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Abstract

This article studies the viscous flow and heat transfer over a plane horizontal surface stretched non-linearly in two lateral
directions. Appropriate wall conditions characterizing the non-linear variation in the velocity and temperature of the sheet
are employed for the first time. A new set of similarity variables is introduced to reduce the boundary layer equations into
self-similar forms. The velocity and temperature distributions are determined by two methods, namely (i) optimal homotopy
analysis method (OHAM) and (ii) fourth-fifth-order Runge-Kutta integration based shooting technique. The analytic and
numerical solutions are compared and these are found in excellent agreement. Influences of embedded parameters on
momentum and thermal boundary layers are sketched and discussed.
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Introduction

The fundamental problem of two-dimensional flow due to

stretching plane surface, initially discussed by Crane [1], is

involved in various industrial processes such as metal and polymer

extrusion, drawing of plastic films, paper production etc. Owing to

such applications, the researchers have discussed this problem

under various aspects including suction or injection, variable

surface temperature, convective boundary condition, mass trans-

fer, mixed convection etc. The three-dimensional flow due to

plane bi-directional linearly stretching sheet was first discussed by

Wang [2]. He found an exact similarity solution of the classical

Navier-Stokes equations. Later, Lakshmisha et al. [3] numerically

examined the unsteady three-dimensional flow with heat and mass

transfer over an unsteady stretching sheet. In contrast to this

problem, Takhar et al. [4] investigated the three-dimensional flow

of an electrically conducting fluid due to an impulsive motion of

the stretching sheet. Ariel [4] derived approximate analytic and

numeric solutions for steady three-dimensional flow over a

stretching sheet. Xu et al. [5] provided uniformly valid series

solutions for three-dimensional unsteady flow caused by the

impulsively stretching sheet. Liu and Andersson [6] considered the

heat transfer in three-dimensional flow due to non-isothermal

stretching sheet. The unsteady three-dimensional flow of elastico-

viscous fluid and mass transfer due to unsteady stretching sheet

with constant wall concentration was studied by Hayat et al. [7].

In another paper, Hayat et al. [8] described the three-dimensional

flow of Jeffrey fluid due to stretching sheet. Liu et al. [9]

firstly discussed the three-dimensional flow due to exponentially

stretching sheet numerically. Steady flow of nanofluid past a

linearly bi-directional stretching sheet through Buongiorno’s

model was examined by Junaid et al. [10]. Sheikholeslami and

Ganji [11] discussed the flow and heat transfer of nanofluid

between parallel sheets in the presence of Brownian motion and

thermophoresis effects.

The literature cited above deals only with the case of either

linearly or exponentially driven velocity of the sheet. Vajravelu

[12] numerically discussed the viscous flow due to stretching sheet

when the velocity of the sheet was assumed to obey the power-law

distribution, i.e.uw~cxn. He computed numerical solutions for

various values of power-law index n: Cortell [13] extended this

problem by considering viscous dissipation effects and variable

surface temperature. The steady boundary layer flow of micro-

polar fluid over non-linearly stretching sheet was discussed by

Bhargava et al. [14]. Radiation and viscous dissipation effects on

the boundary layer flow above a non-linearly stretching sheet were

explored by Cortell [15]. Homotopy analytic solutions for mixed

convection flow of micropolar fluid past a non-linearly stretching

vertical sheet were obtained by Hayat et al. [16]. Kechil and

Hashim [17] derived analytic solutions for MHD flow over a non-

linearly stretching sheet by Adomian decomposition method.

Hayat et al. [18] used modified decomposition method for the

series solutions of MHD flow of an electrically conducting fluid

over a non-linearly stretching surface. The impact of chemical

reaction on the flow over a non-linearly stretching sheet embedded

in a porous medium was investigated by Ziabakhsh et al. [19].

Rana and Bhargava [20] computed numerical solutions for two-

dimensional flow of nanofluid due to non-linearly stretching sheet
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by finite element method. Shahzad et al. [21] obtained closed

form exact solutions for axisymmetric flow and heat transfer when

the velocity of the stretching sheet was proportional to r3. Partial

slip effects on the boundary layer flow past a non-linearly

permeable stretching surface have been addressed by Mukhopad-

hyay [22]. In another paper, Mukhopadhyay [23] analyzed the

flow and heat transfer of Casson fluid due to non-linearly

stretching sheet. Rashidi et al. [24] derived homotopy based

analytic solutions for flow over a non-isothermal stretching plate

with transpiration.

