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Introduction. Such theta funections appear at fivst in Heeke’s early
work. A more general and systematic treatment was begun by Klooster-
man [4]. But he did not succeed in finding the largest groups under which
the theta funections are invariant. Moreover he only treated theta functions
of quadratic modules which are free over the ring of integers of the ground
field. To our surprise the subject does not seem to have been taken up
gince then. 8o it is time to make a new start of the theory, and we do this
with inclusion of Schoeneberg’s generalisation of theta series [6]. We feel
it both justified and practical to attach the names of Kloosterman and
Schoeneberg to these functions. To deal with them is the object of the
first chapter. '

In the second chapter we want to consider the behaviour of Hilbert
modular forms and eospecially of the EKloosterman—Schoeneberg theta
series under the Hecke operators. This was first done by Herrmann [3].
Butb his approach is rather complicated, and we prefer to take up the sub-
ject from the beginning instead of translating Herrmann’s results into
our language. However, one merit of Herrmann has to be noted, that
he stressed the necessity of considering A groups of transformations commen-
surable with the Hilbert modunlar group, where b iz the ideal class number
of the underlying field. We may justly call these more general groups
algo Hilbert modnlar groups.

Another treatment of the Hecke operators, and even for more general

| fields has been given by Weil [7]. While his adelic method comprises the

ideal classes of the ground field in the characters employed, we proceed
in a more earthbound way, aiming at a knowledge of the modular forms
as explicit as possible. This will prove useful in applications which we
have in mind. On the other hand, the connection between modular forms
and Dirichlet series which is Weil’s chief concern, will not be touched here.

In § 7 we introduce the Brandt matrices of definite quaternion algebras .
over real number fields. They enjoy the same basic features with the Hecke
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operators. There is litfle tio be said which is not yet contained in our earlier
treatment [2] of Brandt matrices of gquaternion algebras over the rational
field. In § 8 we study the symmetry properties of Hecke opérators resnlt-
ing from Petersson’s scalar produet. In § 9 we consider matrices of Kloo-
sterman-Schoeneberg theta functions whose Fourier coefficients are
Brandt matrices. As in the cage of the rational ground field [2], the Brandf
matrices turn out to he representations of the Hecke operators. The final
result, Theorem 7, ean be used to prove that the Brandt matrices even
yield a faithful representa.tmn of the Hecke operators in the spaces of
Hilbert modular forms of weight k& > 2. Indeed, M. F. Vigneras has in-
formed us that she has a proof for this which will be published elsewhere.

We intend fo continune this work. It opens a way to studying the
symmetric Hilbert modular forms in a narrow sense, namely those which
remain symmetric after application of the Hecke operators. The existence
of these has first become apparent by the papers of Doi and Naganuma [1],
[5]. Also the problem of finding bases of the spaces of modular formsy in
one variable of real “Nebentype” (in Hecke’s sense) seems closely connec-
ted with the Naganuoma-map.

Chapter I

The Kloosterman—Schoeneberg theta series

§ 1. Notations concerning the metrie space

k a totally real algebraic numpber field of degree [k:Q] == n. Its
elements will be written with greek letters a,f,..., and o, f',-..
(¢t =1,...;n) mean its conjugates in R. Trace and norm with respect
to Q are tr{a), »{a). Rational numbers will be denoted by italics.

¥V a vector space over & of dimension m. The vectors will be denoted
by small german letters. If necessary the vectors corresponding to an
fe ¥ in the conjugate spaces ¥* will be written .

¢(z) a totally positive quadratic form on V with coefficients in %.
The conjugates with respect to Q are ¢°(x), where the superseript of x
may be left oud for sake of simplicity,

gz, ) = %(q(x-{—n)—q(x)—q(g)) the eori*espondi,ug bilinear form
guch that

9(x, %) = ¢(x).

b, (& =1,...,m) a basis of V/k such that the generic vector is

£ =D &b,
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F ={g(b,,b,)) & symmetric matrix. With the] row vector {£}

= {5, ...y &u} We can write
q(x) = {E}F{f = P[] (i = transpose).
Stfor ¢ =1, ..., n & set of arbitrary real matrices satisfying

(VWS =F (i =1,...,7).
They will be kept fixed “$hroughout Chapter I.

2°(5) = P M1y .- %) @ set of arhitrary homogeneous polynomials
of degrees I; which safisfy the Laplacian

” 9*p*(n)
apen) = D) 5 =
m Iz

In other words, the pi(x) are spherical harmonies.

HP (nhy s )

with mn independent variables 7}, is also a spherical harmonie.
y, (» =1,...,n) a basis of %/Q.

P("’?i’ ---:"73}.:7---177?: M Jﬂ'n

et
= () =
Yo oee Va
with the upper index i counfing the number of the column and the lower
index counting the number of the row.

G, = O x B,
The “blown up” ma;tm: & with y,E’ instead of yi, E,, the m—rowed unib

matrix.

# (i =1,...,n) independent complex variables ta.king values only
in the upper half plane.

-. zl _Fl

Zy(7) = R
: -

with # m-rowed blocks along the diagonal, otherwise 0.

