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Abstract

The thermodynamic theory governing the absolute maximum efficiency of energy conversion by 
thermoelectric devices that operate as part of the heat recycle in regenerative burners, is examined.  
Comparison with series of elementary Carnot cycles helps to address the question of whether 
higher system efficiencies are realisable by rejecting the unconverted heat to the cold surroundings 
or to the incoming reactants as part of the recycle.  Whilst for the Second Law heat engine cycles 
the maximum power that can be extracted is independent of layout, a particular combination of both 
is shown to be most advantageous in the case of a novel configuration of the irreversible 
thermoelectric assemblies.  The heat exchanger/thermoelectric converter is made up of a coaxial 
assembly of many annular elements in series and a section in which heat is rejected to the incoming 
reactants is followed by a second section which discards unconverted heat to cold surroundings.  It 
is shown that the efficiencies of such devices substantially exceed the maximum efficiencies of the 
best present day thermoelectric conversion  systems and the theory suggests practical designs for 
small, combustion driven, power supplies.

1.   Introduction

Hydrocarbon fuels have a specific energy content some two orders of magnitude greater than that 
of any electrical storage device, but conversion to electrical power is problematic.  The search for 
compact, light-weight, long-lasting alternatives for batteries is motivated by the need to power the 
ever-proliferating portable electronic devices, such as equipment for infantry troops, for weather 
stations and buoys in polar regions which, unattended over long periods, need to signal their 
readings intermittently to passing satellites, and many others. Fuel cells, converters based on 
miniaturised gas turbines, and other systems under intensive study, give rise to diverse practical 
difficulties. Thermoelectric devices are robust, durable and have no moving parts, but tend to be 
exceedingly inefficient.  However, because of their inefficiency, a large proportion of the heat 
rejected at their cold junctions can be recycled.  This suggests the prospect of associating them with 
the kind of counter flow heat exchanger that underlies heat recirculating combustion systems.  The 
objective of this study is to establish theoretical limits to conversion efficiencies from combustors in 
which the reactants (or the combustion air alone) are preheated using heat recycled from beyond the 
flame zone, without mixing the two streams.  As a first step, in this paper we establish these 
maxima without regard to practical limitations due to heat losses, finite rates of heat transfer and 
chemical reaction, etc.



2.    The burner system

Combustion systems in which the reactants or the air alone are preheated using heat "borrowed" 
from the region downstream of the flame zone offer significant advantages as regards fuel 
conservation, efficiency and combustion intensity; they have sometimes been referred to in terms of 
their "excess enthalpies" or "super-adiabatic flame temperatures."  A great variety of such devices 
has been described, all of which are based on a combustor located between the two limbs of a heat 

exchanger (for reviews see, e.g., refs 1, 2).  

Figure 1 shows in the simplest possible way the various temperature intervals between product and 
reactant limbs of the heat exchanger as a function of mixture composition, flow rate and calorific 

value, heat recirculation, R, and heat abstraction, W, (e.g., by a converter) for a lean, premixed 

flame.   For simplicity, the discussion that follows will be based on the heat exchange and burner 

scheme illustrated in Fig. 2.  The temperatures, T,  at strategic points are denoted by suffixes as 

follows: o = ambient, u = unburnt (just upstream of flame), b = burnt (just downstream of flame), f 

= final (at heat exchanger exit).  For a particular specific heat capacity, c, and mass flow rate, M , 

both assumed constant, we can arrange the dimensions and geometry so as to give the specified 

temperature intervals.  The chemical heat release rate is MfQ  (Q = heat of combustion/mass of 

stoichiometric mixture,  f = fraction of stoichiometric fuel concentration) and heat losses from the 

heavily insulated system are neglected.  The mixture consists mostly of air (> 99.5% close to the 

flammability limit) and even Tb is too low for dissociation.  In the absence of heat abstraction or 

losses (as shown in the first and second temperature profiles), heat recirculation does not affect the 
steady-state exit temperature but may result in a greatly elevated flame temperature and hence 
reaction rate in premixed systems, and thermodynamic efficiency in the case of a converter - subject 

only to the thermal limitations of the heat exchanger and of reactant pre-ignition.  