To our knowledge, the three-dimensional flow due to non-

linearly stretching sheet has not been yet reported. It is obvious

that three-dimensional flows can be appropriate in giving more

clear physical insights of the real world problem when compared

with the two-dimensional flows. The present work is therefore

undertaken to fill such a void. The study also assumes that the

temperature across the sheet is non-linearly distributed. Introduc-

ing a new set of similarity variables the boundary layer equations

are first reduced into self-similar forms and then solved both

analytically and numerically. It is pertinent to mention that

computation of either approximate analytic or numerical solutions

of the boundary layer equations governing the flow and heat

transfer is often challenging (see [25–33] for details). Attention is

focused on the physical interpretation of parameters including the

power-law index n:

Mathematical Modeling

Let us consider the three-dimensionalincompressible flow over a

plane elastic sheet located at z~0 as shown in the Fig. 1. The flow

is induced due to stretching of the sheet in two lateral directions.

Let Uw x,yð Þ~a(xzy)n and Vw x,yð Þ~b(xzy)n be the velocities

of the sheet along the x{ and y{ directions respectively with

a,b,nw0 are constants (see Table 1). Tw x,yð Þ~T?zA(xzy)n is

the variable surface temperature where Aw0 is constant and T?

is the ambient fluid temperature. Under the usual boundary layer

assumptions, the equations governing the three-dimensional flow

and heat transfer in the absence of viscous dissipation and internal

heat generation/absorption can be expressed as (see Liu et al. [9])

Lu

Lx
z

Lv

Ly
z

Lw

Lz
~0, ð1Þ

u
Lu

Lx
zv

Lu

Ly
zw

Lu
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Lz2
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zv
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Lz2
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LT
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zw

LT

Lz
~a

L2T

Lz2
, ð4Þ

where u,v and w are the velocity components along the x,y and

z{ directions respectively, n is the kinematic viscosity, T is the

fluid temperature and a is the thermal diffusivity (see Table 1).

The boundary conditions are imposed as under:

u~Uw~a xzyð Þn,v~Vw~b xzyð Þn,w~0,

T~Tw~T?zA xzyð Þn at z~0,

u~0,v~0,T?T? as z??:

ð5Þ

Figure 1. Physical configuration and coordinate system.
doi:10.1371/journal.pone.0107287.g001
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We introduce the new similarity transformations as follows:

u~a(xzy)nf 0(g), v~a(xzy)ng0(g), w

~{
ffiffiffiffiffi
an
p

(xzy)
n{1

2
nz1

2
(f zg)z

n{1

2
g(f 0zg0)

� �
,

h(g)~
T{T?

Tw{T?
, g~

ffiffiffi
a

n

r
(xzy)

n{1
2 z:

ð6Þ

We have modified the similarity transformations used by Liu

et al. [9] for the current problem. Using (6), Eq.(1) is identically

satisfied and Eqs. (2)–(5) become

f 000z
nz1

2
f zgð Þf 00{n f 0zg0ð Þf 0~0, ð7Þ

g000z
nz1

2
f zgð Þg00{n f 0zg0ð Þg0~0, ð8Þ

1

Pr
h00z

nz1

2
f zgð Þh0{n f 0zg0ð Þh~0, ð9Þ

f 0ð Þ~g 0ð Þ~0, f 0 0ð Þ~1, g0 0ð Þ~l, h 0ð Þ~1, ð10Þ

f
0
?ð Þ?0,g

0
?ð Þ?0,h ?ð Þ?0,

where Pr~n=a is the Prandtl number and l~b=a is the ratio of

stretching rate along the y{ direction to the stretching rate along

the x{ direction (see Table 1). The above equations reduce to the

case of two-dimensional flow when l~0. Moreover, when l~1,

the equations governing the axisymmetric flow due to non-linearly

stretching sheet are recovered. When Pr~1 the solution of f 0 is

also a solution of h. The quantities of practical interest are the skin

friction coefficients and the local Nusselt number which are

defined as below:

Cfx~
tzx

rU2
w

,Cfy~
tzy

rV2
w

, Nu~
xzyð Þqw

k Tw{T?ð Þ , ð11Þ

where tzx and tzy are the wall shear stresses and qw is the wall heat

flux. These are given by

tzx~m
Lu

Lz
z

Lw

Lx

� �
z~0

,tzy~m
Lv

Lz
z

Lw

Ly

� �
z~0

,

qw~{k
LT

Lz

� �
z~0

,

ð12Þ

using Eqs. (6) and (12) in Eq. (11), one obtains

Re1=2
x Cfx~f 00(0),

Re1=2
y l3=2Cfy~g00(0),

Re{1=2
x Nu~{h0(0),

ð13Þ

where Rex~Uw(xzy)=n and Rey~Vw(xzy)=n are the local

Reynolds numbers along the x{ and y{ directions respectively

(see Table 1). The vertical component of velocity at the far field

boundary can be expressed as

w(x,y,?)~{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
an(xzy)n{1

q
nz1

2
½f (?)zg(?)�: ð14Þ

Optimal homotopy analytic solutions

The non-linear differential equations (7)–(9) with the boundary

conditions (10) have been solved by optimal homotopy analysis

Table 1. List of symbols.

x,y,zð Þ Cartesian coordinate system k thermal conductivity

u,v,w velocity components along the x{,y{,z{ directions B non-zero auxiliary parameter

Uw,Vw velocity of the stretching sheet along x{ and y{ direction 0 1st order derivative with respect to g

T fluid temperature 00 2nd order derivative with respect to g

Tw wall temperature 000 3rd order derivative with respect to g

T? ambient fluid temperature Greek symbols

a,b,A positive constants n kinematic viscosity

n Power-law index a thermal diffusivity

f ,g dimensionless stream function h dimensionless temperature

Pr Prandtl number g similarity variable

Cfx,Cfy skin friction coefficient along x{ and y{ direction l ratio of the stretching rates

Nu local Nusselt number tzx,tzy wall shear stress along x{ and y{ direction

qw wall heat flux r density of the fluid

Rex,Rey local Reynolds number along x{ and y{ direction m dynamic viscosity

doi:10.1371/journal.pone.0107287.t001
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method (OHAM) [34,35]. For this purpose, we first select the

initial guesses f0, g0 and h0 of f (g), g(g) and h(g) as under:

f0(g)~1{ exp ({g), g0(g)~l 1{ exp ({g)½ �,

h0(g)~ exp ({g),
ð15Þ

and the auxiliary linear operators are selected as below

Lf fð Þ~ d3f

dg3
{

df

dg
, Lg gð Þ~ d3g

dg3
{

dg

dg
, Lh hð Þ~ d2h

dg2
{h: ð16Þ

If q[½0, 1� is the embedding parameter and B the non-zero

auxiliary parameter, then the generalized homotopic equations
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Figure 3. Influence of stretching rates ratio l on the x{ component of velocity f 0:
doi:10.1371/journal.pone.0107287.g003
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Figure 2. Comparison of analytical and numerical solutions for the temperature distribution. Lines: 15th-order OHAM solutions, Circles:
Numerical solution.
doi:10.1371/journal.pone.0107287.g002
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corresponding to (7)–(10) can be written as follows

(1{q)Lf ½F ( g; q){f0(g)�~qBN f F (g; q),G(g; q)½ �, ð17Þ

(1{q)Lg½G( g; q){g0(g)�~qBNg F (g; q),G(g; q)½ �, ð18Þ

(1{q)Lh½H( g; q){h0(g)�~qBNh F (g; q), G( g; q),H( g; q)½ �, ð19Þ

F (g; q)jg~0~0,
LF ( g; q)

Lg

����
g~0

~1,

G(g; q)jg~0~0,
LG( g; q)

Lg

����
g~0

~l, H(g; q)jg~0~0,

ð20Þ
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where the non-linear operators N f , Ng and Nh are
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By Taylor’s series expansion one obtains

F (g; q)~f0(g)z
X?
m~1

fm( g)qm; fm(g)~
1

m!
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Figure 4. Influence of stretching rates ratio l on the y{ component of velocity g0:
doi:10.1371/journal.pone.0107287.g004
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Substituting q~1 in the above equations yields the final result.