Z,(5) = G (2) G

 Zy{2) and Z,(z) are complex mn-rowed symmetric matrmes lying in the

upper Siegel half-space.
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We decompose the generic vector x of 7 in the way

= Zwﬂ,byyy = 2 £,b,
with «,, € . Then, with the row vector

{w} - {mn: D1y vvy Brpy ovey xmn}
we have

trleg) = 0'(8) = @) Zu(e) o},

1

where tr (zq(x)) is a reasonable abbreviation although the #* are not numbers
n &

§ 2. Notations concerning the lattice

o the maximal order of %, b the different of %.

& a lattice, i.e. & finite p-module of rank m.
" Ly .sy Lun & basis of € with respect to Z,

Ig = Zte.mﬁ.u?’v

by

where the pa.l:rs of indices wv are ordered 11,...,ml,...,1n, ..., mn.
Then,

_ T = (ty, v}
is a non-gingular square mabrix with rational coefficients.
Z(2) = TZ,(2)T".

With the generic vector = } 1, of £ and {»} the row veetor {®yyenny B}
we have

tr (2q(x)) = {2}Z{2) {w}‘ .
The norm of the lattice € iy defined by (mind the factor 3)
¥(2) = }(g-e.d.g(z) for all x Q).
The complement of £ is the greatest lattice f! defined by
RESUEREN
where b is the different of k.
' Lewma 1. If x = ) «,l, lies in L, the vector 3 = 2L, defined by

Z) Y = &Y,

lies in £, and vice versa.
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Proof. The statement is equivalent to: tr{g(s,y))cZ for all xc@
iff (= if and only if) 1) € & and vice versa. This iz indeed s0 hecause

’tf:[‘(Q(i 1} Zweyo o,y cxztf (Q(b;n B '}"w?’k ngya ga
with (2;,) = Z(1).
Luymma 2. The ideal

n(8) = N(Q) N ()~
is integral. It is called the level of the lattice.

Proof. From the definition follows: & = d£ is the greatest lattice
guch that q(2, &) < 0. On the other hand, we have ¢{@, N(£)7'¢} <,
and therefore ) .
N(2) ¢ < f.

This implies '
N(N(@)'Q) = N(@) = Nd8) = ¥(2)2?,
whence the contention.

Lewws 3. N(2)'p~'€c g.

Proof. The relation hetween 2 ani 8 is involutorial. Thus the great—
est lattice R with ¢(&, ) cptis & =8 Now ¢(F(®) '8, 2) = b~}
and therefore ¥ (% 2)'p'¢ < 2. _ _

LEwia 4. If N(Q) is integral, & < L andn’(R) = N (8)~'d7* is indegral. -

Lemvsa 5. Let y £ 0. Then the complements of L& with respect to the
guadratic forms q(x) and pq(z) are connected by the equation

~

L= V_lﬂq'
Proof ﬁ,,g and f!q are the largest lattices with
(2, 8,0 = (8,78, = ¢(€, 8) =p7".
& 3. The theta functions, first properties, From now on we assume
the dimension '
m =2k
a8 even. We algo make the assumption that N (L) be integral, but this

will be dropped at the end. With the matrices introduced in §1 and 2
we form

V —ig! §1
Uz) = (

R )GLT‘;
V—i® 8
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the signs of the square roots are arbifrary, but they are umniquely fixed
since the 2° Iie in the upper half plane. These matrices satisty

) | —iZ(z) = U} Ul2).

Let P(n;,...,4%) be the spherical harmonic polynorma.l of §1 Then,
with {o} = {#1,..., @y,} a8 in §2,

(2) Qa) = (— i) HE L (— ") R P (U (2) {w})
= n(—iz) " P (U () {r})

(where a reasonable abbreviation.is used) is a homogeneous polynomial

in the #, not depending on the variables 2", With these definitions we form

(3) Bz, 1) = Bz, 1, 8, P) = D) Q(x ) einteateo)

xel}
where t i§ a veetor in £. This can be written as well as
B(2,1) = n{—iz)”@ 2 P(U() (-t 7=
{m}zzmn ’ .

where Z (2){z] i the quadratic form - with the matrix Z(z), the fum ex-
tended over all vectors {z} e Z™",

The following funetional equation is obvious
(4) B(z+p,1) = D P 1 for Beo.

The inversion formula

B Pleyz) =m0 D) QB () oY) tnizeg,

{x}eZMT
. with

- @ = det(tr (g(1,1)))

we derive from [2], formula (8) on p. 81. Proof: We let all 2* be purely
imaginary. Then U(z) and —iZ(z) become real, the latber positive defi-

nite. In that formula we insert —'.',Z (z) and U(z) for # and § and put
z = 1. Then

Q(Ii) ) = ZP(U(z) {m_{_r}i)eiﬂiztz)[:u+r‘_[
o . |
—-kn ~l =y .
== M} P(Ule )t ““‘Z@)“Ilzlumzmgrp
Yo {Zﬂ: (&) {e})e
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which ean be analytically continued to all 2* in the upper half plane. From
the definitions we take

U(2)™* = U(—;_lu)zm—‘
and from (2), (3) |
' O(iy 1) =n( —'iz)(’m:‘}(z, 1).

