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Abstract. Three dimensional pseudo-symmetric Hopf hypersurfaces in complex projective plane and complex
hyperbolic plane are classified.

1. Introduction

Locally symmetric Riemannian manifolds are characterized by the parallelity of the Rie-
mannian curvature tensor R. As a generalization of locally symmetric Riemannian manifolds,
the notion of semi-symmetric Riemannian manifold is introduced as follows.

A Riemannian manifold (M, g) is said to be semi-symmetric if R · R = 0, where R · R

is the derivative of R by R. Local structures of semi-symmetric Riemannian manifolds are
systematically investigated by Z. I. Szabo.

Study of semi-symmetric spaces was initiated by E. Cartan, A. Lichnerowicz, R. S. Couty
and N. S. Sinjukov.

In 1968, K. Nomizu proposed a question [28]:

Are there complete, irreducible and simply connected semi-symmetric Riemannian manifolds
which are not symmetric ?”

The first positive answer was given by H. Takagi [32]. Takagi and K. Sekigawa [30]
constructed semi-symmetric hypersurfaces in Euclidean space. Szabó obtained a full intrin-
sic classification of semi-symmetric spaces. O. Kowalski obtained a full classification of
3-dimensional semi-symmetric spaces.

Classifications of semi-symmetric hypersurfaces in Euclidean space were obtained by
Szabó [31].
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According to [13], a Riemannian manifold (M, g) is said to be pseudo-symmetric if there
exists a function L such that R(X, Y ) · R = L{(X ∧ Y ) · R} for all vector fields X and Y on
M . Here (X ∧ Y ) is a tensor field of type (1, 1) defined by

(X ∧ Y )Z = g(Y,Z)X − g(Z,X)Y .

In particular, a pseudo-symmetric space is called a pseudo-symmetric space of constant type
if L is a constant. Clearly, semi-symmetric spaces are pseudo-symmetric spaces of constant
type with L = 0. A pseudo-symmetric space is said to be proper if M is not semi-symmetric.

In dimension 3, pseudo-symmetry plays a special role. As is well-known, in 3-
dimensional Riemannian geometry, constancy of the sectional curvature is equivalent to the
Einstein condition, i.e., ρ1 = ρ2 = ρ3 for eigenvalues {ρj } of the Ricci tensor. Moreover, the
pseudo-symmetry is equivalent to the condition: the Ricci tensor has at most two eigenvalues,
in dimension 3. Thus the pseudo-symmetry is a natural generalization of constant curvature
property or Einstein condition.

The pseudo-symmetry condition naturally arises in the study of isometrically deformable
hypersurfaces in 4-dimensional real space forms. V. Hajkova, O. Kowalski and M. Sekizawa
[14] investigated such hypersurfaces in terms of pseudo-symmetry.

In the differential geometry of real hypersurfaces in complex space forms, it is well
known that there are no locally symmetric real hypersurfaces in complex projective or hyper-
bolic spaces.

In [27], R. Nigerball and P. J. Ryan proved the non-existence of 3-dimensional semi-
symmetric Hopf hypersurfaces and 3-dimensional Einstein real hypersurfaces in complex
projective plane P2(C) and complex hyperbolic plane H2(C).

Thus both “Einstein” and “semi-symmetry” are too strong restriction for 3-dimensional
real hypersurfaces.

In addition, one can see that geodesic spheres and horospheres in non-flat complex space
forms are proper pseudo-symmetric spaces.

These observations show that pseudo-symmetry is more suitable than semi-symmetry or
Einstein property for real hypersurfaces in complex space forms. Note that in our previous
works [8]–[10], we investigated pseudo-symmetric almost contact metric 3-manifolds. In
[15], pseudo-symmetric simply connected 3-dimensional Lie groups are classified.

The purpose of this paper is to investigate 3-dimensional pseudo-symmetric real hyper-
surfaces in non-flat complex space forms. The main result of the present paper is:

THEOREM 1. The pseudo-symmetric Hopf hypersurfaces in P2(C) or H2(C) are lo-
cally holomorphically congruent to a horosphere in H2(C), a geodesic sphere in P2(C) or
H2(C), a homogeneous tube over H1(C) in H2(C), a non-homogeneous real hypersurface

which is realized as a tube over a certain holomorphic curve in P2(C) with radius π/
√

4c,
where c is the holomorphic sectional curvature of the ambient space or a Hopf hypersurface
in H2(C) with Aξ = 0.
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On the other hand, Y. Maeda [24] showed that, the shape operator A of a real hypersur-
face in a complex projective space Pn(C) of constant holomorphic sectional curvature c > 0

(n ≥ 2) satisfies ||A||2 ≥ c2(n − 1)/2. This inequality also holds for real hypersurfaces in
complex hyperbolic space (Chen-Ludden-Montiel [6]). Thus there are no real hypersurface in
non-flat complex space forms with parallel A.

