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Abstract. We establish an analogue of Beurling’s uncertainty principle for the group
Fourier transform on the Euclidean motion group. We also prove the most general version of
Hardy’s theorem on it which characterises functions on the motion group that are controlled
by the heat kernel associated to the Laplacian of the Euclidean space.

1. Introduction. A cute little theorem of Beurling on Fourier transform pairs which
was published by Hörmander [7] says that for any nontrivial function f in L2(R), the function
f (x)f̂ (y) is never integrable on R

2 with respect to the measure e|xy|dxdy. A far-reaching
generalisation of this result has been recently proved by Bonami et al. [1]. Let

f̂ (y) = (2π)−n/2
∫

Rn

e−i(x,y)f (x)dx

stand for the Fourier transform of a function f on R
n. Then we have:

THEOREM 1.1 (Bonami-Demange-Jaming). Let f ∈ L2(Rn) and suppose that for

some N ≥ 0
∫

Rn

∫

Rn

|f (x)|

(1 + |x|)N
|f̂ (y)|

(1 + |y|)N
e|(x,y)|dxdy < ∞ .

Then f = 0 whenever N ≤ n. If N > n, then the above holds if and only if f can be written

as

f (x) = P(x)e−(Ax,x)/2,

where A is a real positive definite matrix and P is a polynomial of degree ≤ (N − n)/2.

Some attempts to generalise this result to group Fourier transforms on certain Lie groups
have already been made. Unlike the Euclidean case functions f and their Fourier transforms
f̂ live on different sets which spoils the elegance of the above result in other contexts.

In this paper we formulate and prove an analogue of Theorem 1.1 for the Fourier trans-
form on Euclidean motion groups M(n).

Let M(n) be the semidirect product of R
n with K = SO(n). The group law is given by

(x, k)(y, k′) = (x + k · y, kk′) , x, y ∈ R
n , k, k′ ∈ K .
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Let M = SO(n− 1) be considered as a subgroup of K leaving the point e1 = (1, 0, 0, . . . , 0)

fixed. Then all the irreducible unitary representations of M(n) relevant for the Plancherel
theorem are parametrised (upto unitary equivalence) by pairs (λ, σ ) where λ > 0 and σ ∈ M̂ ,
the unitary dual of M . (When n = 2 there is only one parameter namely, λ > 0.) The group
Fourier transform of f ∈ L1(M(n)) is then defined by

f̂ (λ, σ ) =

∫

M(n)

f (x, k)πλ,σ (x, k)dxdk(1.1)

where πλ,σ (x, k) is the irreducible unitary representation of M(n) associated to the parameter
(λ, σ ). These representations are realised on certain Hilbert spaces which will be described
in the following sections. Let ‖f̂ (λ, σ )‖HS stand for the Hilbert-Schmidt operator norm of
f̂ (λ, σ ). As an analogue of Beurling’s theorem we offer:

THEOREM 1.2. Let f ∈ L1 ∩ L2(M(n)) and assume that

∫

M(n)

∫ ∞

0

‖f̂ (λ, σ )‖HS

(1 + λ)n

|f (x, k)|

(1 + |x|)n
eλ|x|λn−1dλdxdk < ∞

for every σ ∈ M̂ . Then f = 0.

Note that we have considered only the case N = n. When n = 2 we can do slightly
better. Let us write (z, eiϕ) for the coordinates on M(2), z ∈ R

2.

THEOREM 1.3. Let f ∈ L1 ∩ L2(M(2)) and assume that

∫

M(2)

∫ ∞

0

‖f̂ (λ)‖HS

(1 + λ)3

|f (z, eiϕ)|

(1 + |z|)3
eλ|z|λdλdzdϕ < ∞ .

Then f can be represented as

f (z, eiϕ) = g(eiϕ)e−a|z|2

for some g ∈ L2(T ) and a > 0.

In this theorem T stands for the circle group which is identified with SO(2). Let �n be
the standard Laplacian on R

n and let

pn
t (x) = (4πt)−n/2e−|x|2/4t(1.2)

be the associated heat kernel. Then the final conclusion of the above theorem can be expressed
in terms of the heat kernel pn

t (z) on R
n. The original theorem of Beurling (N = 0) can

be viewed as an uncertainty principle for the Fourier transform. The case N = n + 1 is
then a characterisation of the heat kernel pt (x) on R

n. Theorem 1.1 is so strong that other
‘uncertainty principles’ like the theorems of Hardy, Gelfand-Shilov and Cowling-Price all
follow from it. For example, a general form of Hardy’s theorem for R

n in [15] says that if
f ∈ L1(Rn) satisfies

|f (x)| ≤ c(1 + |x|)mpn
s (x) , |f̂ (y)| ≤ c(1 + |y|)me−t |y|2(1.3)
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then f = 0 whenever s < t and when s = t, f (x) = Q(x)pn
t (x) where Q is a polynomial of

degree ≤ m. It is clear that this result follows immediately from Theorem 1.1.
Even though we do not have the most general version of Beurling’s theorem for M(n),

we do have a general version of Hardy’s theorem.

