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ON TIME-DEPENDENT QUADRATIC QUANTUM HAMILTONIANS* 

KURT BERNARDO WOLFt 

Abstract. We apply the techniques of canonical transforms to equations of the type 

[A(t)P2 +B(t){IPQ + UPI+ C(t)02 +D(t)Q +E(t)P +F(t)I]f(q, t) = -iat,(q, t), 

where 0 and P are the quantum position and momentum operators. The time-dependent parameters of the 
W A SL (2, R) evolution operator are found through linear differential equations. In terms of these we give 
explicitly the Green's function, all separating coordinates and similarity solutions of the equation. We analyze 
the behavior of Gaussian and coherent-state initial conditions in closed form and present a new interpretation 
of all the Lewis-Riesenfeld constants of motion. 

1. Introduction. There has been sustained interest in the description of quantum 
systems with time-dependent Hamiltonians. These systems have been used to model, 
for example, the motion of charged particles in time-dependent electromagnetic fields 
and coherent states in lasers. (See the list of references given in [3] and [11].) 

Gunther [5], [6] and Leach [9]-[14] have used time-dependent canonical trans- 
formations to reduce some of the above problems to time-independent ones, mainly for 
classical mechanics. They have been able to extend their methods to quantum systems 
for the cases when the canonical transformation is linear and real. In quantum 
mechanics, one has to be aware [9], [10] that not all Hamiltonians can be mapped 
meaningfully into each other, not even all quadratic ones: there exist distinct orbits in 
the vector space of the latter under the action of real linear canonical transformations. 
These orbits are characterized by (among other things) the spectrum of the operators in 
each equivalence class. Here, we take up their suggestion that the techniques of 
canonical transforms which we developed in [19], [20], [22], [24], [25] can be used to 
extend and simplify the analysis of differential equations of the type 

(l.l1a) H(t)o(q, t) =-iato(q, t), q, t (- , 

(1. ib) H(t) := A (t)P2 + B (t){P, 0}+ + C(t)02 +D(t)Q +E(t)P +F(t)1, 

(1. ic) (P(p)(q):=-ia(p(q)/Oq, (Qp)(q):=qp(q), {P, 0}+:= Po + UP. 

(By x :- X we indicate that the symbol x is defined as the expression X.) The solution to 
this problem consists in finding the evolution operator, and its Green's function integral 
representative, such that 

(1.2) q(q, t):= exp [iK(t)]of(q, 0) = J dq'G(qs q'; t) i(q, 0) 

be a solution to (1.1). In addition, we would like to have a clear understanding of (1.2) so 
as to be able to know the families of similarity solutions of the system as well as the 
behavior of, say, Gaussian and coherent-state initial conditions, without resorting to 
long integrations. 

The six linearly independent operators in (1. lb) (viz., P'2, {P, 0}+, 02, 0, P and ) 
constitute a basis for a wsl (2, R) algebra generating the WSL(2, R) group, the semidirect 
product of the Heisenberg-Weyl group [21] and SL(2, R). In the six-dimensional 
wsl (2, R.) vector space, H(t) defines a time-dependent magnitude and direction which in 
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the WSL (2, R) manifold translates into a line parameterized by time. The points on this 
line belong to a subgroup only when the direction of H(t) is fixed, i.e., only when 
H(t) = h (t)Ho. In this case the evolution generator K(t), for a unit subgroup parameter, 
lies in the same direction as [6(t) = k(t) Ho, with k(t) = h (t) and k(0) = 0. (Time deriva- 
tives will be indicated by dots.) For the general time-dependent system, H(t) and K (t) 
are not parallel and do not commute. After a brief recapitulation of formulae in ? 2, in 
? 3 we find the evolution operator exp [if6(t)] satisfying 

(1.3) -ia, exp [i 96(t)] = H(t) exp [i 96(t)], 

obtained by replacing (1.2) in (1. la). Having found the time-dependent parameters of 
this operator through a sequential set of linear ordinary differential equations, we can 
obtain the Green's function immediately. 

In ? 4 we follow the program we have previously implemented for the time- 
independent case [22]: finding all (up to equivalence) separating variables and similarity 
solutions. The behavior of Gaussian and oscillator coherent states under time-depen- 
dent quadratic potentials is given in ? 5, while in ? 6 we examine the similarity group and 
constants of motion of the system. Here we shall see that the Lewis-Riesenfeld 
invariants [16] are classified completely through the orbit structure of our time- 
dependent Lie algebra. Finally, in ? 7 we give a list of problems for which the present 
results can be applied with only minor substitutions. 