S. Maeda [23] generalized this non-existence theorem. More precisely, he showed that
there are no real hypersurfaces in Pn(C) (n ≥ 3) with semi-parallel A, i.e., R·A = 0. However
S. Maeda’s proof can not hold for P2(C) and Hn(C) with n ≥ 2. R. Niebergall and P. J. Ryan
[27] proved the non-existence of real hypersurfaces in P2(C) and H2(C) with R · A = 0 by a
method different from Maeda’s one.

Analogous to pseudo-symmetry, we shall study real hypersurfaces in P2(C) and H2(C)

which satisfies the following pseudo-parallel condition;

(R(X, Y ) · A) = L (X ∧ Y ) · A
for all vector fields X and Y .

THEOREM 2. Let M be a real hypersurface with pseudo-parallel shape operator A,
i.e., R · A = L Q(g, A) for some function L. Then M is locally holomorphically congruent
to either

• a horosphere in H2(C),
• a geodesic hypersphere in P2(C) or H2(C), or
• a homogeneous tube over H1(C) in H2(C).

The results of this article were partially reported at the Mathematical Society of Japan
“Geometry Symposium” (held at Kagoshima University, August, 2007) by the second named
author.

2. Preliminaries

2.1. Let (M, g) be a Riemannian manifold with its Levi-Civita connection ∇. Denote
by R the Riemannian curvature of M:

R(X, Y ) = [∇X,∇Y ] − ∇[X,Y ] , X, Y ∈ X(M) .

Here X(M) is the Lie algebra of all vector fields on M . A tensor field F of type (1, 3);

F : X(M) × X(M) × X(M) → X(M)

is said to be curvature-like provided that F has the symmetric properties of R. For example,

(1) (X ∧ Y )Z = g(Y,Z)X − g(Z,X)Y, X, Y ∈ X(M)

defines a curvature-like tensor field on M .
Every curvature-like tensor field F acts on the algebra T 1

s (M) of all tensor fields on M

of type (1, s) as a derivation:
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(F · P)(X1, . . . , Xs; Y,X) = F(X, Y ){P(X1, . . . , Xs)}

−
s∑

j=1

P(X1, . . . , F (X, Y )Xj , . . . , Xs) ,

X1, . . . , Xs ∈ X(M) , P ∈ T 1
s (M) .

The derivative F · P of P by F is a tensor field of type (1, s + 2).
For a tensor filed P of type (1, s), we denote the by Q(g, P ) the derivative of P with

respect to the curvature-like tensor defined by (1).
A tensor field P is said to be semi-parallel if R · P = 0. More generally, P is said to

be pseudo-parallel if there exists a function L such that R · P = L Q(g, P ). In particular, a
pseudo-parallel tensor field P is said to be proper if L �= 0.

2.2. A Riemannian manifold (M, g) is said to be pseudo-symmetric if R is pseudo-
parallel, i.e.,

R · R = L Q(g, R)

for some function L. A pseudo-symmetric space is said to be proper if it is not semi-
symmetric.

2.3. The Ricci tensor ρ of a Riemannian manifold (M, g) is defined by

ρ(X, Y ) = trace(Z �→ R(Z,X)Y ) , X, Y ∈ X(M) .

The tensor field S of type (1, 1);

ρ(X, Y ) = g(SX, Y ) , X, Y ∈ X(M)

metrically associated to ρ is called the Ricci operator of M . The trace s of S is called the
scalar curvature of M .

A Riemannian manifold is said to be Einstein if ρ = cg for some constant c. In this case,
c = s/ dim M .

On can see that every Einstein manifold has parallel Ricci tensor, i.e., ∇ρ = 0 (equiv-
alently ∇S = 0). More generally, Einstein manifolds have semi-parallel Ricci tensor
(R · ρ = 0).

The Riemannian curvature R of a 3-dimensional Riemannian manifold (M, g) is ex-
pressed as

(2) R(X, Y )Z = ρ(Y,Z)X − ρ(Z,X)Y + g(Y,Z)SX − g(Z,X)SY − s

2
(X ∧ Y )Z

for all X, Y , Z ∈ X(M).
The formula (2) implies that a Riemannian 3-manifold is Einstein if and only if it is of

constant curvature. Moreover we have
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PROPOSITION 2.1. On a Riemannian 3-manifold, the derivative R · R is given by

(R(U, V ) · R)(X, Y )Z = (R(U, V ) · ρ)(Y,Z)X − (R(U, V ) · ρ)(Z,X)Y

+g(Y,Z)(R(U, V ) · S)X − g(Z,X)(R(U, V ) · S)Y .

