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Abstract. Working in a framework originating with Brownian motion and its ex-

cursions, this paper establishes a two-step Laplace inversion method for determining a

function which is known through its transform after a convolution with another function

with a known transform. The first step here has as its domain the class of parabolic

cylinder functions, and it develops analytic Laplace inversion of their reciprocals. The

second step pertains to convolutions on the positive reals with analytic factors where

one of them is of exponential-order decay to zero at the origin; it develops two Laplace-

inversion-based methods for handling these by asymptotic expansions. The results are

shown to have applications to finance, yielding series representations and asymptotic

expansions for the valuation and hedging of Parisian barrier options.

1. Introduction. This paper is about three mutually connected issues. First, from

an analytic point of view, a two-step approach is established for isolating a function out

of a convolution in the situation of a known Laplace transform of the convolution and of

the complementary factor of the function therein, and an integral part of this approach

includes two methods for handling convolutions by way of asymptotic expansions. The

results have immediate applications to finance, and the second issue to be considered

is the means for the valuation and hedging of a class of barrier options, the Parisian

barrier options, they afford. Structurally, the first issue originates with Brownian motion,

and the third contribution is to shed light on the explicit structure of minimal-length

excursions of this stochastic process.

The functions to be studied, to be denoted by Hα,γ , are defined on the positive reals.

They depend on two complex parameters, α and γ, with α together with its square

to be contained in the right-hand half-plane, and they are given only by their Laplace
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550 MICHAEL SCHRÖDER

transforms, namely:

L(Hα,γ)(z)
def
=

∫ ∞

0

exp(−uz)Hα,γ(u) du , Re(z) � 0 .

These Laplace transforms originate in the explicitly given product:

Ψ(
√
z )L(Hα,γ)(z) =

exp(−α
√
z)√

z(
√
z+γ)

Ψ(−
√
z ) , Re(z) � 0 ,

where Ψ is the parabolic cylinder function given by

Ψ(w) =

∫ ∞

0

x exp
(
− 1

2x
2+wx

)
dx ,

for any complex w. The defining equation of the Laplace transforms originates with a

study of Azéma’s martingales in [1], [2] by way of [10] and [11], where this theory is

combined with that of the Brownian meander. It suffices to say that the distinguished

role of the function Ψ here is that it encodes the motivating excursion-theoretic aspects.

Its reciprocal is equal to the moment generating function of the random variable which

characterizes occurence, or non-occurrence, of a minimal-length excursion of Brownian

motion below the value 0, within a given time interval.

A first step in obtaining the functions Hα,γ explicitly consists in seeking the inversion

of the transcendental function denominator, Ψ(
√
z ), of their Laplace transforms. This is

addressed in Section 4, where we exploit the symmetry of the problem, as expressed by

a functional equation for Ψ. We perform a Laplace inversion of this reciprocal using a

geometric series. The result for Hα,γ is a finite-length expansion in terms of convolutions

of the form

ϕ ∗ ν

with ϕ, morally, the Laplace inverse of the right-hand side of the Laplace equation

defining Hα,γ and ν as a function real-analytic on (0,∞).

As a second step of our analytic inversion we develop expansions for these convolutions.

The first method is to expand the factor L(ν) of L(ϕ ∗ ν) into its Taylor series and

establish when term-by-term Laplace inversion affords a convergent series representation

of ϕ ∗ ν (see Section 5 for details, in particular for how the latter series are in terms of

the integral-order derivatives of ϕ). The second method to be established also focuses

on the factor L(ν) of L(ϕ ∗ ν) and demonstrates how its asymptotic expansions near ∞
induce, under Laplace inversion, asymptotic expansions near 0 of ϕ ∗ ν which keep error

terms effective (see Section 6 for details).

The results obtained yield series representations and asymptotic expansions for the

valuation of Parisian barrier options (see [10] and [11]) as well as their hedging. We

illustrate the situation of the so-called ‘first standard case’ in Section 3. This is done

in order to connect with the second issue of the paper, in view of the recent increase

in applications of the notion of Parisian-style delays, now also in insurance (see for

example [9]).
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2. A list of functions. The following three functions in the real variable u on (0,∞),

the positive reals, are of constant use in this paper. For any complex α, γ with Re(α),

Re(α2) > 0,

gα,γ(u) = exp(αγ+γ2u)Erfc
(
ηα,γ(u)

)
where ηα,γ(u) =

α/2√
u
+β

√
u ,

and with Erfc (z) = (2/
√
π )

∫
[z,∞) exp(−x2) dx and

fα,γ(u) =
1√
πu

exp
(
− (α/2)2

u

)
−γ gα,γ(u) ,

and, for any integer n ≥ 0, the functions νn given as n-fold convolutions by

νn = ν∗(n) where ν(u) = (2/
√
π )

√
u

2u+1
,

with the convention that ν0 is the Dirac delta function at 0; see also Appendix A.

3. A motivation from finance. Paris barrier options furnish a particular class of

barrier options distinguished by seeking to cushion the impact of the price S of their

underlying security hitting their barrier L ≥ 0. The new idea for this is as follows: these

options require S to spend a minimum time D uninterruptedly above or below L before

the option is knocked in or knocked out.

Drawing on [11], Sections 2, 4.2, and 5, the valuation of Paris barrier options reduces

to that of the Paris down-and-in call. Referred to as the Paris barrier option in the

sequel, this is the following European style contingent claim on S written at time t0 and

with maturity date T . Its payoff at T is that of a call option on S with exercise price K,

namely φ(ST ) = max{0, ST−K} if the following holds: S is below L during a connected

time subperiod of length at least D > 0 of the monitoring period [t0, T ] of the option.

For studying Paris barrier options we work in the Black-Scholes framework where the

price S of a risky security is assumed to follow the process

Su = exp((r−δ− 1
2σ

2)u+σBu) , u ∈ [0,∞) .

Here B is a Brownian motion with respect to the risk neutral measure on the proba-

bility space underlying the model. To explain the constants, r > 0 is the continuously

compounding interest rate of a riskless security, a bond; δ depends on the risky security

modelled and, for example, is equal to the dividend rate if S is the price of a stock; finally,

σ > 0 is the volatility of S. Combining the arbitrage pricing principle of risk neutral

valuation with the basic valuation identity of [10], Section 4 (which technically speaking

also entails changing by a Girsanov transformation from the given risk neutral measure

to the measure Q for which the process X = (1/σ) logS is a Q-Brownian motion), the

value Cd-i of the Paris barrier option at an arbitrary time t of the monitoring period is

then given by

Cd-i = e−(r+�2/2)τ

∫ ∞

υ(St)

e�x(Ste
σx −K)h∗

b(τ, x) dx .

Here  = (1/σ)(r−δ−σ2/2) and τ = T −t, we set υ(St) = (1/σ) log(K/St), and h∗
b ,

with b = (1/σ) log(L/St) = a−Xt, is a function on [0,∞)×R, the normalized excursion
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552 MICHAEL SCHRÖDER

law. This law is the object of study of [10], following [11], where it was determined at

the level of Laplace transforms. In the present paper we concentrate on the situation:

today’s stock price St is equal to or above the options’ barrier L > 0, whence b ≤ 0, and

the barrier is equal to or placed below the options’ strike price K > 0, whence υ(St) ≥ b;

we exclude the case where L and K are both equal to St. Then, [10], Proposition 2,

p. 858 asserts

hb(u, y) = (1/(2
√
D ))L−1

( 1

Ψ(
√
z )

exp
(
(b/

√
D )

√
z
)

√
z

I−(y, z)
)( u

2D

)
,

for any real number u > 0, where for y ≥ υ(St),

I−(y, z) :=

∫ ∞

0

x exp
(
− 1

2x
2−

∣∣x+ y − b√
D

∣∣√z
)
dx = exp

(
− y−b√

D

√
z
)
Ψ
(
−
√
z
)
,

and the following reduction of the valuation problem occurs by direct computation.

Proposition 3.1. With the assumptions of this section we have the representation

exp((r +2/2)τ )Cd-i = StH
∗
�+σ

(
τ/(2D)

)
−KH∗

�

(
τ/(2D)

)
,

where H∗
c , for any real c, is defined by Hc(u) =

∫
[υ(St),∞]

exp(cy)h∗
b(2Du, y) dy as a map

on [0,∞), and, on setting α(y) = −(2b−y)/
√
D, is given as a Laplace inverse by

H∗
c (u) =

1
2exp

(
cv(St)

)
L−1

(exp (− α
(
v(St)

)√
z
)

√
z (

√
z −c

√
D )

Ψ(−√
z )

Ψ(
√
z )

)
(u) , u ∈ (0,∞).

