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ON TIME-FREE FUNCTIONS
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GIDEON SCHWARZ

Abstract. By regarding as equivalent any two real-valued functions of a real

variable that can be obtained from each other by a monotone continuous transforma-

tion of the independent variable, time-free functions are defined. A convenient maximal

invariant is presented, and applied to some time-free functional equations.

I. Introduction. In a earlier paper [9] we defined a time-free function as an

equivalence class of continuous functions under composition with a time-scale

transformation, that is, a homeomorphism of the independent variable. A matrix

which is a maximal invariant for this equivalence relation was introduced there

and was used to characterize a certain class of time-free (random) processes.

In §11 of this paper we carry out the constructions outlined in [9], and correct an

error that was pointed out by Mr. Einhorn.

§111 studies the solutions of the time-free functional equation 2/~/, and the

functions fulfilling the more stringent requirement of binary time-free stability.

Under a restriction to monotone functions, which is a point of view complementary

to that of time-free functions, similar functional equations and conditions have

been studied by Dubins and Savage [2] and by de Rham [7], [8].

In §IV we leave the time-free framework by introducing canonical time-scales,

and study some consequences of binary time-free stability, including the metric

dimensions of the graphs, a problem called to our attention by John Kinney. In

defining metric dimension, we follow Kolmogorov [4] whose definition goes back

to Pontrjagin and Schnirelman [6].

In §V we outline some ideas on a class of time-free stochastic processes that seem

to generalize Brownian motion in a natural way. So far we know very little about

these processes.

I would like to thank Martin Fox and John Kinney for many inspiring discussions

and Leo Katz who made it possible for me to complete this work at Michigan State

University.

II. The matrix of a time-free function. Let/be a real-valued unbounded con-

tinuous function on the nonnegative reals, having no interval in which it is constant,

and taking on the value 0 at 0. Associate with / a matrix A, whose entries anj,

defined for n an integer and y a positive integer, are all 1 or — 1, according to the

following rule: anj carries the sign of they'th consecutive change of size 2~n made by
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the function. Thus the «th row of the matrix reflects the order in which /performs

up- and down-crossings of the intervals where 2n/is between consecutive integers.

Clearly A cannot change when / is composed with a continuous nondecreasing

function mapping the nonnegative reals into themselves. So A depends only on the

time-free function of which/is a representative.

Each row of the matrix A determines the row above it: Group the entries of

row n into consecutive pairs. Any cancelling pair, that is, a pair of different entries,

indicates a crossing of an interval of length 2~n, followed by a crossing of the same

interval in the opposite direction. A pair of equal entries indicates consecutive

crossings of two adjacent intervals of length 2'" each, jointly comprising a single

crossing, in the same direction, of an interval of length 2"(B-1). Row « — 1 of A is

therefore obtained by replacing the pairs of equal entries by the same entry taken

once and ignoring cancelling pairs. We denote by K the rule just described for

obtaining from any row the row above it. K is defined for any infinite sequence of

± l's whose partial sums are unbounded, and it transforms it into another such

sequence. For a matrix to be the matrix A of some function/ it is necessary that

all its rows rn fulfill this condition and that K(rn) = r„_i for all n. In [9], these con-

ditions were wrongly stated to be necessary and sufficient. Here is a counterexample :

let anj, they'th entry of the «th row of A, be — 1 ifj<2n, and 1 otherwise. For «S 1

the nth row has an initial sequence of 2n— 1 minuses, followed by pluses only.

These minuses form 2n~l — 1 pairs, with one minus left over to form a single

cancelling pair. Thus K(rn) = rn_x holds. For n = 0, rn contains only pluses and

K(rn) = rn-x trivially. Obviously the unboundedness condition is also fulfilled.

However, if this A were obtained from a function / row n with n > 0, indicates

that /decreases at least as far down as — 2~n(2"— 1)= — 1 +2~n before it rises to,

say, +1. By continuity, it has to reach - 1 before +1. This contradicts the appear-

ance of a plus at the beginning of row 0.

This counterexample shows that K(rn) = /■„_! is not a sufficient condition for a

matrix with "unbounded" rows of ± l's to be obtained from a function/ Further-

more, since it is easy to find functions whose matrices will agree with the matrix

of the counterexample on any finite set of rows, no condition that relates only

finitely many rows to each other can be necessary and sufficient.