Let (M, g) be a Riemannian 3-manifold with pseudo-parallel Ricci operator such that R ·
S = LQ(g, S). Then by Proposition 2.1, we get R · R = LQ(g, R). Hence M is pseudo-
symmetric.

COROLLARY 2.2. A Riemannian 3-manifold M is pseudo-symmetric if and only if M

has pseudo-parallel Ricci tensor. In particular M is semi-symmetric (R · R = 0) if and only
if R · S = 0.

2.4. The pseudo-parallelity of tensor fields of type (1, 1) is characterized as follows (cf.
[12]).

LEMMA 2.3. Let (M, g) be a Riemannian 3-manifold and B a tensor field on M of
type (1, 1) which is self-adjoint with respect to g . Take a local orthonormal frame field
{e1, e2, e3} which diagonalizes B so that Bej = bj ej (j = 1, 2, 3). Assume that M is not of
constant curvature and B is not of the form B = µI for some function µ, where I denotes
the identity transformation. Then B is pseudo-parallel such that R · B = LQ(g, B) for some
function L if and only if the eigenvalues of B and the sectional curvature function K locally
satisfy the following relations (up to numeration):

b1 = b2 �= b3 , K13 = K23 = L .

Here Kij = K(ei ∧ ej ) denotes the sectional curvature of the plane ei ∧ ej spanned by ei and
ej .

PROOF. Assume that M satisfies R · B = L Q(g, B) for some function L. Then from
the definition, it follows that

R(X, Y )BZ − BR(X, Y )Z

= L {g(Y, BZ)X − g(X,BZ)Y − g(Y,Z)BX + g(X,Z)BY }
(3)

for any vector fields X,Y,Z on M .
Take a local frame field {e1, e2, e3} defined on a neighborhood U of x for any point

x ∈ M such that Bei = biei (i = 1, 2, 3).
Then from (3) we obtain

bjR(ei, ej )ej − BR(ei, ej )ej = L (bj − bi)ei .

From this, we further have

(4) (bj − bi)(g(R(ei , ej )ej , ei) − L) = 0

for i = 1, 2, 3.
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Let U1 = {p ∈ U | b1(p) = b2(p) = b3(p)}, U2 = {p ∈ U | b1(p) �= b2(p) �= b3(p) �=
b1(p)}, U3 = {p ∈ U | two of bi’s are same}. Then we see that U1 ∪ U2 ∪ U3 is dense in U .
Now, we proceed our arguments in U1, U2, U3 in order.

• In U1, it is easily seen that B = bI holds. Here we put b1 = b2 = b3 = b.
• In U2, from (4) we get

Kij = g(R(ei , ej )ej , ei) = L

for any i �= j . Taking account that dim M = 3 (by virtue of Schur’s lemma), we can see that
M is of constant curvature L on U2.

By the assumption, U = U3. Thus, we may assume that b1 = b2 �= b3. Then from (4)
we get g(R(e1, e3)e3, e1) = g(R(e2, e3)e3, e2) = L.

Conversely, if B satisfies b1 = b2 �= b3 and K13 = K23 = L. Then by using (3), we get
R · B = LQ(g, B). �

Corollary 2.2 together with Lemma 2.3 imply the following criterion for pseudo-
symmetry.

PROPOSITION 2.4. A Riemannian 3-manifold (M, g) of non-constant curvature is
pseudo-symmetric if and only if it is quasi-Einstein. Namely there exists a one-form ω such
that the Ricci tensor field ρ has the form:

ρ = a g + b ω ⊗ ω .

Here a and b are functions. In this case M satisfies R · R = L Q(g, R) with 2L = a + b.

The preceding proposition can be rephrased as follows:

PROPOSITION 2.5. A Riemannian 3-manifold of non-constant curvature is a pseudo-
symmetric space with R · R = L Q(g, R) if and only if the eigenvalues of the Ricci tensor
locally satisfy the following relations (up to numeration):

ρ1 = ρ2 , ρ3 = 2L .

3. Real hypersurfaces

3.1. A complex n-dimensional Kähler manifold of constant holomorphic sectional cur-
vature c is called a complex space form, which is denoted by M̃n(c). A complete and simply
connected complex space form is a complex projective space Pn(C), a complex Euclidean
space Cn or a complex hyperbolic space Hn(C), according as c > 0, c = 0 or c < 0.