The hedging of Paris barrier options is demonstrated by way of their Delta hedg-

ing as follows.

Proposition 3.2. With the assumptions of this section we have for Δd-i = ∂St
Cd-i, the

Delta of the Paris barrier option, the following representation:

exp((r +2/2)τ )Δd-i =
((
1−c/σ

)
H∗

c − 1/(σ
√
D )L∗

c

)∣∣
c=�+σ

(
τ/(2D)

)
+ (K/St)

(
(c/σ)H∗

c + 1/(σ
√
D )L∗

c

)∣∣
c=�

(
τ/(2D)

)

with the definition L∗
c = σ

√
DSt ∂St

H∗
c + c

√
DH∗

c (u), for any real c > 0.

Hence a reduction occurs of Cd-i and its partial derivatives to the functions H∗
c and

their partial derivatives, related to the functions of the introduction by way of

2H∗
c = exp

(
cv(St)

)
Hα,γ where α = −(2b−v(St))/

√
D and γ = −c

√
D .

We develop a two-layered approach to this in Sections 4 to 6.

4. First layer results: Finite convolution expansions. The first layer of our two

layer representation demonstrates how to take care of the higher transendental function

denominator of the Laplace transforms defining Hα,γ , for any complex α, γ with Re(α),

Re(α2) > 0, and constructs the functions Hα,γ as linear combinations of finitely many

convolutions. Our precise result is as follows.
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Theorem 4.1. With the assumptions of this section we have for the value of an arbitrary

functionHα,γ at τ ≥ 0 the following representation in terms of finitely many convolutions:

Hα,γ(τ ) =
∑

1≤n<2τ

(−1)n−1

(2π)n/2
(gα,γ ∗ νn)(τ − n

2
),

where the sum is over the finitely many integers n ≥ 1 satisfying n < 2τ .

This result is established in Section 4.2 using analytic Laplace inversion. The dif-

ficulties here arise from irrationalities encoding the excursion theoretic aspects of the

construction as given expression to by the reciprocal of the function Ψ in the Laplace

transform of Hα,γ . The idea of our representation is to resolve these irrationalities by

way of summing convolutions. This is done by adding at any integer time n+1 a new

layer as follows: a fixed function is convolved with the n-fold convolution νn of another

fixed function.

Referring to Section 3, for Paris barrier options our representations thus, in particular,

identify how the effect of the excursion source on the Paris options’ value and the options’

Delta is built up over time. The precise result, in financial terms sufficient for addressing

the valuation and Delta hedging of the instruments in the situation of Section 3 by way

of Propositions 3.1 and 3.2 resepctively, is as follows.

Corollary 4.2. With the assumptions of this section, the values of the functions H∗
c

and L∗
c at arbitrary real τ ≥ 0 are given in terms of finitely many convolutions as follows:

H∗
c (τ ) =

1
2exp(cυ(St))

∑
1≤n< τ

D

(−1)n−1

(2π)n/2
(gα(υ(St)),−c

√
D ∗ νn)(

τ

2D
− n

2
),

L∗
c(τ ) =

1
2exp(cυ(St))

∑
1≤n< τ

D

(−1)n−1

(2π)n/2
(fα(υ(St)),−c

√
D ∗ νn)(

τ

2D
− n

2
),

where the sums are over the finitely many integers n ≥ 1 satisfying n < τ/D.

4.1. The key result for Laplace inversion. The key difficulty in our analytic inversion

proofs of the first layer representations is as follows: finding ways to handle the reciprocal

of the function Ψ at square root arguments
√
z. In this section we therefore develop,

first, how this reciprocal becomes a Laplace transform if suitably weighted. Second, we

establish how the Laplace inversion of these functions is then effected by a series in terms

of the Section A.2 functions νn. Furnishing a first and decisive step for establishing our

representations, our precise result is as follows.

Theorem 4.3. Let R be any function defined on a half-plane sufficiently deep within the

right-hand complex half-plane, and assume that it is a Laplace transform and satisfies

R(z) = O(|z|−a) as z tends to ∞ in the right-hand half-plane with a real a > 1/2. For

any real α ≥ 0, we then have

L−1

(
e−αz R(z)

Ψ(
√
z )

)
= ΥR,

with the function ΥR for any real u > 0 given by

ΥP (u) =
∑∞

n=1

(−1)n−1

(2π)n/2
1(

α+n
2 ,∞

)(u)(L−1
(R(z)√

z

)
∗ νn−1

)(
u−α− n

2

)
,
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where only the summands corresponding to n < 2(u−α) are different from 0.

At the base of this result is the fact that Ψ satisfies a functional equation, the key

identity, from Appendix B recalled to assert for any complex w:

Ψ(w) = Ψ(−w) +
√
π w exp( 12w) .

For the proof of the theorem, first reduce to the case α = 0 using the shifting theorem

for the Laplace transform. As the key step for the analytic Laplace inversion, develop

the reciprocal of Ψ(
√
z ) into a geometric series in terms of the powers of Ψ(−√

z ). Start

by writing the above key identity for Ψ in the following equivalent form:

Ψ(
√
z ) =

(
1/f(z)

)(
1− p(z)

)
,

with the definitions

f(z) = exp(−z/2)/
√
2πz and p(z) = −f(z)Ψ(−

√
z ).

Recall from Appendix B the leading term expansion Ψ(−√
z ) = O(|z|−1) as z tends to

∞ in the complex plane with R≤0 deleted. Hence choose a0 so large that |f(z)| < 1 and

|Ψ(−
√
z )| < 1 for all |z| > a0. Since then |p(z)| < 1, too, develop the fraction factor of

1

Ψ(
√
z )

= f(z)
1

1− p(z)

as a geometric series. Thus obtain

1
/
Ψ(

√
z ) = f(z)

∑∞

n=0
pn(z) = f(z)

∑∞

n=0
(−1)nfn(z)Ψn(−

√
z ).

Rewriting this series in terms of the Section A.2 functions Nn, for | arg(z)| < π equal to

Nn(z) = Ψn(−z1/2)/zn/2, the function to be Laplace inverted is given by the series

R(z)

Ψ(
√
z )

=
R(z)√
2πz

∞∑
n=0

(−1)n

(2π)n/2
exp

(
− n+1

2
z
)
Nn(z) .

Granting for a moment that Laplace inversion of this series can be effected term by term,

the Laplace inverse is thus obtained as a series as follows:

L−1
( R(z)

Ψ(
√
z )

)
(u) =

∞∑
n=0

(−1)n

(2π)n/2
1(n+1

2 ,∞
)(u)L−1

( R(z)√
2πz

Nn(z)
)(

u− n+1

2

)
,

for any real u > 0. Using the product theorem for the Laplace transform, the Laplace

inversion is reduced to that of the functions Nn. Applying Proposition A.1 of Appen-

dix A, these correpond to the functions νn, and the expression for ΥR of the theorem

follows. It therefore remains to justify taking the inverse Laplace operator through the

series.

For this justification, appeal to the complex inversion formula and interpret L−1 as

given by contour integration over {Re(z) = c} for any sufficiently big positive real c:

L−1
( R(z)

Ψ(
√
z )

)
(u) = (1/(2πi))

∫ c+i∞

c−i∞
ezu

R(z)

Ψ(
√
z )

dz .

The idea is to construct a majorizing function for the integrand by adapting the contour

in three stages as follows.
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Having assured the convergence of the series in a half-plane {Re(z) > a0}, in par-

ticular, first choose c larger than this a0. The convergence of the series to be Laplace

inverted thus assured, majorizing it on the inversion contour term by term reduces to

majorizing the Nn factors there. To get a hold of the Ψ-numerators of Nn, appeal once

more to the leading term expansion of Ψ recalled above and further enlarge c if necessary

such that Ψ(−ξ1/2) is now bounded in absolute value by three times the absolute value

of the leading term for any Re(ξ) = c. The following majorization thus results:∣∣∣ 1

Ψ(
√
z )

∣∣∣ ≤ exp(−c/2)√
2π|z|

∑∞

n=0
qn, where q = q(z) =

3 exp(−c/2)√
2π|z|3

.

