ON TIME DEPENDENT QUEUING PROCESSES

By J. Kemson anND A. KOOHARIAN
Sylvania Applied Research Laboratory, Waltham, Massachusetts

1. Introduction. It is well known that the general class of stochastic processes
with discrete states in continuous time arising in queuing theory, birth-death
processes, etc., can be characterized as Markov processes provided the full set
of random variables needed to specify the state of the process is employed. A
detailed illustration of this approach is given by Cox in [1]! for the case of a
queue in equilibrium subject to a random (Poisson) arrival distribution and a
general service time distribution. Our object in this paper is to initiate a syste-
matic development of this approach in the theory of queues. It turns out that
such a development for the time dependent version of the above described queu-
ing problem requires analytical considerations not encountered in the equi-
librium case. Similarly the systematic development of this approach for the
queue with a general arrival distribution (as well as a general service time dis-
tribution) leads to a still different type of mathematical problem (simultaneous
Wiener-Hopf integral equations with an analytic side condition) which we in-
tend to report on elsewhere.

One final remark is in order concerning the formulation of the approach and
derivation of the governing differential equations carried out in sections 2
and 3. While there is a general similarity between the arguments in these sec-
tions and those, for example, in [1], we prefer to give a self contained discussion
in order to exhibit how the additional complications arising from the considera-
tion of time dependence can be incorporated in the general approach.

2. Phase space. We assume a Poisson arrival distribution with a mean rate
of arrival N and that the service time x between an admission and completion
is specified by an arbitrary probability density D(x).

The state of the entire system (queue and service operation) at time ¢ is
specified by the number, m, of people in queue and the elapsed time, x, of the
person currently in service. Our phase space T, accordingly, will be two dimen-
sional with one discrete dimension consisting of the non-negative integers (queue
lengths) and one continuous dimension consisting of the positive reals . The
state of the system is then characterized by a point in T'. For completeness
there should be a sihgle additional point in T corresponding to the state of total
vacancy of the system.

We can now introduce the probability density W..(z, t) on T for the prob-
ability that at time ¢ the queue length, excluding servee, is m and the elapsed
time in service is x. It is worth emphasizing that the characterization of the
state of the system by means of the set of probability densities Wn(zx, t) is

Received July 6, 1959; revised August 27, 1959.
We are indebted to the referee for bringing Cox’s work to our attention.

104

&5
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[& )2
The Annals of Mathematical Statistics. BINORN

www.jstor.org



QUEUING PROCESSES 105

well defined independently of the queuing discipline. Thus whereas the queue
length m is essential in our characterization of the state of the system, nothing
whatsoever is implied with respect to the discipline governing selection from
the queue for servicing (e.g. first come first served, completely random, etc.).
It can be shown, nevertheless, that queue-discipline dependent aspects of the
system such as waiting time distributions are deducible from the W.(z, t)
when the queuing discipline is of the first come first served or random selection
type (see [1], for example).

3. Analysis. The derivation of the difference-differential equations for the
Wa(z, t) employs elementary continuity arguments concerning the motion of
the system in I'. Consideration of the continuity of the flow during a time in-
terval (¢, t + A) leads to the equations

Wl + A, t + A)
= W‘m(x7 t)(l - >‘A)(1 - ﬂ(x)A) + Wm—l(xs t))‘As m=1,2 -,

to first order terms in A. Equation (3.1) is the basic relationship connecting the
state of the system at a time ¢ + A to those at time ¢ from which the present
state is attainable in phase space by the occurrence or nonoccurrence of arrivals
and departures in the interval A. The interpretation of n(z) in (3.1), accordingly,
is similar to that of X; i.e., n(z)A is the first order probability that a service
completion occurs in the interval (z, z + A) conditioned on the system having
reached the state 2. The relationship of #(z) to D(z) is given by

(32) D(a) = n(e) exp{~ [a0) dy}.

Rearranging terms in (3.1), dividing by A and taking the limit as A — 0 in
(3.1), we obtain, form = 1,2, ---,
Wu |, OWn

(3.3) T + s + N+ 9@)IWa = AWaa

(3.1)

as the governing partial differential equations in the interior of T. For m = 0
we similarly find
at ax
One additional probability, E(t), that describing the completely vacant state
of the system, must be considered. Again a continuity argument similar to that
leading to (3.3) yields

(3.5) ¥ 425 = fo " (@) Wolz, 8) de.

