " b . a .  Un+,-i-j.k-i + a .  Un+l.*. 
i = 0  j--o 

j:~-i 

(13) 

By (4), Un+2, k is the sum of (12) and (13) yielding (11). [] 
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The last ingredient of the proof of  Theorem 2 is the following statement: 

Proposi t ion 7. The polynomials [Jn,k satisfy the recursion 

~Jn+2,k = n -- . U i + j . d .  U n + l _ i _ j , k _ i + c .  Un+l, k k 
i=0 j~-o 

j#--i 

for l < k < n .  

(14) 

Proof. Consider a permutation Jr ~ U~=m -Am Let i denote the number of  letters n+2" 
from the k-element set {n + 2 - k, n + 3 - k . . . . .  n + 1 } which occur before the letter 1 
in the word Jr ( 1 ) . . -  Jr (n + 2). Let j be the number of  the letters from the (n - k)-element 
set {2, 3 . . . . .  n + 1 - k} appearing before the letter 1 in rr(1) �9 -- zr(n + 2). Clearly we 
h a v e 0 < j  < n - k a n d s i n c e J r ( n - 1 ) ~ { n + 2 - k , n + 3 - k  . . . . .  n + l } w e m u s t  
also have 0 < i < k - 1. By Corollary 1, the permutation Jr is an augmented Andr6 
permutation if and only if the subword zr I[1.i+j] of  letters occurring before the letter 1 
is an Andr6 permutation, and subword ~'[[ i+j+l ,n]  of  letters occurring after the 1 is an 
augmented Andr6 permutation. With the current assumptions the only condition that has 
to be added is that the penultimate letter of  yrl[i+j+l,n] must belong to the k + 1 - i 
largest elements of  {zr(i + j + 1), zr(i + j + 2) . . . . .  rr(n)}. The contribution of the 
letter 1 to Vca(zr) is c when 1 is the first letter, and d in all other cases. Thus if we 
sum the cd-variation of all Jr's belonging to a fixed pair (i, j ) ,  we obtain a contribution 
of (~) n-k - - �9 ( j )" Ui+j" d" Un+l-i-j,k-i for i + j > O, and a contribution of c -  {-~n+l.k 
for i = j = O. Summing over all possible values of  i and j we obtain the desired 
formula. [] 

R e m a r k .  Conjecture 3.1 of  [11 ] also contains two other similar statements, where the 
role of  Andr6 permutations is taken over by Andrdpermutations of  the second kind, and 
augmented simsun permutations, respectively. The proof  of  Theorem 2 can be easily 
modified such that it becomes the proof  of these other two conjectures. In fact, we only 
need to prove the respective analogues of  Proposition 7. This may be done because 
the role of Corollary 1 can be taken over by Proposition 3 for Andr~ permutations 
of the second kind and by Corollary 2 for augmented simsun permutations. We leave 
verification of the details to the reader. 

R e m a r k .  Theorem 2 is important because of Theorem 3.1 of  [11] which allows us to 
express the cd-index of an arbitrary simplicial Eulerian poset P of  rank n in terms of its 
h-vector (h0 . . . . .  hn-1) and the polynomials {U~,k: 1 < k < n} as follows: 

n-2 

~Pp(c,d) = ho " Un,l + E hi �9 (Un.i+l - -  U n , i ) .  
i=1 
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4. A Cubical Analogue of Andr6 Permutations 

In this section we present a cubical analogue of augmented Andr6 permutations, together 
with a new notion of ab- and cd-variation for signed permutations. The cd-variation of 
our signed Andr6 permutation is equal to the cd-index of the face poset of the cube. 
This cubical analogue is different from the one defined by Purtill in [10] and allows us 
also to extend the commutative group-action defined by Foata and Strehl in [8] from 
permutations to signed permutations. 

We remind the reader that the elements of the group of symmetries/3n of the standard 
n-cube may be represented as signed permutations (e, re) = (e(1), re(1))(e(2), re(2)) �9 �9 �9 
(e(n), re(n)) where re(1)re(2) �9 �9 �9 re(n) �9 Sn is a permutation and each e(i) is from the 
set { -1 ,  1}. The product of  (e, re) and (e', re') is (e", zr �9 re') where we have e"(i) = 
e'(i) �9 e(re"(i)). Thus we introduce, for a nonempty n-set X, the set 13x of signed per- 
mutations of  X to be the set of pairs (e, rr), where Jr �9 Sx is a permutation of X and 
e: {1, 2 . . . . .  n} ~ { -1 ,  1} is a sign function. For X = 13 we still consider the only 
element of/39 to be the empty word. Given a signed permutation (e, re) ~ /3x  we define 
the restriction (e, re)l[i,jl of  (e, re) to a (possibly empty) interval [i, j ]  _ {1, 2 . . . . .  n} 

by (e, re)lti,jl(k) ~ (e(k + i - 1), re(k + i - 1)). 

