On Three-Dimensional Trans-Sasakian Manifolds

U. C. De, Avijit Sarkar
Department of Mathematics, University of Kalyani, Kalyani 741235, West Bengal, India, e-mail: uc_de@yahoo.com
Department of Mathematics, University of Burdwan, Burdwan 713104, West Bengal, India, e-mail: avjaj@yahoo.co.in

Presented by Oscar García Prada
Received February 23, 2008

Abstract: The object of the present paper is to study 3-dimensional trans-Sasakian manifolds which are locally ϕ-symmetric and have η-parallel Ricci tensor. Also 3-dimensional transSasakian manifolds of constant curvature have been considered. An example of a threedimensional locally ϕ-symmetric trans-Sasakian manifold is given.

Key words: trans-Sasakian manifold, scalar curvature, locally ϕ-symmetric, η-parallel Ricci tensor, constant curvature.
AMS Subject Class. (2000): 53C25.

1. Introduction

Trans-Sasakian manifolds arose in a natural way from the classification of almost contact metric structures by D. Chinea and C. Gonzales [3], and they appear as a natural generalization of both Sasakian and Kenmotsu manifolds. Again in the Gray-Hervella classification of almost Hermite manifolds [7], there appears a class W_{4} of Hermitian manifolds which are closely related to locally conformally Kähler manifolds. An almost contact metric structure on a manifold M is called a trans-Sasakian structure [13] if the product manifold $M \times R$ belongs to the class W_{4}. The class $C_{6} \oplus C_{5}([10],[11])$ coincides with the class of trans-Sasakian structures of type (α, β). In [11], the local nature of the two subclasses C_{5} and C_{6} of trans-Sasakian structures is characterized completely. In [4], some curvature identities and sectional curvatures for C_{5}, C_{6} and transSasakian manifolds are obtained. It is known that ([8]) trans-Sasakian structures of type $(0,0),(0, \beta)$ and $(\alpha, 0)$ are cosymplectic, β-Kenmotsu and α Sasakian respectively. In [15], it is proved that trans-Sasakian structures are generalized quasi-Sasakian structures [12]. Thus, trans-Sasakian structures also provide a large class of generalized quasi-Sasakian structures.

The local structure of trans-Sasakian manifolds of dimension $n \geq 5$ has been completely characterized by J. C. Marrero [10]. He proved that a trans-

Sasakian manifold of dimension $n \geq 5$ is either cosymplectic or α-Sasakian or β-Kenmotsu manifold. But so far, it is not too much known about the 3-dimensional case.

This paper deals just on 3-dimensional connected trans-Sasakian manifolds. In Section 2 some preliminary results are recalled and explicit formulae for Ricci tensor and curvature tensor [6] of 3-dimensional trans Sasakian manifolds are given. In Section 3 we characterize 3-dimensional locally ϕ-symmetric trans-Sasakian manifolds and prove that a 3-dimensional connected transSasakian manifold of type (α, β) is locally ϕ-symmetric if and only if the scalar curvature of the manifold is constant where α and β are constants. This result is an extension of an analogous result concerning Kenmotsu manifolds obtained by the first author [5]. Section 4 of our paper deals with a 3 -dimensional trans-Sasakian manifold with η-parallel Ricci tensor. In this section we also show that a 3-dimensional connected trans-Sasakian manifold of type (α, β) has η-parallel Ricci tensor if and only if the scalar curvature of the manifold is constant where α and β are constants. In Section 5 , we show that a 3-dimensional compact connected trans-Sasakian manifold of constant curvature is either α-Sasakian or β-Kenmotsu. This is the most important result obtained in this paper. Finally in the last section we construct an example of a three-dimensional locally ϕ-symmetric trans-Sasakian manifold.

2. Preliminaries

Let M be a connected almost contact metric manifold with an almost contact metric structure (ϕ, ξ, η, g), that is, ϕ is an $(1,1)$ tensor field, ξ is a vector field, η is an 1 -form and g is compatible Riemannian metric such that

$$
\begin{gather*}
\phi^{2}(X)=-X+\eta(X) \xi, \quad \eta(\xi)=1, \quad \phi \xi=0, \quad \eta \phi=0 \tag{2.1}\\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{2.2}\\
g(X, \phi Y)=-g(\phi X, Y), \quad g(X, \xi)=\eta(X) \tag{2.3}
\end{gather*}
$$

for all $X, Y \in T(M)[1]$. The fundamental 2-form Φ of the manifold is defined by

$$
\begin{equation*}
\Phi(X, Y)=g(X, \phi Y) \tag{2.4}
\end{equation*}
$$

for $X, Y \in T(M)$.
An almost contact metric structure (ϕ, ξ, η, g) on a connected manifold M is called trans-Sasakian structure [13] if $(M \times R, J, G)$ belongs to the class
$W_{4}[7]$, where J is the almost complex structure on $M \times R$ defined by

$$
J(X, f d / d f)=(\phi X-f \xi, \eta(X) d / d t)
$$

for all vector fields X on M, a smooth function f on $M \times R$ and the product metric G on $M \times R$. This may be expressed by the condition [2]

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=\alpha(g(X, Y) \xi-\eta(Y) X)+\beta(g(\phi X, Y) \xi-\eta(Y) \phi X) \tag{2.5}
\end{equation*}
$$

for smooth functions α and β on M. Here we say that the trans-Sasakian structure is of type (α, β). From (2.5) it follows that

$$
\begin{align*}
\nabla_{X} \xi & =-\alpha \phi X+\beta(X-\eta(X) \xi) \tag{2.6}\\
\left(\nabla_{X} \eta\right) Y & =-\alpha g(\phi X, Y)+\beta g(\phi X, \phi Y) \tag{2.7}
\end{align*}
$$

An explicit example of 3-dimensional proper trans-Sasakian manifold is constructed in [10]. In [6], the Ricci operator, Ricci tensor and curvature tensor for 3-dimensional trans-Sasakian manifolds are studied and their explicit formulae are given.