2. WSL(2, R) canonical transforms. There exist local isomorphisms between 
three sets of objects: (i) elements of the WSL (2, R) group, (ii) exponentials of 
up-to-second order differential operators and (iii) a class of integral transform kernels. 
The latter are the kernels for inhomogeneous linear real canonical transforms [25, 
Part IV]. 

(i) The elements of the WSL (2, R) group can be represented as 

(2. 1a) {a ( ), (E, 77, m) =:{M, v, 9}, 

(2. 1b) M:=( 
a 

) a -,By= 1, V:= (?,, 

with the composition rule 

(2.2a) {M2, v2, 02}{M1, v1, 19} = {M2M1, v2M1 +v1, 02+01 + v2Mi1v T}, 

(2.2b) Q:=(1 T) := (7 

Hence, the identity is e = {1, 0, 0} and g1 = {M1 , -vM'i, -0}. 
(ii) The six up-to-second order differential operators span a wsl (2, R) algebra. 

Their exponentiation can be related with (2.1) through 

(2.3) exp i[aP2+ b{P, Q!}+ + c2 +dQ+eP+fl] =: a{ ( 6 ) , ( ) 

(2.4a) a = cos 2s - bs-1 sin 2s, s = ?(ac - b2)112, 

(2.4b) ,8 = -as-1 sin 2s, 

(2.4c) y = cs-1 sin 2s, 

(2.4d) a = cos 2s + bs ' sin 2s, 
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(2.4e) ? =-(ce -bd)s-2(1- cos 2s) + ds-' sin 2s, 
(2.4f) I = '(be - ad)s2(1 - cos 2s) + 2es-' sin 2s, 
(2.4g) 0 =f -(ad 2 + ce 2 - 2bde)s -2(1 _-S-1 sin 2s). 
This relation is valid for all values of a, b, *, f including the cases ac - b2 _ 0. When s2 
is negative, we can use s'= is=+ (b2 -ac)112, replacing cos 2s and s- 1sin 2s by 
cosh 2s' and s'-' sinh 2s'. For s = 0 we can approach this class from nonzero values, 
obtaining cos2s--0, s' sin2s -e2, s 2(1- cos 2s) -*2 and s 2(1- s sin 2s) -. 
Equations (2.3)-(2.4) together with the composition rule (2.2) yield all Baker-Camp- 
bell-Hausdorff relations for wsl (2, R). 

(iii) The hyperdifferential operators (2.3) can be extended to Y2( R) through 
integral transforms which are unitary in this space, as 

(2.5a) [a{g}tp](q).= [Of (q ) (, (?, O ])}P(q) Jdq'Cg(q, q') p(q'), 

Cg(q, q') = (2 )-1/2 e-iI4 

(2.5b) expi[a (C'- )7 (,B-__ 1 2 ] 

f3 $ O, arg 3 e [-r, 0]. 

When , = 0, corresponding through (2.4b) to the absence of a p2 -term in the exponen- 
tiated operator, Cg(q, q') can be found as a limit of a sequence of functions converging 
weakly to the Dirac 5. In that case, (2.5) collapses to the Lie action 

) [ p{ge}](q) = [a{(a a 0) (?, 7 O)J9](q) 

(2.6) 2 
-12 .yq eqq = a-1/2 exp i{ y+?q+e74?] { +') 

This five-parameter subgroup of WSL (2, R) will be called the group of geometric 
transformations. 

Canonical transforms (2.5) follow the group composition rule (2.2) modulo a sign; 
i.e., they are a two-valued ray representation of WSL (2, R) [25, ? 9.1.4]. 

The adjoint action of the group on the algebra 

(2.7a) H _ Hg g:= {g}OH{g}-' =: AdgH 

can be described through indicating the linear combination parameters of H by A, 
B, * * *, F as in (1.lb), those of Hg by Ag, Bg, * * *, Fg and letting them transform as the 
elements of column vectors H and Hg under the 6 x 6 representation r(g) of 
WSL (2, R)/center WSL (2, R): 

(2.7b) Hg = F(g)H, g = {(y I) (e, 77 ) 

ay2 -2a3 /2 o 0 0 0 

-a'y a + +3y -38 0 0 0 
(2.7c) r(g):= ly2 -2yS 82 0 0 0 

2ye -2(y7 +8e) 287' 8 -y 0 
-2ae 2(aq + /3) -2/37 -/3 a 0 

\ 22 -2?q 2 - - 1 
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Under (2.7), wsl (2, R)/1 divides into five orbits whose representatives can be con- 
veniently taken to be the Schr6dinger Hamiltonians for the time-independent harmonic 
(h) and repulsive (r) oscillators, the linear potential (1), the free particle (f) and P. The 
first four are 