To be able to sum the geometric series, as a last step, further enlarge c if necessary such

that q(z) < 1 for any complex z with |z| ≥ c. Hence arrive at the majorization∣∣∣ 1

Ψ(
√
z )

∣∣∣ ≤ exp(−c/2)√
2π|z|

1

1−q(z)
,

valid in particular for any z with Re(z) = c.

With c fixed, the second factor on the right-hand side of this last majorization con-

verges to 1 for z going to ∞ on the contour. Still, the factor z−1/2 does not give

integrability of this majorizing function on any inversion contour. Multiplication with

a function R such that R(z) = O(|z|−a) as z tends to ∞, however, does give this inte-

grability if a > 1/2. Then, finally, Laplace inversion term by term is justified using the

Lebesgue Dominated Convergence Theorem. The proof of Theorem 4.3 is complete.

4.2. Proof of Theorem 4.1. The proof of the convolution expansion for Hα,γ of Theo-

rem 4.1 proceeds by the Laplace inversion of its defining Laplace transform. This Laplace

transform is the product of the quotient of Ψ(−z1/2) over Ψ(z1/2) and G = Gα,γ , where

Gα,γ(z) =
exp(−α

√
z )√

z (
√
z +γ)

= L(gα,γ)(z) , Re(z) � 0 ,

from Section A.1. Applying Theorem 4.3 with R(z) = G(z)Ψ(−√
z ) and with α there

equal to zero, then gives, after an index shift by 1 of the summation,

Hα,γ(x) =
∑∞

n=1

(−1)n−1

(2π)n/2
1(n

2 ,∞
)(x)L−1

(
GNn

)(
x−n

2

)
,

for any real x > 0. Here recallNn as the nth power of the functionN(z) = z−1/2Ψ(−z1/2)

on the right-hand complex half-plane. Using the product theorem for the Laplace trans-

form, the Laplace inverse of any product GNn is the convolution of the Laplace inverse

gα, γ of G with that of Nn. From Proposition A.1 the Laplace inverse of Nn is the function

νn. The proof of Theorem 4.1 is complete.

5. Series representation for the convolutions off [0, 1
2 ]. Continuing from Sec-

tion 4.1, this section demonstrates a first principal approach to expansions of convolutions

ϕ ∗ νn, where ϕ ∈ {fα,γ , gα,γ} ,
with integral n ≥ 0 and complex α, γ such that Re(α), Re(α2) > 0. It is series repre-

sentations in terms of integral-order derivatives of the factor ϕ that are to be developed

here as follows.
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Theorem 5.1. In the situation of this section, with α, γ complex such that Re(α),

Re(α2) > 0 in particular, we have for any integer n ≥ 1 the following representations of

the convolutions gα,γ ∗ νn and fα,γ ∗ νn on ( 12 ,∞) by a pointwise absolutely convergent

series in terms of the integral-order derivatives of gα,γ and fα,γ of Appendix C:

gα,γ ∗ νn =
∑∞

�=−�0
an,n+2�+1 f

(�)
α,γ +

∑∞

�=−�1
an,n+2� g

(�)
α,γ ,

where �0 = [(n+1)/2] and �1 = [n/2], and

fα,γ ∗ νn =
∑∞

k=−k0

an,n+2k f
(k)
α,γ +

∑∞

k=−k1

an,n+2k−1 g
(k)
α,γ ,

where k0 = [n/2] and k1 = [(n−1)/2]. The coefficients an,k here are in terms of gamma

function values and, for any integer n ≥ 0, are recursively defined by

a1,k = (−1)k(2k/2/k!)Γ
(
k/2+1

)
and an+1,k =

∑k

�=0
a1,� an,k−� ,

for any integer k ≥ 0.

This result is to be established in Section 5.4. It furnishes a paradigm consequence of

the principal approach to analytic Laplace inversion based on the deformation of contours

to be developed first in Sections 5.1 to 5.3. This approach applies to products of Laplace

transforms where one factor, L(ϕ), is decreasing to 0 at an exponential rate near ∞ and

the remaining ones combine into a function analytic on a sliced complex plane off of a

compact neighbourhood of 0. The idea is to expand this second factor into a Taylor

series, and for the series for the product thus obtained establish the validity of Laplace

inversion term-by-term in a way that preserves effectiveness of remainder terms.

For ϕ equal to fα,γ or gα,γ , convergence of the resulting series can be established at

positive real arguments off of the interval [0, 1
2 ], as reported in Theorem 5.1. The result

is to be complemented by an expansion valid on that piece of the non-negative reals, as

it is to be developed in Section 6.

5.1. A contour integral formula for Laplace inversion. This section develops the alter-

native perspective on Laplace inversion provided by deformations of inversion contours.

�����������

�����������
��

��

•
ρ

θ

Fig. 5.1. The Hankel contour Cθ,ρ.

We work with the Hankel contours Cθ,ρ with angles θ in (π2 , π] and radii ρ > 0 as

depicted in Figure 5.1, and the contours Cρ = Cπ,ρ in particular. In this framework we

have the following version of the complex inversion formula.

Proposition 5.2. Let R be any meromorphic function on C \R≤0, the complex plane

with the non-positive real line deleted, for which there is a real a > 1 such that R(z) =
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O(|z|−a) as z tends to ∞ there. If R moreover represents a Laplace transform on the

right-hand half-plane, its Laplace inverse at any real u > 0 is given by the contour integral

L−1(R)(t) = (1/(2πi))

∫
C

euzR(z) dz ,

where C is any Hankel contour Cθ,ρ with ρ ≥ ρ0, or their limits Cρ.

To prove this result, choose ρ0 as any sufficiently large positive real such that outside

the open ball U in the origin with radius ρ0, the function R is analytic and its absolute

value is bounded satisfying |R| ≤ mU . Choose an arbitrary contour C = Cθ,ρ with

ρ ≥ ρ0, and apply the complex inversion formula to R in a way that its contour of

integration ι = ιξ0 traces out the parallel to the imaginary axis through the real ξ0 > ρ0.

Deform ι into C in the standard way by connecting ι and C−, the contour C travelling in

a reverse direction, with two subarcs of arbitrary radii P > ξ0 and considering the closed

contours γP thus obtained. By the global Cauchy theorem, the integral of expu R over

any such γP is equal to 0. By the hypothesis on the growth of R (and distinguishing the

situation in the left-hand and the right-hand half-plane), the integrals of expu R over the

subarcs of γP go to 0 as P tends to ∞, and the proof of Proposition 5.2 is complete.

Remark 5.3. Proposition 5.2 applies in particular to functions on C \ R≤0 of the

form R = MNn, where M is a meromorphic function bounded in absolute value off of

some compact neighbourhood of 0 and Nn(z) = (Ψ(−
√
z )/

√
z )n, for integral n ≥ 1, as

in Section A.2. This is a consequence of the leading term expansion for Ψ of Appendix B.

5.2. A contour integral series expansion for Laplace inversion. Following Section 5.1,

this section studies when a series representation for the Proposition 5.2 Laplace inverses

can be obtained by taking the integration through the Taylor series of one of its factors.

Recalling the coefficients an,k from Theorem 5.1, our result is as follows.

Proposition 5.4. Let M be any meromorphic function on C \R≤0, the complex plane

with the non-positive real line deleted, whose absolute value is bounded outside some

compact neighborhood of zero. Then any product MHn is a Laplace transform. Its

Laplace inverse at any real u > 1
2 is given by the absolutely convergent series of contour

integrals,

L−1(MNn)(u) =
∑∞

k=0
an,k (1/(2πi))

∫
C

euzM(z) z(k−n)/2 dz ,

where C is any Hankel contour Cθ,ρ with ρ ≥ ρ0. If in addition M is obtained as a

Laplace transform on the right-hand half-plane and is exponentially decreasing to 0 with

the absolute value of its argument going to ∞, then we have for any real u > 1
2 the

absolutely convergent series representation

L−1(MHn)(u) =
∑∞

k=0
an,k L−1

(
M(z) z(k−n)/2

)
(u) .

At the base of the proposition’s series is the fact that an,k is the kth Taylor coefficient

of the nth power of Ψ(−w). The precise result, whose proof is omitted here, is as follows.