(34) + + N+ n(x)]Wo = 0.

In order to complete our mathematical description, it is necessary to specify
(a) some initial state {Wa(z, 0); m = 0, 1, 2, ---} and E(0) from which
the system starts at ¢ = 0, and



106 J. KEILSON AND A. KOOHARIAN

(b) the boundary conditions on the boundaries of T'. ((3.3) and (3.4) are
partial differential equations).

As will become clear in the subsequent analysis, the solution of the set of
equations (3.3), (3.4) together with appropriate boundary conditions will have
a linear dependence on the initial conditions. It is no restriction, therefore, to
consider the problem for initial states of the form

(3.6) Wa(z,0) = dund(x — x0), m=20,12 ---,

where §,.x is the ordinary Kronecker’s delta and §(x — ) the “‘delta function.”
In words (3.6) corresponds to starting the system with a specific queue length
N and elapsed service time xy .

The derivation of the boundary conditions, on the other hand, requires a
consideration of the motion of the system in ' when a completion occurs. If
the system is in the state (z, m + 1) and experiences a completion, it drops
directly into the state (0, m). Let us consider, therefore, the quantity

(3.7) Pt = fo W0 de,

which is the probability that the system be located at time ¢ in the set of states
Sn:(0, m) to (A, m). If we restrict ourselves to single transitions in the time
interval (¢, ¢ + A), the following considerations determine P, (¢t + A):

(a) A system in the state (x, m + 1) at time { may experience a completion
so that at ¢ + A it lies in Sp,

(b) A system at (x, m) for x > 0 at time ¢, on the other hand, cannot lie
in Spatt+ A,

(¢) Similarly systems at (x, m — 1) at time ¢ cannot lie in S, at ¢ + A,
since x is unaffected by arrivals.

Hence continuity requires that to the first order in A

Po(t + A) = A [§ Wan(z, t)n(z) dz, m=1,2 .
Expanding P.(t + A) and keeping only first order terms in A, we obtain the
boundary condition

(3.8(‘1) Wm(O, t) = / Wm+1 (.’1;, t)‘fl(iv) dx’ m = 1) 27 Tt
<0

The previous argument must be modified for m = 0, since a system lying in
the empty state which experiences an arrival in (¢, ¢t + A) also finds itself in
So at time ¢ 4 A. In this case we obtain

(3.8D) Wo(0, 1) = fom Wiz, Onz) de + MECL).

The set of equations (3.3-3.6) and conditions (3.8) then provide a complete
description of the queuing problem posed above. It is to be observed that if the
equations of motion (3.3-3.6) are integrated over all x and summed over m
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taking account of the boundary conditions (3.8), it follows that
L ]
-‘?(Em + 2 [ Walz 0 dw) =0,
dt m=0 Jo
which expresses the conservation of probability.
In order to facilitate the analysis of this system we introduce the generating
function

(3.9) G(s, z, t) = z% S"Walz, t).

In terms of G(s, z, t), (3.3) and (3.4) condense into

(3.10) ‘%" + g_q + [\ + 121G = MG,
X
(3.5) becomes
(3.11) %E +NE() = f 2(2)G(0, 7, t) da,
t 0

while the boundary conditions (3.8) combine into
(3.12) sG(s,0,t) = f 7(2)G(s, z, t) dx + NsE(t) — f 7(2)G(0, z, t) da.
0 0
Our first step in the analysis of the system (3.10)-(3.12) is to make the sub-
stitution
(3.13) G(s, z,t) = H(s, z, t)e™™®
in (3.10), where we define N(z) = [i7(y) dy. (3.10) then reduces to

oH | oH _
(3.14) S+ M9l =0,

which has the general solution
(3.15) H(s, z,t) = Ho(s, t — z)e 47",
The addition of (3.11) and (3.12), and the use of (3.13) and (3.15) leads to

(3.16) %’;ﬁ + NE(t) + sHo(s, t) = f D(x)Ho(s, t — 2)e 7% do + AsE(t),
0

where (3.2) has been used in the integrand. The problem has thus been re-
duced to the determination of Ho(s, t) and E(t) for ¢ > 0 with only a single
integro-differential equation, (3.16), available. Actually there is a second dis-
tinguishing fact about H, deriving from its relationship to G, (3.13), which is
required to possess the analytical structure of a generating function. This latter
fact leads to the analyticity condition discussed in Section 4.