3.2. Let M be a real hypersurface of a complex space form M̃n(c). Take a local unit
normal vector filed N of M in M̃n(c). Then the Levi-Civita connections ∇̃ of M̃n(c) and ∇
of M are related by the following Gauss formula and Weingarten formula:

∇̃XY = ∇XY + g(AX, Y )N, ∇̃XN = −AX , X ∈ X(M) .
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Here g is the Riemannian metric of M induced by the Kähler metric g̃ of the ambient space
M̃n(c). The (1, 1)-tensor field A is called the shape operator of M derived from N .

An eigenvector X of the shape operator A is called a principal curvature vector. The
corresponding eigenvalue λ of A is called a principal curvature. As is well known, the Kähler
structure (J, g̃) of the ambient space induces an almost contact metric structure (φ, ξ, η, g)

on M . In fact, the structure vector field ξ of M and its dual 1-form η are defined by

η(X) = g(ξ,X) = g̃(JX,N) , X ∈ X(M) .

The (1, 1)-tensor field φ is defined by

g(φX, Y ) = g̃(JX, Y ) , X, Y ∈ X(M) .

One can easily check that this structure (φ, ξ, η, g) is an almost contact structure on M , that
is, it satisfies

(5) φ2X = −X + η(X)ξ, η(ξ) = 1 .

From these conditions, one can deduce that

φξ = 0 , η ◦ φ = 0 .

It follows that

∇Xξ = φAX .

Let R̃ and R be the Riemannian curvature tensors of M̃n(c) and M , respectively. From
the expression of the curvature tensor R̃ of M̃n(c), we have the following equations of Gauss
and Codazzi:

R(X, Y )Z = c

4
{g(Y,Z)X − g(X,Z)Y

+g(φY,Z)φX − g(φX,Z)φY − 2g(φX, Y )φZ}
+g(AY,Z)AX − g(AX,Z)AY ,

(∇XA)Y − (∇Y A)X = c

4
{η(X)φY − η(Y )φX − 2g(φX, Y )ξ} .

A real hypersurface M is said to be η-umbilical if there exist functions λ and µ such that
A = λ I + µη ⊗ ξ .

3.3. By the Gauss equation, the Ricci tensor ρ of a real hypersurface M is described as

(6) ρ(X, Y ) = c

4
((2n + 1)g(X, Y ) − 3η(X)η(Y )) + hg(AX, Y ) − g(A2X,Y ) ,

where h denotes the trace of the shape operator A.
A real hypersurface M is said to be pseudo-Einstein if the Ricci operator S has the form

S = aI + bη ⊗ ξ with real constants a and b.
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It is well known that there are no Einstein real hypersurfaces in M̃n(c) with c �= 0 and
n ≥ 2.

Recently, pseudo-Einstein real hypersurfaces in P2(C) and H2(C) are classified by the
first named author, T. Ivey, H. S. Kim and Ryan (This gives a complete answer to [26, Question
9.5] posed by Niebergall and Ryan). In particular it is shown that every pseudo-Einstein real
hypersurface is a Hopf hypersurface. Note that a real hypersurface M ⊂ M̃n(c) is said to be
Hopf if ξ is a principal curvature vector field.

THEOREM 3.1. ([7], [16], [18]) The pseudo-Einstein real hypersurfaces in P2(C) and
H2(C) are locally holomorphically congruent to one of the following hypersurfaces:

• a geodesic hypersphere in P2(C) or H2(C),
• a horosphere in H2(C),
• a tube of totally geodesic H1(C) ⊂ H2(C),

• a non-homogeneous tube of a certain holomorphic curve in P2(C) of radius π/
√

4c or
• a Hopf hypersurface in H2(C) with Aξ = 0 which are constructed by a pair of Le-

gendre curves in the unit 3-sphere.

Clearly every 3-dimensional pseudo-Einstein real hypersurface is pseudo-symmetric (see
Proposition 2.4).

3.4. Here, we recall the following two fundamental results (See eg., [26]).

LEMMA 3.2. If ξ is a principal curvature vector, then the corresponding principal
curvature α is locally constant.

LEMMA 3.3. Assume that ξ is a principal curvature vector and the corresponding
principal curvature is α. If AX = λX for X ⊥ ξ , then we have (2λ−α)AφX = (αλ+ c

2 )φX.