(2.8a) H := 2 + Q2 forAC-B >0, 

(2.8b) H?r= 2p2 _ 1Q2 forAC-B2 <0, 
1 2 2 

(2.8c) HI:=P2 +Q forAC-B2 =0, BD-CE $0, 

(2.8d) Of := 1-P2 forAC-B 2 = , BD-CE=O, 

while the last one obtains for A = B = C = 0. This short list of results on canonical 
transforms contains some new expressions as (2.3)-(2.4) and adapts old ones as (2.7) to 
the wsl (2, R) basis as displayed in (1.1b), which seems to be better suited for our 
purpose at hand than the spherical basis used elsewhere [22], [25 Part IV]. 

3. The evolution operator. We now turn to the task of finding the evolution 
operator exp [i K(t)] for the solutions of the system (1. 1)-(1.2) through the property 
(1.3). The problem and its solution through Baker-Campbell-Hausdorff relations, the 
Leibnitz rule, and the adjoint action of the group on the algebra are readily appreciated 
when we perform the task explicitly on the Heisenberg-Weyl part of WSL (2, R): 

-iat{,W77,c qg 01= -ia, exp i[Ec (t)Q! + 7q (t)P' + 0 (t)l] 
- -ia, exp (iEQ) exp (iqP) exp (i[O + E7]1) 

= EQW{E, q, O}+exp (iEQ)>P exp (iqP) exp (i[G + 2E]) 
(3.1) +W{ 19 rl, td(o +1 E71)1 (3.1)~~~~~~~~~~~~~~~~~~~~~~ 

= [E Q + nAd(e,o,o) P + at (o + 2En)]W{E, n, O} 

= [E 
1 

+-2E]W{E, 9, O}. 

Application of -iat on the full WSL (2, R) exponentiated operator (2.3) splits the 
semidirect product through the Leibnitz rule into an SL (2, R) summand and the 
W summand above. The former is then brought to the product of three factors 
generated by p2, {p, Q}+ and 2. Through (2.7) we move all algebra elements to the left 
and sum them in a manner entirely analogous to (3.1), which is finally set equal to H(t) in 
(1.3); i.e. 

(3.2) _,tO{(ya 9) (e, , O)} 

-[AP2+B{P, Q}++CQ2+DQ+EP+Fl]a{( (EC), (, q), 

and for the coefficients we obtain the set of ordinary differential equations 

(3.3a) A = -a 2,u, ,-/2a, 

(3.3b) B = ayg, - CY/2a, 

(3.3c) C=-y2gu,+ 2vv/a+vl , v:-y/2a, 

(3.3d) D =Si - yn, 

(3.3e) E = Ca -pi, 

(3.3f) F = 9 + 1 
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which determine D{g(t)} subject to the boundary condition g(O) = e. Equations (3.3) can 
be inverted for the time-dependent parameters of g through a sequence of linear 
ordinary differential equations as 

a -cA/A + a[4(AC-B2)+2B -2BA/A] = 0, 

4 a(O) = 1, c (0) = -2B (O), 

(3.4b) -3i&/a + 2A/a = O, j3(O) = O, 

(3.4c) y = -aBIA - &/2A, 

(3.4d) 8 = (1 +3l-y)/a, 

(3.4e) E =Da +Ey, E(0) =0, 

(3.4f) 7=Df + E8, (O) =O, 

(3.4g) O=F+2-En2n O(O )=0. 

This is the key step in solving our original equation (1.1): given A, B, *, F in H(t), 
(3.4) provides us with the evolution operator in (1.2) which determines the subsequent 
time development of the initial conditions. As a check on the calculation, we can 
consider the case when the coefficients of H are constant: the solution of (3.4) then leads 
exactly to (2.4) with a = At, b = Bt, ... , f = Ft and s = (AD - B2)1/2t, as a consequence 
of which the time dependence for a, 3, ..., 7 appears only in the argument of the 

2 
trigonometric functions, while 0 exhibits also a linear dependence on t. The AC - B = 
O orbits let terms linear in t appear for /3 and e, quadratic ones for q and cubic ones for 0. 
The Green's function for the system (1.2) is now found simply by substituting the results 
of (3.4) in (2.5b). Although it is not necessary for the solution of (1.1), the explicit form 
for K(t) in (1.2) can be obtained from that of exp [iK(t)] through inverting (2.4) for 
a, b, ... , f. 