THEOREM 1.4. Let f ∈ L1(M(n)) satisfy the following two conditions:

|f (x, k)| ≤ c(1 + |x|)Npn
s (x) , (x, k) ∈ M(n)

‖f̂ (λ, σ )‖ ≤ c(1 + λ)Ne−tλ2
, (λ, σ ) ∈ R+ × M̂ .

Then f = 0 whenever s < t . When s = t, f can be expressed as a finite linear combination

of functions of the form

Pm,j (x)(−�n+2m)(j−m)/2pn+2m
t (x)gmj (k)

where Pmj are solid harmonics of degree m and gmj are certain bounded functions in L2(K).

In the above the fractional powers of the Laplacian are defined via the Fourier transform:

(−�n)
j/2f (x) = (2π)−n/2

∫

Rn

|ξ |j f̂ (ξ)eix·ξdξ .

The range of m and j are restricted by the condition

|Pmj (x)||(−�n+2m)(j−m)/2pn+2m
t (x)| ≤ c(1 + |x|)Npn

t (x) .

The case N = 0, s < t of the above theorem is due to Sundari [14]. See the work of Eguchi et
al. [3] for an analogue (again the case N = 0, s < t) of the above for Cartan motion groups.
Eguchi et al. [4] have also treated an Lp version of the above result (N = 0, s < t). The
above theorem with N > 0 and s = t is new.

It is possible to prove a refined version of the above theorem when n = 2. Compare
the following result with Hardy’s theorem proved in [16] for the Euclidean Fourier transform.
When n = 2, the relevant representations πλ(z, e

iϕ) of M(2) are parametrised by λ > 0 and
realised on the same Hilbert space L2(T ). Let {ek(θ) = eikθ : k ∈ Z} be the standard basis
for L2(T ).

THEOREM 1.5. Let f ∈ L1(M(2)) satisfy the estimate

|f (z, eiϕ)| ≤ cp2
t (z) , z ∈ R

2 .

Further assume that for every λ > 0, and k, j ∈ Z

|(f̂ (λ)ek, ej )| ≤ ckjλ
|k−j |e−tλ2

.

Then f can be represented as

f (z, eiϕ) = p2
t (z)

(
∫

Rn

f (z, eiϕ)dz

)

.

The plan of the paper is as follows. In the next section we collect relevant information
from the representation theory of M(n). We also recall a theorem of Gross and Kunze [6]
which is needed for the proof of Theorem 1.2. All the results are proved in Sections 3 and
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4. For analogues of Hardy’s theorem in the contexts of other groups we refer to [2], [11] and
[15] and the references there.

2. Representation theory of M(n). In this section we describe the unitary dual of
M(n). To enhance the readability of this paper we collect relevant information from the rep-
resentation theory of M(n). General references are the books of Folland [5] and Suguira [13].
We also need some results from the paper of Gross and Kunze [6].

First consider the case M(2). We write the elements of M(2) as (z, eiϕ), z ∈ C and
ϕ ∈ R. The group law is given by

(z, eiϕ)(w, eiθ ) = (z + eiϕw, ei(θ+ϕ)) .

For each λ > 0 consider the representation πλ(z, e
iϕ) realised on L2(T ):

πλ(z, e
iϕ)g(θ) = eiRe(λe−iθ z)

g(θ − ϕ)(2.1)

where g ∈ L2(T ). As shown in Sugiura [13] any infinite dimensional irreducible unitary
representation of M(2) is unitarily equivalent to πλ for some λ > 0.

Next consider the case M(n), n ≥ 3. As in the introduction we let K = SO(n) and
M = SO(n − 1). Given σ ∈ M̂ realised on a Hilbert space Vσ of dimension dσ consider the
space L2(K, σ) consisting of functions ϕ on K taking values in C

dσ ×dσ , the space of dσ ×dσ

complex matrices, satisfying the condition

ϕ(uk) = σ(u)ϕ(k) , u ∈ M , k ∈ K

which are also square integrable on K:
∫

K

‖ϕ(k)‖2dk =

∫

K

tr (ϕ(k)∗ϕ(k))dk < ∞ .

Note that L2(K, σ) is a Hilbert space under the inner product

(ϕ,ψ) =

∫

K

tr (ϕ(k)ψ(k)∗)dk .

For each λ > 0 and σ ∈ M̂ we can define a primary representation πλ,σ of M(n) on
L2(K, σ) as follows. For ϕ ∈ L2(K, σ), (x, k) ∈ M(n),

πλ,σ (x, k)ϕ(u) = eiλ(u−1·e1,x)ϕ(uk) , u ∈ K .(2.2)

If ϕj (k) are the column vectors of ϕ ∈ L2(K, σ) then ϕj (uk) = σ(u)ϕj (k) for all u ∈ M .
Therefore, L2(k, σ ) can be written as the direct sum of dσ copies of H(K, σ) which is defined
to be the space of ϕ : K → C

dσ which are square integrable and satisfy

ϕ(uk) = σ(u)ϕ(k) , u ∈ M .