3.5. R. Takagi [33], [34] classified the homogeneous real hypersurfaces of Pn(C) into
six types. T. E. Cecil and Ryan [5] extensively studied a Hopf hypersurface, which is realized
as tubes over certain submanifolds in Pn(C), by using its focal map ϕr . By making use of
those results and the mentioned work of Takagi, M. Kimura [19] proved the local classification
theorem for Hopf hypersurfaces of Pn(C) all of whose principal curvatures are constant.

THEOREM 3.4. ([19]) Let M be a Hopf hypersurface of Pn(C). Then M has constant
principal curvatures if and only if M is locally congruent to one of the following:

(A1) a geodesic hypersphere of radius r , where 0 < r < π
2 ,

(A2) a tube of radius r over a totally geodesic P
(C)(1 ≤ 
 ≤ n − 2), where 0 < r < π
2 ,

(B) a tube of radius r over a complex quadric Qn−1 and totally geodesic and La-
grangian imbedded real projective space Pn(R), where 0 < r < π

4 ,

(C) a tube of radius r over P1(C)×P(n−1)/2(C), where 0 < r < π
4 and n(≥ 5) is odd,

(D) a tube of radius r over a complex Grassmannian G2,5(C), where 0 < r < π
4 and

n = 9,
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(E) a tube of radius r over a Hermitian symmetric space SO(10)/U(5), where 0 < r <
π
4 and n = 15.

For complex hyperbolic space Hn(C), J. Berndt [2] proved the classification theorem for
Hopf hypersurfaces whose all principal curvatures are constant.

THEOREM 3.5. ([2]) Let M be a Hopf hypersurface of Hn(C). Then M has constant
principal curvatures if and only if M is locally congruent to one of the following:

(A0) a horosphere,
(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyperplane Hn−1(C),
(A2) a tube over a totally geodesic H
(C) (1 ≤ 
 ≤ n − 2),
(B) a tube over a totally geodesic and Lagrangian imbedded real hyperbolic space

Hn(R).

We call simply type (A) for real hypersurfaces of type (A1), (A2) in Pn(C) and ones of
type (A0), (A1) or (A2) in Hn(C).

3.6. Next, we recall a class of non-Hopf real hypersurfaces in Pn(C) or Hn(C) named
as

(R): a foliated real hypersurface whose leaves are complex hyperplanes Pn−1(C) or
Hn−1(C), respectively in Pn(C) or Hn(C).

These are realized as ruled real hypersurfaces in Pn(C) or Hn(C). Namely, let γ :
I → M̃n(c) be a regular curve in a complex space form M̃n(c). Then for each t ∈ I , let

M
(t)
n−1(c) be a totally geodesic complex hypersurfaces which is orthogonal to holomorphic

plane Span{γ̇ , J γ̇ }. We have a ruled real hypersurface M = ⋃
t∈I M

(t)
n−1(c). These ruled real

hypersurfaces are non-Hopf hypersurfaces in non-flat complex space form and particularly in
Pn(C) the ruled real hypersurfaces are non-complete (see [21] for the case Pn(C) and [1] for
Hn(C), respectively).

Although all the homogeneous real hypersurfaces in Pn(C) are Hopf, there exist homo-
geneous ruled hypersurfaces in Hn(C) [3], [22].

3.7. To close this section we introduce the notion of pseudo-parallel real hypersurface.

DEFINITION 3.1. A real hypersurface M in M̃n(c) is said to be
• parallel if A is parallel (∇A = 0);
• semi-parallel if A is semi-parallel (R · A = 0);
• pseudo-parallel if A is pseudo-parallel (R · A = L Q(g, A)).

In particular M is said to be proper pseudo-parallel if M is pseudo-parallel and R · A �= 0.
We refer to the reader [26] about general theory of differential geometry of real hyper-

surfaces in complex space forms.
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4. Three dimensional pseudo-parallel real hypersurfaces

4.1. In this section, we prove

THEOREM 4.1. A real hypersurface M in P2(C) or H2(C) is pseudo-parallel, that is,
M satisfies R · A = L Q(g, A) for some function L if and only if M is η-umbilical.

PROOF. Let M be a real hypersurface in P2(C) or H2(C). Suppose that M is pseudo-
parallel, i.e., M satisfies R ·A = L Q(g, A) for some function L. Take a local principal frame
field {e1, e2, e3} defined on a neighborhood U of x for any point x ∈ M such that Aei = λiei

(i = 1, 2, 3).
In [27], Niegerball and Ryan proved there does not exist Einstein real hypersurface in

P2(C) or H2(C). Furthermore, it is a well-known fact that Pn(C) or Hn(C) does not admit
totally umbilical real hypersurfaces. Thus from Lemma 2.3, we may assume that λ1 = λ2(=
λ) �= λ3 and K13 = K23 = L. By using the equation of Gauss, one can show that K13 = K23

is equivalent to

c

4
(1 + 3φ2

31) + λλ3 = c

4
(1 + 3φ2

32) + λλ3 .