‘With this our last formula becomes

Bz, 1) = i_m_kn n(—g) 70 0 (Z(l)_l {m}fl g~ U 2t By
’ Vo Z
=

or .(5).
In () we write

DY = {2y + {sY

such that, if {=} runs over Z™*, also {#'} rung over Z™" and {5} runs over
a system of representatives of Z (1) Z™*mod Z™ (remember that ()
has been assumed integral and therefore Z(1) has integral coefficients).
From Lemma 1 we take now: if x = Yl e®, then Ja,l +3s,,

=z +§ runs over all vectors of 8, and especially ¥ again over £ and s
over a st of representatives of @mod L. With this in mind we can rewrite

(b) as
n(z)—k [t3] 2 G‘zmtr a(t, 5] ( ”1 , 5)

§ 4. The final funetional equakions. We want to know the behaviour
of #(z, r) under the transformations

(6) Bz, 1) =

ag+f
vz+ 0

Z—

with
ad—fly =1; a,den; LeN( v, veN{(B)b.

Pursuing this aim we follow the well-known procedure shown by Hermite.
At first we assume y integral and totally positive and put

az+ﬁ~£_ 1

ye+s ¥ plyet+d)

Now we decompose the summation veetor x in (3) in the way

=%+

! 6 — Acta Arithmetica X¥XIIL3
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with s =

1
-+t = y(n+s) 5 (2, +1)-

Here 1) also rans over 8 and x, over & system of representatives of the
residue clagses of 2modyp®. This yields

az+f (e ( ~1 )
19( z+§,r) ég(? q(xé+r))vﬁg,, _myz+§’5

where the following abbreviation has been used:

e (m) e 6mitr(x) .

furthermore, the theta funection on the right; has been formed with the

quadratic form yg(x) instead of g(x). Due to Lemma 5, s is a vector in Slm
Thus (6) can be applied to transform the right ha,nd side into (simul-
ta,neously with g-+yg we have @—sn(yy"P)

ayF+@ ( +2q(%+ ) +8,1
%mf n{yz+d) 2 (. +1)-+2¢(x r) v (V? )

where t runs over Sm /@ = y1¢/8 (Lemma 5). Equation (4) yields
Bralya+ 8, 1) = e(pdg(t) Bqlve, 1) |
— olydg(t)] 3 Qlx+1teferrali+1).

LAY

Here we put

1
+t=—(y+u)
¥

~

and let », 1 run over 2, £/2 respectively. Then both sides run over y~ 2.
Furthermore we have

g(;n 41, 1) = glxy+r,x+1) = %q(xo +r, Y +1u)mod2h~!
and |
rg(t) = pgla+1) = ——q(n+u)mod2b‘1.
We now assumme y prime to n'(2) = (fl.)‘ *d7! which is integral because

of Lemma 4 We choose 3’ €0 snuch that yy = 1lmodn’(8). Then the
vectors t° = 't and u' = 'L also Tun over Q /8. Using the lagt results

icm
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and
a ) ! 2 s ’ 6
> q(xo+r )+—9;q(3zo+r PP+ ;q(tHu’)

I’ Fa ' 6
= ay'gq(v)+ 29 q(r, )+ 8y glu) + ;g(axo-m))mod?,h‘!

we arrive at

%) ﬁ(——-“z+ﬁ : r)%('yz—}— 5k

ve+ &
= w(y) Z ooy’ ax) + 2" afr, w8y gt} Bz, u)
with
j—kn mite [ Zg(z,
(s) W) = e el
()’) v @ %'us&?.u

. Thig is a Gaussian sam which can be evaluated by well known means.
‘We state here only so much that it takes only valnes 41, that it iz 1 if
¢(x) has square discriminent in %, and that it does not depend on, a.

Now we insert a = 6 = 0modn’'(Q) = N(ﬁ)*lﬁ"l into (7) and com-
pare the result with (8). This leads to '

az+p . —1 Zpe
e R e S L
or, with an obvious change of notations,

ﬁ(af«'w’—ﬁ
y24 9

(9) ,'x) [ [ o2+ 675 = w(@ysie, o)
=1 )

under the folowing conditions: _
ad—fly =15 B,y en’();

The condition ¢ » 0 can be omitted if we can prove: every such
transformation is a produet

(a .3) — (al /91) (az ﬁz)
y 8 Y1 81 \¥s 52/
We have to find ¢, ..., 4, such that

06—y f = 62? o,

«with f, =y, = 0modn’(8),
648y 6Xercise.

a, 0 €0; 4 0.

with 8,, 6, » 0.

iy =1
d, » 0. That this is always possible is an

aty 8y~
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We are partleula;ﬂy interested in the case t = 0. It is evident that
then #(z+4) = #(2) for f e N () 'L Therefore § can always be allowed
guch. Also the condition that N () be integral can be relaxed. Tf N (&)
is not integral, we take an integral u » 0 such that 4N () = o. Then

transformations of £ with the properties
/3

yeaN (@70 = pn(L)F(L)

are allowed or transformations of z with

e, de0; fepN(2)hTY

(10) ab—fy =1; a,den; BfeNE®'d;  yeN(®) (L)

So we have proved
TaroreEM. 1. The thete funcfion

o) — Z Q(E)gnitr(zq(!))

2l

satisfies the fumctional eguations (9} with v = 0 under the conditions (10},
where b is the different of k, N (L) the norm of R, and n{8) the lepel of L, de-
fined in § 2. '

The character is 4 Gaussian sun

 —TR2
L4 V! i (8 Ta()
7

—— ® == det{tr(g(i,1))]. |
niy m"gl/@ xe8/58 ( ( ))

It is qfu,admtw chamcter modulo the level and is equal to 1 wf the dv,scmmmam
of R is a square in k.