An important particular case pertains the Schrodinger equation with a time- 
dependent quadratic+ linear potential term: 

(3.5) H1(t) = 2P2+ C(t)Q2 +D(t) Q+F(t)1; 

i.e., A1 = 2, B1 = 0, E1 = 0. In that case (3.4) reduce to 

(3.6a) a +2Ca=O, = a(O)=1, or(O)=O, 

(3.6b) j3 +2C, = O, (0) = O, (0) = -1, 

(3.6c) y=- &, 8 =-j, cY49 -aj = 1, 

(3.6d) E = aD, E (0) = 0, = jD, q (0) = 0, 

(3.6e) O= F + (aq + jE )D, 0(0) = 0. 

One last consequence of our general construction is the relation 

(3.7) -iatD{g-l} = _l1H(t), 
where {g-1} = X{g}-1 is the transformation inverse to (3.2). 

4. Similarity solutions and separation of variables. The elementary separation of 
variables procedure for a manifestly separated equation Ho(q, t) = -ia,0(q, t) with H 
constant, searches for the (possibly generalized) eigenfunctions TA (q) of H, whose time 
development consists in multiplication by a phase exp (iAt). Similarity methods allow us 
to replace the eigenfunctions Ak (g) of H by the eigenfunctions of a different operator 
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H', 4(q), with the condition that H and H' lie in a finite-dimensional Lie algebra. In the 
case of the wsl (2, R) algebra we can choose among any linear combinations of the six 
generators. In particular, it is useful to select the four orbit representative Schrodinger 
Hamiltonians HW, co = h, r, 1, f given in (2.8). Their (Dirac) normalized eigenfunctions 
and spectra are 

(4. la) Ph(q):= (2h n!r112Y112 exp (-2q2)H (q), A = n +2, n = 10 1, 2 * 

(4. lb) r,A(q):= exp [iir(2 - iA)]2 3/4F1F( -_ jA )D -12+iA(-or21/2 e3i/4q), 

AeR, cr=?1l, 
(4.1c) T(q) :=21/3Ai(21/3[q -A ]), A e , 
(4. ld) TP,(q) = (2X)-1/2 exp (io-[2A]1/2q), A E + o- = -1, 

and satisfy O T l'P(q) = AT P(q). 
Now, the evolution operator for the time-dependent system (with a nonzero 

P 2-coefficient) can be written, for values of the parameters in a neighborhood of the 
identity, as 

(4.2) 0{( 
a ), (? 7, O)} =D0{ge(t)}exp[irw(t)HJla], Co = h, r, 1, f, 

where ?{geg} is a time-dependent geometric transformation (2.6) and r' (t) will have the 
role of a transformed time variable. In applying the evolution operator (4.2) on the 
corresponding initial conditions (4.1), the rightmost factor will multiply the latter by a 
phase, while the action of the geometric transformation will change the argument of 
PA(q) to qla e (t) + q 7' (t), and this will be the only A- dependent function to contain this 
new variable. The other factor, stemming from the multiplier or modulation function in 
(2.6), will be common to the whole eigenfunction set. In this way, the solution 
R-separates (or separates with a modulation factor: see [17]) as 

(4.3a) PR(q, t) = R (v , t)TA (t)P (v ), 

(4.3b) v &(qg t):=ql a (t)+77 q (t),9 

(4.3c) R (v, t) := (a )112 exp i[2-y2'ag eV+ (Ee' -at e '1)(v -r1 e/2) + 9' ] , 

(4.3d) T& (t) := exp [iAr& (t)]. 

For w = h, r, 1, f, these are four inequivalent similarity solutions, and (v ' (q, t), t) are the 
corresponding separating coordinates for the time-dependent system (1.1). Performing 
the necessary substitutions [(2.8) in (2.3)-(2.4) for the rightmost factor in (4.2),. the 
product rule (2.2) for the right-hand term and some algebra to solve for the parameters 
of g&'(t) and rw(t)] we find the constituent expressions of (4.3). 

The separating variables are (vw, t), where 

(4.4a) vf(q, t) = (q - 3E)/a + , 

(4.4b) v'(qq t) = vf(q, _)-f /a, 

(4.4c) vr,h(q, t) = (q +aq -je)(a 2W 2)f-1/2. 