From [6] we know that for a 3-dimensional trans-Sasakian manifold

$$
\begin{gather*}
2 \alpha \beta+\xi \alpha=0 \tag{2.8}\\
S(X, \xi)=\left(2\left(\alpha^{2}-\beta^{2}\right)-\xi \beta\right) \eta(X)-X \beta-(\phi X) \alpha \tag{2.9}\\
S(X, Y)=\left(\frac{r}{2}+\xi \beta-\left(\alpha^{2}-\beta^{2}\right)\right) g(X, Y) \\
-\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(X) \eta(Y) \tag{2.10}\\
-(Y \beta+(\phi Y) \alpha) \eta(X)-(X \beta+(\phi X) \alpha) \eta(Y)
\end{gather*}
$$

and

$$
\begin{align*}
& R(X, Y) Z=\left(\frac{r}{2}+2 \xi \beta-2\left(\alpha^{2}-\beta^{2}\right)\right)(g(Y, Z) X-g(X, Z) Y) \\
&-g(Y, Z)\left[\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(X) \xi\right. \\
&\quad \eta(X)(\phi \operatorname{grad} \alpha-\operatorname{grad} \beta)+(X \beta+(\phi X) \alpha) \xi] \\
&+g(X, Z)\left[\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(Y) \xi\right. \\
&\quad \eta(Y)(\phi \operatorname{grad} \alpha-\operatorname{grad} \beta)+(Y \beta+(\phi Y) \alpha) \xi] \tag{2.11}
\end{align*}
$$

$$
\begin{aligned}
- & {[(Z \beta+(\phi Z) \alpha) \eta(Y)+(Y \beta+(\phi Y) \alpha) \eta(Z)} \\
& \left.+\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(Y) \eta(Z)\right] X \\
+ & {[(Z \beta+(\phi Z) \alpha) \eta(X)+(X \beta+(\phi X) \alpha) \eta(Z)} \\
& \left.+\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right) \eta(X) \eta(Z)\right] Y
\end{aligned}
$$

where S is the Ricci tensor of type $(0,2), R$ is the curvature tensor of type $(1,3)$ and r is the scalar curvature of the manifold M.

3. LOCALLY ϕ-SYMMETRIC THREE-DIMENSIONAL TRANS-SASAKIAN MANIFOLDS

Definition 3.1. A trans-Sasakian manifold is said to be locally ϕ-symmetric if

$$
\phi^{2}\left(\nabla_{W} R\right)(X, Y) Z=0
$$

for all vector fields W, X, Y, Z orthogonal to ξ.
This notion was introduced for Sasakian manifolds by Takahashi [14].
Let M be a 3-dimensional connected trans-Sasakian manifold. Then its curvature tensor is given by (2.11). Differentiating (2.11) we get

$$
\begin{align*}
\left(\nabla_{W}\right. & R)(X, Y) Z \\
=[& \left.\frac{d r(W)}{2}+2\left(\nabla_{W}(\xi \beta)\right)-4(d \alpha(W)-d \beta(W))\right][g(Y, Z) X-g(X, Z) Y] \\
& -g(Y, Z)\left[\left(\frac{d r(W)}{2}+\left(\nabla_{W}(\xi \beta)\right)-6(d \alpha(W)-d \beta(W))\right) \eta(X) \xi\right. \\
& +\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right)\left(\left(\nabla_{W} \eta\right)(X) \xi+\eta(X)\left(\nabla_{W} \xi\right)\right) \\
& -\left(\nabla_{W} \eta\right)(X)(\phi(\operatorname{grad} \alpha)-\operatorname{grad} \beta)-\eta(X)\left(\nabla_{W}(\phi(\operatorname{grad} \alpha)-\operatorname{grad} \beta)\right) \\
& \left.+\left(\nabla_{W}(X \beta+(\phi X) \alpha)\right) \xi+(X \beta+(\phi X) \alpha) \nabla_{W} \xi\right] \\
+ & g(X, Z)\left[\left(\frac{d r(W)}{2}+\left(\nabla_{W}(\xi \beta)\right)-6(d \alpha(W)-d \beta(W))\right) \eta(Y) \xi\right. \\
& +\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right)\left(\left(\nabla_{W} \eta\right)(Y) \xi+\eta(Y)\left(\nabla_{W} \xi\right)\right) \\
& -\left(\nabla_{W} \eta\right)(Y)(\phi(\operatorname{grad} \alpha)-\operatorname{grad} \beta)-\eta(Y)\left(\nabla_{W}(\phi(\operatorname{grad} \alpha)-\operatorname{grad} \beta)\right) \\
& \left.+\left(\nabla_{W}(Y \beta+(\phi X) \alpha)\right) \xi+(Y \beta+(\phi Y) \alpha) \nabla_{W} \xi\right] \tag{3.1}
\end{align*}
$$