Chapter II

Hecke operators and Brandt matrices

§ 5. Notatiens in Chapters IT
ky, as in §1 and 2. _
K a totally definite quaternion algebra over k.

My .., My 2 system of representa.tlves of left 1dea.1 classes with
a common ma.zmnal left order O, .

H the number of left ideal classes of K.

Dy ..., Op the right orders of the T; some of which are in general
1somorphm

b% the digeriminant of (each) O; with respect to p.
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a ~b: Two ideals a, b of k are called equivalent if b = pa with a totally
positive g.

3 an ideal class of k. For an ideal g, the symbol Sa cannof be misun-
derstiood.

g a system of representatives of all ideal classes of f.

Ideals in K and % will be denoted by big and small german Iettela,
elements in K by big italies. Worms from K to % are

N(M) = TKM-(M)s N3 =N ,'h(ﬂn)
Iy(n, a) for an integral ideal n and an arbitrary ideal ¢ is the gen-
eralized Hilbert modular group of fractional lnear substitutions

atf or & e f

z—+ I iy
yz+ 6 et L gt

with
ad—fy =1; a,den, fFea™, yem.
Elements of such groups will be denoted by big italics.

G(I") the space of integral Hilbert modular forms of weight % with
respect to the group I

5 :
(iﬁ)n(*z‘wr —1[EZEE ) nt+ 87 = 7.

A confusion between. the two meanings of k (field and weight) has' not
to be feared.

‘We only deal with modnlar forms of character 1.

§ 6. Hecke operators. With an ideal m and the different b of L we
form the order -

Mim) = {(z ’g) a,fen, fem 7, y‘enmb}

in the matrix algebra M, (k). The level n will be kept fixed throughoit.
With m — g, » system of representatives of the ideal clasges of %, the
M (gs) represent all types of orders which are locally isomorphic with M (p).

"But they do not represent all types uniquely. This fach allows certain _

reductions of Hecke operators. But we will noti deal with them here.

The groups fy(n,gyd) are the groups of units of norm 1 of these
orders. The notation seems inconsequent, but it iz motivated by the
applications to the theta functions later.

Ag usual we attach to a matrix (a A ) with - totally .positive deter;

y &
minant a linear operator [: ’2] acting on modular forms f(2) of weight %
N R 12 . R
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@ f az+f\ n{ad—pfp)*"
b 7te) [y 6];6“ (Vz+6) nipg+ 8y
‘We select a system of ideals

0
(12) % = N6 J)
of norms

N(ms} =gy = m%”p

Thel'[' right orders are M (gy). Now, for a given integral ideal m of %, we
congider all integral ideals MM, (» =1,2,...) of norm m and left order
M (gegy—1) which are left equivalent with MN5.-1 Ny, They can be written

(13) M, = N1 Ra W,

with matrices &, whose determinants {norms) are totally positive and
equal among each other. Forming the norms in (13) one gets because of
the choiece of the .

T N R
NRgn-1) Qo1 ImL
With the matrices ¥, we define Hecke operators on G (T (n, gg))

19 Telm, F/Im™) = n(my=-2 3'[N,],.

~The ¥, are not uniquely determined by m. But a unit from I',(n, g) a8
alett factor of &, does not change the action of N, on an fl=)ed, (1”D (n, gs)).

One can_also multiply N, by (g i), with & totally positive unit ¢ of %,

and thus (14) by [(g) 1] « If £ is a square of a unit %, the action on f(2)

is ag _ ‘
e 0 0
- [0 I:L_ = [g n—l]ke 110 (TI, QS) +
Otherwise ' _ .
15 : |0

is a unit operator, not the 1dent1ty on f (’) Obvioudy it commutes ‘Wlﬂl
the operators (14):

16 Ty T, I/ImY) = Tym, 3/Sm™") Uyle).
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PROPOSITION L. {1, I/Im ™) maps Gy (T, (11, aq)) into G To(n, gom—1))-
Proof. Maltiplication of the I, on the right by elements Gel’, (1, gey-1)
permutes them:

NG =46N

with & wnit G’ of M (Gz)- Beea.use ¥ =1 and the |N,| are equal, |&'| =1
and thus & el (n, gg). For a function f(z) e Gy (i, gy) we have

F@) Ty(m, I/Im™) [G], = f(2) Typlm, F/Im™).

ProrosiTioN 2. For rda,t%ely prime my, wy the products of the operators
are ' '

Ty (mtyy /Iy ) Ty, Imy ™ (Smymy ™) = Ty (mgni, J/Sml myh).
Proof. Let 9M,, Dby, be the ideals (13) with norms m,,m, and left
orders Mg _1), Mg :sm*lm—l)' Then

m?a,uv g-t_ —1 _192: N 1\7_191_1_1%31\?'1,1\7}# .

FLuciig L
are all these ideals with norms m,m,.. Hence
Ty (g, /imy ) = m(iama) "’“"12 P P

g.e.d.
For the extension of Proposition 2 to not relatively prime 1111,1112
we need yet another operator

1n Vilm, 3/3m™%) = [N],
for
(18) M (gegm—-2)m = Mgm-2Na N

Algo this is only defined up to a factor U, {s). We have yet to show that
the ideals on both sides of (18) are equivalent. This follows from the equiv-
alence of their norms and the equality of their left orders.