Here we have put φij = g(φei , ej ). From this, it follows that

(7) g(φe1, e3)
2 = g(φe2, e3)

2 .

Using (7) with the formula φ2 = −I + η⊗ ξ and the fact that φe1 ⊥ e1, we see that φe1 = e2

or e3 up to sign. But, from (7) we find that φe1 = e3 is impossible. Hence, we have φe1 = e2

and e3 = ξ up to sign. This says that M is η-umbilical such that A = λI + µη ⊗ ξ , where
µ = λ3 − λ. �

REMARK 4.1. Since φξ = 0, in the proof above, we have L = c
4 +λλ3. If in addition,

M is Hopf, then M satisfies λλ3 + c
4 = λ2 �= 0 (see [26, Corollary 2.3]). From there we get

the non-existence of semi-parallel Hopf hypersurfaces in P2(C) or H2(C).

4.2. Due to the results in [33], geodesic spheres in Pn(C) are the only η-umbilical real
hypersurfaces in Pn(C) (n ≥ 2). Analogously, one can check that real hypersurfaces of type
(A0), (A1) in Hn(C) (n ≥ 2) are determined by η-umbilicity (see [25], [26]). Thus, we have

THEOREM 4.2. Let M be a real hypersurface in P2(C) or H2(C). Suppose that M

satisfies R·A = LQ(g, A) for some function L. Then M is locally holomorphically congruent
to one of the following: (A0) a horosphere in H2(C); (A1) a geodesic hypersphere in P2(C)

or H2(C), a homogeneous tube over H1(C) in H2(C). In all the cases, the function L is a
non-zero constant and hence all the examples above are non semi-parallel.

REMARK 4.2. The tube of totally geodesic and Lagrangian imbedded H2(R) ⊂
H2(C) of radius r = ln(2 + √

3) is the only real hypersurface in non-flat complex space
form M̃2(c) with two distinct constant principal curvatures, but which is not pseudo-parallel
(cf. [4, Proposition 3.2]).



THREE DIMENSIONAL REAL HYPERSURFACES 41

COROLLARY 4.3. There are no semi-parallel real hypersurfaces in P2(C) or H2(C).

This result was proved in [27] in a different way.
In higher dimension (n ≥ 3), the following non-existence theorem of semi-parallel real

hypersurfaces are obtained by S. Maeda and M. Ortega.

THEOREM 4.4. ([23], [29]) There are no semi-parallel real hypersurfaces in non-flat
complex space form M̃n(c).

In view of this non-existence theorem together with our Theorem, the following problem
naturally arises.

PROBLEM 4.1. Classify pseudo-parallel real hypersurfaces in non-flat complex space
forms M̃n(c) with n ≥ 3.

5. Three dimensional pseudo-symmetric real hypersurfaces

5.1. In this section, we classify pseudo-symmetric Hopf hypersurfaces in M̃2(c) with
c �= 0.

Let M be a Hopf hypersurface in P2(C) or H2(C). Then we may put Aξ = αξ and

AU = βU, AφU = γφU

for a unit vector U orthogonal to ξ . Here, we remark that α is constant (see Lemma 3.2). By
Lemma 3.3 we also have

(8) (2β − α)AφU = (αβ + c/2)φU .

From (6) it follows that

(9) Sξ = pξ, SU = qU, SφU = dφU ,

where we have put p = c/2 + hα − α2, q = 5c/4 + hβ − β2, d = 5c/4 + hγ − γ 2.

THEOREM 5.1. A Hopf hypersurface M in P2(C) or H2(C) is pseudo-symmetric if
only if α = 0 or M is η-umbilical.

PROOF. Suppose that M is pseudo-symmetric. Then from the relations (9) we may
consider following three cases:

• p = q if and only if

(10) (α − β)γ = 3c/4 ,

where we have used h = α + β + γ . First, we look at the case 2β = α. Then together with
(8) we can see that it occurs only in a horosphere in H2(C). Actually, A = I +η⊗ ξ (α = 2β

and β = γ = √−c/2) (cf. [2]). But, this does not satisfy (10). Thus, we assume that 2β �= α.
Then, together with (8) the equation (10) yields

αβ2 + (2c − α2)β − 5/4αc = 0 .
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Here, we can find at once that α �= 0. In fact, α = 0 implies c = 0. We also see that it
has at most three constant principal curvatures α, β1, β2. Thus, it suffices to consider a real
hypersurface of type (A) or (B) in P2(C) or H2(C). But, we already know that for those cases
β1β2 = −c/4 (cf. [2], [34]). After all, we conclude that this can not occur.