It can be shown that πλ,σ restricted to H(K, σ) is an irreducible unitary representation of
M(n). Moreover, any irreducible unitary representation of M(n) which is infinite dimen-
sional is unitarily equivalent to one and only one πλ,σ . Finite dimensional irreducible unitary
representations of K also yield irreducible unitary representations of M(n). As they do not
appear in the Plancherel formula we neglect them.
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Given f ∈ L1 ∩ L2(M(n)) we define the group Fourier transform of f by

f̂ (λ, σ ) =

∫

M(n)

f (x, k)πλ,σ (x, k)dxdk .(2.3)

Note that f̂ (λ, σ ) is a Hilbert-Schmidt operator on H(K, σ). We would like to think of the
Fourier transform f̂ as an operator on a fixed Hilbert space. To achieve this we simply take
the direct sum of all the Hilbert spaces L2(K, σ). More precisely, let L2(K)∧ stand for the
direct sum of L2(K, σ) as σ varies over M̂ . Thus L2(K)∧ is the set of all functions F on M̂

such that F(σ) belongs to L2(K, σ) for each σ and
∑

σ∈M̂

‖F(σ)‖2 < ∞ .

The Hilbert space structure of L2(K)∧ is given by

(F,G) =
∑

σ∈M̂

(F (σ),G(σ)) .

For each λ > 0 we can now define f̂ (λ) as an operator on L2(K)∧ by setting

(f̂ (λ)F )(σ ) = f̂ (λ, σ )F (σ) .

In the proof of Theorem 1.3 we make use of a result of Gross and Kunze [6] which shows
that L2(K)∧ is isomorphic to L2(K). To state their result we need to set up some notation. Let
L(u) stand for the left regular representation of M on L2(K) given by L(u)ψ(k) = ψ(u−1k).
For any σ ∈ M̂ consider the projection

Pσ = dσ

∫

M

χσ (u)L(u)du(2.4)

where χσ (u) = tr (σ (u)) is the character of σ . A vector lies in the range of Pσ if and only if its
translates under L span a finite dimensional subspace in which L decomposes into irreducible
representations equivalent to σ .

Note that when ψ ∈ L2(K) the function

ψ̃(σ, k) =

∫

M

ψ(u−1k)σ (u)du(2.5)

takes values in L2(K, σ) as can be easily checked. The generalised Fourier transform of a
function ψ ∈ C(K) is the function Uψ ∈ L2(K)∧ whose value at σ ∈ M̂ is given by

Uψ(σ)(k) = ψ̃(σ, k) .(2.6)

In [6] the following theorem has been proved:

THEOREM 2.1 (Gross and Kunze). The generalised Fourier transform ψ �→ Uψ ini-

tially defined on C(K) extends uniquely to a unitary operator between L2(K) onto L2(K)∧

which maps Pσ L2(K) onto L2(K, σ).
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For each λ > 0 we can define f̂ (λ) as an operator on L2(K)∧ and using the above
unitary operator U : L2(K) → L2(K)∧ we can consider U∗f̂ (λ)U as an operator on L2(K)

which is unitarily equivalent to f̂ (λ). We use this identification to obtain a formula for
∑

σ∈M̂

‖f̂ (λ, σ )‖2
HS(2.7)

which is crucial in the proof of Beurling’s theorem 1.3. We remark that the Plancherel theorem
for M(n) takes the form

cn

∫ ∞

0

(

∑

σ∈M̂

‖f̂ (λ, σ )‖2
HS

)

λn−1dλ =

∫

M(n)

|f (x, k)|2dxdk(2.8)

for a suitable constant cn.

3. Hardy’s theorem for M(n). In this section we prove Theorems 1.4 and 1.5. We
first recall some results from the Euclidean harmonic analysis which will be needed in the
proofs. First of all we make use of the Hecke-Bochner formula for the Fourier transform
which states that if f (x) = P(x)g(|x|) where g is radial and P is a solid harmonic of degree
m then

(2π)−n/2
∫

Rn

f (x)e−ix·ξdx = (−i)mP(ξ)G(|ξ |)(3.1)

where G(|ξ |) is the Fourier transform of the radial function g(|x|) on R
n+2m. G(|ξ |) is also

given as a Hankel transform of order (n/2 + m − 1). For these facts we refer to Stein-Weiss
[12].

In the above, a solid harmonic of degree m is a polynomial which is homogeneous of
degree m and harmonic. The set of all such polynomials will be denoted by Hm and the
restrictions of elements of Hm to Sn−1 is denoted by Sm. Members of Sm are called spherical
harmonics of degree m. By choosing an orthonormal basis {Ymj ; j = 1, 2, . . . , dm} of Sm for
each m = 0, 1, 2, . . . we get an orthonormal basis for L2(Sn−1).