PrOPOSITION 3. The Vi (m, I/Im™?) depend only on the class. of m.
They map G(Iy(n, gs)) on Gy (Lo(n, gym—2)}, and they satisfy
Vi, S/Sm;) Vi, Sy (S my ™) = Vylmgms, 3/3my me?).

The. proof is obvious.
PrOPORITION 4. If 1 is & prime uisal not - dividing 1, ths followmg
products are .

Ty (p®y I3~ ) Lo (p®s Ip~8/3p™47°)

min{g, a)

= D R I, SR Vol S /mrg* )

=0
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where the faclors U, {e) which were arbitrary in oll opwaiors notw must be
fized in a suitable way.

Proof. We begin with the case ¢ = 1. Then Ty (p?, I/In~% can be
split mp in the way

(19 T(% 337

= T5(p%, 3/Ip~) +alp) L (p*™, I S/ Vo, Spt “I3p7%)
where T, means the sum (14) restricted to primitive ideals (138), L.e. thoge
not divisible by p, and the rest. Of course, T, (p**,...) = 0 for p< 2.
Now let 9, run over all primitive ideals (13) of norm p? and P, over all

ideals of norm p such that the products I SB,,L exigt. Among the products
oceur also ]lllpI']]IﬂthG 1dea.ls

W, — BE'p.

In these cases we have (p) = P B, where (p) means the two- suied ideal
with the appropriate left order. There exist exactly n(p)+1 integral
ideals of norm p and given left order. Therefore, if o == 1, we have n(p)+1

1mp11m1t1ve products IPB,. Bub if g>1, we must exclude the cages -

when ¢,P, is imprimitive. By & given ‘.Bu, B, is nniquely determined as
the leff iactm of {p) = P.P,,; and by a given EUE,Q, B, is also uniguely deter-
mined such that I, P, is imprimitive. Henece, for ¢ > 1, there exist only
n(p) imprimitive produets PB,. These considerations, combined with
the proef of Proposition 2 lead to

T;\:(pgi S/STF)*E)TR(;J, SP_Q/SP—G—I) - T; e+l stpﬁgwl)_{_
+{n(p) + ) (V2 Thlpt™, SSp'0) Vinlp, SpPe/SpeY)

with ¢ = 1for ¢ =1 and ¢ = 0 for ¢ > 1. If ¢ = 1, this formula is already
that of FProposition 4. For ¢ > 1 weé nse mduetmn on g, leading to the
claimed formula for ¢ — 1. At last we apply induetion on o. In both
induetion proofs the following is needed:

ProPOSITION ‘B, The Uyle) commule with all T (m, I/Im™Y)
Vilm, I3/3m™Y), and : .

C Te(ma, M) Vi (mg, S Sy )
' = Vi{my, J/m; %) Ty (my, S Smmg Y.

- Proof. The first statement follows immediately from the definition.
The second ig the expression of the identity

Wy = Wiy .

The- Tpy(m, I/3Im™Y), Vilm, I/m™?) are now ordered in quadratm
Behames, indexed by the 1dea.1 clagses of %:

(20 Tk(m)~(Tm(’m)), Vk(m)=(Vsa(m))

H
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with
‘ Tom, $/Im™) i & = In ",
Tua{m) = X
otherwise;

Telm, I/9m™) i & = Im™,
Vag(m) = .

0 otherwise.

THROREM 2. For relatively nrime my, m, fthe product scheme is
Ty (my) T (ma} = T lmgits)

ond for o prime ideal p not dividing the level 1

minfp, )

Tp?)Telp) = ) m(p)* W Ty(p* ) Vi(p?)

=i .
if the factors U, () which were arbitrary are now suitably fized.
This is & consequence of Propositions 2—f. Formula (16) implies
THEOREM 3. The operators T.{m), Vi{m) map modular forms in-

“wariant under U,(e) among each other.

At Iast we consider the case of a square-free level n. Let g be a prime
ideal dividing n. There existy exactly one two-sided infegral ideal 1 of
norm g with left order M{gs). Ifs p-adic components are

By = Mm(gsj'for pFEq Q=N (Qs)( J6)
with :
ad—fy =0modg, = 0modg®, and ¢ =y =4 =0modg.

The sums (18), restricted to these ideals will be ealled fk(q, J1397H)

and the schemes (20) formed with them by Tk(q)

TupoReM 4. If the level n 48 square-free, these operators T;c q) for prime
ideals q dividing 1 ean be formed. They commule among each other and with

the Tp{m), Vi(m) with m prime to n. Their squares are
Tu(q)® = Vila)- |
§ 7. Brandt matrices. The elements M of a totally definite quat-
rnion algebra K over k~_qa.n be repiesented by matrices (; 'g) with

s .o e k(Y —1). Let £, & Dbe the basis of a two-dimensional space over
%(¥ —1), then e S
M-g_u = ?fq‘*"}’fn i ME, = B&+ 04 _

defines a,_n inverse rgpfeseﬁt‘a.ﬁon- ﬂ{lﬁf) = (; 7(;) We now consider
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the action of M on the polynomials

1
£ A=0,..,0.