In all cases, vw(q, 0) = q, as it should. The A-and t-dependent phases (4.3d) are 

(4.5a) TfA (t) = T' (t) = exp (-iAj3/a), 

(4.5b) Tr (t) = [(a -j)/ (a + j)]iA/2 

(4.5c) Th (t) = [(a - if3)/(a + i)]A/2 
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and the modulation factors (4.3c) are 

(4.6a) R'(v, t) =- exp i[-ayv +(E +y{je-aq})(v-{ -fel/a})+0], 

R'(v, t) = Rf(v, t) exp i[(f/a)(1 +2j3y)v + 
(4.6b) 

6 

+ (j /2a )(E + {j - a} + j1{4 + 3jy}/ 1 2a)], 

(4.6c) R rh(v, t) = ( 2p 2) 1/4 exp i[a'1(y{a2 2}w3) V2+a-'( -y{a - ) 

* ({CY2 f3 2}11/2V -1{aq - 3e}) + 0]. 

When H(t) = vH = f, 1, r, h the results obtained from (4.4)-(4.6) reduce to the 
separating variables and multipliers of the representatives of the four inequivalent 
orbits for the time-independent Schrodinger equations given in [25, Table 10.3]. [In 
this table, the entries are as referred to equation (10.53), where the exponent S(v, t) 
includes all and only v-dependent, A-independent terms.] 

As stated above, the separating coordinates and similarity solutions displayed in 
(4.3)-(4.6) are inequivalent under the similarity group and are representatives of their 
orbit. The most general separating coordinates and solutions may be found through 
applying a geometric similarity transformation (2.7) to the separating operators HW, 
co = f, 1, r, h. This amounts, for the coordinates (4.4), to the application of (2.6). As the 
added generality will involve four new parameters for all our expressions, we shall 
forego their display. 

We should remark here that our construction is formally valid not only for 
Schrodinger equations (1.1) but, allowing for complex coefficients A (t), B (t), * * *, F(t), 
for any contracting parabolic equation as, for example, the diffusion and Fokker-Planck 
equations. 

When faced with a problem with constant boundary conditions on moving boun- 
daries, we can apply the "method of images" if we can find a set of separating 
coordinates vw(q, t) = c1 and vw(q, t) = c2 belonging to the same family which match 
these boundaries. The solution of the Sturm-Liouville problem for the operator H'l 
which produces this separation, on (c1, C2), yields the corresponding "best set" of 
similarity solutions in which to expand or approximate the initial conditions so that the 
boundary conditions are automatically satisfied. 

5. Gaussians and coherent states. In addition to the similarity solutions of the last 
section, there are certain functions whose time evolution under time-dependent 
quadratic Hamiltonians can be reduced to a group-theoretic problem involving only 
matrix algebra. Among these we have Gaussians, oscillator coherent states and plane 
waves. The former can be written 

(5.1a) G (q - k) := (2irw)-1/2 exp [- (q - k)2/2w] = (D{Gw, 0, O}8k)(q), 

(5.~ ~ ( ex b- G/2=wI w > O, (80 (q) = 8 (q -k). 

They are Gaussians of width w, centered at k, of unit L 1-norm and L2-norm (4mrw)-1/2. 
The oscillator coherent states are given in terms of Bargmann's transform [1] as 

(5.2a) Yk(q): -1/4 ek2/2 exp [- (q -21/2k)2/2] = (2ir)14 (O{B, 0, O}8k)(q), 

(5.2b) B= 2 ( -1 i) 
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Lastly, plane waves can be defined in terms of the Fourier transform F= 
exp (-iir/4)0{-fl, 0, O}, but we shall not discuss them here. 

The time evolution of Gaussian initial conditions under a time-dependent equation 
(1.1) can be easily calculated through the WSL (2, R) composition rule for the matrix- 
vector representations of the evolution operator times D{Gw, 0, O}, decomposed as a 
product of some D{G,, 0, O} times a geometric transform D{ge}, as given by (2.6). If the 
parameters of the latter are denoted by ae, ye, se, r1e, Oe, we have 

G. (q - k, t) = [exp (i K(t))D{Gw, 0, O}8k](q) 

= [l{G w, 0, O}?{ge}8k](q) 

= a 1/2 exp i[2aeyek2 + (Ee - aeye77e)(k - 7e) + Oe]Gw'(q - ae[k-7e]) 

= (8 - iyw)-1/2 exp i [2 + ))(k -2{77 - iew}) + ] 