$$
\begin{aligned}
- & {\left[\left(\nabla_{W}(Z \beta+(\phi Z) \alpha)\right) \eta(Y)+(Z \beta+(\phi Z) \alpha)\left(\nabla_{W} \eta\right) Y\right.} \\
& +\left(\nabla_{W}(Y \beta+(\phi Y) \alpha)\right) \eta(Z)+(Y \beta+(\phi Y) \alpha)\left(\nabla_{W} \eta\right) Z \\
& +\left(\frac{d r(W)}{2}+\left(\nabla_{W}(\xi \beta)\right)-6(d \alpha(W)-d \beta(W))\right) \eta(Y) \eta(Z) \\
& \left.+\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right)\left(\left(\nabla_{W} \eta\right) Y \eta(Z)+\eta(Y)\left(\nabla_{W} \eta\right) Z\right)\right] X \\
+ & {\left[\left(\nabla_{W}(Z \beta+(\phi Z) \alpha)\right) \eta(X)+(Z \beta+(\phi Z) \alpha)\left(\nabla_{W} \eta\right) X\right.} \\
& +\left(\nabla_{W}(X \beta+(\phi X) \alpha)\right) \eta(Z)+(X \beta+(\phi X) \alpha)\left(\nabla_{W} \eta\right) Z \\
& +\left(\frac{d r(W)}{2}+\left(\nabla_{W}(\xi \beta)\right)-6(d \alpha(W)-d \beta(W))\right) \eta(X) \eta(Z) \\
& \left.+\left(\frac{r}{2}+\xi \beta-3\left(\alpha^{2}-\beta^{2}\right)\right)\left(\left(\nabla_{W} \eta\right) X \eta(Z)+\eta(X)\left(\nabla_{W} \eta\right) Z\right)\right] Y .
\end{aligned}
$$

Suppose that α and β are constants and X, Y, Z, W are orthogonal to ξ. Then using $\phi \xi=0$ and (3.1), we get

$$
\begin{equation*}
\phi^{2}\left(\nabla_{W} R\right)(X, Y) Z=\left(\frac{d r(W)}{2}\right)(g(Y, Z) X-g(X, Z) Y) \tag{3.2}
\end{equation*}
$$

Hence from (3.2) we get $\phi^{2}\left(\nabla_{W} R\right)(X, Y) Z=0$ if and only if the scalar curvature r is constant. Thus we can state the following:

Theorem 3.1. A 3-dimensional connected trans-Sasakian manifold of type (α, β) is locally ϕ-symmetric if and only if the scalar curvature is constant provided α and β are constants.

The above theorem is just an extension of an analogous result concerning Kenmotsu manifolds obtained by the first author in the paper [5].

4. η-Parallel RicCi tensor

Definition 4.1. The Ricci tensor S of a trans-Sasakian manifold is said to be η-parallel if it satisfies

$$
\begin{equation*}
\left(\nabla_{X} S\right)(\phi Y, \phi Z)=0 \tag{4.1}
\end{equation*}
$$

for all vector fields X, Y and Z.

This notion was introduced in the context of Sasakian manifolds by Kon [9].
Let M be a 3 -dimensional connected trans-Sasakian manifold. Then its Ricci tensor is given by (2.10)

In (2.10) replacing X by $\phi X, Y$ by ϕY and using (2.1) we get for a transSasakian manifold of dimension three

$$
\begin{equation*}
S(\phi X, \phi Y)=\left(\frac{r}{2}+\xi \beta-\left(\alpha^{2}-\beta^{2}\right)\right)(g(X, Y)-\eta(X) \eta(Y)) \tag{4.2}
\end{equation*}
$$

Now we see that

$$
\begin{align*}
\left(\nabla_{Z} S\right)(\phi X, \phi Y)= & \nabla_{Z} S(\phi X, \phi Y)-S\left(\nabla_{Z} \phi X, \phi Y\right)-S\left(\phi X, \nabla_{Z} \phi Y\right) \\
= & \nabla_{Z} S(\phi X, \phi Y)-S\left(\left(\nabla_{Z} \phi\right) X, \phi Y\right)-S\left(\phi \nabla_{Z} X, \phi Y\right) \tag{4.3}\\
& -S\left(\phi X,\left(\nabla_{Z} \phi\right) Y\right)-S\left(\phi X, \phi \nabla_{Z} Y\right)
\end{align*}
$$