The unknowns in (3.16), Ho(s, t) and E(t), differ significantly with respect
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to their dependence on ¢; namely E(¢) has no meaning for ¢ < 0 whereas
Hq(s, t) does. In fact from (3.13) and (3.15) we have

(3.17) G(s, z,0) = Hy(s, _x)e-N(x)e—)\(l——a)z

for z = 0. Thus for negative values of ¢, Ho(s, t) is known explicitly in terms of

that part of the initial conditions corresponding to
0
Q(s, z,0) = 2 s"Wal(z,0).
m=0

Using the specific choice of {W,(x, 0)} in (3.6), we obtain for z > 0
(3.18) Hy(s, —z) = @7  8(z — m).

In so far as the analysis of (3.16) is concerned, the decomposition of Ho(s, t)
into its known and unknown parts splits the integral into the sum of a known
inhomogeneous term and a convolution integral involving Hq(s, t) for ¢ > 0
only.

For simplicity we shall continue the analysis for the special case of the sys-
tem starting from the completely unoccupied state, i.e., G(s, z, 0) = 0 and
E(0) = 1. In this case the inhomogeneous term vanishes so that (3.16) becomes

dE . N A=)z
(3.19) T 4+ M1 — 8)E(t) 4 sHo(s, t) = | D(x)Ho(s, t — z)e dz.
o

If we take the Laplace transform of (3.19), and adopt the notation of using

lower case letters for the Laplace transforms of capital lettered functions, we

find
(320) [p+ M1 — slle(p) = [d(p + M1 — s}) — slho(s, ) + 1,
or equivalently,

[p + A{1 — s}le(p) — 1
dip + M1 —s}) — s ~

4. The analyticity condition. Since we may properly restrict ourselves to
that class of possible solutions G(s, z, t) which are L;(0, ) inzfor0 = s =1
and t = 0, it follows that ho(s, p) must be analytic in the right half plane
Re(p) > 0. If we consider the possible singularities in ho arising from the roots
of the denominator in (3.21), i.e. the set of points p, satisfying

(4.1) s =d(p, + M1 — s}), 0<s=<1,

it is possible to show that there is a continuum of roots—the positive real p
axis—in the right half plane. In view of the preceding remark, therefore, e(p)
must be chosen so that the numerator of (3.21) cancels these roots of denomi-
nator. This argument specifies the values of e(p) on the positive real axis which
together with the fact that e(p) must be analytic in Re(p) > 0 serves to uniquely
determine e by analytic continuation in Re(p) > 0.

(3.21) ho(s, p) =
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In order to give an explicit representation of e(p), it is necessary to determine
under what conditions the function p, , defining the locus of roots of (4.1) as s
runs from 0 to 1, has an inverse s, . That is we seek the conditions under which
there exists a solution s, of the functional equation

(4.2) 8p = d(p + M1 — s,}).

This equation, interestingly enough, has previously arisen in the study of a
rather distinct problem in the equilibrium theory of queues; namely, the study
of the distribution of occupation times of the server ([2], [3]). The function s, ,
when it exists, is actually the Laplace transform of this distribution. We give
an analysis of the significance of this identification with respect to the time
dependent theory in the appendix. In [2] theorem 6, it is shown that there is a
unique analytic solution of (4.2) under the condition A/y < 1, where

n=1/ j: zD(z) dx

is the mean rate of service. This is the familar stability condition in queuing
theory. Under this condition e(p) can be explicitly given as

1
(4.3) e(p) = SFNI =
In general s, and, therefore, ¢(p) will require branch cuts in the p plane in
order to be well defined for Re(p) < 0. We shall illustrate the nature of the situa-
tion by considering a specific case in Section 6.
An alternative integral expression for E(t) may be obtained by utilizing the
transformation of variables suggested by (4.2) itself. Indeed using the trans-

formation
(4.4) u=7p+ N1l —sp)
in the usual inversion formula for e(p) yields

[N (u)+u—A] ¢ ’
(4.5) - B = i'fe (' (w) + 1)du,
2w u
where it is easily shown that the contour in the u plane may be taken to be

the imaginary u-axis indented to the right of the origin.