Lemma 5.5. Any function Nn has the absolutely and compactly convergent series rep-

resentation: Nn(z) =
∑∞

k=0 an,k z
(k−n)/2 for any z in C \R≤0.
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Proof of Proposition 5.4. The first idea is to apply the Proposition 5.2 complex inver-

sion formula and express the Laplace inverse of R = MNn as a contour integral over a

Hankel contour Cρ with any suitably big radius ρ:

L−1(MNn)(u) = (1/(2πi))

∫
C

euzM(z)Nn(z) dz .

This is justified since, as a consequence of the Appendix B leading term expansion for

Ψ, we have Nn(z) = O(|z|−3n/2) as z tends to ∞ in C \R≤0.

The second idea is then to develop the factor Nn of the integrand into its Lemma 5.5

series and take the integral through the resulting series. For making this rigorous we

proceed iteratively. As a first step, develop a single factor N1 of Nn into its corresponding

Lemma 5.5 series. On a formal term-by-term integration of the resulting series,

L−1(MHn)(u) =
∑∞

k=0

an,k
2πi

∫
Cρ

euzz(k−n)/2M(z)Nn−1(z) dz ,

and we now have to ask about two things. First, is taking this the integral through the

summation justified and does it yield an (absolutely) convergent series? Second, can the

construction be iterated in any summand, with each single factor H1 remaining there?

Setting R = MNn−1 where N0 = 1, develop the remaining factor N1 of MNn into its

above series to obtain

(MNn)(z) =
R(z)√

z

∑∞

k=0
akz

k/2 ,

in particular for z = x exp(iπ). Summing the absolute values of the terms of the series

for Ψ(−w) gives Ψ(|w|). Thus the absolute value of the series factor in the above identity

can be majorized by Ψ(x1/2) when z = x exp(iπ). In Appendix B combining the key

identity for Ψ with its leading-term expansion, Ψ(x1/2) equals the sum of 2x−1+R2(ix
1/2)

and (2πx)1/2 exp(x/2). For z = x exp(iπ) = −x we thus obtain

∣∣∣ exp(−ux)
R
(
−x

)
i
√
x

∑∞

k=0
ak (−x)k/2

∣∣∣
≤

∣∣R(
−x

)∣∣ exp(−ux)

|x|1/2
( 2

x
+
∣∣r2(ix1/2)

∣∣+√
2πx exp(x/2)

)
.

With R of at most polynomial growth as x tends to ∞, the asymptotic behaviour for

large x on the right-hand side of this inequality is determined by that of the product of

its two exponential function factors. The majorizing function thus decays to 0 as x tends

to ∞ iff u > 1
2 , and in this case it is integrable with respect to x on any interval [ρ,∞).

Using the Lebesgue Dominated Convergence Theorem, this implies that for u > 1
2 the

inversion integral over any Hankel contour CR of the above series R(z)
∑

k akz
(k−1)/2

can be computed term by term. The result is an absolutely convergent series with kth

terms given by

ak = (1/(2πi))

∫
CR

euz
(
(MNn−1)(z)z

k−1/2)
dz .

If n > 1, iterate the above argument with the function R equal to (MNn−2)(z)z
k−1/2,

for any z in C \ R≤0. Iterating n times, the first series of the proposition results in

collecting terms according to powers of z.
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The second series of the proposition follows if the contour integrals in the first series

are deformations of complex inversion integrals. If M is exponentially decreasing to 0

with the absolute value of its argument growing to∞, this is true. Indeed, just reverse the

deformation argument of Proposition 5.2 mutatis mutandis. The proof of Proposition 5.4

is complete.

5.3. Two intermediate contour integral series. As a second step of the argument, this

section specializes the series of Proposition 5.4 to the functions Fα,γ and Gα,γ of Sec-

tion A.1; namely, Fα,γ(z) = exp(−α
√
z )/(

√
z+γ) and Gα,γ(z) = Fα,γ(z)/

√
z, for real

complex α, γ with Re(α), Re(α2) > 0. Our result is as follows.

Lemma 5.6. With the assumptions of this section we have for any integer n ≥ 1 and any

real u > 1/2 the following two absolutely convergent series representations:

fα,γ ∗ νn =
∑∞

k=−k0

an,n+2k

2πi

∫
C

euzFα,γ(z)z
k dz

+
∑∞

k=−k1

an,n+2k−1

2πi

∫
C

euzGα,γ(z)z
k dz ,

where k0 = [n/2] and k1 = [(n−1)/2], and

gα,γ ∗ νn =
∑∞

�=−�0

an,n+2�+1

2πi

∫
C

euzFα,γ(z)z
� dz

+
∑∞

�=−�1

an,n+2�

2πi

∫
C

euzGα,γ(z)z
� dz ,

where �0 = [(n+1)/2] and �1 = [n/2].

Simplifying notation to F = Fα,γ and G = Gα,γ , our argument proceeds by reduction

to the series of Proposition 5.4 with M there equal to F and G respectively. Indeed, F

and G are meromorphic functions on C \R bounded outside an arbitray disc centered

at 0 which contains their singularities. With the assumptions of Proposition 5.4 thus

satisfied, we obtain the following two absolutely convergent series representations:

fα,γ ∗ νn(u) = L−1(FNn)(u) =
∑∞

k=0

an,k
2πi

∫
C

euzF (z)z
1
2 (k−n) dz ,

gα,γ ∗ νn(u) = L−1(GNn)(u) =
∑∞

k=0

an,k
2πi

∫
C

euzF (z)z
1
2 (k−(n+1)) dz ,

where C is any Hankel contour as specified in Proposition 5.2.

For the bookkeeping of the half-integral exponents of these series, note the following.

For any non-negative integer m, the difference k−m is even and equal to 2� for integral

� iff k = m+2�, and the minimal such � is the negative of [m/2], the Gauß bracket of

m/2. Analogously, k−m is odd and equal to 2�−1 for integral � iff k = m+2�−1, and

the minimal such � is the negative of [(m−1)/2].

Applying this with m = n finishes the first series of the lemma; applying this with

m = n+1, the second one follows, and the proof of Lemma 5.6 is complete.

5.4. Proof of Theorem 5.1. Proceeding by reduction to Lemma 5.6, there are two steps

in establishing the series representations of Theorem 5.1. First, interpret the contour

integrals in the Lemma 5.6 series as Laplace inverses. Second, interpret these Laplace
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inverses as derivatives. Indeed, since Re(α) > 0 the functions Fα,γ and Gα,γ there

are exponentially decreasing to 0 near ∞, and an application of Proposition 5.2, as for

proving the second series in Proposition 5.4, shows:

(1/(2πi))

∫
C

euzFα,γ(z)z
k dz = L−1(Fα,γ(z)z

k)(u) ,

(1/(2πi))

∫
C

euzGα,γ(z)z
k dz = L−1(Gα,γ(z)z

k)(u) ,

for any integer k. From Section A.1 recall fα,γ as the Laplace inverse of Fα,γ and gα,γ as

that of Gα,γ . Once more since Re(α) > 0, the derivatives to arbitrary non-negative order

of these two Laplace inverses are checked to be 0 at the origin u = 0. For any integer

k ≥ 0, the Laplace inverse of zk times any of the functions F or G is thus equal to the

kth derivative of the respective functions fα,γ and gα,γ . Referring to Appendix C, this

holds true for integers k < 0, and the proof of Theorem 5.1 is complete.

6. Asymptotic expansions for the convolutions on [0, 1
2 ]. Continuing from Sec-

tion 4.1 in a way complementary to Section 5, this section demonstrates a second principal

approach to expansions of convolutions of the form

ϕ ∗ νn where ϕ ∈ {fα,γ , gα,γ} ,

with integral n ≥ 0 and complex α, γ such that Re(α), Re(α2) > 0. To be developed

are asymptotic expansions near 0 of a particular shape, namely in terms of negative-

integral-order derivatives of the factor ϕ. To be established in Section 6.3, and with

some notation to be explained after the statement, our precise result is as follows.