" Via—n.

This gives an inverse representation », (M) of degree I-41.
The +4( M) denote the repregentations obtained from r, (M) by replacing

the coefficients by its conjugates in the fields k*(V —1). Then also
. 21) By (M) = r}{M) X ... X1}{ M)

is an inverse representation of the multiplicative group of A.

Prorosrrron 8. The cogfficienis of By (M) are homogeneous spherical
harmonie polynomials of degree In with respect fo the variables ), (i =1, ..., n;
po=1,...,4) defined by

N MY = () + oo (0
If & is a unit of k of norm nyg(e) = 1,
(22) Ei(e M) = By(M).

The proof of the first statement has been given in [2] for % = @;
it carries over to k o @ because the variables occurring in the +H( M)
are independent. The second statement is obvious.
.+ For a given pair 4j and a given integral ideal m of % we consider afl
integral ideals ¥ of the form

(23) A = W04,
(Due to two-sided factors of U the same ideal may oceur with different

pairg ¢j.) The element A € K is defined by a given % up to a unit T, of ;.
Now, because K iy totally definite, every wnit is

N(QI) = 1.

Wwith £ & unit of ¥ of norm 1 and a unit U}, of O, from a finite set of, say, ¢;
elements. We define the Brandi matriz as

(25) _ Bi(m) ='(By(m)} (4,5 =1,..., H)

where the coefficients are (l—]—l)"’-rowed matrices

{26) ' 2 R, A) ol

the sum extended over all integral idealy % of norm m and left order O,
which are left equivalent with 7 5t;, and for each U over all A satistying
(23); but from a set e4 with units & of % of norm 1, only one such A4 is
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taken. Which A is taken does not matter because of (22). e; means the
index of the unit grouyp of norm 1 of k in the unit group of D;.
Similarly we define analogous matrices

@) Al = e SRA T, ) = (4500
for
D0 = M4,

ProposrTioN 7. The A;(a) depend only on the class of a, and A,(1)
i idempoteni. Thetr producls ave

(28) Ajfay) Ag{as) = Ailaras)-

Proof. The first statement is_ obvious. Secondly we have
- 1
4,00) = cing{ ) Ri(Ta) )

where diag means the diagonal mafrix with these entries and Uj;, are
as in (24). Now it is clear that A7(1) = A,(1). The product (28) is obvious.
THEOREM 5. The Brondt matrices behave under multiplication as

‘ - By{my) By(tmy) = By(myia}

- for relatively prime my,my, and

minf{e, a)

ST ) B (p ) Ap)

r={

Bi(p*) Bilp®) =

for prime ideals p not dividing the diseriminant by of K, and lagtly
| By = n(p)Ailp)

for prime ideals p dividing d%.
The A;{my) and B;(m,) commyitte.
Proof. The last statement ig an expression of

Mo, = mzml

The first can be literally taken over from [2], Ch. II, § 6, where k == Q.
This applies also to the second statement with a slight modification con-
cerning the factors p® ocomrring in the. multiplication: they are counted
with the weights n(:p)(“'”‘A {(p"). (A similar situation oceurred in Prop-
osition 4.)

The fourth statement is equivalent o the fact that the square of
a two-gided prime ideal P of norm p is equal to P
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8 8. Symmetry properties, For two modular forms f®),g9(2) e
G {Iy(n, go)) the scalar product is

(29) (f(2), gle)} = [Flog(am (™ *dndyy (2 = o-iy)

the mtegral extended over a fundamental domain of [(n, gs); & con-
verges if at least one of the f(z), g(z) is & cusp form.
For a flz) € Gy (Ty(n, gx)), g(2) € Gy (I (n, 85-1)) we form
o _ — [y dzd
(Tt /5w, 9(a)) = ntmy= S'F(V, @70 | ——"i?’,;)
' i \ ( W2+ 5»)
integrated over the fundemental domain § of Ty(t, gyu-1), where the N Y
are taken from (14). In each intepral we substitute N,{z) = w, and «
now runs over N, '§. With the abbreviation w = u-+w the result ig

— [P dndy ) o ™52 du dy
N, (2Wgz)n[————sr ——
Jf(.{})g()v(( o Jf(w (¥, (w)) ((_WH))
Hence the adjoint operater is .
(30) ' T, (m I/3m)* wn(m T N [N,
Similarly
(31) | Vk(m;swm*)* = [N,

where the N, .and N are taken from (13) and (18). It remains to express
the right hand sides by the Hecke operators of § 6. It suffices to do this
for (30) and “primitive” T (m) (in which the ideals (13) are primitive),
because all T (m) are sums of primitive ones and such divisible by some
Vip(m), as in (19).
With the ideals (13) the ideals

MW = M~m = N7 NG Ryt

run over all integral ideals of norm m and right order M {Gsm—1) Which are
right equivalent with M5’ Ny, -rm. Then slso the ideals

W = NN, = 05 Ny N

are integral, have norm m and left order M (g5), and are left squivalent
with 9i5* Rg,—mt. The N, can he chosen in such a way that they rep-
resent all ideals (13) and simultaneously all It of these properties, one-to-
one. Indeed, all ¥, in (13) can be obta]ned from one by multlpllcatlon on
the right by umts of M (g1} ' _

) N, =N,0,, = U, units of M(gg,-1).