Using (2.5), (2.10) and (4.2) in (4.3) we have

$$
\begin{align*}
&\left(\nabla_{Z} S\right)(\phi X, \phi Y) \\
&=\left(\frac{1}{2} d r(Z)+\nabla_{Z}(\xi \beta)-2 \alpha d \alpha(Z)+2 \beta d \beta(Z)\right)(g(X, Y)-\eta(X) \eta(Y)) \\
&+\left(\frac{r}{2}+\xi \beta-\left(\alpha^{2}-\beta^{2}\right)\right)\left(\nabla_{Z} g(X, Y)-\left(\nabla_{Z} \eta(X)\right) \eta(Y)\right. \\
&\left.-\eta(X)\left(\nabla_{Z} \eta(Y)\right)\right) \\
&- S(\alpha(g(Z, X) \xi-\eta(X) Z)+\beta(g(\phi Z, X) \xi-\eta(X) \phi Z), \phi Y) \tag{4.4}\\
&-\left(\frac{r}{2}+\xi \beta-\left(\alpha^{2}-\beta^{2}\right)\right)\left(g\left(\nabla_{Z} X, Y\right)-\eta\left(\nabla_{Z} X\right) \eta(Y)\right) \\
&- S(\phi X, \alpha(g(Z, Y) \xi-\eta(Y) Z)+\beta(g(\phi Z, Y) \xi-\eta(Y) \phi Z)) \\
&-\left(\frac{r}{2}+\xi \beta-\left(\alpha^{2}-\beta^{2}\right)\right)\left(g\left(X, \nabla_{Z} Y\right)-\eta(X) \eta\left(\nabla_{Z} Y\right)\right)
\end{align*}
$$

By virtue of (2.9) and (2.10) we obtain from (4.4)

$$
\begin{align*}
\left(\nabla_{Z} S\right) & (\phi X, \phi Y) \\
= & \left(\frac{1}{2} d r(Z)+\nabla_{Z}(\xi \beta)-2 \alpha d \alpha(Z)+2 \beta d \beta(Z)\right)(g(X, Y)-\eta(X) \eta(Y)) \\
& +\left(\frac{r}{2}+\xi \beta-\left(\alpha^{2}-\beta^{2}\right)\right)\left(\nabla_{Z} g(X, Y)-\left(\nabla_{Z} \eta(X)\right) \eta(Y)-\eta(X)\left(\nabla_{Z} \eta(Y)\right)\right) \\
& +\alpha g(Z, X)\left((\phi Y) \beta+\left(\phi^{2} Y\right) \alpha\right) \tag{4.5}
\end{align*}
$$

$$
\begin{aligned}
& +\alpha \eta(X)\left(\left(\frac{r}{2}+\xi \beta-\left(\alpha^{2}-\beta^{2}\right)\right) g(Z, \phi Y)-\left((\phi Y) \beta+\left(\phi^{2} Y\right) \alpha\right) \eta(Z)\right) \\
& +\beta g(\phi Z, X)\left((\phi Y) \beta+\left(\phi^{2} Y\right) \alpha\right) \\
& +\beta \eta(X)\left(\left(\frac{r}{2}+\xi \beta-\left(\alpha^{2}-\beta^{2}\right)\right)(g(Z, Y)-\eta(Z) \eta(Y))\right) \\
& -\left(\frac{r}{2}+\xi \beta-\left(\alpha^{2}-\beta^{2}\right)\right)\left(g\left(\nabla_{Z} X, Y\right)-\eta\left(\nabla_{Z} X\right) \eta(Y)\right) \\
& +\alpha g(Z, Y)\left((\phi X) \beta+\left(\phi^{2} X\right) \alpha\right) \\
& +\alpha \eta(Y)\left(\left(\frac{r}{2}+\xi \beta-\left(\alpha^{2}-\beta^{2}\right)\right) g(Z, \phi X)-\left((\phi X) \beta+\left(\phi^{2} X\right) \alpha\right) \eta(Z)\right) \\
& +\beta g(\phi Z, Y)\left((\phi X) \beta+\left(\phi^{2} X\right) \alpha\right) \\
& +\beta \eta(Y)\left(\left(\frac{r}{2}+\xi \beta-\left(\alpha^{2}-\beta^{2}\right)\right)(g(Z, X)-\eta(Z) \eta(X))\right) \\
& -\left(\frac{r}{2}+\xi \beta-\left(\alpha^{2}-\beta^{2}\right)\right)\left(g\left(X, \nabla_{Z} Y\right)-\eta(X) \eta\left(\nabla_{Z} Y\right)\right)
\end{aligned}
$$

The above relation can be written as

$$
\begin{align*}
&\left(\nabla_{Z} S\right)(\phi X, \phi Y) \\
&=\left(\frac{1}{2} d r(Z)+\nabla_{Z}(\xi \beta)-2 \alpha d \alpha(Z)+2 \beta d \beta(Z)\right)(g(X, Y)-\eta(X) \eta(Y)) \\
&+\left(\frac{r}{2}+\xi \beta-\left(\alpha^{2}-\beta^{2}\right)\right)\left(\nabla_{Z} g(X, Y)-\left(\nabla_{Z} \eta(X)\right) \eta(Y)-\eta(X)\left(\nabla_{Z} \eta(Y)\right)\right. \\
&+\alpha \eta(X) g(Z, \phi Y)+\beta \eta(X)(g(Z, Y)-\eta(Z) \eta(Y))-g\left(\nabla_{Z} X, Y\right) \\
&+\eta\left(\nabla_{Z} X\right) \eta(Y)+\alpha \eta(Y) g(Z, \phi X)+\beta \eta(Y)(g(Z, X)-\eta(Z) \eta(X)) \\
&\left.\quad-g\left(X, \nabla_{Z} Y\right)+\eta(X) \eta\left(\nabla_{Z} Y\right)\right) \tag{4.6}\\
&+\left((\phi Y) \beta+\left(\phi^{2} Y\right) \alpha\right)(\alpha g(Z, X)+\beta g(\phi Z, X)-\alpha \eta(X) \eta(Z)) \\
&+\left((\phi X) \beta+\left(\phi^{2} X\right) \alpha\right)(\alpha g(Z, Y)+\beta g(\phi Z, Y)-\alpha \eta(Y) \eta(Z))
\end{align*}
$$