The Funk-Hecke formula deals with spherical harmonic expansions of zonal functions.
If a is a function on (−1, 1) this formula says that

∫

Sn−1
a(x ′ · y ′)Ymj (y

′)dy ′ = cmjYmj (x
′) .(3.2)

The coefficients cmj are given in terms of ultraspherical polynomials. More precisely, let

G
n/2−1
m (t) be ultraspherical polynomials of type (n/2 − 1). Then

cmj =
Γ (m + 1)Γ (n − 2)

Γ (m + n − 2)
wn−2

∫ 1

−1
a(t)G

n/2−1
m (t)(1 − t2)(n−3)/2dt .(3.3)

We refer to Muller [8] for this formula. In particular, taking a(t) = eiλrt , we have
∫

Sn−1
eiλrx ′·y ′

Ymj (y
′)dy ′ = cmjYmj (x

′) .
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Using the Poisson integral representation of Bessel functions we can calculate cmj leading to
the formula

eiλrx ′·y ′
=

∞
∑

m=0

dm
∑

j=1

Jn/2+m−1(λr)

(λr)n/2−1
Ymj (x

′)Ymj (y
′)(3.4)

where Jα(t) is the Bessel function of type α.
Hecke-Bochner formula (3.1) leads to a simple description of f̂ (λ, σ ) when f is of a

special form.

LEMMA 3.1. Let f ∈ L1(M(n)) be of the form f (x, u) = P(x)g(|x|)h(u) where P

is a solid harmonic of degree m. Then for every λ > 0 and σ ∈ M̂ we have

f̂ (λ, σ )ϕ(k) = λmG(λ)P (k−1e1)

∫

K

h(u)ϕ(ku)du

where G(λ) is the (n + 2m)-dimensional Fourier transform of g(|x|).

The lemma follows immediately from the definition of πλ,σ (x, u) in view of (3.1). In
particular when we take

f (x, u) = P(x)(−�n+2m)(j−m)/2pn+2m
t (x)h(u)(3.5)

we see that

f̂ (λ, σ )ϕ(k) = λj e−tλ2
P(k−1e1)

∫

K

h(u)ϕ(ku)du(3.6)

for every ϕ ∈ H(K, σ). This formula will be used in the proof of Theorem 1.4.
We also need the following lemma on entire functions of order 2.

LEMMA 3.2. Let F(z) be an entire function of a single complex variable z which

satisfies

|F(z)| ≤ c(1 + |z|)Nea|Im(z)|2 , z ∈ C ,

|F(x)| ≤ c(1 + |x|)Ne−ax2
, x ∈ R .

Then F(z) = P(z)e−az2
where P(z) is a polynomial of degree ≤ N .

A proof of this lemma can be found in Sarkar [10]. Having collected all the results
needed, we begin with a proof of Theorem 1.4. Note that we only need to consider the case
s = t . For ϕ,ψ ∈ H(K, σ) consider

(f̂ (λ, σ )ϕ,ψ) =

∫

M(n)

∫

K

f (x, u)eiλk−1e1·x(ϕ(ku),ψ(k))dkdxdu .(3.7)

Since the function f satisfies the estimate

|f (x, u)| ≤ c(1 + |x|)Npn
t (x)(3.8)
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it is clear that the above integral (3.7) converges even if λ ∈ C . Indeed,
∣

∣

∣

∣

∫

K

eiλ(k−1e1·x)(ϕ(ku),ψ(k))dk

∣

∣

∣

∣

≤ e|Im(λ)||x|

∫

K

|ϕ(ku)||ψ(k)|dk

≤ e|Im(λ)||x|‖ϕ‖‖ψ‖ .

Using this estimate and (3.8) in (3.7) we see that

|(f̂ (λ, σ )ϕ,ψ)| ≤ c(1 + |λ|)Net |Im(λ)|2‖ϕ‖‖ψ‖ .(3.9)

Thus the function λ → (f̂ (λ, σ )ϕ,ψ) extends to an entire function of order 2 satisfying the
estimate (3.9) for all λ ∈ C . We are also given the estimate

|(f̂ (λ, σ )ϕ,ψ)| ≤ c(1 + |λ|)Ne−t |λ|2‖ϕ‖‖ψ‖(3.10)

for all λ ∈ R. Appealing to the complex analytic Lemma 3.2 we conclude that

(f̂ (λ, σ )ϕ,ψ) = Pσ (λ, ϕ,ψ)e−tλ2
(3.11)

where Pσ (λ, ϕ,ψ) is a polynomial of degree atmost N .
It is now clear that Pσ (λ, ϕ,ψ) is linear in ϕ and ψ . If we write

Pσ (λ, ϕ,ψ) =

N
∑

j=0

aσ,j (ϕ,ψ)λj

then it can be easily shown that aσ,j (ϕ,ψ) are sesquilinear forms on H(K, σ). Cauchy’s
formula together with the estimate (3.9) shows that aσ,j (ϕ,ψ) are actually bounded:

|aσ,j (ϕ,ψ)| ≤ cσ,j‖ϕ‖‖ψ‖

where cσ,j are constants independent of ϕ and ψ . Hence there are bounded linear operators
Aσ,j on H(K, σ) such that

aσ,j (ϕ,ψ) = (Aσ,jϕ,ψ) , ϕ,ψ ∈ H(K, σ) .