Consider the inverse image of a sequence r under K. Its general element can be

described as follows: when grouped into pairs of consecutive entries, the non-

cancelling pairs agree one by one with the elements of r. On cancelling pairs there

is no restriction. Any noncancelling pair may be preceded by any finite string of

(—1, 1) and (1, -1) pairs in any order. We call that string, together with the

noncancelling pair which it precedes the elaboration of the entry in r to which that

noncancelling pair corresponds. Thus the elaboration of anj determines the sequence

of steps of size 2~(n + 1) that make up they'th step of size 2~n of the function/. (In

the counterexample above, the first plus of any row rn with «SO has the elaboration

( — 1, 1, 1, 1). All other entries have the minimal elaboration, consisting of the
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entry repeated twice.) The sequence of entries of the (« + A;)th row, that determine

the steps of size 2~in + k) that make up one particular step of size 2~", is called the

kth elaboration of that step.

In the counterexample, there was a plus, namely a01, whose kth elaboration had

for every k some partial sum equal to — (2fc —2). It was just this ingredient that

made the counterexample work.

Proposition. The matrices A obtained from functions are characterized by the

following three properties :

(1) Each row is a sequence of ± Vs with unbounded partial sums.

(2) For every row rn, K(rJX) = rn_1.

(3) For every positive (negative) entry there is some k such that the kth elaboration

has no partial sum less than — (2fc —2) (greater than 2k —2).

Furthermore, the set of functions corresponding to such a matrix constitutes exactly

one time-free function.

Proof. Property (1) is equivalent to the unboundedness of the function.

The necessity of property (2) has been established before.

For the necessity of property (3), the argument explaining the counterexample

applies after obvious adjustments.

The sufficiency will follow when for a given matrix A with properties (1), (2) and

(3), a function / will be constructed such that/gives rise to the matrix A. The

following construction is outlined in [9]: Let/0 be the function whose values at

positive integers are the partial sums of row 0 of the matrix and whose values at

noninteger points are filled in by linear interpolation, yielding a piecewise-linear,

continuous function. Also, let R0 denote the set of nonnegative integers. Having

defined /" and Rn, consider for y'2t 1 the elaboration of anj. It is a sequence of

length, say, k, where k is positive (and even). Divide the interval from the (y— l)st

to they'th element of Rn into k equal parts. Adjoin the points of division obtained

this way to Rn, obtaining a new set Fn+1. Now define fn + 1 as the function that

takes on the partial sums of 2~in + 1)(an+li,, an+,i2,...) at the points of Fn+1 in

order, and is filled in by linear interpolation at all other points.

Property (2) ensures that/""1"1 agrees with/" on Rn. It is easily seen that nowhere

can/n + 1 differ from/71 by more than 3-2_<" + 1), and therefore/,, fu ... converges

to a continuous function/ which for every « agrees with/" on Rn. Furthermore,

the matrix An which is obtained from/" agrees with A in its nth row and hence on

all previous rows. To violate this agreement in the limit, the kth order elaborations

of some positive (negative) entry of A would have to have, for each k, at least one

partial sum reaching the lowest (highest) possible value, and that is ruled out by

condition (3). Therefore/has A as its matrix.

All that remains to be shown is that iff and g both give rise to the same matrix

A, then/and g represent the same time-free function. It will suffice to show that

for the case where/is the function just constructed. Let Sn be the set containing
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zero and the points at which g completes consecutive steps of size 2~n, that is, the

steps corresponding to the entries of rn. Let A„ be the function obtained by linear

interpolation from the one-to-one order-preserving mapping of Sn onto Rn. Each

An is strictly increasing from 0 to oo, and continuous. On Sn,f(hn(-)) agrees with g,

and An+1 agrees with An. The absolute difference between hn+1 and An never exceeds

the distance between adjacent points of Fn, which is at most 2~n. Therefore

A0, hx,... approaches a continuous nondecreasing function A, and on (J Sn we

have f(h())=g. Since g is nowhere constant, (J Sn is dense, f(h(-))= g holds

everywhere and A is strictly increasing.    Q.E.D.

Remarks. (1) It is possible to formulate condition (3) in terms of first-order

elaborations only, by considering nested sequences of elaborations, in which each

is an elaboration of an entry in the previous elaboration. (Since, however, there are

uncountably many such sequences in a matrix, the measurability of condition (3)

in the sigma-field generated by the entries would be hard to establish from that

formulation, which comes up when random time-free functions are considered.)

(2) If the construction off is attempted for a matrix fulfilling conditions (1)

and (2) but not (3), a continuous/will be obtained, but its matrix will be different

from the given one. This defines a natural mapping of such matrices into matrices

fulfilling all three conditions.