Gwi w EW-i[k-1 t aw + i3 q YW + 18 
w 

8 8-iyw' 

where only elementary algebraic manipulations have been used. 
The oscillator coherent-states Yk(q) are coherent under the usual time-indepen- 

dent harmonic oscillator due to the property 

(5.4a) exp (itH Hh)f{B, 0, O} = l{B, 0, }0f{diag (e t, eit), 0, O, 

where, from (2.3)-(2.4) and (2.8a) [or, in fact, from (3.5)-(3.6)], 

(5.4b) exp (itHh) = )cos,t -sin t O} 
sin t cos t 

Indeed, the Bargmann matrix B diagonalizes the harmonic oscillator evolution opera- 
tor matrix representative, turning exp (itH1h) into a change-of-scale operator with 
a = eit; hence, acting with (5.4) on 8(q - k), we have Yk(q, t) = e it12Ykexp(it)(q). The 
repetition of (5.3) with B in place of Gw, however, is impossible unless the matrix 
representatives of exp (i O(t)) lie on a subgroup generated by jh. Oscillator coherent 
states will thus remain coherent only if the Hamiltonian of the system is of the type (3.5) 
with a fixed strength C(t) = 1, i.e. when only the oscillator attracting center is allowed to 
move as K(t) = -D(t), so F(t) = K(t)2 + p(t). In this case, (5.4), (2.6) and (3.6) quickly 
lead to 

(5.5a) Yk (q, t) = exp i[2t + E(k + 2 )7) + O]Ykexp(it)(q), 
t t 

(5.5b) -(t) = -2-1/2 j dt'K(t') et, B(t) = 21/2i } dt'K(t') e-' 

t t 

(5.5c) @(t) = } dt'[2K(t') + p(t') + |dtK(t") sin (t + t")]. 

One can define coherent states for Hamiltonians (1. lb) other than the harmonic 
oscillator. If the three leading coefficients are constant, the evolution operator will lie on 
an SL (2, R) subgroup and a diagonalizing matrix B' may exist which effects the 
analogue of (5.4a). For the Hh orbit this yields Gaussian functions of real width, while 
for the H' orbit the width is imaginary and the L 2-norm infinite. The H' and Hf orbits do 
not allow for diagonalization. 

We may suggest two generalizations for the coherence property (5.4a). One of 
them is to allow in the rightmost factor for a geometric transform, with the result that 
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the new coherent state may change its scale and be multiplied by an imaginary Gaussian 
phase factor. The second is to investigate the coherence or reformation of certain 
initial conditions at a given later time or times, so that the analogue of (5.4a) is required 
to hold only for the corresponding matrix or set of matrices. 

6. The similarity algebra and constants of motion. The search for constants of 
motion X(t) E wsl (2, R) can be formulated through demanding that 

(6.1) [N(t) + iat, X(t)] = 0. 

The discovery of these is intimately related to finding the similarity group and 
separating coordinates for a class of time-independent partial differential equations 
[17, and references therein]. Indeed, if X(t) contains a p2-term with coefficientAx(t), we 
may turn the second derivative in q into a first derivative in t on the solution space of 
(1.1) through subtracting and adding X(t)H, with X(t) = Ax(t)/A(t), and replacing H by 
-iaO in the added term. Thus 

(6.2) Xs(t): X(t) -X(t)[HO(t) + iat] 

is a first order differential operator in q and t, satisfying 

(6.3) [DHD(t) + iat, Xs(t)] = -ik(t)[H1-O(t) + iat] 

and mapping solutions into solutions. The set of all operators with this property 
constitutes the similarity algebra of the differential equation. 

Both (6.1) and (6.3) can be solved for the coefficients of X(t) which will satisfy 
certain coupled nonlinear differential relations. Finding a minimal set of parameters is 
the final step in identifying the similarity algebra, which should be wsl (2, R). As we 
have started here from this algebra and presume to know the evolution operator 
exp [i 1(t)] associated with 1-(t), we can find six linearly independent operators X(t) as 

(6.4a) X. (t) = 01g1}Sn0g1g g () {= ( 8~q y) 3) 

(6.4b) I=2 X 3?={ 4}+, X=Q2, X4=, X5P 6 

which satisfy (6.1) because of (3.2) and (3.7). In choosing the numbering (6.4b) for the 
Xon = Xn (0) we can make use of the adjoint representation of the group (2.7) in order to 
write them more explicitly as 

6 
(6.5) Xn (t) = rmn(g)X%.; 

m=1 

i.e., the time-dependent coefficients of Xn (t) in the X0-basis are given by the elements of 
the nth column of the matrix (2.7c), the latter satisfying (3.4). Among (6.5), X6(t) = X is 
trivial and only reflects the fact that the differential equation (1.1) is linear. 