Therefore, we have obtained the relation

(f̂ (λ, σ )ϕ,ψ) =

( N
∑

j=0

(Aσ,jϕ,ψ)λj

)

e−tλ2

for every ϕ,ψ ∈ H(K, σ). This simply means that

f̂ (λ, σ ) = e−tλ2
N

∑

j=0

λjAσ,j(3.12)

as operators acting on H(K, σ). From the definition of f̂ (λ, σ ) it follows that

N
∑

j=0

λjAσ,jϕ(k) = etλ2
∫

M(n)

f (x, u)eiλk−1e1·xϕ(ku)dxdu .(3.13)

We can calculate Aσ,jϕ(k) by taking derivatives on both sides at λ = 0 : j !Aσ,jϕ(k) is the
j -th derivative of the right hand side of (3.13) at λ = 0.
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This shows that Aσ,jϕ is a finite linear combination of functions of the form
∫

M(n)

f (x, u)(k−1e1 · x)pϕ(ku)dxdu(3.14)

with 0 ≤ p ≤ j . We can use Funk-Hecke formula to expand (k−1e1 · x)p = |x|p(k−1e1 · x ′)p

in terms of spherical harmonics:

(k−1e1 · x ′)p =

p
∑

m=0

dm
∑

l=1

cmlYml(k
−1e1)Yml(x

′)(3.15)

where the coefficients cml are given by expanding a(t) = tp in terms of the ultraspherical
polynomials. Therefore, Aσ,jϕ is a finite sum of terms of the form

∫

M(n)

f (x, u)|x|pYml(x
′)Yml(k

−1e1)ϕ(ku)dxdu

= Yml(k
−1e1)

∫

K

fp,m,l(u)ϕ(ku)du

(3.16)

where we have written

fp,m,l(u) =

∫

Rn

f (x, u)|x|pYm,l(x
′)dx .

Finally, e−tλ2
λjAσ,jϕ(k) is a finite sum of functions of the form

e−tλ2
λjYm,l(k

−1e1)

∫

K

fp,m,l(u)ϕ(ku)du .

In view of Lemma 3.1 this simply means that λje−tλ2
Aσ,j is a finite sum of operators of the

form ĝp,m,l(λ, σ ) with

gp,m,l(x, u) = |x|mYm,l(x
′)(−�n+2m)(j−m)/2pn+2m

t (x)fp,m,l(u) .(3.17)

This completes the proof of Theorem 1.4.
We remark that when N = 0, s = t the conclusion of Theorem 1.4 takes the form

f (x, u) = pn
t (x)

(
∫

Rn

f (x, u)dx

)

.

We now give a proof of Theorem 1.5, that is, a refined version of Hardy’s theorem on M(2).
In this case it is slightly convenient to work with the following definition of f̂ (λ):

f̂ (λ) =

∫

M(2)

f (z, eiϕ)πλ(z, e
iϕ)∗dzdϕ(3.18)

where we use the complex variable z to stand for elements of R
2. An easy calculation shows

that

f̂ (λ)g(θ) =

∫ 2π

0
f̂ (λ, ei(θ+ϕ))g(θ + ϕ)dϕ
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where g ∈ L2(T ) and

f̂ (w, eiϕ) =
1

2π

∫

R2
e−iRe(zw̄)f (z, eiϕ)dz(3.19)

is the Euclidean Fourier transform of f on R
2.

From the above formula we obtain, with ek(θ) = eikθ ,

(f̂ (λ)ek, ej ) =
1

2π

∫ 2π

0

∫ 2π

0
f̂ (λeiθ , eiϕ)eijϕei(k−j)θdθdϕ .(3.20)

Now, the Bessel functions Jn(t) are given by the equation

Jn(t) =
1

2π

∫ 2π

0
e−it sin θe−inθdθ .

The functions Jn(t) and J−n(t) are related by

Jn(t) = (−1)nJ−n(t) .

In terms of the Bessel function we can write (see Rubin [9])

(f̂ (λ)ek, ej ) =
(−i)k−j

2π

∫ 2π

0

∫ 2π

0

(∫ ∞

0
f (reiθ , eiϕ)Jk−j (λr)rdr

)

ei(k−j)θeijϕdθdϕ .