Theorem 6.1. In the setting of this section, any convolution gα,γ ∗ νn on (0,∞) with

integral n ≥ 1 has an asymptotic expansion near zero in terms of the negative-integral-

order derivatives of gα,γ and fα,γ of Appendix C as follows. For n even, we have

gα,γ ∗ νn =
∑N+n−1

k=n
c
(n)
N,k gα,γ

(−(k+ 1
2n)) +Rn,N ,

while for n odd we have

gα,γ ∗ νn =
∑N+n−1

k=n
c
(n)
N,k fα,β

(−(k+ 1
2 (n+1))) +Rn,N ,

for any integer N ≥ 0. For fixed real ε > 0 and if N ≥ 2, the remainder terms satisfy for

any real x in (0, ε) if n is even:

∣∣Rn,N (x)
∣∣ ≤ eCn,N (ε)

xN+3n/2

2N+3n
exp

(
− (α/2)2

x

)
,

and if n is odd:

∣∣Rn,N (x)
∣∣ ≤ eCn,N (ε)

(
|γ|+ 1√

πx

) xN+(3n+1)/2

2N+3n+1
exp

(
− (α/2)2

x

)
.

To explain the notation, fix any integers n, N ≥ 0. Using multi-index notation, the

coefficients cn,k, for any integer k ≥ 0, are then defined as follows:

c
(n)
N,k =

∑(
n
I

)
c
I
,
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where the sum is taken over all N -tuples I = (i1, . . . , iN ) of integers i� ≥ 0 with |I| =∑N
�=1 i� = n and

∑N
�=1 i�� = k. For these I then

cI = ci11 · · · ciNN where cm = (−1)m+1 2m√
π

Γ
(
m+

1

2

)
,

for any integer m ≥ 0. In the estimate for the remaining terms, the Cn,N (ε) is given by

Cn,N (ε) =
nN∑

k=n+N

|c|(n)N,k ε
k−(n+N)

+
n∑

k=1

(
n

k

)(∑N

�=1
ε�−1 |c�|

)n−k(
2
(
(2N+1)!/N !

))k

,

with the definition |c|(n)N,k =
∑(

n
I

)
|c|I , where the sum is taken over all N -tuples I =

(i1, . . . , , iN ) of integers i� ≥ 0 such that |I| = n and
∑

1≤l≤N i�� = k, and where |c|I is

multi-index notation for the product |c1|i1 · · · |cN |iN .

Note the following small-N examples for the coefficients c
(n)
N,k:

c
(n)
1,n = cn1 , c

(n)
2,n+k =

(
n
k

)
cn−k
1 ck2 ,

for 0 ≤ k ≤ (2−1)n = n,

c
(n)
3,n+k =

∑n

�=ceil(k/2)

(
n
�

) (
�

k−�

)
cn−�
1 c2�−k

2 ck−�
3 ,

for 0 ≤ k ≤ (3−1)n = 2n, where ceil(a) = {z ∈ Z|a ≤ z}, for arbitrary real a, is the

smallest integer above a, and where c1 = 1, c2 = −3, and c3 = 15.

To comment on our result, Theorem 6.1 gives expression to the perspective taken as

follows: first work on the level of the explicitly given Laplace transforms where L(νn)
possesses an asymptotic expansion near ∞; see Section 6.2 for all this. The representing-

near-∞ properties of this expansion are preserved on multiplication by factors L(ϕ), as
these decay to 0 at an exponential rate near ∞. As a second step, then use Laplace

inversion to thus induce an asymptotic expansion near 0 of ϕ ∗ νn which preserves effec-

tiveness of error estimates; details for this are to be worked out in Section 6.1. Refer to

Remark 6.6 for the case ϕ = fα,γ .

6.1. Preserving error terms on Laplace inversion. The thrust of the approach is to

derive the asymptotic behaviour for smaller arguments of a function from the asymptotic

behaviour of its Laplace transform for larger values by keeping the error term effective on

Laplace inversion. Our key result for this, to be established in this section, is as follows:

Proposition 6.2. Let f , h be functions of exponential type whose Laplace transforms

are holomorphic on the right-hand half-plane and there satisfy

L(f)(z) = L(h)(z) + r(z), Re(z) > 0 .

Suppose there is a real α > 1 such that for any real ε > 0 there is C(ε) > 0 such that

|r(z)| ≤ C(ε) · |z|−α if |z| ≥ 1/ε. Then f and h satisfy

f(t) = h(t) +R(t), t ∈ (0,∞) ,

where the remainder term R satisfies

|R(t)| ≤ C(ε) max
{ e

2
,
e

π

1

α−1

}
tα−1, t ∈ (0, ε) .
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Remark 6.3. If f , h are holomorphic only on a half-plane {z|Re(z) > a0} with a0 > 0,

Proposition 6.2 remains valid restricting to ε with 0 < ε < 1/a0 and with the estimate

|R(t)| ≤ C(ε) max
{ e

2
,
e

π

1

(α−1)

(
1− (εa0)

2
) 1−α

2
}
tα−1, t ∈ (0, ε) .

Proofs. Subtracting h from f , a reduction occurs to the case with h and L(h) the

respective functions 0. Put F = L(f), and for fixed real ε > 0 let a0 > 0 be an arbitrary

real with a0 < 1/ε. In the complex inversion formula take the parallel {Re(z) = a0}
through a0 to the imaginary axis as the path of integration. Consider the following

deformation. For any 0 < t < ε let S = St be the point on the line {Re(z) = a0}
with absolute value ρ = 1/t which is in the upper half-plane. Replace that piece of

{Re(z) = a0} between S and its complex conjugate by the corresponding part γρ of the

circle with center 0 and radius ρ travelled in counterclockwise direction.

��

��

���� ��•0 •a0 •
1
ε

•
ρ=1

t

•
S

•
S

��

Fig. 6.1. Deformed inversion contour.

On γρ the maximum of | exp(tz)| equals exp(ρt) = e. With |z| = ρ > 1/ε, majorize

|F (z)| by C(ε) |z|−α times the length of γρ. This length is at most one half of the

circumference 2πρ of the circle with radius ρ. Thus estimate the inversion integral over

the contour γρ by

∣∣(1/(2πi))
∫
γρ

etz F (z) dz
∣∣ ≤ e

2π
C(ε)|z|−α 2πρ

2
=

e

2
C(ε)tα−1,

recalling |z| = ρ = 1/t for the last equality. To estimate the size of the inversion integral

for F over the rest of the inversion contour, it is by symmetry sufficient to estimate the

inversion integral over the subcontour from S to a0+i∞. For any z on this subcontour,

|z| ≥ |S|. Since |S| = ρ ≥ 1/ε, the absolute value of F (z) is majorized by C(ε)|z|−α.

Moreover, t < ε implies Re(tz) = ta0 < tε−1 < 1, whence | exp(zt)| ≤ exp(1) = e. This

combines to yield the estimate
∣∣∣(1/(2πi))

∫ a0+i∞

S

etz F (z) dz
∣∣∣ ≤ (e/(2π))

∫ ∞

Im (S)

C(ε)|a0+iy|−α dy .

Here consider the following consequences of α > 1. The last integral can be majorized

by suppressing a0 in the denominator of its integrand, thus reducing to integrate y−α.

A primitive of this function is (1−α)−1y−α+1, whence∫ ∞

Im (S)

1

|a0+iy|α dy ≤
∫ ∞

Im (S)

dy

yα
=

[y1−α

1−α

]∞
y=Im(S)

.
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With its improper part killed, this last integral equals Im (S)1−α/(α−1), whence

∣∣∣(1/(2πi))
∫ a0+i∞

S

etz F (z) dz
∣∣∣ ≤ e

2π

C(ε)

α−1

1

(Im (S))α−1
.

To estimate the imaginary part of S = St in terms of ε and a0, let θt be the angle

associated with St. Then sin(θt) converges to sin(θε) from above as t converges to ε. By

definition, a0 = |Sε| cos(θε) = ε−1 cos(θε), whence | sin2(θε)| = 1−cos2(θε) = 1−(a0ε)
2.

This gives

1(
Im (S)

)α−1 =
1(

| sin θt| ρ
)α−1 ≤ t−(α−1)

(
1− (εa0)2

)(α−1)/2
,

recalling ρ = 1/t, and establishes Remark 6.3. To complete the proof of the proposition,

recall that F is holomorphic in the entire right-hand half-plane, and thus any a0 > 0

can be used in the contour for the complex inversion formula. Letting a0 converge to 0,

with ε fixed, kills the εa0-term in the above estimate, and the proof of Proposition 6.2

is complete.