The third temperature profile shows heat abstraction, in this particular case upstream of the high-

temperature side of the heat exchanger.  Clearly, the absolute maximum W allowed by energy 

conservation is MfQ. if a steady state is to be maintained.  (As further discussed below, this 

maximal level of heat extraction would require an idealised heat exchanger, transfering heat across 

an infinitesimal temperature difference since, with W = MfQ , the outlet temperature of the cold side 

of the heat exchanger is equal to the inlet temperature of the hot side of the heat exchanger.)  

The position, and thus te temperature range, where heat is abstracted is a variable - it may be more 
advantageous to arrange it to overlap or have it upstream or downstream of the high temperature 
side of heat exchanger.  The same variability applies to heat rejection (not shown in Fig. 1) that 

would be associated with heat abstraction for a heat engine - e.g. a thermoelectric converter.  The 

main objective of this paper is to determine the effect of the position, and thus temperature, of heat 
abstraction and heat rejection so as to optimise the overall thermal efficiency of the device. 



3.   Converter

Figure 3 shows a design of heat exchanger/thermoelectric converter we set out to parallel the heat 
flow geometry of Fig. 2.  It consists of a coaxial assembly of a large number of flat annular 
"washers" made up of alternating n-type and p-type thermoelectric materials connected in series .  
They are joined alternately at their inner and outer peripheries, in the manner of compressed 
concertina bellows.  Except at these hot and cold junctions, they are separated by insulating 
material, prior to being compressed axially.  They are represented by the crenelated lines in Fig. 3.  
Power is extracted through leads at the ends of the assembly.  The cold junctions constitute the inlet 
limb of the heat exchanger, so that the device acts as both a generator and as the heat exchanger of 
Fig. 2 - see Fig. 3 (ii)   Alternatively, the cold side can be maintained at ambient temperature as 
shown in Fig. 3 (i). 

4.   Efficiencies

Since the efficiency of each element of the converter is a function of both the hot and cold 

temperatures (Th, , Tc) and the temperatures depend on the energy abstracted further upstream, we 

need to consider three kinds of efficiencies.  If w is now the electrical power output and q the 

thermal input rate, the basic efficiency of each element,η   = δw/δq.  Since δ q = -Mcδ T h ,    

w = -Mcη δTh ,  and Mc(1-η ) δTc  is rejected to the heat sink, which may be the reactant stream.  

Integrating δw over the resulting temperature range yields the global efficiency,  ηg = (w/q).  

The maximum value of q (the heat abstracted for the converter) is MfQ (the heat release due to 

combustion as shown in Fig. 1), so that integrating δw the over appropriate temperature range 

gives the effective system efficiency, η e = w/MfQ.  It is obvious that the highest system 

efficiency will be obtained by maximising Th  by heat recirculation and minimising f  by burning the 

least proportion of fuel - the former being limited by either the temperature limit of the materials or 
the heat transfer coefficients, the latter by flame stability limits.  What is less immediately obvious 
is whether rejection of the unconverted heat to the cold surroundings or to the incoming reactants as 
part of the heat recirculation process will yield the higher system efficiency.  This question is 
addressed in the following sections.

5.   Second Law maxima

It will be useful to establish absolute theoretically maximum efficiencies first, as a benchmark for 
the less efficient irreversible thermoelectric converters.  For each elemental Carnot cycle, 

η = 1- (Tc/Th)……..(1)

The above integration to obtain the global efficiency, ηg, has been carried out in previous work [1,

3] both for the case of heat rejection to the ambient cold surroundings, To, as in figure 3(i) and for 



the case of heat rejection to the incoming reactants, figure 3(ii).  The results are, respectively,