Definition 8. We say that (e, re) �9 /3x is a signed Andrg permutation if re is an 
Andrd permutation and we have e(i) = 1 for all i satisfying re(i) = min{re(i), 
re(i + 1) . . . . .  re(n)}. We call a signed Andr6 permutation (re, e) augmented if it 
satisfies re(n) = n. We denote the set of  augmented signed Andr6 permutations of  
X (resp. {1, 2 . . . . .  n}) by .Ax ~ (resp..A~). 

In words, (e, Jr) ~ 13x is a signed Andr6 permutation if re �9 Sx is an Andrd permutation 
and the sign of every letter which is a minimum from the right is positive. 

Definition 9. Let X be an n-element set. We say that i ~ { 1, 2 . . . . .  n - 1 } is an ascent, 
descent, or trough of (e, re) E/3x,  respectively, if  and only if i is an ascent, descent, or 
trough of the underlying permutation Jr. We define the ab-variation (resp. cd-vafiation) 
monomials of  a signed permutation (resp. signed Andr6 permutation) (e, Jr) to be equal 
to the ab-variation (resp. cd-variation) of  their underlying permutation re. That is, we 
set 

Vab((6, re)) ~ Vab(re ) for all (Jr, e) ~ Sx,  

and 

V~d((e, re)) "~ V~d(Zr) for all (e, Jr) �9 Ax ~. 

Observe that Sx may be considered as the subset 

{(e, Jr) �9 13x: e(i) = 1 for i = 1, 2 . . . . .  n} ofl3x. 

Under this identification the definitions of  signed Andrd permutation, ab-variation, and 
cd-variation become the extensions of  their signless counterparts. Proposition 1 has the 
following extension to signed Andr6 permutations: 
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Proposition 8. For any (e, Jr) 6 13x where Jr ~ Sx  has no double descents, (e, Jr) 
def 

is a signed Andrg permutation if and only if for m = Jr-I (min X) the permutation 
rrlta,ml ~ Sx is an Andrg permutation and (e, Zr)l[m,n] is a signed Andrd permutation. 

Proof. By Proposition 1, the underlying permutation Jr is Andre if and only if 7rl[1,m ] 
and zrlt,n+l,.] are Andre permutations, so we only need to check when the condition 
about the signs is satisfied. All minimums from the fight belong to the interval [m, n]. 
Hence given an Andre permutation Jr, the pair (e, Jr) is a signed Andre permutation if 
and only if (e, zr)ltm,.] is a signed Andre permutation. [] 

Using again PropriEtE 3.3 of [6] we obtain the following signed generalization of 
Corollary 1. 

Corollary 3. For any (e, yr) ~ 13x where Jr ~ Sx  has no double descents, (e, rr) is an 

augmented signed Andrg permutation if and only iffor m ~ Jr-1 (min X) the permutation 
Jr I tl,r.-11 ~ Sx is an augmented Andrg permutation and (e, Jr)I[m+l,n] is an augmented 
signed Andrg permutation, and the letter max X belongs to Jr I[m+l.n]. 

Now we show a signed extension of Theorem 1. Given a cd-word w = wl w2--. tOn, 
we denote the reversed word wnw~-I "'" wl by tO". We extend the operation w w-~ w ~ 
to cd-polynomials linearly. 

Theorem 3. The cd-index of the face lattice Cn of the (n - 1)-cube is the sum of the 
reversed cd-variation monomials of the augmented Andrg permutations of{ 1, 2 . . . . .  n }. 
That is, we have 

~ c , ( c , d ) =  E Vc~dV((e'zr))" 

Proof. Let Vn denote the cd-index of the face lattice of the (n - 1)-cube and let 17"n 
denote the sum of the cd-variations of the signed augmented Andr6 permutations of 
{1, 2 . . . . .  n}. 

We proceed by induction on n. Observe first that in analogy with Lemme 3.7 and 
ProprittE 3.10 of [6] and Corollary 5.8 of [ 10], Corollary 3 implies the following recursion 
formula for the polynomials 17'n : 

n- l (7  ) Vn+2 ~ E " 2 n - i "  ~-]n-i " d " ~ri+l "[- C" Vn+ 1 
i=0 

for n ~ 1. (15) 

Hence the theorem follows from the fact that the polynomials V. also satisfy 

n,(:) 
gn+2 = E " 2n-i " Vi+l �9 d .  Un-i + Vn+l �9 C for 1 < k < n, (16) 

i=0 

as was shown by Ehrenborg and Readdy Section 5, equation (3) of [4], using R-labeling. 
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In fact, our statement then follows by induction from V] = V] = 1, V2 = V: = c, 
and from the fact that, for every n > 1, the polynomial U, is not only equal to U, but 
also to U~.  The equality Un = U~ v holds because the reverse of  the cd-index of a poset 
is the cd-index of the dual poset, and the Boolean algebra B, is self-dual. [] 

R e m a r k .  Independently of  Ehrenborg and Readdy, we have found another proof of 
(16). This proof is not included, because it is longer than the R-labeling argument, and 
it uses (4) in a completely analogous way to the proofs of  Theorem 1 and Proposition 6. 
In the omitted proof, the chains are split into those containing a face of  the form K = 
(u] . . . . .  u , ,  0), and those which do not. (Here we encode the the nonempty faces in the 
same way as Rota and Metropolis in [9]: we identify each nonempty face K with a vector 
(ul, u2 . . . . .  U,+l), where all ui belong to the set {0, 1, .}. We set ui = 0 or ui = 1, 
respectively, if  the ith coordinate of all vertices of K is 0 or 1, respectively, otherwise we 
set ui = *.) 