III. Time-free binary stability. Clearly, if A is the matrix of/, then the matrix

of 2/is obtained from A by moving up all the rows of A, that is, replacing /*„ by

rn+1. Therefore / and 2/represent the same time-free function if and only if all

the rows of A are identical.

In order to find all such functions or, equivalently, in order to find the general

solution of the functional equation 2/(/)=/(A(/)) where A is an arbitrary function

increasing strictly and continuously from 0 to oo, the most general sequence r of

± l's for which K(r) = r has to be found. The first two elements of r can be chosen

arbitrarily. Next, there comes an arbitrary, finite (but possibly empty) string of

cancelling pairs followed by a noncancelling pair agreeing in sign with the first

element of the sequence. This process continues, adding at the mth stage an arbitrary

string of cancelling pairs followed by a pair whose sign agrees with the sign of the

mth element of the sequence. The matrix B all of whose rows equal the sequence

thus constructed will have properties (1) and (2), but not necessarily (3). To ensure

property (3), a complicated tail-property of the sequence is required, and we shall

not go into details here. Anyway, in view of Remark (2), the general solution of

2f(t)-f(h(t)) can be described as the function constructed from B as in the proof

of the Proposition, composed with an arbitrary continuous function, strictly

increasing from 0 to oo.

Besides the functions/(/) = /,/(/)= —/and their equivalence classes, the simplest

example of a solution of the functional equation is given by the function that for

A= ..., — 1, 0, 1,... takes on the value 2k at 22k and 0 at 22fc + 1, with the rest filled
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in by linear interpolation. All rows of its matrix look like this: 1,-1,1,1,-1,

— 1, 1, 1, 1, 1, -1, —1, -1, —1,... with the sequence obtained by starting out

with (1, —1) and choosing the empty string whenever the procedure calls for a

string of cancelling pairs.

The class of solutions of the functional equation turned out to be quite rich. A

smaller class, one that can be described much more explicitly, is obtained by

replacing the functional equation by a stricter condition: rather than being content

with 2/ being equivalent to / we shall require that / have the same time-free

behaviour during any crossing of an interval of the form (i2~n, (i+ 1)2"").

Definition. Let /be a (continuous, unbounded, nowhere constant) function on

the nonnegative reals, and let Inj = (an„ ßnj) be the (time) interval on which/makes

itsy'th step of size 2"n. Let/nj be the restriction off to /„,. Then/has the property

of time-free binary stability if for every « and j we have fnj —f(ccnj) = ±f(hni( ■ )),

where hnj is a strictly increasing continuous mapping of 701 onto Inj, and the sign

is chosen according to whether we have an up- or down-crossing.

Time-free binary stability is easily expressed in terms of the matrix A. It simply

means that all positive entries have the same elaboration, and all negative entries

have the elaboration obtained from that of the positive entries by replacing 1 by

— 1 and vice versa.

Now if the common elaboration of the positive entries of A would contain a pair

of the form ( — 1, 1), then some partial sum of this elaboration would equal — 1.

The second-order elaboration would then have a partial sum equal to — 3 and for

every k the kth elaboration would have a partial sum equal to — (2k— 1) and

property (3) would be violated. Therefore the common elaboration of the positive

entries must consist of, say, m — 1 repetitions of the pair (1, —1), followed by a

single (1, l)-pair. Here m can be any positive integer. For given m, only two matrices

are possible. One whose general row begins with m— 1 pairs (1, — 1), followed by a

(1, l)-pair, and one with the opposite signs. Since now all partial sums of all

elaborations of the positive (negative) entries are nonnegative (nonpositive), con-

dition (3) holds and A is the matrix of a function/ We denote by/m such a function

when m is given and the first entry is chosen positive. The set {±/m | m= 1, 2,...}

now consists of one representative from each time-free binary-stable function. The

matrix A of fm can be expressed easily by using expansions of integers to the base

2m.

To find the entry anj, remove from the (2w)-ary expansion of j— 1 the digit

2m — 1 whenever it occurs. If the sum of the remaining digits is odd, anj = -1 ; if it

is even, ani = 1.