ηg = 1 - [(To/(Th,u - Th,l)]* ln(Th,u/Th,l).....(2)  

and  

ηg = 1 - (Tc,l /Th,1)  = 1 - (Tc,u /Th,u)........(3a)

The suffixes u and l  stand for the upper and lower bounds of the temperature ranges.  Note that

(Tc,l /Th,1)  = (Tc,u /Th,u).......(3b)  

We apply this first to an idealised system - that illustrated in the third part figure 1 - which would 
intuitively be expected to yield an absolute efficiency maximum:  a hypothetically perfect heat 
exchanger that operates on an infinitesimal temperature difference, surmounted by a converter 
which uses all the heat of combustion at the maximum temperature and rejects heat to the ambient 
cold surroundings, as shown in figure 3 (i).  For this idealized maximum efficiency case

ηg = 1 - [(To/(Tb - Tu)]* ln(Tb/Tu)     (4),

Also  ηg = ηe  in this case

It is instructive to estimate some numerical values of this maximum-efficiency generator.  Tb is 

limited by both flame stability and the tolerances of the working materials.  It has been known for a 
long time [15] that, to a sufficient approximation, the lean limits of flammability vary with preheat 

in such a way as to keep Tb constant - say at 1500K.  The limiting value varies somewhat for 

different fuels (and greatly with the use of catalysts, see [14]), but 1500K is reasonable for 

methane or natural gas [4 - 6]  Taking room temperature, To, as 293K, the efficiency is

ηg = 1-[(293/(1500-Tu)]* ln(1500/Tu) = 1-[(293/(1500-Tu)]*ln[1500/(293+R/Mc)] = ηe..(5)

This is shown as the upper curve of Fig.4, plotted against the preheat temperature rise, (Tu -To) = 

R/Mc.  Good, well insulated, heat re-circulating burners achieve Tu  = 1200K (see ref. 7) 

corresponding to a combustion heat release of only 300K needed to reach the 1500K level to 
sustain reaction.  We shall henceforth use these temperatures as a standard for good heat re-

circulating burners and refer to them as SBT.  Thus the maximum theoretical efficiency for SBT is 
0.782 .  

In the absence of heat recirculation, combustion would have to raise the incoming fuel-air mixture 
from 293K to 1500K and the efficiency would drop to 0.604.  Thus the increase in the maximum 
theoretically possible efficiency due to heat recirculation preheating by 907K is 29.5%.  

We now compare this with case (ii) of figure 3. This is essentially represented by the second sketch 
of figure 1, except that a fraction of the heat recirculated, R, is extracted as electrical power.  Here 
the global efficiency for maximum energy recycle



 ηg = 1 - (To /Tf)  = 1 - (Tu /Tb) ........(6a)

which is clearly much less because of the raised rejection temperatures, though it operates on a 
potentially much greater heat input.  Using the same numerical values,

ηg = 1-(293/Tf)  = 1-(293+R/Mc)/Tb)........(6b) 

The corresponding global efficiency for SBT is  0.2.  Note that the exit temperature, Tf  is fixed in 

this case (= 366.25K for SBT) by the requirement to reject the unconverted heat so as to maintain a 

steady state.  Τhe global efficiency here works not on fQ/c but on R/Mc  (= 1133.75 for SBT), 

yielding a power output  W = ηg∗( R/Mc) and a system efficiency, 

ηe = ηg∗( R/Mc)/(fQ/c)......(7)

which yields  ηe = 0.756 for SBT.  The system efficiency for case (ii) of figure 3, plotted against 

the preheat temperature rise, is shown as the middle curve in figure 4.  It is always less than that for 
case (i) though it approaches it at large preheats and (ii) is less implausible practically, in that it does 
not require a hypothetical heat exchanger presumed to work on an infinitesimal temperature 
difference.  