Now we describe how to extend the Foata-Strehl group action defined in Definition 2 
to signed permutations, such that our signed Andr6 permutations become a natural set 
of  orbit representatives. 

Given a signed permutation (e, Jr) ~ B, and x ~ {1, 2 . . . . .  n}, we define the 
x-factorization of  (~, Jr) to be the 5-tuple of  signed permutations ((w], s]), (w2, s2), 
(//)3, $3), (!/34, $4), (//)5, $5)) such that 

(i) (w], w2, w3, w4, ws) is the x-factorization of zr, and 
(ii) for each i 6 { 1, 2, 3, 4, 5} if wi = rr Irk, j , ] ,  then (wi, si) = (e, 7r)ltk,,t,l. 

In words, we take the x-factorization of the underlying permutation rr keeping the 
signs unchanged. For x 6 {1, 2 . . . . .  n} we extend the reflection ~0x to signed per- 
mutations by requiring that it exchanges the signed permutation of x-factorization 
((w], sl), (w2, s2), (w3, s3), (w4, s4), (ws, ss)) with the signed permutation of x-factor- 
ization ((w], sl), (w4, s4), (w3, s3), (wz, s2), (ws, ss)). By abuse of notation, we denote 
the extended reflection by the same symbol ~o~. The proof  of  the fact that the reflections 
~0x generate a commutative group carries over, mutatis mutandis, to this case, and so we 
have the same 2 "-]  element commutative group G ,  acting on the signed permutations. 
It is also clear that for every orbit there is exactly one (e, n )  ~ 13, in the orbit such that 
Jr is an (unsigned) augmented Andr6 permutation, i.e., rr 6 .,4,. It is not guaranteed, 
however, that the e would satisfy the sign condition of Definition 8. 

We introduce new reflections ~o' v for y = 1, 2 . . . . .  n such that the generated group 
remains commutative, and the signed augmented Andr6 permutations became a system 
of  orbit representatives. The operation ~O'y will leave the underlying permutation Jr of  
(e, Jr) 6 13, unchanged, and reverse only the sign of the letter y if m r ( y ,  n) = k. In 
other words, we set 

~0/V (~.  j~. ) def ! = (e , n ) ,  

where 

e'(i) = / - e ( i )  if zr(i) = y and m ~ ( y , n )  = y, 
[ e ( i )  otherwise. 

Given the fact that the reflections ~0x leave the functions m .  unchanged and the reflections 
~O'y change only the signs of  pairwise different letters in a way depending only on m~r, it is 
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easy to see that the set {gx: 1 < i < n - 1} U {gy: 1 < j < n} generates a commutative 
group G~. 

Proposition 9. The elements of . ~  form a system of orbit representatives for G~. 

Proof. As we noted before, to every orbit of Gn = (gx: 1 _< i _< n - 1) there 
t ,  belongs exactly one (e, zr) satisfying ~r ~ An. The 9y s do not change the underlying 

permutation, so this property will hold even for the larger orbits of  G~ = ({~Ox: 1 < i < 
n -1}O{~o 'y :  l _ < j _ < n } ) .  

Assume first that we are given an element (e, zr) ~ O such that ~r E An. I f  for an 
i ~ {1, 2 . . . . .  n} the letter Jr(i) is a minimum from the fight in the word z r (1) . - -  re(n), 
then we have m~ (~r (i), n) = Jr (i). Applying ~O~r(i ) t  if necessary, we arrive at a signed 
permutation (e', Jr) with e ' ( i )  = 1 in the same orbit. By repeating the same procedure 
for all i E {1, 2 . . . . .  n}, we obtain a signed augmented Andr6 permutation belonging 
to O. 

Assume now that there are even two signed augmented Andr6 permutations (e, ~r), 
(e', Jr') e .A~ belonging to the same orbit O. Their underlying permutation must be the 
same, so we must have Jr = 7r'. The reflections ~ox and 9~ commute,  and .An is a system 
of orbit representatives for the signless action of the ~0x's, hence the ~0x'S must cancel 

t ,  in the product of  9x 's  and 9y s which takes (e, zr) into (e', ~r). For all i e {1, 2 . . . . .  n} 
for which ~r(i) is not a minimum from the fight in ~r, we have m~r(Jr(i), n) # ~r(i) 
and so any ~Oy leaves the sign e(i)  unchanged. Thus we must have e(i) = e ' ( i )  for 
these i 's. However, for the i ' s  for which 7r(i) is a minimum from the fight in ~r we 
must have e(i) = e'(i) = 1 by the definition of  augmented signed Andr6 permutations. 
Therefore we must have e = e', showing that there is exactly one signed augmented 
Andr~ permutation in each orbit. [] 
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