• p = d if and only if (α − γ )β = 3c/4. By similar arguments to the former case, we
see that this case is also impossible.

• q = d if and only if

α(β − γ ) = 0 ,

from which we get α = 0 or β = γ . The latter case gives that M is η-umbilical, that is
A = βI + (α − β)η ⊗ ξ . �

In our context, we give a simple proof of the following obtained in [27].

COROLLARY 5.2. There does not exist a semi-symmetric (R · R = 0) Hopf hypersur-
face in P2(C) or H2(C).

PROOF. Suppose that M is semi-symmetric and Hopf. Then since M is 3-dimensional
we can make use of the criterion (with L = 0), stated as Proposition 2.5. Thus it must satisfy
p = 0 and q = d . First, we easily see that α = 0 implies c = 0. So, we consider only the

case β = γ . Then from the condition c/2 + hα − α2 = 0 (p = 0) we get

(11) αβ = −c/4 ,

where we have used h = α + β + γ . And the equation (8) becomes

(2β − α)AφU = c/4φU .

Multiplying α to both sides and using (11), then we get

(−c/2 − α2)AφU = αc/4 φU .

Since β = γ , taking the φU -component of this equation, then we get

(−c/2 − α2)β = cα/4 .

Multiplying α again and using (11), then we get c = 0, a contradiction. Thus, we have proved
the assertion. �

Now we arraive at the main result of this paper.

THEOREM 5.3. Let M be a Hopf hypersurface in P2(C) or H2(C). Suppose that M is
pseudo-symmetric. Then M is locally isometric to one of the following: (A0) a horosphere in
H2(C); (A1) a geodesic hypersphere in P2(C) or H2(C), a homogeneous tube over H1(C) in

H2(C); or a non-homogeneous real hypersurface which is realized as a tube of radius π/
√

4c

over a certain holomorphic curve in P2(C), where the focal map ϕr has constant rank on M

or a Hopf hypersurface in H2(C) with Aξ = 0.
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PROOF. Let M be a pseudo-symmetric Hopf hypersurface in P2(C) or H2(C). Then by
Theorem 5.1, M is η-umbilical or Aξ = 0. We remark that there is a non-homogeneous Hopf

hypersurface with Aξ = 0 which is a tube of radius π/
√

4c over a certain Käher submanifold
in Pn(C), when its focal map has constant rank on M (cf. [5, Theorem 1], [21, Theorem]).

On the other hand, in H2(C), there exist Hopf hypersurfaces with Aξ = 0. Such hyper-
surfaces are constructed by pairs of Legendre curves in the unit 3-sphere and pseudo-Einstein
[16].

Thus M is locally holomorphically congruent to a type (A0) hypersurface, type (A1)

hypersurface, a non-homogeneous tube of radius π/4 over a certain holomorphic curve in
P2(C) or a Hopf hypersurface with Aξ = 0 in H2(C).

Conversely these real hypersurfaces are pseudo-symmetric ( cf. Theorem 3.1). �

REMARK 5.1. Hopf hypersurfaces in P2(C) or H2(C) with Aξ = 0 have non-constant
principal curvatures. Moreover these hypersurfaces are non-homogeneous.

COROLLARY 5.4. A Hopf hypersurface in P2(C) or H2(C) is pseudo-symmetric if and
only if it is pseudo-Einstein.

5.2. Let M be a ruled real hypersurface in P2(C) or H2(C). Since ξ is not a principal
curvature vector field, we can define a (local) unit vector field V by

V = 1

|Aξ − αξ | (Aξ − αξ), α = g(Aξ, ξ) .

Now we put ν = |Aξ − αξ | > 0. Then one can see that (ξ, V , φV ) is a (local) orthonormal
frame field of M . Then the shape operator A is expressed as

Aξ = αξ + νV (ν �= 0) ,(12)

AV = νξ ,(13)

AφV = 0 .(14)

The principal curvatures {λ1, λ2, λ3} and their corresponding principal curvature vector
fields {X1,X2,X3} of M are given by

• λ1 = (α + √
α2 + 4ν2)/2 with X1 = νV + λ1ξ ,

• λ2 = (α − √
α2 + 4ν2)/2 with X2 = νV + λ2ξ ,

• λ3 = 0 with X3 = φV .