Suppose that α and β are constants. Then using (2.7) in (4.6), we obtain

$$
\begin{equation*}
\left(\nabla_{Z} S\right)(\phi X, \phi Y)=\frac{1}{2} d r(Z)(g(X, Y)-\eta(X) \eta(Y)) \tag{4.7}
\end{equation*}
$$

Hence, from (4.7) we can state the following:

Theorem 4.1. A 3-dimensional connected trans-Sasakian manifold of type (α, β) has η-parallel Ricci tensor if and only if the scalar curvature of the manifold is constant provided α and β are constants.

From Theorem 3.1 and Theorem 4.1 we can state the following:
Corollary 4.1. A 3-dimensional connected trans-Sasakian manifold of type (α, β) has η-parallel Ricci tensor if and only if it is locally ϕ-symmetric provided α and β are constants.

5. Three-dimensional trans-Sasakian manifold with CONSTANT CURVATURE

Let M be a 3 -dimensional compact connected trans-Sasakian manifold. If the manifold is of constant curvature then the Ricci tensor of type $(0,2)$ of the manifold is given by

$$
\begin{equation*}
S(X, Y)=2 \lambda g(X, Y), \tag{5.1}
\end{equation*}
$$

where λ is a constant. Putting $Y=\xi$ in (5.1) and using (2.9), we get

$$
\begin{equation*}
X \beta+(\phi X) \alpha+\left[2\left(\lambda-\alpha^{2}+\beta^{2}\right)+\xi \beta\right] \eta(X)=0 . \tag{5.2}
\end{equation*}
$$

For $X=\xi$, (5.2) yields

$$
\begin{equation*}
\xi \beta=-\left(\lambda-\alpha^{2}+\beta^{2}\right) . \tag{5.3}
\end{equation*}
$$

By virtue of (5.2) and (5.3) it follows that

$$
\begin{equation*}
X \beta+(\phi X) \alpha+\left(\lambda-\alpha^{2}+\beta^{2}\right) \eta(X)=0 \tag{5.4}
\end{equation*}
$$

The gradient of the function β is related to the exterior derivative $d \beta$ by the formula

$$
\begin{equation*}
d \beta(X)=g(\operatorname{grad} \beta, X) \tag{5.5}
\end{equation*}
$$

Using (5.5) in (5.4) we obtain

$$
\begin{equation*}
d \beta(X)+g(\operatorname{grad} \alpha, \phi X)+\left(\lambda-\alpha^{2}+\beta^{2}\right) \eta(X)=0 . \tag{5.6}
\end{equation*}
$$

Differentiating (5.6) covariantly with respect to Y we get

$$
\begin{align*}
\left(\nabla_{Y} d \beta\right)(X) & +g\left(\nabla_{Y} \operatorname{grad} \alpha, \phi X\right)+g\left(\operatorname{grad} \alpha,\left(\nabla_{Y} \phi\right) X\right) \\
& +Y\left(\beta^{2}-\alpha^{2}\right) \eta(X)+\left(\lambda-\alpha^{2}+\beta^{2}\right)\left(\nabla_{Y} \eta\right)(X)=0 . \tag{5.7}
\end{align*}
$$

Interchanging X and Y in (5.7), we get

$$
\begin{align*}
\left(\nabla_{X} d \beta\right)(Y) & +g\left(\nabla_{X} \operatorname{grad} \alpha, \phi Y\right)+g\left(\operatorname{grad} \alpha,\left(\nabla_{X} \phi\right) Y\right) \\
& +X\left(\beta^{2}-\alpha^{2}\right) \eta(Y)+\left(\lambda-\alpha^{2}+\beta^{2}\right)\left(\nabla_{X} \eta\right)(Y)=0 \tag{5.8}
\end{align*}
$$

Subtracting (5.7) from (5.8) we get

$$
\begin{align*}
g\left(\nabla_{X} \operatorname{grad} \alpha, \phi Y\right) & -g\left(\nabla_{Y} \operatorname{grad} \alpha, \phi X\right)+\left(\left(\nabla_{X} \phi\right) Y-\left(\nabla_{Y} \phi\right) X\right) \alpha \\
& +\left[X\left(\beta^{2}-\alpha^{2}\right) \eta(Y)-Y\left(\beta^{2}-\alpha^{2}\right) \eta(X)\right] \tag{5.9}\\
& +\left(\lambda-\alpha^{2}+\beta^{2}\right)\left(\left(\nabla_{X} \eta\right)(Y)-\left(\nabla_{Y} \eta\right)(X)\right)=0
\end{align*}
$$