The functions fm, gm and hm can be determined from the

deformation of Eqs. (7)–(10). Explicitly the mth-order deformation

equations corresponding to Eqs. (7)–(10) are as below

Lf fm gð Þ{xmfm{1 gð Þ½ �~BRf
m gð Þ, ð27Þ

Lg gm gð Þ{xmgm{1 gð Þ½ �~BRg
m gð Þ, ð28Þ

Lh hm gð Þ{xmhm{1 gð Þ½ �~BRh
m gð Þ, ð29Þ
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dg

����
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Figure 5. Influence of stretching rates ratio l on the skin friction coefficients f 00(0) and g00(0) and entrainment velocity f (?)zg(?):
doi:10.1371/journal.pone.0107287.g005
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In order to determine the optimal values of B we define the

squared residuals of the governing Eqs. (7)–(10), ff
M , fg

M and fh
M as

f
f
M~

ð?
0

N f

XM
j~0

fj(g),
XM
j~0

gj(g)

 !" #2

dg, ð35Þ
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Figure 6. Influence of stretching rates ratio l on the temperature h:
doi:10.1371/journal.pone.0107287.g006
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Figure 7. Influence of Prandtl number Pr on the temperature h:
doi:10.1371/journal.pone.0107287.g007
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Such kind of error has been considered in other works [36–41].

The smaller fM ’s, the more accurate the mth order approximation

of the solution. The optimal values of B can be obtained by

minimizing the fM ’s, through the command Minimize of the

software MATHEMATICA (see Liao [36] for details). Alterna-

tively MATHEMATICA package bvph 2.0 can also be used to

calculate such values (see [41] for details).

Numerical method

Eqs. (7)–(9) subject to the boundary conditions (10) have been

solved numerically by shooting method with fifth order Runge-

Kutta integration procedure. First, we reduce the original ODEs

into a system of 1st order ODEs by substituting

x1~f ,x2~f 0,x3~f 00,x4~g,x5~g0,x6~g00,x7~h and x8~h0

which gives

x
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x
0
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x
0
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x
0
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0
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0
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0
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2
66666666666666664

3
77777777777777775

~

x2
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{
nz1

2
(x1zx4)x3zn x2zx5ð Þx2

x5

x6

{
nz1

2
(x1zx4)x6zn x2zx5ð Þx5

x8

{ Pr (
nz1

2
(x1zx4)x8{n x2zx5ð Þx7)

2
66666666666666664

3
77777777777777775

, ð38Þ
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-
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Figure 8. Influence of Prandtl number Pr and stretching rates ratio l on the wall temperature gradient h0(0):
doi:10.1371/journal.pone.0107287.g008

Table 2. Numerical values of f 00(0) and g00(0) for different values of n and l.

n l f 00(0) g00(0)

shooting bvp5c shooting bvp5c

1 0 21 21 0 0

0.5 21.224745 21.224742 20.612372 20.612371

1 21.414214 21.414214 21.414214 21.414214

3 0 21.624356 21.624356 0 0

0.5 21.989422 21.989422 20.994711 20.994711

1 22.297186 22.297182 22.297186 22.297182

doi:10.1371/journal.pone.0107287.t002
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and the corresponding initial conditions are

x1

x2

x3

x4

x5

x6

x7

x8

2
66666666666664

3
77777777777775
~

0

1

u1

0

l

u2

1

u3

2
66666666666664

3
77777777777775

, ð39Þ

Suitable values of the unknown initial conditions

u1~f 00(0),u2~g00(0) and u3~h0(0) are guessed and then integra-

tion is carried out. The values of u1,u2 and u3 are then iteratively

computed through Newton’s method such that the solutions satisfy

the boundary conditions at infinity (given in Eq. (10)) with error

less than 10{6.

Results and Discussion

This section contains the physical interpretations of the

behavior of the interesting parameters entering into the problem.

We compare the 15th-order OHAM solutions for temperature h
with the numerical ones for different values of n: Fig. 2 shows that

data retrieved from both solution methods are identical, demon-

strating the validation of our findings.

Figs. 3 and 4 show the variations in horizontal and vertical

components of velocity with an increase in stretching rates ratio l.