For all these N the MM’ are equal On the other hand, one ean generate
all ¥yt in O - by multiplication on the right by wnits of M{gx):

Gn theta funciions of real algebraic number fields 287

NP =N7'VY, V¥, units of Migy) -

or in other words N, = ¥V, N,. All these &, yield the same ideal M. So
we take

N r VV‘N 1 Uv
and let U,, V, run simultancously over the appropriate set of units. (For
the existence of the U,, ¥, one uses the fact that anits of a prescribed local

" behaviour at finitely many places exist [2a], Satz 5.)

Lastly let

Ryt = N, M

Then '
M’ = Ny R M N7

ropresents the same ideals a8 (13), with 3 mstead of Im~!, and (30) means

Vi, Fm/Fm ) Ty, T3 “‘)* = Ty{m, Im/J)
or '
(32) To(m, 3{Fm™H* = V(m™, Im™/Im) I (m, Im/J).

Eventually we use orthonormal bases f (2} of the spaces (Fu (m, gs))
of cusp forms and represent the T (m, J/3m™") in these smaces

(33) Fauwl@)Tilm, 313 = D fa, (D) tgn, .
R,e

with
ts[sm——I,”, fOI‘ .R = Smml,

e, = :
I 0 otherwise.

The g ,, form matrices _
z}c(m) = (tf.!ﬁ,m’)

rapresenting th(; T,(m) in the spaces of cusp forms. Similarly we form
magtrices B, (m).

TawoREM 6. The matrices Tp(m), %k(m) enjoy the same properties
as the operators Ty (m), V. (m) in Theorem 2. Moreover their Hermitean ad-
joints satisfy
(34) T (m)* = Bpm ) Te(m),  By(m)® = By{m™).

They cam be transformed simultaneously into diagonal form, and the
eigenvalues of the T, (m) are real if and only if the square of each ideal of k&
is principal.

" Proof. The second formula (34) is obtained in the same way, with
obvious simplifications. Because of this formula and the commutativity
of the B, (m), they can be tra.nsformed &multameously into diagonal form
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with an unitary matrix €. Pat -
C B (M)E = De(m),  ETTLME = Th(m)

where Dy (m). = diag{e(m)), and the g(m) are roots of unity. Since the
Dplm), T;{m) commute, also the Dy(m) = diag(]/g(m)} commute with
all T,(m). With these matrices we form

T (m) = Tz (m)D(m) ™.
The adjoint matrices are

Ty fm)y* = Dy (m) Ty (m)*

which is because of (34)
| = Di(m) ' Ti(m) = T (m).

Thus the ¥ {in) are Hermitean and ean be transformed simultaneonsly
with the D.(m) into diagonal form.

The eigenvalues of the Ty (m) are those of the T (m) multiplied by
the ¥g(m)~%. They are real iff g(m) =1, and this s the case iff m? ~ 1.
Thiz completes the proof. : : ‘

§ 9. Brandt matrices and theta funetions: In § 9 we will show that
the Brandt matrices are the representations of the Hecke operators in the
spaces of Kloosterman—Schoeneberg theta funetions. This is known in
the case k = Q, and the proof follows the same liné (see [2], Ch. II, § 6).

Referring to the representatives 9, of the left ideal clagses of K and

the representatives gy of the ideal classes of & we put

N ¢9)
(35) 1} N(ﬁn) g‘fj

Where 04 i5 the class representative so defined. The numbers My BTe ot
uniquely determined by (35). Indeed, they can be multiplied by any totally
positive units of k. But we fix them for all pairs 4. Due to Proposition 6
(§ 7) the Fom'ler series

(36) O5(e) = Z RL(A) oy N (4)] -
Asﬂ]lml
'(Whére the abbre{riation
(X) _ ez-n.tr{z;'i')
different as in § 4, ia used) are thets functions, and Theorem 1 (§ 4) states
that they are modular forms of weight 14-2: '

CCC A NI A S
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where b is the diseriminant of K /% (b is the level of the norm form of K)
and b the different of .
With

A =W Wd, NA) =m, (N(A)} =w N (W7 IM)
ag in {23), we can write

(38) uy N (4) = g;m
and thus
(39) Oy = D By(m)elgym

summed over all integral mt in the class of g;;*. The expression g;m is nob
unigue, and it has to be interpreted in the sense of {38), with u; fixed.
In the sum (39) we mmst alse include m = 0. For 1> 0, the definition
gives B;(0) = 0. For I = 0 we supplement the definition by

;

T
o o
(40) Bﬁ(O)zlei = % .
’ 0 for iz

Eventua-llj the Qij(é) are grouped together in the matrix
(41) 0(z) = (04(2)

- of H(l41)* rows.

This mafrix is in turn split up into the sum

(42) O(s) = 2 Osle)

with '

(43) Os() = > By(m)e(gsm)
‘ me3z—1 )

where the By(m) has the {{l4+1)" rowed) coefficients

i ' By(m) I gy = ga,
4 B . f—t
(44) 5.(M) 0 otherwise.