There is, crucially, an interesting third case, which is illustrated in figure 3 (iii).  Although the exit 

temperature from the heat recirculating stage, Tf, is fixed in case (ii), there is no reason why we 

cannot discard the unconverted heat through another section of the converter, so long as its cold 

side is at ambient temperature, To, and not part of the heat recycle.  In practice, this only requires 

the converter to protrude beyond the entry point of the heat exchanger section, as shown in figure 

3(iii) and making it long enough to cool the product gases to near room temperature, To.  The 

governing equation for this external second stage is the same as for 4 (i) - i.e. equation (4), so that 
the global efficiency for this part of the converter is 

ηg2 = 1-[To/(Tf-To)]*[ln(Tf/To)] ...(8a) 

which is 0.1074  for SBT.  Thus the power output from this external section is 

(Tf -To)*ηg2 = (Tf -To)*[1- To/(Tf -To)]*[ln(Tf/To)] ...(8b) 

which is 7.867 for SBT.  To calculate the system efficiency for case (iii), we sum the power 
outputs of the two stages 

ηe = [ηg1∗( R/Mc) + ηg2*(Tf -To)]/(fQ/c) ...(8b)

or 0.782 for SBT.  This is precisely the same as the system efficiency for case (i).  Appendix 1 

provides a formal proof that such is always the case for Carnot cycles. It should not be 
surprising that the maximum power that can be extracted according to the 2nd Law from a series of 
reversible engines with fixed maximum temperature and fixed ultimate heat rejection temperature 
must be the same.  Thus the upper curve in Fig. 4 also represents the system efficiency for case (iii) 
of Fig. 3, whilst the lowest curve shows the contribution of its external stage - the importance of 
which decreases with increasing preheat temperature.  In practice, the much smaller efficiencies of 



real converters imply higher values of Tf  and hence an increasing importance for the external stage 

in system (iii) of Fig. 3.  In the next section we show that this system emerges as a generally 
advantageous configuration for real cycles.

6.  Thermoelectric (irreversible) converters

We now apply precisely the same analysis to assemblies of irreversible engines such as 
semiconductor thermoelectric devices.  The maximum efficiency of a thermoelectric device for 

given temperatures Th  and Tc is conventionally expressed [8 - 12] as 

η  = 
Th−Tc

T
h

1+ZTa−1

1+ZTa

���
+ Tc/Th

..........(10a)

where Ta = (Th + Tc)/2, and Z (= α2σ/λ), the “thermoelectric figure-of-merit”, is a measure of the 

effectiveness of the thermoelectric materials for energy conversion.  Here α  = Seebeck coefficient, 

σ  = electrical conductivity and λ  = thermal conductivity. ( Z*Ta  is sometimes referred to as the 

“dimensionless figure of merit".) Since our objective is to calculate maximum attainable 

efficiencies and since we have the freedom to vary the thermoelectric materials (including 
segmented configurations) along the concertina - like structure to obtain optimum efficiency for 

different temperature ranges, we put ZT ≈ 1 as a typical maximum value for known thermoelectric 

materials.  Thus

 η  = (Th - Tc)/(3.44Th + 2.44Tc )......(10b)

 Using this as the basic efficiency of each element, we integrate δw the over appropriate 

temperature range, to obtain the global efficiency, ηg, following the same procedure as before for 

Carnot cycles in Section 5.  For case (i) of Fig. 3, the global efficiency, which is also the system 
efficiency, is given by

ηg = [1/(Th,u - Th,l)] ∫[(Th- Tc)/(3.44 Th + 2.44Tc )]dTh…………..(11a)

Th,u

Th,l

 or in terms of the nomenclature of Fig. 1, and by analogy with equation (4),

ηg = [1/(Tb - Tu)] ∫[(Th- To)/(3.44 Th + 2.44To )]dTh = ηe…………..(11b)

Tb

Tu

where again To  = 293K and Tb = 1500K.  Hence,

ηg = [1/(1500 - Tu)] ∫[(Th- 293)/(3.44 Th + 715)]dTh = ηe…………..(11c)

1500

Tu



This is shown as the case (i) curve in figure 5 – plotted as before against the preheat temperature 
increment (Tu – To).  Again, applying this to  SBT (Tu = 1200K and thus a preheat temperature 

increment of 907K) we obtain a system efficiency, ηe = 0.197.