6.2. Asymptotic expansions for Nn and its Laplace inverse. As a first step in estab-

lishing Theorem 6.1, this section demonstrates the use of Proposition 6.2 by way of

transposing an asymptotic expansion for the functions Nn at large complex arguments

into an asymptotic expansion for νn at small positive real arguments by preserving ef-

fectiveness of remainder terms. Our precise result is as follows

Proposition 6.4. For the Laplace inverse L−1(Nn) = νn of Nn we have the following

asymptotic expansion near zero:

νn(t) = L−1(Nn)(t) =
∑n+N−1

k=n

c
(n)
N,k

Γ
(
k + n/2

) tk−1+n/2
+Rn,N (t) , t ∈ (0,∞) ,

for any integer N ≥ 0, and with coefficients cn,k as for Theorem 6.1. For any real

ε > 0 and with Cn,N (ε) as for Theorem 6.1, the remainder terms with N ≥ 2 satisfy the

estimate ∣∣Rn,N (t)
∣∣ ≤ 1

2eCn,N (ε) t
N+3n/2−1

, t ∈ (0, ε) .

The asymptotic expansion of the proposition is based on the following asymptotic

expansion for Nn on the right-hand half-plane of independent interest:

Lemma 6.5. For any complex z with Re(z) > 0, we have

Nn(z) =
1

zn/2

∑n+N−1

k=n

c
(n)
N,k

zk
+

1

zn/2
rn,N (z) ,

for any integer N ≥ 0, where on fixing any real a > 0 and setting εa = a−1 the remainder

terms with N ≥ 2 satisfy the estimate

∣∣rn,N (z)
∣∣ ≤ Cn,N (εa)

|z|n+N
,

for any z with Re(z) > 0 and |z| ≥ a, and with Cn,N (ε) as in Theorem 6.1.
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Proof of Lemma 6.5. Recalling from Section A.2 the definition Nn(z) = N1(z)
n where

N1(z) = z−1/2Ψ(−z1/2), for any z in C \R≤0, the argument is based on the following

asymptotic expansion of Ψ(−z1/2) on {Re(z) > 0}:

Ψ(−
√
z ) =

∑N
k=1 ckz

−k + ρN+1(
√
z ) , Re(z) > 0 ,

for any integer N ≥ 0, setting ck = (−1/
√
π )(−2)kΓ(k+1/2), and where |ρN+1(z

1/2)| ≤
cN+1/|z|N+1 with the temporary definition cN+1 = 2(2N+1)!/N !. Setting ak = ckz

−k

for integral k ≤ N and aN+1 = ρN+1(z
1/2), an application of the multinomial theorem

gives

Ψn(−
√
z ) =

∑
|J|=n

(
n
J

)
aJ ,

with J ranging over all the (N+1)-tuples (j1, . . . , jN+1) of integers j� ≥ 0 summing up

to n. Decomposing such J in the form J = (I, jN+1) obtain the identity(
n

J

)
=

n!

j1! · · · jN+1!
=

(
n

jN+1

)(
n−jN+1

I

)
.

Breaking up the summation for the nth power of Ψ(−z1/2) accordingly,

Ψn(−
√
z ) =

∑n
k=0

(
n
k

)(∑N
�=1 a�

)n−k
akN+1,

also using the multinomial theorem to reverse summation over the index sets I. The

following terms of this sum are now collected into the error term rn,N+1(z). First, all

summands of the last sum with index k ≥ 1; they all have degrees in z−1 of at least

n−k+k(N+ 1) = n+kN , i.e., at least n+N . Then also add all other terms with k = 0

having degree of at least n+N in z−1. The highest power order of z−1 common to all of

these summands of the error term is z−(n+N).

For the estimate of the error term choose |z| ≥ a. Apply the triangle inequal-

ity to the absolute value of rn,N+1(z) as often as possible. Using the estimate for

|aN+1| = |ρN+1(z
1/2)| bring the highest power |z|−(n+N) of |z|−1 in front of the resulting

expression. Thus obtain the majorization |rn,N+1(z)| ≤ Σ1(z)+Σ2(z), where

|z|n/2Σ1(z) = |z|−(n+N)∑n
k=1

(
n

k

)(∑N
�=1

|c�|
|z|�−1

)n−k ckN+1

|z|(k−1)N
,

|z|n/2Σ2(z) = |z|−(n+N) ∑n(N+1)
k=n+N

∑
|IN |=n ,

∑N
�=1 �j�=k

(
n

IN

)
|c|IN

|z|k−(n+N)
,

using the multi-index notation for Theorem 6.1. All powers of |z|−1 remaining in the

pertinent sums majorize by a−1 = εa to obtain the constant Cn,N (εa). This completes

the proof of Lemma 6.5.

Proof of Proposition 6.4. With νn = L−1(Nn) established in Proposition A.1, apply

L−1 to the preceding Lemma 6.5 to obtain as a first step the expansion

L−1(Nn)(t) =
∑n+N−1

k=0 c
(n)
N,kL−1(z−(k+n/2))(t) +Rn,N (t) ,

where

Rn,N (t) = L−1(rn,N (z)z−n/2)(t) .

To proceed, note the reformulation Γ(a)L−1
(
z−a

)
(t) = ta−1, for any real t > 0 and

complex a with Re(a) > 0, of the identity L(ta)(z) = Γ(a+1)z−(a+1). From this formula
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it is sufficient to establish the majorization of error terms |Rn,N (t)| of the proposition.

For this, transfer the estimate of Lemma 6.4 by way of Proposition 6.2, applied with

C(ε) = Cn,N (ε) and α = n/2+(n+N), to obtain

|Rn,N (t)| ≤ Cn,N (ε) max{e/2, e/((3n/2+N−1)π)} t3n/2+N−1 .

The proof of Proposition 6.4 is complete.

6.3. Proof of Theorem 6.1. Our argument is patterned after that for Proposition 6.4,

and demonstrates Theorem 6.1 as a consequence of Laplace inversion of the uniform

asymptotic expansion of Nn of Lemma 6.5. Indeed, multiply this expansion by G = Gα,γ .

Distinguishing the case where n is even or odd, do or do not add the square root in the

denominator of G to the half-integer powers of the reciprocal of z in this expansion to

make them integral. For n even, not changing anything, this gives

(
GNn

)
(z) = G(z)

(∑n+N−1

k=n
c
(n)
N,k/z

k+n/2 + revn,N (z)
)
,

while for n odd, recalling F = Fα,γ = z1/2G from Section A.1, we obtain

(
GNn

)
(z) = F (z)

(∑n+N−1

k=n
c
(n)
N,k/z

k+(n+1)/2 + roddn,N (z)
)
,

for any complex number z with sufficiently big real part and any integer N ≥ 0. On

fixing any real ε > 0 and setting a = ε−1, the remainder terms for N ≥ 2 satisfy

∣∣revn,N (z)
∣∣ ≤ e

2

Cn,N (ε)

|z|n+N+n/2
and

∣∣roddn,N (z)
∣∣ ≤ e

2

Cn,N (ε)

|z|n+N+(n+1)/2
,

for any z in the right-hand half-plane such that |z| ≥ a. For n even the expression in

brackets is the asymptotic expansions of Nn, while for n odd it is that of z−1/2Nn. Both

of these functions are Laplace transforms. Using the product theorem the Laplace inverse

of any GNn is given as a convolution of the Laplace inverse of G, respectively F , with the

respective Laplace inverse of the expression in brackets. The latter has been established

in Proposition 6.4 with an explicit transfer of the error terms as the crucial point. With

the single summands being Laplace transforms themselves, a Laplace inversion of the

expression in brackets is effected term by term. Convolve with the Laplace inverse of G

and F respectively. Then reverse the convolution using the product theorem to obtain

for n even:

L−1
(
GNn

)
=

∑n+N−1

k=n
c
(n)
N,kL−1

(
G(z)

zk+n/2

)
+ g ∗Rev

n,N ,

and for n odd:

L−1
(
GNn

)
=

∑n+N−1

k=n
c
(n)
N,kL−1

(
F (z)

zk+(n+1)/2

)
+ f ∗Rodd

n,N ,

in the obvious notation (with f denoting the Laplace inverse of F and g that of G).