From (2.7) and (2.4) we get

$$
\begin{equation*}
\left(\nabla_{X} \eta\right)(Y)-\left(\nabla_{Y} \eta\right)(X)=\alpha(\Phi(X, Y)-\Phi(Y, X))=2 \alpha \Phi(X, Y) \tag{5.10}
\end{equation*}
$$

Using (5.10) in (5.9) we have

$$
\begin{align*}
g\left(\nabla_{X} \operatorname{grad} \alpha, \phi Y\right) & -g\left(\nabla_{Y} \operatorname{grad} \alpha, \phi X\right)+\left(\left(\nabla_{X} \phi\right) Y-\left(\nabla_{Y} \phi\right) X\right) \alpha \\
& +\left[X\left(\beta^{2}-\alpha^{2}\right) \eta(Y)-Y\left(\beta^{2}-\alpha^{2}\right) \eta(X)\right] \tag{5.11}\\
& +2\left(\lambda-\alpha^{2}+\beta^{2}\right) \alpha \Phi(X, Y)=0
\end{align*}
$$

Let $\left\{E_{0}, E_{1}, E_{2}\right\}$ be a local ϕ-basis, that is, an orthonormal frame such that $E_{0}=\xi$ and $E_{2}=\phi E_{1}$. In (2.5) putting $X=E_{1}, Y=E_{2}$ we get

$$
\begin{align*}
\left(\nabla_{E_{1}} \phi\right) E_{2} & =\alpha\left(g\left(E_{1}, E_{2}\right) \xi-\eta\left(E_{2}\right) E_{1}\right)+\beta\left(g\left(\phi E_{1}, E_{2}\right) \xi-\eta\left(E_{2}\right) \phi E_{1}\right) \tag{5.12}\\
& =\beta g\left(\phi E_{1}, E_{2}\right) \xi=\beta \xi .
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\left(\nabla_{E_{2}} \phi\right) E_{1}=-\beta \xi \tag{5.13}
\end{equation*}
$$

Now,

$$
\begin{equation*}
\Phi\left(E_{1}, E_{2}\right)=g\left(E_{1}, \phi E_{2}\right)=g\left(E_{1}, \phi^{2} E_{1}\right)=-1 \tag{5.14}
\end{equation*}
$$

In (5.11) putting $X=E_{1}$ and $Y=E_{2}$ and using (5.12), (5.13) and (5.14) we obtain

$$
\begin{equation*}
g\left(\nabla_{E_{1}} \operatorname{grad} \alpha, E_{1}\right)+g\left(\nabla_{E_{2}} \operatorname{grad} \alpha, E_{2}\right)=2 \beta \xi \alpha-2 \alpha\left(\lambda-\alpha^{2}+\beta^{2}\right) \tag{5.15}
\end{equation*}
$$

Also (2.8) can be written as

$$
\begin{equation*}
g(\operatorname{grad} \alpha, \xi)=-2 \alpha \beta \tag{5.16}
\end{equation*}
$$

Differentiating (5.16) covariantly with respect to ξ we get

$$
\begin{equation*}
g\left(\nabla_{\xi} \operatorname{grad} \alpha, \xi\right)+g\left(\operatorname{grad} \alpha, \nabla_{\xi} \xi\right)=-2 \beta \xi \alpha-2 \alpha \xi \beta \tag{5.17}
\end{equation*}
$$

In view of (5.3) we can write the above relation as

$$
\begin{equation*}
g\left(\nabla_{\xi} \operatorname{grad} \alpha, \xi\right)=-2 \beta \xi \alpha+2 \alpha\left(\lambda-\alpha^{2}+\beta^{2}\right) \tag{5.18}
\end{equation*}
$$

From (5.15) and (5.18) we get $\triangle \alpha=0$, where \triangle is the Laplacian defined by

$$
\triangle \alpha=\sum_{i=0}^{2} g\left(\nabla_{E_{i}} \operatorname{grad} \alpha, E_{i}\right)
$$

Since M is compact we get α is constant.
Now let us consider the following two cases:
CASE-I: In this case we suppose that α is non-zero constant then by (2.8), $\beta=0$ every where on M.

Case-II: In this case let $\alpha=0$. Then from (5.4)

$$
X \beta+\left(\lambda+\beta^{2}\right) \eta(X)=0
$$

that is,

$$
g(\operatorname{grad} \beta, X)+\left(\lambda+\beta^{2}\right) g(X, \xi)=0
$$

Therefore,

$$
\begin{equation*}
\operatorname{grad} \beta+\left(\lambda+\beta^{2}\right) \xi=0 \tag{5.19}
\end{equation*}
$$

Differentiating (5.19) covariantly with respect to X we have

$$
\nabla_{X} \operatorname{grad} \beta+\left(X \beta^{2}\right) \xi+\left(\lambda+\beta^{2}\right) \nabla_{X} \xi=0
$$

Using (2.6) we get from above

$$
\nabla_{X} \operatorname{grad} \beta+\left(X \beta^{2}\right) \xi+\left(\lambda+\beta^{2}\right)(-\alpha \phi X+\beta(X-\eta(X) \xi))=0
$$

Now taking inner product of the above equation with X, we have

$$
\begin{align*}
g\left(\nabla_{X} \operatorname{grad} \beta, X\right)= & -g\left(\left(X \beta^{2}\right) \xi, X\right) \\
& -\left(\lambda+\beta^{2}\right)(g(-\alpha \phi X, X)+\beta g(X-\eta(X) \xi, X)) \tag{5.20}
\end{align*}
$$