If we define f̃ (r,m, n) to be the Fourier coefficients

f̃ (r,m, n) =

∫ 2π

0

∫ 2π

0
f (reiθ , eiϕ)eimθeinϕdθdϕ

then we can write the above as

(f̂ (λ)ek, ej ) =
(−i)k−j

2π

∫ ∞

0
f̃ (r, k − j, j)Jk−j (λr)rdr .(3.21)

Assuming k ≥ j and defining

gkj (r) = f̃ (r, k − j, j)r−k+j

we have the equation, with some constants ckj ,

(f̂ (λ)ek, ej ) = ckjλ
k−j

∫ ∞

0
gkj (r)

Jk−j (λr)

(λr)k−j
(λr)2(k−j)+1dr .(3.22)

Thus, λ−k+j (f̂ (λ)ek, ej ) is the Fourier transform of the radial function gkj (|x|) on R
2(k−j)+2.

Now the conditions of the theorem on f and f̂ imply that

|gkj (|x|)| ≤ ce−|x|2/4t , |ĝkj (ξ)| ≤ ce−t |ξ |2

and hence by Hardy’s theorem on R
2(k−j)+2 we get gkj (r) = ckj e

−r2/4t which means

f̃ (r, k − j, j) = ckj r
k−je−r2/4t .(3.23)

When k �= j the equation (3.23) is not compatible with the estimate

|f̃ (r, k − j, j)| ≤ ce−r2/4t
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unless ckj = 0. We can do the same thing when k ≤ j leading to the conclusion that
∫ 2π

0

∫ 2π

0
f (reiθ , eiϕ)eimθeinϕdθdϕ = 0

whenever m �= 0. We also have f̃ (r, 0, j) = cje
−r2/4t . Hence we obtain

f (z, eiϕ) = p2
t (z)

( ∞
∑

j=−∞

cje
ijϕ

)

.

This proves Theorem 1.5 with

g(eiϕ) =

∞
∑

j=−∞

cje
ijϕ =

∫

R2
f (z, eiϕ)dz .

4. Beurling’s theorem for M(n). We begin a proof of Theorem 1.2 by obtaining an
expression for the sum

∑

σ∈M̂
‖f̂ (λ, σ )‖2

HS. We make use of the unitary operator U intro-

duced in Section 2 to realise f̂ (λ) as an integral operator on L2(K) whose kernel can be
calculated. We use the explicit expression for this kernel to calculate the above sum.

As before let {Ymj ; 1 ≤ j ≤ dm,m = 0, 1, 2, . . . } be an orthonormal basis of L2(Sn−1)

consisting of spherical harmonics. Define

fmj (r, k) =

∫

Sn−1
f (rx ′, k)Ymj (x

′)dx ′(4.1)

and let gmj (r, k) = r−mfmj (r, k). Also define

g̃ mj (λ, k) =

∫ ∞

0
gmj (r, k)

Jn/2+m−1(λr)

(λr)n/2+m−1
rn+2m−1dr .(4.2)

Then we have the following result.

PROPOSITION 4.1.

∑

σ∈M̂

‖f̂ (λ, σ )‖2
HS =

∞
∑

m=0

dm
∑

j=1

λ2m

∫

K

|g̃ mj (λ, k)|2dk .

PROOF. For λ > 0, σ ∈ M̂ and ϕ,ψ ∈ H(K, σ)

(f̂ (λ, σ )ϕ,ψ) =

∫

M(n)

f (x, u)(πλ,σ (x, u)ϕ,ψ)dxdu

=

∫

M(n)

f (x, u)

(∫

K

eiλ(k−1e1,x)(ϕ(ku),ψ(k))dk

)

dxdu .

We now make use of the expansion

eiλ(k−1e1,x) =

∞
∑

m=0

dm
∑

j=1

Jn/2+m−1(λ|x|)

(λ|x|)n/2−1
Ymj (k

−1e1)Ymj (x
′)(4.3)
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where we have written x = |x|x ′. Using this expansion and recalling the definition of
g̃mj (λ, u) we obtain

f̂ (λ, σ )ϕ(k) =

∫

K

( ∞
∑

m=0

dm
∑

j=1

λm
g̃ mj (λ, u)Ymj (k

−1e1)

)

ϕ(ku)du

=

∫

K

( ∞
∑

m=0

dm
∑

j=1

λm
g̃ mj (λ, k−1u)Ymj (k

−1e1)

)

ϕ(u)du .

Thus we have

f̂ (λ, σ )ϕ(k) =

∫

K

Gλ(k, u)ϕ(u)du

where the kernel Gλ is given by

Gλ(k, u) =

∞
∑

m=0

∞
∑

j=1

λm
g̃ mj (λ, k−1u)Ymj (k

−1e1) .(4.4)

Since L2(K, σ) is the direct sum of copies of H(K, σ) the action of f̂ (λ, σ ) on L2(K, σ)

is also given by

f̂ (λ, σ )ϕ(k) =

∫

K

Gλ(k, u)ϕ(u)du , ϕ ∈ L2(K, σ) .