Expressing the remaining Laplace inverses as the respective negative-order derivatives

of Appendix C yields the desired asymptotic expansion, and a reduction occurs to es-

tablishing the estimates for the remaining terms. For these majorize the value at any

real t > 0 of the respective convolutions by the product of the following two magnitudes.

First, the respective maximum M(f, t) and M(g, t) of the absolute value of the respective

Laplace inverses f and g on (0, t). Second, the integral on (0, t) of the absolute value of
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the respective remainder term factors. The integrals majorize by majorizing integrands

as for Proposition 6.4, by (2−1e)Cn,N (ε) times the respective power of the integration

variable. The result is majorizing integrals which equal, for n even,

e

2
Cn,N (ε)

tN+3n/2

N+3n/2
and

e

2
Cn,N (ε)

tN+(3n+1)/2

N+(3n+1)/2

for n odd and positive. As a majorizing constant M(g, t) take exp(−α2/(4t)); for M(f, t)

take (|β|+(πt)−1/2)M(g, t). The proof of Theorem 6.1 is complete. �
Remark 6.6. An analogous asymptotic expansion for fα,γ ∗ νn is obtained by inter-

changing the roles of even and odd as well as that of G and F in the above argument,

with a consequent index shift by −1 in the resulting expansion and estimates.

7. Epilogue. In this paper, a two-step Laplace inversion approach has been devel-

oped which is aimed at transforms with transcedental function denominators. The idea

of the approach is to effect a reduction to inverting Laplace transforms of convolutions

as a first step, and to provide asymptotic expansion methods for thus handling con-

volutions as a second step. This approach has been demonstrated for a concrete class

of Laplace transforms in terms of parabolic cylinder functions as they originate with

Brownian motion and their excursions. With this structure given expression to by a

functional equation satisfied by the denominators, the approach was then found to take

the following form.

First, a finite-length convolution representation for the Laplace inverses was estab-

lished in Section 4 as a consequence of the functional equation, effecting a reduction of

the inversion to the study of finite-length convolutions with known Laplace transforms.

The idea then was to proceed by asymptotically expanding part of the transforms and

to effect an inversion term by term that preserves the effectiveness of the error terms

of the expansions that were started with. Two realizations for this two-step approach

were developed. In Section 5 representations of the convolutions by convergent series

were thus provided, and in Section 6 representations by asymptotic expansions were es-

tablished for them. The two representations are complementary by construction: the

series converge off of a compact neighbourhood of 0, while the asymptotic expansions

have their representation properties exactly on neighbourhoods of this type.

In this way, the results of the paper enable a basic implementation of the convolutions

of step one, special-function-type, by way of combining a series and an asymptotic ex-

pansion. We thus conclude the paper by looking to what extent this enables one to shed

light on the motivating example from finance in Section 3.

We more precisely consider one of the typical situations problematic for barrier options,

namely when the current value of the underlying security, St, is approaching the barrier,

L, such that large Deltas are building up. For the down-and-in barrier options with

strikes K ≥ L considered in the present paper, the latter condition gives expression to

the perceived likeliness of two events. First, to the preceived likeliness of the option

being triggered into existence by the value of the underlying falling below the level L

before maturity, at time T , of the barrier option. Second, the large Deltas are to be

seen as giving expression as well to the perceived likeliness of the price of the underlying
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Fig. 7.1. Delta of Down-and-In call with L=95, K=100, σ=40% and
τ= 1

4
as a function of St.

to subsequently recover from levels below L, to positions above the strike K of the

option triggered into existence, before maturity of the latter. Referring to ‘practitioners’

sources for formulas and further details (here quoting, hors collection, books such as J.

Boissonade ‘Les options exotiques’ (Paris 2000)), this situation is depicted in Figure 7.1

as resulting from the choice of parameters τ = T−t = 1/12 year and σ = 9/10 % p.a. in

a situation with L = 95 and K = 100.

• • | |

−

��

��
95 105 St0

−0.1 •••
•••••

Fig. 7.2. Delta of Down-and-In Parisian call option with D= 1
60

in
the situation of Figure 7.1 as a function of St.

The built-in ability to avoid this building up of large Deltas near the barrier has

been put forward as an argument in favour of the use of the Parisian barrier options.

With a stylized choice of D=1/60 in addition, this is supported here in that we find the

corresponding Deltas down by almost a factor 5 as depicted in Figure 7.2, which uses

the same scale for the Deltas as in Figure 7.1.

Technically speaking, the curve of Figure 7.2 results from interpolation at the Deltas

computed at St = 96, 100, 105 using the formula of Proposition 3.2, and hence by reduc-

tion to the finite-length convolution representations of Corollary 4.2. Since τ/D = 5, the

latter have 4 summands starting with length-2 convolutions at u1 = 2, corresponding to

n = 1, and terminating with length-5 convolutions at u4 = 1/2, corresponding to n = 4.

The contributions of the summands decrease to 0 rapidly, and we used the asymptotic

expansions of Theorem 6.1 with N = 3 for the computation of the respective second half

of them. We found the brunt of the contributions to originate wih the respective first

two summands, if not just the ones corresponding to n = 1. Here, the series of The-

orem 5.1 provided rapidly convergent means for computation. The computations were

readily replicated by numerical integration for n = 1. The requirements of CPU-time for

this type of independent verification, however, rapidly grew out of the potential of our
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vintage 2011 machine, even when using a most rapid computing system such as gp-PARI;

with computation times in the CPU-days, independent verification was thus possible just

for some of the n = 2 results.

These last findings of non-possibilities, on the other hand, are also indicative of a

direction for future work, namely, to provide alternative ways for handling convolutions

computationally and to provide methods for this based on alternative analytic Laplace

inversion techniques, in particular. We hope to be able to address this in future work.

Appendix A. Laplace transform pairs. This appendix collects pertinent Laplace

transform pairs. Here the Laplace transform is the linear operator L on the continuous

functions of exponential type on (0,∞), the positive reals, defined as follows: it associates

with any such function f the function L(f) given by

L(f)(z) =
∫ ∞

0

exp(−zu)f(u) du ,

for any complex z in a half-plane contained sufficiently deep within the right-hand com-

plex half-plane {z|Re(z) > 0}. The maps L(f) then are analytic on such half-planes,

and the operator L is an injection with inverse L−1, the inverse Laplace transform; see

[3] or [4] for more details. We moreover work with the principal branch of the complex

logarithm on C \ (−∞, 0], the complex plane C cut along the non-positive reals (−∞, 0].

A.1. For any complex α with Re(α), Re(α2) ≥ 0, we have on the complex half-plane

{Re(z+β) > 0} the following two Laplace transforms:

L(gα,β)(z) =
exp(−α

√
z )√

z (
√
z +β)

def
= Gα,β(z), where gα,β(u) = exp(αβ+β2u) Erfc

(
ηα,β(u)

)
,

L(fα,β)(z) =
exp(−α

√
z )√

z +β

def
= Fα,β(z), where fα,β(u) =

exp(−(α/2)2/u)√
πu

−β gα,β(u) ,

for any real u > 0, setting ηα,β(u) = (α/2)/
√
u+β

√
u; see [5], Section 5.6, eqs. (12)

on p. 246 and (16) on p. 247. These transform pairs are obtained using the two

Laplace transforms on {Re(z) > 0}: L(ψα)(z) = exp(−α
√
z ) where 2

√
πu3 ψα(u) =

α exp(−(α/2)2/u), and L(χα)(z)=exp(−α
√
z )/

√
z where

√
πuχα(u)=exp(−(α/2)2/u);

see [4], Beispiel 8, p. 50ff; here α is any complex with Re(α2), Re(α) ≥ 0 and with

Re(α) > 0 for ψα.

A.2. As the first of two sets of functions to be considered define the functions Nn on

C \ (−∞, 0] for any integer n ≥ 0 by

Nn = Nn
1 , where N1(z) = Ψ(−

√
z )/

√
z ,

for any z in C \ (−∞, 0]. Following [11], the function Ψ here is the generalization of the

normal distribution given by the integral

Ψ(w) =

∫ ∞

0

x exp
(
− 1

2x
2+wx) dx , w ∈ C ;

it is further studied in Appendix B.