Equation (11) also governs case (ii) of Fig. 3, except that, as with the reversible Carnot case, Tc is 

determined from the solution of δTc = -(1 – η)δTh.  For the thermoelectric converter η  is given by 

Eq. (10b) and thus

δ Tc = -[1 - (Th- Tc)/(3.44 Th + 2.44Tc )]δ Th 

= -[(2.44Th + 3.44Tc)/(3.44 Th + 2.44Tc )]δ Th......(12)

It is convenient to solve the relationship between Tc  and Th  numerically.  In the range of 

interest,  it turns out to be almost linear and is well represented by 

Th = 233.9 + 1.0585Tc  and thus Tc = 0.945Th – 221, 

so that, for To = Tc = 293K, the temperature at which the products exit the heat exchanger, 

Th = Tf  = 544K.

Now, ηg is given by equation (11).  Substituting for the variable Tc from above,

ηg = [1/(Th,u - Th,l)] ∫ [ (Th - {0.945Th -221})/(3.44  Th + 2.44{0.945Th -221})]dTh  ..(13a)

Th,u

Th,l

for our system.  Applying this to our to SBT,

ηg = [1/(1500 - 544)] ∫ [ (0.055Th + 221)/(5.75Th - 539)]dTh      (13b)

T1500

T544

                                                                         = 0.0564

This low value illustrates how much ηg is degraded by allowing the heat sink temperature to rise.  

However, this efficiency now operates on the much larger heat input of Mc(Tb - Tf), so that the 

system efficiency for our to SBT , 

ηe = [1/(1500 - 1200)] ∫ [ (0.055Th + 221)/(5.75Th - 539)]dTh      (14)

1500

544

= 0.18



- a much more respectable value. Moreover, the larger Tf, the larger the residual heat input to the 

external second stage, when we convert case (ii) into case (iii) of figure 3.

The equation for the second stage of (iii) is again the same as for (i) - i.e. equation (11) – but with 

a temperature range Tf  to T0.  The global efficiency becomes

ηg2 = [1/(Tf - To)] ∫[(Th- To)/(3.44 Th + 2.44To)]dTh…………..(15a)

Tf

To

 and, for our to SBT

ηg2 = [1/(544 - 293)] ∫[(Th- 293)/(3.44 Th + 715)]dTh…………..(15b)

Tf

293

so that the power generated by this second section is

W2 = ∫[(Th- To)/(3.44 Th + 2.44To)]dTh…………..(15c)

Tf

293

                                          =13.82
The power generated by the first section follows directly from equation (14) as 54.  Thus the 

system efficiency of the two stages of system 4(iii) combined is

                                                                           = 0.226

Unlike in the case of Carnot cycles,  the system efficiency of system (iii) here exceeds that of 

system (i) (and, of course, that of system ii) as well as being feasible in practice, since it does not 

require heat transfer across an infinitesimal temperature difference. Similar conclusions are 

obtained for other preheat and flame temperatures.

Here again, a comparison with the efficiency in the absence of heat recirculation (with its 

requirement for an approximately 4 times higher fuel concentration to attain stable burning) is 

instructive.   The efficiency (see Eq. 11a) would be

ηg = [1/(1500 - 293)] ∫[(Th- 293)/(3.44 Th + 715)]dTh = ηe…………..(11d)

1500

293

= 0.143

Thus the increase in the system efficiency due to this amount of heat recirculation is some 58%!

Since some thermoelectric materials are becoming available for which ZTa  > 1, it is pertinent to



 consider how the advantage of  system (iii) over those of (i) and (ii) depends on the thermoelectric 

figure-of-merit .  Figure 6 shows that, for all practical values of ZTa, case (i) is superior to case 

(ii) and the benefit of case (iii) over case (i) increases with ZTa .  Now, as ZTa → ∞, the 

thermoelectric  efficiency reverts to that of the Carnot cycle - see equation (10a) - and the curves 

of figure 6 indeed converge at very large ZTa .  The maximum in the difference occurs at values of 

ZTa too large to be of practical interest.