It is clear that increase in l corresponds to an increase in the

stretching rate along the y{direction. Due to this reason the

vertical component of velocity increases with an enhancement in l

while the velocity in the x{direction decreases correspondingly.

The wall velocity gradients f 00(0), g00(0) and entrainment velocity

f (?)zg(?) as functions of stretching rates ratio l have been

plotted in Fig. 5. Due to the bi-directional stretching sheet, there

will be downward flow in the vertical direction. The vertical

component at far field boundary is therefore expected to be

negative in this situation. We notice that shear stresses at the wall

increase when l is increased. Further, the larger values of l
enhances the velocity of the cold fluid at the ambient. As a

consequence, the entrainment velocity is an increasing function of

l.

Fig. 6 indicates that temperature h decreases with an increase in

stretching rates ratio l for unity Prandtl number. Physically, an

increase in l enhances the intensity of colder fluid at the ambient

(as noticed in Fig. 6) towards the hot sheet which eventually

corresponds to decrease the local fluid temperature. Fig. 7

perceives the behavior of Prandtl number Pr on the temperature.

A bigger Prandtl number fluid has less thermal diffusivity and

hence it allows less thermal effect to penetrate deeper into the

fluid. As a result, temperature decreases and the thermal boundary

layer becomes thinner when Pr is increased. This decrease in

thickness of the thermal boundary layer is compensated with a

larger wall slope of temperature function.

Fig. 8 plots the wall temperature gradient against Pr with the

variation in stretching rates ratio l. The wall heat transfer rate

approaches the zero value for vanishing Prandtl number Pr?0, a

fact that is clear from the energy equation (9). Moreover, this Fig.

compliments the results of Fig. 4. In bigger Prandtl number fluids

the convection is effective in transferring energy from the

stretching sheet compared to pure conduction. Due to this reason

the wall heat transfer rate is an increasing function of Pr. The

reduction in thermal boundary layer thickness with an increase in

l meets with the bigger magnitude of local Nusselt number. In

other words the enhanced intensity of cold fluid at the ambient

Table 3. Numerical values of local Nusselt number {h0(0) for various values of n, Pr and l.

n Pr l {h0(0)

shooting bvp5c

1 0.7 0 0.793668 0.793668

0.5 0.972033 0.972029

1 1.122406 1.122321

1 0 1.000000 0.999990

0.5 1.224745 1.224742

1 1.414214 1.414214

7 0 3.072250 3.072251

0.5 3.762723 3.762724

1 4.344818 4.344779

3 0.7 0 1.292193 1.292194

0.5 1.582607 1.582607

1 1.827437 1.827427

1 0 1.624356 1.624356

0.5 1.989422 1.989422

1 2.297186 2.297182

7 0 4.968777 4.968777

0.5 6.085484 6.085485

1 7.026912 7.026913

doi:10.1371/journal.pone.0107287.t003
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towards the hot fluid closer to the sheet results in larger heat

transfer rate at the sheet.

Tables 2 and 3 provide the numerical values of skin friction

coefficients and local Nusselt number for different values of

parameters by employing shooting method. The results are

compared with the MATLAB built in function bvp5c and found

in excellent agreement. We notice that wall shear stresses increase

with an increase in l more rapidly at n~3 when compared with

n~1. The thinner thermal boundary layer accounted for larger n
accompanies with larger temperature gradient along the sheet.

The magnitude of increase in wall temperature gradient h0(0) with

an increase in Pr increases when n is increased.

Conclusions

For the first time, the flow and heat transfer over a plane surface

stretched non-linearly in two lateral directions have been

investigated. The simulation in this study assumes that the

temperature across the sheet is non-linearly distributed. Both

analytic and numerical solutions are obtained and found in

excellent agreement. Following are the major results of this study.

I. It is seen that shear stress at the wall increase when the

stretching rates ratio is increased. The entrainment velocity is

negative, representing a downward flow in the vertical direction,

which is a consequence of the bi-directional stretching sheet.

II. The increased intensity of the cold fluid at the ambient towards

the stretching sheet with an increase in stretching rates ratio l
decreases the fluid temperature.

III. The temperature decreases and thermal boundary layer thins

when the power-law index n is increased.

IV. The results for the case of two-dimensional and axisymmetric

flows can be obtained as special cases of present study when l~0
and l~1 respectively.
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