The second set is furnished by the functions νn = ν∗(n) on [0,∞); here ν0 = ν∗(0) is

the Dirac delta function at 0 and νn, for any integer n ≥ 1, is the n-fold convolution
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on [0,∞) given by

νn = ν∗(n), where ν(u) = (2/
√
π )

√
u /(2u+1) , u ∈ [0,∞).

Proposition A.1. We have L(νn) = Nn on {Re(z) > 0}, for any integer n ≥ 0.

With the case n = 0 valid by convention, establishing this result reduces to the

case n = 1 using the product theorem of the Laplace transform. For this, represent

the numerator of N1(z) as the Laplace transform L(f) at w =
√
z of the function

f(t) = t exp(−t2/2) on (0,∞). Then, L−1(N1)(t) = (1/
√
πt)

∫∞
0

f(x) exp(−x2/(4t)) dx

by general principles, and the right-hand side can be checked to be equal to ν(t), as

desired.

Appendix B. Further properties of the function Ψ. This appendix develops

relevant properties of the function Ψ from Section A.2, given by the integral Ψ(w) =∫∞
0

x exp
(
− 1

2x
2+wx

)
dx, for any complex w.

Developing the linear exponential factor of the integrand of Ψ in its series and inte-

grating the resulting series term by term yields the following series expansion:

Ψ(w) =
∑∞

n=0
anw

n, where an =
2n/2

n!
Γ
(n+2

2

)
.

This series is absolutely convergent for any complex number w, and its convergence is

uniform on compact sets. As a first appplication, rearrange it in its even and odd order

terms. Replacing w by its negative leaves unchanged the even part and produces a

minus sign in the odd part. Using the duplication identity for the gamma function and

redeveloping the square order exponential series that results as a factor then yields the

key identity :

Ψ(w) = Ψ(−w) +
√
π w exp

(
1
2w

2
)
,

which connects the values of Ψ on the right-hand half-plane with those on the left-

hand half-plane. Alternatively, the identity can be obtained by partial integration of

the defining integrals for Ψ(w) and Ψ(−w) respectively by way of the partial integration

identity

Ψ(−
√
2w) = 1−

√
2π w exp(w2)Erfc (w).

This identity is the basis of the leading term expansion for Ψ on the left-hand half-plane:

Ψ(−w) =
1

w2
+R2(w), where |R2(w)| ≤

6

|w|4 ,

for any complex w with Re(w) > 0. The point of the result, which is a special case of

a general uniform asymptotic expansion of Ψ on the left-hand half-plane, is the validity

of the remainder term estimate throughout the left-hand half-plane. This is established

in two steps, for | argw| ≤ π/4 and π/4 < | argw| < 3π/4, respectively. The argument

proceeds along the lines of [8], Section 2.2, replacing the original contour of integration for

Ψ by a ray emanating from the origin with a suitable angle |θ| < π/4 in the second step.
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Appendix C. Formulas for integral-order derivatives. This appendix provides

explicit expressions for the integral-order derivatives of the functions fα,β and gα,β , a

notion for any sufficiently regular map ϕ on R≥0 to be denoted by ϕ(m), for any integer

m, and defined as follows: if m ≥ 0 it denotes the mth derivative of ϕ and if m ≤ 0

set ϕ(0) = ϕ and recursively put ϕ(−|m|−1)(x) =
∫
[0,x] ϕ

(−|m|)(u) du, for any real x. We

require these derivatives for real parameters α > 0 and β, and a further reduction occurs

by way of the representation

fα,β = (1/
√
π)φ 1

2 ,(
α
2 )2 − β gαβ

in terms of the functions on (0,∞) defined by

φa,c(x) = x−a exp(−c/x), x > 0,

and recalled to be defined by

gα,β(x) = exp(αβ+β2x)Erfc (ηα,β(x)), x > 0 ,

where Erfc (ξ) = (2/
√
π)

∫
[ξ,∞) exp(−x2) dx and ηα,β(x) = (α/2)/

√
x+β

√
x. The integral

order derivatives of the functions fα,β thus become expressible in terms of those of the

functions φa,c and gα,β , and it is hence sufficient to give expressions for the latter.

As summarized by the next four results, we give such expressions in terms of the in-

complete gamma function. From [6], Section 9.2, pp. 134–143, for example, this function

is given by Γ(s, x) =
∫
[x,∞) w

s−1 exp(−w) dw, for any real x > 0 and s. We also use

the Pochhammer symbol (λ)k for any complex λ recalled to be recursively defined by

(λ)0 = 1 and (λ)k+1 = (λ+k)(λ)k.

As a first step, the integral-order derivatives of the functions φa,c with c > 0 are

computed in the following two results.

Proposition C.1. With the assumptions of this appendix we have for any integer n ≥ 0

the representation

φ(n)
a,c =

∑n

�=0
An,� c

� φa+n+�,c ,

where An,0 = (−1)n(a)n, and for � ≥ 1,

An,� = ((−1)�+n/�!)
∑n

k=�
(a)n−k

(
n

k

)∑�−1

m=0
(−1)m

(
�

m

)
(�−m)k .

Proposition C.2. With the assumptions of this appendix we have for any integer n ≥ 0

and any real u > 0 the representation

φ(−(n+1))
a,c (u) =

∑n

�=0
((−1)�/�!)

Γ(a−(�+1), c/u)

ca−(�+1)

un−�

(n−�)!
.

Recalling the representation φ
(−(n+1))
a,c (u) = (1/Γ(n+1))

∫ u

0
(u−x)nφa,c(x) dx as a

fractional integral (see for example [12], Chapter XII, §8, Eq. (8 ·1), p. 133), both results

are established by direct computation.

As a second step, the integral order derivatives of the functions gα,β are computed in

the following two results. For the higher order derivatives we have the following result.
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Proposition C.3. With the assumptions of this appendix we have for any integer n ≥ 0

the representation

g
(n)
α,β = β2ngα,β +

1√
π

n−1∑
k=0

(
n

k+1

) k∑
�=0

(−1)k−�
(
k
l

) β2n

β2(�+1)

{
(α/2)φ

(�)
3
2 ,(

α
2 )2

− β φ
(�)
1
2 ,(

α
2 )2

}
.

For the higher negative order derivatives it needs to distinguish the case of parameters

β being zero or not. This is encoded by the functions I�(gα,β), for any integer � ≥ 0,

which we define on (0,∞) as follows. If β 	= 0 we put

I�(gα,β)(u)

=
∑�

k=0

(−�)k
β2(k+1)

{u�−kgα,β(u)−
1√
π

Γ(k−�+ 1
2 , cα/u)

ck−�
α

+
β√
π

Γ(k−�− 1
2 , cα/u)

c
k−�−1/2
α

}

and if β = 0 we define

I�(gα,0)(u) =
u�+1

�+1
gα,0(u)−

1/
√
π

�+1
Γ
(
− ( 12 +�),

cα
u

)
c1+�
α ,

where in both cases we set cα = (α/2)2. Proceeding along the lines of the argument for

Proposition C.2, we then have in terms of these functions the following result.

Proposition C.4. With the assumptions of this appendix we have for any integer n ≥ 0

and any real u > 0 the representation

g
(−(n+1))
α,β (u) =

∑n

�=0

(−1)�

�!

un−�

(n−�)!
I�(gα,β)(u) .

Remark C.5. The negative order derivatives of Proposition C.2, for the parameter a

there equal to 1/2 and 3/2, as well as those of Proposition C.4 are in terms of incomplete

gamma functions Γ(s, x) at half integral arguments s. The incomplete gamma functions

occurring there are hence expressible as finite linear combinations of weighted exponential

functions plus an error integral value. More precisely, for integers N ≥ 0 we have the

representation

Γ(1/2 +N, x) =
∑N−1

k=0
γk x

N−1/2−ke−x + γN
√
π Erfc (

√
x ) ,

where γk = (1/2)N/(1/2)N−k. For integers N ≥ 1 we have the representation

Γ(1/2−N, x) =
∑N−1

k=0
δk x

−(N−k+1/2)e−x + δN
√
πErfc (

√
x ) ,

where δk = (−1)k(1/2)N−k/(1/2)N = (−1)k/γk. These formulas can be checked to

reduce to standard integration formulas; for the latter see for example [7] Eq. 3b) and

5b), p. 109.

References
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[6] A. Erdélyi et.al., Higher transcendental functions II, reprint, Krieger, Malabar, 1981. MR0698780
(84h:33001b)
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