The @s(z)' are invariant under I (bg, g4d). : .
Now we study the behaviour of ©(z) under multiplication by Brandt

. matrices B(p) for a prime ideal p not dividing the level and under the

action of the Hecke operator T'(p). The subseript ! indieating the weight
will be omitted in § 9, but we need a subscript indicating the class to-which
the argument is supposed to belong. This means that we have to write
By-1(m) if we want m to belong to 37

The multiplicative properties of Theorem 5 are

' BE)BOm) = Blmp)+n@) 4 (o) Bmp™)
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where the second term is only present if m is divisible by p. In our new
notation we write this

By-1(p) B(m) = Bgyor(mp) +n(p)! Ay (p) By, (mp™)

200 . M. Eichler .

and
(45) By1(p)O(2) = O8(2)+n(p)"* Ayp-2(p) O5(2)
with
O4(z) = D' By1(mp)e(gym),
meﬁ'l
O = D Bymp~e(gam).
me3—1

Both funetions can be written in another way. Put

(46) | (mg) =295 2y50
O

and myp = p’. Then

. gom = 9'?;,:-1931,_1111’-

The left term is more exactly u,;¥{(4), and the right one accordingly.
So the zg are uniquely fizxed by the uy;. The first summand in (45) is

) 05(2) = n(p) N (1) Ogp-1(2) Y [P,]rys
with
1y

0 = 1)’ v egy ™ mod gglb‘ip.
o

2|
The second summand is, np to the factor n(py*d, -2 (p)

(48) A%z} = n(azs)‘”z‘l@m,(zj @y @ = (gs 2)

It remains to express (45) by Hecke operators. In the following
considerations we use the orders M{gsb) in the matrix algebra M, (%),
detined in the heginning of § 6, with level 1 = bx. The ideals Jty are de-

fined in (12). At first we construct a matrix P — (a g) with the following
Y

properties ([2a], Satz 5): _ '

' “€0505,  fegagnag b, (IP]) = ghgnieg

Y €brasd, degsgll,, and P[>0, °
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We verify by easy loeal considerations

(49) M(ggp—lb)gsggplﬂ' = m;;ﬂmsn]-),
and we form the ideals
(50) o m, = %glﬂtﬁpPP,

for the different P, in (47). They are different, integral, have norm p and
left order’ M(gxb), and they are left equivalent with N5'Ry,. The lash
ideal of this kind is ‘ :

(51) M = Ny Ny, @
with @ from (48). Therefore the M, and N make up all ideals used in
the definition of the Hecke operator T(p, Ip/F), and we have

Ty 39/%) = 202 T 1PP hus+(9'her)-

This equation is multiplied on the left by ¥ (p~, Ip~*/3p). Because this
operator only depends on the class of p, and p ~ gsg;:_l, :

Vip™ 3p73p) = [P ke
with P from (49). Thus we have

Vip, S~ S0 P00, 3p/3) = 2@ 3 [P+ [P L)

with P == P71, an operator which transforms a modular form for
Iy (b gp—1b) into one for I;(bg, gsb). Equations {45), (47), (48) allow the
following expresgion:

 Bp-1(p)Oy(2) —n (g1 Oy (2) VipT, I IP) T, Sp/3)
= ”(Ws)—zlz_lAn—z(p)n (p)l“ 93@(2) [Q,]Hz - “(p)_ln (’thp—l)wz-i-1 @39"1(3)[9,11-1—2'

Both functions on the left are invariant under I'y(bg, gxb). On the right
hand side, both functions are invariant under @ ~'I,(bg,gxb)Q (note
that PTI (b, g5,-10)P™! = Iy(bg, gs,d) a8 results from (49).) Since the
composite of the groups I',(bg, gyd) and Q"I (bx, g5 1)@ is not discon- .
tinuous, both differences vanish, and we have proved

TaroreM 7. If the factors U, ,(c), which were arbitrary in the defi-
nition of the Hecke operators in § 6, are properly adjusted, the Brandi malrices
and the Hecke operators ave linked by

(62y By (p)0(z) = 0,(2)G1, Vi ) Topa ()G
(83) A:(0)Bi(2) = Oy()G113 Visalp™ )61

7 — Acta Arithmetica XXXIIL3
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with
Gyys = dingin(gy)™*)
for a prime ideal p not dividing the diseriminant by of K [k. _
Equation (52) also holds for the prime divisers of by. We leave the
proof to the reader, if he is inferested.
The Tp,,(c} are often equal to the 1dent1ty, namely either if the

totally positive units of & ave squares of other umits, or if they are norms
of nnits of every maximal order of K
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In the course of the proof of Lemma 1 the inequalify

&

5
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F=1

on p. 401, line { —4) is obviously ineorrect and also Lemma 1 is not va}id
in the given. form (it is only valid for the special case 6{d) # 0 '.Whlﬁh
corresponds to the case D = p prime). This fault 'may be corrected in the

following way.
‘We shall show that on adding to the mghf; side of (2.4)

W RIS Y el

q<Q g'eQ gg'in
a:@ vgﬁgx ’Fo n=sc

Lemma 1 isﬂa,]ready valid.
After Lemma 1 we added the sum

@) . 222 | aq’

gelt o'<Q
ag' <o

to the right of (2.4) (p. 403; line 3) to make more handy the expression
and now the same sum oceurs on the right of (2.4) (apart from an insigni-
ficant error term o(wlogx)), thus the Corollary and all the later parts of

the proof remain unchanged.