Therefore putting $X=E_{i}$ and taking summation over $i, i=0,1,2$, we get from above

$$
\begin{equation*}
\triangle \beta=-2 \beta\left(\xi \beta+\lambda+\beta^{2}\right) \tag{5.21}
\end{equation*}
$$

For $\alpha=0,(5.3)$ yields $\xi \beta=-\left(\lambda+\beta^{2}\right)$, which in view of (5.21) gives $\triangle \beta=0$. Hence $\beta=$ constant, M being compact. This leads to the following:

THEOREM 5.1. If a 3 -dimensional compact connected trans-Sasakian manifold is of constant curvature then it is either α-Sasakian or β-Kenmotsu.

6. EXAMPLE OF A LOCALLY ϕ-SYMMETRIC THREE-DIMENSIONAL TRANS-SASAKIAN MANIFOLD

We consider the three-dimensional manifold $M=\left\{(x, y, z) \in \mathbb{R}^{3}, z \neq 0\right\}$, where (x, y, z) are the standard coordinates in \mathbb{R}^{3}. The vector fields

$$
e_{1}=z \frac{\partial}{\partial x}, \quad e_{2}=z \frac{\partial}{\partial y}, \quad e_{3}=z \frac{\partial}{\partial z}
$$

are linearly independent at each point of M. Let g be the Riemannian metric defined by

$$
g\left(e_{1}, e_{3}\right)=g\left(e_{2}, e_{3}\right)=g\left(e_{1}, e_{2}\right)=0, \quad g\left(e_{1}, e_{1}\right)=g\left(e_{2}, e_{2}\right)=g\left(e_{3}, e_{3}\right)=1
$$

Let η be the 1-form defined by $\eta(Z)=g\left(Z, e_{3}\right)$ for any $Z \in \chi(M)$. Let ϕ be the $(1,1)$ tensor field defined by $\phi\left(e_{1}\right)=-e_{2}, \phi\left(e_{2}\right)=e_{1}, \phi\left(e_{3}\right)=0$. Then using the linearity of ϕ and g we have

$$
\eta\left(e_{3}\right)=1, \quad \phi^{2} Z=-Z+\eta(Z) e_{3}, \quad g(\phi Z, \phi W)=g(Z, W)-\eta(Z) \eta(W)
$$

for any $Z, W \in \chi(M)$. Thus for $e_{3}=\xi,(\phi, \xi, \eta, g)$ defines an almost contact metric structure on M. Now, by direct computations we obtain

$$
\left[e_{1}, e_{2}\right]=0, \quad\left[e_{2}, e_{3}\right]=-e_{2}, \quad\left[e_{1}, e_{3}\right]=-e_{1}
$$

The Riemannian connection ∇ of the metric g is given by the Koszul's formula which is

$$
\begin{align*}
2 g\left(\nabla_{X} Y, Z\right)= & X g(Y, Z)+Y g(Z, X)-Z g(X, Y) \tag{6.1}\\
& -g(X,[Y, Z])-g(Y,[X, Z])+g(Z,[X, Y])
\end{align*}
$$

Using (6.1) we have

$$
\begin{aligned}
& 2 g\left(\nabla_{e_{1}} e_{3}, e_{1}\right)=2 g\left(-e_{1}, e_{1}\right) \\
& 2 g\left(\nabla_{e_{1}} e_{3}, e_{2}\right)=0=2 g\left(-e_{1}, e_{2}\right) \\
& 2 g\left(\nabla_{e_{1}} e_{3}, e_{3}\right)=0=2 g\left(-e_{1}, e_{3}\right)
\end{aligned}
$$

Hence, $\nabla_{e_{1}} e_{3}=-e_{1}$. Similarly, $\nabla_{e_{2}} e_{3}=-e_{2}$ and $\nabla_{e_{3}} e_{3}=0$.
(6.1) further yields

$$
\begin{array}{ll}
\nabla_{e_{1}} e_{2}=0, & \nabla_{e_{1}} e_{1}=e_{3} \\
\nabla_{e_{2}} e_{2}=e_{3}, & \nabla_{e_{2}} e_{1}=0 \\
\nabla_{e_{3}} e_{2}=0, & \nabla_{e_{3}} e_{1}=0
\end{array}
$$