Using the unitary operator U : L2(K) → L2(K)∧ we consider the operator U∗f̂ (λ)U on
L2(K). For every ψ ∈ L2(K),Uψ(σ)(k) = ψ̃(σ, k) where

ψ̃(σ, k) =

∫

M

ψ(u−1k)σ (u)du .(4.5)

By the definition of f̂ (λ) we have

(f̂ (λ)Uψ)(σ)(k) = f̂ (λ, σ )ψ̃(σ, k)

=

∫

K

∫

M

Gλ(k, u)ψ(m−1u)σ(m)dmdu .

If T (λ, σ ) = U∗f̂ UPσ on L2(K) then from the definition of Pσ and U it follows that

T (λ, σ )ψ(k) =

∫

K

∫

M

Gλ(k, u)ψ(m−1u)tr σ(m)dmdu .

With tr σ(m) = χσ (m) we have

T (λ, σ )ψ(k) =

∫

K

(
∫

M

Gλ(k,mu)χσ (m)dm

)

ψ(u)du .

Since L2(K) is the direct sum of Pσ L2(K) as σ ranges over M̂ we see that
∑

σ∈M̂

‖T (λ, σ )‖2
HS = ‖U∗f̂ (λ)U‖2

HS =
∑

σ∈M̂

‖f̂ (λ, σ )‖2
HS .
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Now T (λ, σ ) is an integral operator on L2(K) with kernel

Gλ,σ (k, u) =

∫

M

Gλ(k,mu)χσ (m)dm .(4.6)

Therefore,

‖T (λ, σ )‖2
HS =

∫

K

∫

K

|Gλ,σ (k, u)|2dkdu(4.7)

and summing over σ ∈ M̂ we get

∑

σ∈M̂

‖f̂ (λ, σ )‖2
HS =

∑

σ∈M̂

∫

K

∫

K

∣

∣

∣

∣

∫

M

Gλ(k,mu)χσ (m)dm

∣

∣

∣

∣

2

dkdu .

Invoking Peter-Weyl we obtain

∑

σ∈M̂

‖f̂ (λ, σ )‖2
HS =

∫

K

∫

K

|Gλ(k, u)|2dkdu .(4.8)

Recalling the definition of Gλ(k, u) and using the orthonormality of the spherical harmonics
we complete the proof of the proposition. ✷

Next we make the following observation. For δ ∈ K̂ consider the function f ∗ χδ . Then
writing πλ,σ (f ) for f̂ (λ, σ ), an easy calculation shows that

πλ,σ (f ∗ χδ) = πλ,σ (f )πλ,σ (χδ) .

Here the Fourier transform of χδ is given by

πλ,σ (χδ)ϕ(k) =

∫

K

χδ(u)πλ,σ (0, u)ϕ(k)du

=

∫

K

χδ(u)ϕ(ku)du .

Now ρ(u) = πλ,σ (0, u) is a representation of K on H(K, σ) and so ρ is a direct sum of
irreducible unitary representations of K . Let ρ1 be a subrepresentation of ρ realised on a
subspace V of H(K, σ). Then on V

πλ,σ (χδ)ϕ(k) =

∫

K

χδ(u)ρ(u)ϕ(k)du = ρ(χδ)ϕ(k) .

But ρ(χδ) = 0 unless ρ is unitarily equivalent to δ. Thus πλ,σ (χδ) �= 0 only when πλ,σ

contains δ. By Frobenius reciprocity, [πλ,σ , δ] = [δ, σ ] (where [π, δ] is the multiplicity of δ

in π) and hence πλ,σ (χδ) �= 0 only when [δ, σ ] �= 0. Thus πλ,σ (f ∗ χδ) �= 0 only for finitely
many σ ∈ M̂ since [δ, σ ] < ∞.
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We now embark on a proof of Theorem 1.2. It is enough to show that f ∗ χδ = 0 for
every δ ∈ K̂ . If we let fδ = f ∗ χδ then πλ,σ (fδ) �= 0 only for finitely many σ and hence

∫

M(n)

∫ ∞

0

(

∑

σ∈M̂

‖f̂δ(λ, σ )‖2
HS

)1/2

(1 + λ)n

|fδ(x, k)|

(1 + |x|)n
eλ|x|λn−1dλdxdk

≤
∑

σ∈M̂

∫

M(n)

∫ ∞

0

‖f̂δ(λ, σ )‖HS

(1 + λ)n

|fδ(x, k)|

(1 + |x|)n
eλ|x|λn−1dλdxdk .