6. Steady state limit. The state densities for the queue under discussion in
the equilibrium case are well known [1], [2]. Our object here is to show how
easily these results follow from the above expressions for the time dependent
solution. Indeed, by standard Tauberian arguments

>

. 1
.1 1 t) = i = li p = :_—1_-,,
B B = I re) = TN " T~

A(l—s)(l—;—\)

d\{l —s}) — s’

and

(5.2) lim Hy(s, t) = lim pho(s, p) =
v p>0+
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where

’ ds 1
0) = [ =22 = e,
5»(0) (dP>P=0 A=

6. The Poisson/Poisson time dependent queue. When the service time dis-
tribution is also exponential with mean service time n then

(6.1) D(z) = ne™,
s0 that

6.2 d =
(6.2) (p) ———

The functional equation (4.2), accordingly, becomes

(6.3)

S A
7+ p+ A1 — s) Y
Solving for s, yields

2 1/2
(6.1) %==@fhliﬁléﬂ%€Lhi£L:JMLu

Rewriting the expression within the square brackets in the form
(6.5) (@4 N+ ) = 200" (@ + X+ 1) + 20"
shows that s, has branch points at

(6.6) p=—0+n£200 " = —(v/X £ Vn)"

The branch points are thus seen to lie on the negative p axis. By (4.3) and (6.4)
(=) 4+ Up+ (VA= V)l + (VA + V)"
2np
The branch of e(p) corresponding to the choice of + sign in (6.7) is required

to insure the vanishing of e¢(p) as p — + .
The inversion of e(p) can now be carried out. The contour we choose is in-
dicated in Fig. 1 below where a finite branch cut has been made between the

branch points p,, ps as given by (6.6). Taking account of the simple pole at
p = 0 as well as the branch cut, we obtain

(6.7) e(p) =

. ] x l f pt

. (L) =1 — — — —, p.
(6.8) E(t) =1 il r'ze(p)e dp
We point out that for p € Cz, Re(p) < 0 so that the second term in (6.8) repre-
sents transient behavior. The integral appearing in (6.8) can be simplified
leading to

[ = w) s = )%™

2nu

(6.9) mn=1_§+lf
n ™ Juy
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Fic. 1

where u; = —py, us = —p;. We do not pursue the details of this solution
further since this case has already been discussed by Morse [5] using a com-
pletely different approach. It is straightforward to bring (6.9) into the form
obtained by Morse.
APPENDIX

By occupation times we mean the time intervals between the state of com-
plete vacancy. The distribution of these occupation times is well known [2]. It
may, however, be obtained independently from the time dependent formalism
developed in the text in the following way. At ¢ = 0, the queue is started in the
state m = 0, z = 0. Let J(¢) be the probability at time ¢ that the system has
emptied. Then dJ/dt = W,(t) is the probability density function for the oc-
cupation times. Let U, (z, t) be the p.d.f. for the state (m, ) at time ¢ condi-
tioned on the system’s not having emptied, and let G(s, z,t) = 08" Un(z, t).
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It is clear that

(1) Wi(t) = %% = 7(2)G(0, 2, t) dx.

0
The boundary conditions Un(0, ¢) = [¢ 9(2)Unsi(z, t) dx for all m imply
(2) 6(50,0) = [ n(@) Ho50 = 6050 4

and, as before, G(s, 0, t — z) obeys Eq. (3.10). Thus
(3) G(s,2,t) = G(s,0,¢ — z) exp {—\(1 — 8)z — N(z)]
+ 6(x — t) exp {—A(1 — s)x — N(x)},

where §(x) is the delta function, and G(s, 0, t) is zero for negative ¢. If one
substitutes (3) into (2) and takes the Laplace transform, G(s, 0, p) is deter-
mined by the analyticity condition of Section 4.

From (1) and (3) we then have

(4) fo T W) dt = s,

where s, is defined by Eq. (4.2).
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