Note that M has three distinct principal curvatures, because ν �= 0.
Now we study pseudo-symmetry of ruled real hypersurfaces. Since h = α, from (6) and
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(12), we have

Sξ = ρ1ξ , ρ1 = 1

2
c − ν2 ,

SV = ρ2V , ρ2 = 5

4
c − ν2 ,

SφV = ρ3φV , ρ3 = 5

4
c .

From these we see that
• ρ1 = ρ2 ⇐⇒ c = 0.
• ρ1 = ρ2 ⇐⇒ ν2 = −3c/4.
• ρ2 = ρ3 ⇐⇒ ν = 0.

Since we assume that c �= 0 and ν �= 0, we get the following result.

PROPOSITION 5.5. (i) A ruled real hypersurface M in P2(C) does not admit pseudo-
symmetric structure.

(ii) A ruled real hypersurface M in H2(C) is pseudo-symmetric if and only if 0 < ν2 =
−3c/4. In this case M is has constant Ricci eigenvalues (ρ1, ρ2, ρ3) = (5c/4, 2c, 5c/4). The
principal curvatures {λ1, λ2, λ3} and their corresponding principal curvature vector fields
{X1,X2,X3} of M are given by

• λ1 = (α + √
α2 − 3c)/2 with X1 = νV + λ1ξ ,

• λ2 = (α − √
α2 − 3c)/2 with X2 = νV + λ2ξ ,

• λ3 = 0 with X3 = φV .

PROOF. The only possibility for a ruled real hypersurface M in P2(C) or H2(C) to be

pseudo-symmetric is 0 < ν2 = −3c/4. This implies that c < 0. �

PROBLEM 5.1. Classify (or characterize) the base curve γ of a ruled real hypersur-

face M in H2(C) with ν2 = −3c/4.

COROLLARY 5.6. There are no pseudo-symmetric ruled real hypersurfaces with con-
stant principal curvatures in H2(C).

PROOF. The only ruled real hypersurfaces with constant primcipal curavtures in H2(C)

are minimal ruled hypersurfaces induced by totally real horocycles [4]. Note that these hyper-
surfaces are the only homogeneous ruled real hypersurfaces in H2(C) (see [3], [22]). From
[22, Theorem 6] (see also [4]), one can see that such real hypersurfaces do not satisfy the

condition ν2 = −3c/4. �

5.3. In complex space forms, the following non-existence results due to S. Maeda, U-
H. Ki, H. Nakagawa, Y. J. Suh are obtained.

THEOREM 5.7. ([20], [17]) There are no Ricci semi-parallel real hypersurfaces in
M̃n(c) with c �= 0 and n ≥ 3.
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In dimension 3, since Ricci semi-parallelity is equivalent to semi-symmetry, there are no
Ricci semi-parallel hypersurfaces in M̃2(c) with c �= 0.

Comparing these observations with our classification of pseudo-symmetric real hyper-
surfaces, the following problem would be of some interest and importance.

PROBLEM 5.2. Classify real hypersurfaces with pseudo-parallel Ricci opeartor in
M̃n(c) with c �= 0, n ≥ 3.

6. Concluding remarks

6.1. There are several generalizations of local symmetry other than semi-symmetry and
pseudo-symmetry.

(N) Naturally reductive homogeneous spaces;
(C) C-spaces, i.e., Riemannian manifolds such that for any geodesic its corresponding

Jacobi operator has constant eigenvalues along that geodesic;
(GO) Riemannian g.o spaces, i.e., Riemannian manifolds all of whose geodesics are or-

bits of one-parameter subgroups of isometries;
(W) Weakly symmetric spaces, i.e., Riemannian manifolds such that for any pair of

points there exists an isometry interchanging these points;
(C) Commutative spaces , i.e., Riemannian manifolds such that the algebra of all

isometry-invariant differential operators is commutative;
(D) D’Atri spaces, i.e., Riemannian manifolds whose geodesic symmetries are volume

preserving up to sign.
The following inclusion relations are known;

N ⊂ GO, W ⊂ GO, W ⊂ C .

N, GO, W, C ⊂ D, N, GO, W, C ⊂ C .

Note that in dimension 3, N = GO. In the case of real hypersurfaces in M̃n(c) (c �= 0), all
of these classes are the same. Moreover the only real hypersurfaces of dimension ≥ 3, in the
each class are type A hypersurfaces [11]. Our main theorem implies that the class of pseudo-
symmetric real hypersurfaces in M̃2(c) (c �= 0) and that of naturally reductive hypersurfaces
has no inclusion relation.
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