7.    Conclusions

The performance of thermoelectric converters that, in rejecting unconverted heat, act as heat 

exchangers in heat recirculating burners, has been considered theoretically.  The question of 

whether higher system efficiencies are realisable by rejection of the unconverted heat to the cold 

surroundings or to the incoming reactants as part of the recycle (compare figures 3 i and ii) was 

resolved, generally in favour of the former. However, a particular combination of the two - see 

figure 3(iii) - in which rejection of the unconverted heat to the incoming reactants is followed by a 

second section of the converter which discards unconverted heat to cold surroundings, is shown 

to be superior to either, on the grounds both of efficiency and practicability. We emphasize that 

all the system efficiencies that follow are theoretical upper limits to what may be attainable.

Although some heat recirculating furnaces now operate at much higher temperatures (e.g. 13) we 

have used as our standard model a preheat of 1200K and confined our maximum flame 

temperature to 1500K – close to the limit of what constitutes a flammable mixture - because of 

limitations imposed by the tolerances of thermoelectric materials.  Such magnitudes have 

previously been achieved in near – limit combustion in practice (e.g. 1). 

The absolute maximum system efficiency permitted by the 2nd Law for the assumed preheat and 

maximum temperatures is shown to be 78.2% and is the same for cases (i) and (iii). This 

represents an increase over the theoretical maximum efficiency in the absence of heat recirculation 

of some 29.5%.

The absolute maximum system efficiency for idealised thermoelectric devices which double as 

heat exchangers is greatest for case (iii) at 22.6 % - which is almost 29% of the maximum



permitted by the 2nd Law.  It is also an improvement of some 58% over the case without heat 

recirculation.

Although the above treatment is purely theoretical, the greater practicability of system (iii) is vital.  

In burning fuel - lean mixtures, the struggle against heat losses assumes major importance.  In 

lengthening a heat exchanger to achieve a desired exit temperature, heat losses increase 

proportionately.  Such losses are especially important for small-scale generators because of their 

high surface area to volume ratios.  This is particularly damaging in case (i) - quite apart from having 

to hypothesise an idealised heat exchanger which operates on an infinitesimal temperature 

difference. By contrast, heat losses are substantially diminished in the first stage of case (iii), 

because they occur from the cold limb of the heat exchanger while, in its second stage, they are an 

essential part of the generating process.
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Appendix 1

Consider the power generated in each of the cases:

 Case (i):                         W = Tb - Tu - [To ln(Tb/Tu)]

 Case (iii) 2nd stage:       W = Tf - To - [To ln(Tf/To)]

 Case (iii)1st stage:        W = Tb - Tf - (Tb - Tf)To/Tf

where Tb/Tf  =  Tu/To    i.e.  Tf =  ToTb/Tu

Case(iii)sum stages:  

           ΣW = ToTb/Tu - To - [To ln(Tb/Tu)]+Tb - ToTb/Tu - (Tb - ToTb/Tu)Tu/Tb

                           = Tb - Tu - [To ln(Tb/Tu)]     QED.

Thus the maximum system efficiency for any arrangement of stages, in terms of the preheat 

temperature and (fQ/c) temperature rise across the flame is

ηe,max  = 1-(cTo/fQ) ln[(Tu+fQ/c)/Tu]                      



Figure Captions

Figure 1 - Basic heat balance showing temperature intervals for premixed adiabatic systems.

Figure 2 - Schematic of burner system

Figure 3.  Schematic of three heat exchanger - converter configurations.

Figure 4.  Carnot system efficiencies vs. preheat temperature.

Figure 5.  Thermoelectric system efficiencies vs. preheat temperature

Figure 6   Effect of figure of merit (ZTa) on system efficiency for the three cases of figure 3 
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