Since

fδ(x, k) =

∫

K

f (x, ku−1)χδ(u)du = f ∗ χδ(x, k)

and f̂δ(λ, σ ) = f̂ (λ, σ )πλ,σ (χδ) the above is bounded by

∑

σ∈M̂

∫

M(n)

∫ ∞

0

∫

K

‖f̂ (λ, σ )‖HS

(1 + λ)n

|f (x, ku−1)|

(1 + |x|)n
|χδ(u)|eλ|x|λn−1dλdxdkdu

which is finite by the hypothesis.
Appealing to the result of the proposition we conclude that for every m ∈ N and 1 ≤

j ≤ dm

∫ ∞

0

∫ ∞

0

∫

K

λm

( ∫

K |g̃ mj (λ, k)|2dk
)1/2

(1 + λ)n

|fmj (r, k)|

(1 + r)n
eλr(λr)n−1drdλdk < ∞

where fmj and gmj are defined in terms of the function fδ = f ∗χδ . (We have suppressed the
δ-dependence for the sake of simplicity of notation). For each ψ ∈ C(K) consider

hmj (r) =

∫

K

gmj (r, k)ψ(k)dk

so that the Hankel transform of type (n/2 + m − 1) of hmj (r) is

h̃mj (λ) =

∫

K

g̃ mj (λ, k)ψ(k)dk .

Since fmj (r, k) = rm
gmj (r, k) and

|h̃mj (λ)| ≤

(
∫

K

|g̃ mj (λ, k)|2dk

)1/2

‖ψ‖2

we have
∫ ∞

0

∫ ∞

0
λm |h̃mj (λ)|

(1 + λ)n

rm|hmj (r)|

(1 + r)n
eλr(λr)n−1drdλ

≤ c

∫ ∞

0

∫ ∞

0
λm

( ∫

K |g̃ mj (λ, k)|2dk
)1/2

(1 + λ)n

( ∫

K |fmj (r, k)|dk
)

(1 + r)n
eλr(rλ)n−1drdλ < ∞ .
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Thus we have
∫ ∞

0

∫ ∞

0

|hmj (r)|

(1 + r)n+m

|h̃mj (λ)|

(1 + λ)n+m
eλr(λr)n+2m−1drdλ < ∞ .

Since h̃mj (λ) is the Hankel transform of order (n/2 + m − 1) of hmj (r) we can appeal to
Beurling’s theorem on R

n+2m. Since n + m ≤ n + 2m we get hmj (r) = 0. As this is true for
every m and j we get fδ = 0. Hence f = 0 as desired.

This completes the proof of Theorem 1.2. We now give a proof of Theorem 1.3.
We follow the same notation used in the proof of Theorem 1.5. Under the hypothesis of

the theorem
∫ ∞

0

∫ ∞

0

|(f̂ (λ)ek, ej )|

(1 + λ)3

|f̃ (r, k − j, j)|

(1 + r)3
eλrλrdrdλ

≤ c

∫

M(2)

∫ ∞

0

‖f̂ (λ)‖HS

(1 + λ)3

|f (z, eiϕ)|

(1 + |z|)3
eλ|z|λdλdzdϕ < ∞ .

This means that, assuming k ≥ j ,
∫ ∞

0

∫ ∞

0

|gkj (r)|r
(k−j)

(1 + r)3

|g̃ kj (λ)|λ(k−j)

(1 + λ)3
eλrλrdrdλ

=

∫ ∞

0

∫ ∞

0

|gkj (r)|

(1 + r)3+k−j

|g̃ kj (λ)|

(1 + λ)3+k−j
eλr(λr)2(k−j)+1dλdr < ∞ .

Applying the result of Bonami et al. to the function gkj (|x|) on R
2(k−j)+2 we obtain

gkj (|x|) = Pkj (x)e−|x|2/4tkj

where deg Pkj ≤ 3 + (k − j) − 2(k − j) − 3 = −(k − j). Thus Pkj = 0 unless k = j and
we have

gkk(|x|) = cke
−|x|2/4tk = f̃ (|x|, 0, k)

for some constants ck, tk > 0. Therefore,

f (z, eiϕ) =
∑

cke
ikϕe−|z|2/4tk .

Now we recall that (f̂ (λ)ek, ej )λ
−(k−j) is the Fourier transform of f̃ (r, k − j, j)r−(k−j) on

R
2(k−j)+2. Therefore,

(f̂ (λ)ek, ej ) = δkj cke
−tkλ

2
.

Hence, the equation

‖f̂ (λ)‖2
HS =

∑

k

‖f̂ (λ)ek‖
2
2 =

∑

k,j

|(f̂ (λ)ek, ej )|
2

gives us

‖f̂ (λ)‖2
HS =

∑

|ck|
2e−2tkλ

2
.
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Thus the hypothesis on f and f̂ gives
∫ ∞

0

∫ ∞

0

‖f̂ (λ)‖HS

(1 + λ)3

e−r2/4tk

(1 + r)3
eλrλrdrdλ < ∞ .

Since ‖f̂ (λ)‖HS ≥ |ck|e
−tkλ

2
for every k we have

|cj |

∫ ∞

0

∫ ∞

0

e−r2/4tk

(1 + r)3
e−tjλ

2
eλrλrdrdλ < ∞ .

It can be shown that the above is impossible unless tk = tj for all k and j . Thus tk = t for all
k and we have

f (z, eiϕ) = e−|z|2/4t

(

∑

k

cke
ikϕ

)

proving the theorem.
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