We see that

$$
\begin{align*}
\left(\nabla_{e_{1}} \phi\right) e_{1} & =\nabla_{e_{1}} \phi e_{1}-\phi \nabla_{e_{1}} e_{1}=-\nabla_{e_{1}} e_{2}-\phi e_{3}=-\nabla_{e_{1}} e_{2}=0 \\
& =0\left(g\left(e_{1}, e_{1}\right) e_{3}-\eta\left(e_{1}\right) e_{1}\right)-1\left(g\left(\phi e_{1}, e_{1}\right) e_{3}-\eta\left(e_{1}\right) \phi e_{1}\right) \tag{6.2}\\
\left(\nabla_{e_{1}} \phi\right) e_{2} & =\nabla_{e_{1}} \phi e_{2}-\phi \nabla_{e_{1}} e_{2}=\nabla_{e_{1}} e_{1}-0=e_{3} \\
& =0\left(g\left(e_{1}, e_{2}\right) e_{3}-\eta\left(e_{2}\right) e_{1}\right)-1\left(g\left(\phi e_{1}, e_{2}\right) e_{3}-\eta\left(e_{2}\right) \phi e_{1}\right) \tag{6.3}\\
\left(\nabla_{e_{1}} \phi\right) e_{3} & =\nabla_{e_{1}} \phi e_{3}-\phi \nabla_{e_{1}} e_{3}=0+\phi e_{1}=-e_{2} \tag{6.4}\\
& =0\left(g\left(e_{1}, e_{3}\right) e_{3}-\eta\left(e_{3}\right) e_{1}\right)-1\left(g\left(\phi e_{1}, e_{3}\right) e_{3}-\eta\left(e_{3}\right) \phi e_{1}\right)
\end{align*}
$$

By (6.2), (6.3) and (6.4) we see that the manifold satisfies (2.5) for $X=e_{1}$, $\alpha=0, \beta=-1$, and $e_{3}=\xi$. Similarly it can be shown that for $X=e_{2}$ and $X=e_{3}$ the manifold also satisfies (2.5) for $\alpha=0, \beta=-1$, and $e_{3}=\xi$. Hence the manifold is a trans-Sasakian manifold of type $(0,-1)$. With the help of the above results it can be verified that

$$
\begin{array}{lll}
R\left(e_{1}, e_{2}\right) e_{3}=0, & R\left(e_{2}, e_{3}\right) e_{3}=-e_{2}, & R\left(e_{1}, e_{3}\right) e_{3}=-e_{1} \\
R\left(e_{1}, e_{2}\right) e_{2}=-e_{1}, & R\left(e_{2}, e_{3}\right) e_{2}=e_{3}, & R\left(e_{1}, e_{3}\right) e_{2}=0 \\
R\left(e_{1}, e_{2}\right) e_{1}=e_{2}, & R\left(e_{2}, e_{3}\right) e_{1}=0, & R\left(e_{1}, e_{3}\right) e_{1}=e_{3}
\end{array}
$$

From which it follows that $\phi^{2}\left(\nabla_{W} R\right)(X, Y) Z=0$. Hence the 3-dimensional trans-Sasakian manifold is locally ϕ-symmetric.

Also from the above expressions of the curvature tensor we obtain the scalar curvature $r=-3$. Hence we note that here α, β and r all are constants. Hence from Theorem 3.1 it follows that the manifold under consideration is locally ϕ-symmetric.

Acknowledgements

The authors are thankful to the referee for his valuable suggestions and remarks in the improvement of the paper.

References

[1] D. E. Blair, "Contact Manifolds in Riemannian Geometry", Lecture Notes in Mathematics, Vol. 509, Springer-Verlag, Berlin-New York, 1976.
[2] D. E. Blair, J. A. Oubiña, Conformal and related changes of metric on the product of two almost contact metric manifolds, Publ. Mat. 34 (1) (1990), 199-207.
[3] D. Chinea, C. Gonzales, A classification of almost contact metric manifolds, Ann. Mat. Pura Appl. (4) 156 (1990), 15-36.
[4] D. Chinea, C. Gonzales, Curvature relations in trans-Sasakian manifolds, (Spanish), in "Proceedings of the XII ${ }^{t h}$ Portuguese-Spanish Conference on Mathematics, Vol. II, (Portuguese), Braga, 1987," Univ. Minho, Braga, (1987), 564-571.
[5] U. C. De, On ϕ-symmetric Kenmotsu manifolds, Int. Electron. J. Geom. 1 (1) (2008), 33-38.
[6] U. C. De, M. M. Tripathi, Ricci tensor in 3-dimensional trans-Sasakian manifolds, Kyungpook Math. J. 43 (2) (2003),247-255.
[7] A. Gray, L. M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat, Pura Appl. (4) 123 (1980), 35-58.
[8] D. Janssens, L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J. 4 (1) (1981), 1-27.
[9] M. Kon, Invariant submanifolds in Sasakian manifolds, Math. Ann. 219 (3) (1976), 277-290.
[10] J. C. Marrero, The local structure of trans-Sasakian manifolds, Ann. Mat. Pura Appl. (4) 162 (1992), 77-86.
[11] J. C. Marrero, D. Chinea, On trans-Sasakian manifolds, (Spanish), in "Proceedings of the XIV ${ }^{\text {th }}$ Spanish-Portuguese Conference on Mathematics, Vol. I-III, (Spanish), Puerto de la Cruz, 1989", Univ. La Laguna, La Laguna, 1990, 655-659.
[12] R. S. Mishra, Almost contact metric manifolds, Monograph 1, Tensor Society of India, Lucknow, 1991.
[13] J. A. OubiñA, New classes of almost contact metric structures, Publ. Math. Debrecen 32 (3-4) (1985), 187-193.
[14] T. Takahashi, Sasakian ϕ-symmetric spaces, Tohoku Math. J. (2) 29 (1) (1977), 91-113.
[15] M. M. Tripathi, Trans-Sasakian manifolds are generalized quasi-Sasakian, Nepali Math. Sci. Rep. 18 (1-2) (1999/2000), 11-14.