For the special case of Schrodinger equations with a time-dependent potential 
(3.5), the elements of rmn (g) are subject to restrictions (3.6c) and yield the constants of 
motion of the problem as 

(6.6a) X4(t) = -0 0 -,BP+7 N, X4(0) = 0, 

(6.6b) X5(t) = Q + aP- E1, X5(0) = P 

(6.6c) Xl(t) = X5(t)2, X2(t) = {X5(t), X4(t)}+, X3(t) = 4(t)2, 

leaving a, ,3, s and 77 to be determined out of linear differential equations (3.6a), (3.6b) 
and (3.6d). 
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In making these statements we are aware of the work by Lewis [15] and Riesenfeld 
[16] on the exact solutions of the quantum time-dependent harmonic oscillator, (3.5) 
with D = F = 0, where the search is directed for quadratic invariants of the form 

(6.7) X(t) = 1 x1(t)iP2 + X2(t){1P, Q!} + X3(t)CI2], 

through the replacement in (6.1) and equating the function coefficients of the operator 
terms. In solving for the Xk(t), k = 1, 2, 3 one finds that these are given in terms of a 
single function p(t) determined by a nonlinear differential equation: 

(6.8a) x1(t) = p2, X2(t) = -2pp, x3(t) = p-2 + p 2 

(6.8b) p(t) + 2C(t)p(t) = p(t)-3. 

The expression (6.7) was also shown [16] to factorize into a "raising and lowering" 
operator pair. Since they explicitly asked a, not to appear in (6.7), they worked with 
(6.1), and not with (6.3), as one would normally do in applying similarity methods to the 
problem. The equivalence is nevertheless guaranteed by (6.2). 

It is easy to verify that if we take an arbitrary linear combination of (6.6c), 
clxl(t) + C2X2(t) + C3X3(t) (with Ck independent of time), then the coefficients of the 
p2-term, for example, will be cia 2- 2c2a13 + c3,82. Comparison with (6.7)-(6.8a) leads 
us to put this equal to some or(t)2, i.e., 

(6.9) cr(t) := [cla2 2c2Caf + C362]112 

Equations (3.6a)-(3.6b) together with (6.9) imply that the Lewis-Riesenfeld equation 
(6.8b) is satisfied for ao(t) with a factor of c1c3 - c2 on the right-hand side. The two other 
coefficients in (6.8a) follow suit. Indeed, this feature of the Lewis-Riesenfeld invariant 
in classical mechanics has been noticed before by Eliezer and Gray [4], who asked a and 
,B only to be the Cartesian coordinates of a two-dimensional oscillator with a radially 
symmetric time-dependent oscillator of strength 2C(t). In this context, the angular 
momentum is shown to be related to the constant value of (6.7). 

The new algebraic interpretation we obtain for the quantities a and 3 is that of the 
linear combination coefficients for a time-dependent linear canonical transformation in 
quantum-mechanical phase space. They can thus be seen as drawing out in this space 
the motion of the Eliezer-Gray associated oscillator, the angular momentum constancy 
df3 -aS = 1 being due to the unimodularity condition in (2.1b) which in turn is a 
consequence of asking X4(t) and X5(t) to remain as canonically conjugate operators 
under the time-dependent canonical transformation. The two inhomogeneous 
parameters E and -q are due to the movement of the original quantum oscillator center 
and do not appear in the Eliezer-Gray associated oscillator. Their presence in (6.6) 
underlines the fact that the quantum-mechanical phase space (the W group manifold 
[21]) is really three-dimensional, the third dimension being generated by X, which can be 
equivalently regarded as the phase fibers on a base Euclidean phase space. 

Returning finally to the set of invariants (6.5) for the more general problem posed 
in (1.1) and choices of linear (not functional) combinations among them, convenience 
may dictate that we build the invariants out of the time evolution (6.4a) of the four 
Schrodinger Hamiltonians (2.8). Call them X. (t), w = h, r, 1, f. The similarity solutions 
4r0(q, t) seen in ? 4 are the eigenfunctions of the latter X, (t) with time-independent 
eigenvalues A [16]. Our advantage in using Lie algebraic methods is the knowledge that, 
corresponding to the five orbits in wsl (2, R )/11 we have the same number of algebraic- 
ally inequivalent constants of motion which include first-order terms in addition to 
(6.7). These, moreover, in the form (6.2) provide us with a large class of realizations of 
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the wsl (2, R) algebra as first order two-variable operators (in q and t) which can be 
readily exponentiated to a multiplier realization of the group on space-time. The 
technique is straightforward: 

(p (q, t) 
g 

pg(q, t):= [exp (i K6(t))U{g}ip](q) 
(6. 10) 

= [G{ge} exp (i K(tg(t)))ip](q) = A (g, t; ge)'p(q'(q, t), tg(t)). 
The first equality requires some matrix algebra to determine the parameters of the 
geometric transformation ge and the transformation of the time variable to tg(t), while 
the second is a substitution from (2.6). 

7. Further comments and extensions. Our present developments have been made 
through the intensive use of inhomogeneous linear canonical transforms. These are not 
the only canonical transforms, however. The method one could use for the closely 
related problems listed below do not differ significantly from those solved above. As 
Leach [13], [14] has shown, in classical mechanics one can handle other time-dependent 
analytic potentials in a recursive fashion. The only other one-dimensional potentials for 
which we can now offer a straightforward solution are those which contain A (t),u (a-2 
centrifugal or centripetal terms, ,u E P, to the exclusion of the linear terms DO +E P. 
For these we have radial [20] and hyperbolic [24] canonical transforms. The integral 
kernel (2.5b) (for E = = 0) will now consist of Gaussians times cylinder functions, while 
the similarity solutions (4.1)-(4.3) will involve Laguerre, Bessel and Whittaker 
functions. The gist of the method, the 2 x 2 matrix algebra, will be the same for the 
evolution operators determined through (3.4), separating coordinates (4.4), multipliers 
(4.5) and constants of motion (6.5). They are given by the same formulae with E = T =0, 
and should be compared with the results in [3] and [8]. 

Complex canonical transforms were used in ? 5 for the study of Gaussians and 
coherent states, but not insisted upon. The same formulae apply for complex values of 
the time-dependent Hamiltonian formalism in the diffusion or Fokker-Planck systems. 
The added complication is that one must impose on the evolution operator that it 
remain within the semigroup of bounded operators. This condition is given in terms of 
demanding [19] that if a $ 0, Im (a/,8) _ 0 while if a = 0, Im,8 = 0. The study of the 
conditions this imposes on the coefficients of H(t) in (1.1) (allowing temporary inverse- 
diffusion behavior, for instance) would be of interest. 

The extension of our results to N- dimensional systems generalizing (1.1) needs the 
wNsp(2N, R) algebra and the corresponding group [19] (recall that sp(2, R) 
sl (2, R)). The orbit structure of WNSP (2N, R) has not yet been subject to a complete 
analysis, and neither can we apply the methods of ? 4 to nonsubgroup separating 
coordinates [17]. The corresponding dynamical algebra, moreover, will be the full 
WNSP (2N, R), properly containing the commonly listed [11, 12] su (N, 1) or 
Schrodinger WN A (sl (2, R) + so (N)) algebras. The WN sp (2N, R) are not all reducible 
to first-order differential operators in space and time [18]. 

Finally, regarding applications, Lewis and Riesenfeld [16] devoted much attention 
to the calculation of the S-matrix elements of a system which is asymptotically 
time-independent in the remote past and future. See also [7]. Indeed, the matrix 
elements of the time evolution operator U1(t1 - t2) = exp (i (t2)) exp (-iK((t1)) between 
asymptotic Hamiltonian eigenstates is a purely group-theoretic problem which requires 
the asymptotic properties of the irreducible representation matrix elements of the 
WSL (2, R) group element g associated to U(t -> t2) between appropriate bases (4.1). In 
this regard, the state of the art seems to stand as follows. For the f-orbit eigenstates 
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(4. 1d), the S-matrix elements are given by the Green's function corresponding to the 
group element fgf-', f = {-fl, 0, 0}. For the h-, r- (and f-) orbits, the SL (2, R) part of 
the S-matrix can be given in terms of the results of [2], and for the Airy function I-orbit 
in terms of [23]. The W-part is known for the f- and h-orbits [21, ?. IID] but not yet for 
the other two, and neither has their composition been performed explicitly. 

Note added in proof. The author is indebted to Dr. V. I. Man'ko for kindly pointing 
out the work of the Lebedev Institute group, which has studied coherent states in 
time-dependent systems and has applied the results to electromagnetic interactions and 
molecular physics. This work was slighted, as the first paragraph of this article mentions 
it only through References [3] and [11]. Among the explicit references which should be 
added are [26]-[32]. 
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