Since fm makes (2m)n steps of size 2~n while making one unit step, it is of infinite

variation in every interval when m 2j 2. It is however of finite p-power variation,

with p = log2 (2m). No/m ever crosses zero (a global property, which does not seem

to follow easily directly from time-free binary stability) though it does reach zero

uncountably many times when «j2:2.
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IV. Non-time-free properties of the canonical fm. The construction of a function

from a matrix that occurs in the proof in §11 yields a particular representative of

the time-free function corresponding to the matrix. In the case of time-free binary

stability this representative has a nice property that justifies calling it the canonical

representative of fm: its p-power variation in every interval, with p = log2(2w),

equals the length of the interval, that is, p-power variation is the canonical time scale

for the fm. That follows from the fact that in the construction each of the (2m)n

steps of size 2~n that make up one unit step is allotted a time interval of length

(2m)~n. We assume from here on that/m is the canonical representative and proceed

to study some of its properties.

For the canonical case, the functional equation becomes 2fm(t)=fm(2mt). There-

fore, the set Zm of zeros of fm is closed under multiplication and division by 2m.

In (2w)-ary notation, this means that Zm is closed under the shift operation. To

find Zm we first find its intersection with the closed unit interval. The first approxi-

mation to/m in the canonical construction has 0 as its only zero in the unit interval.

The zeros of the n+first approximation in the unit interval are obtained from the

zeros of the nth approximation by adding an arbitrary even digit on the left, and

then shifting all the digits one position to the right. Observing that Zm is a closed

set, one now easily obtains that all nonnegative reals that can be written (2w)-arily

with only even digits must be in Zm. A similar argument, beginning with the

observation that/m has no zeros in the open interval (1, 2), implies that/m has no

other zeros : Zm is exactly the set of all nonnegative reals that have (2m)-ary expan-

sions containing only even digits.

Next, we find the function rm, where, for xSO, Tm(x) is the first / such that

fm(t) = x. Let us borrow from decimal notation the digit 9 to denote 2m — 1. We

first find rm(x) for the positive integers. Since rm(l)=l, the functional equation

yields rm(2n) = (2m)n for all n. Furthermore, since the last integer / for which

/m(/)=l before it goes higher is 9, the last integer / before fm(t) exceeds 2n is

900.. .00 (n zeros). Since, in order to reach any integer x,fm must first reach the

highest power of 2 which does not exceed x; then go up further by the highest power

of 2 which does not exceed the remainder, etc. ; we obtain the following prescription

for rm(x) when x is an integer: In the binary expansion of x, replace all l's except

the rightmost 1 by 9. Then the result is the (2m)-ary expansion of rm(x). Since rm

fulfills the same functional equation as/m, the prescription is valid for any binary

rational x. To obtain rm(x) for all x, observe that by its definition as a hitting time

rm(x) is left-continuous. Therefore the prescription is valid also when there is no

rightmost 1 in the expansion of x. In fact, we can do away with the "rightmost 1"

clause altogether: For all xSO, rm(x) is the number whose (2m)-ary expansion is

obtained from the nonterminating binary expansion of x by replacing each I by a 9.

Next, we consider the graph of fm as a subset of the plane and find its metric

dimension. Assume the part of the graph where 0;=/5n is covered by Ne sets of

diameter <e = (2m)~n each. Dividing the interval 0¿/=l into (2m)n equal parts,
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(2m)n congruent parts of the graph are obtained. Each part has a diameter of at

least 2~" and must therefore intersect more than 2~n/(2m)~n = mn of the covering

sets. If we count only the sets covering every other part, there can be no overlaps,

and we obtain Ns>\(2m)nmn. On the other hand, the graph of/m over the unit

interval can easily be covered by a unit square with sides parallel to the axes.

Applying the functional equation « times, the square is transformed into a rectangle

that can be cut into mn squares of sidelength (2m) ~n and they would jointly cover

the part of the graph over the interval (0, (2m)~n). To cover the graph on the unit

interval we therefore need (2m)nmn squares of diameter e' = (2m)~n21'2. We obtain

therefore

(2m2)" 2: N£.   and   Ns > \(2m)nmn,

which yields the metric dimension

a = lim (log NJlog e'1) = 1 4-log m/log 2m.
£-.0

In terms of the variation exponent p = log2(2m) defined earlier, we can write

a = 2 — p~1. One should, however, keep in mind that p is a time-free quantity, while

ais valid for the canonical/,, only. In fact, if instead of the canonical construction

we use one in which the intervals are divided not into 2m equal parts but according

to some other fixed division, the resulting representative of fm has a graph whose

metric dimension is strictly smaller than a: it is 2 — H'1, where H is the entropy of

that fixed division which can be established by considerations in the spirit of

McMillan's Asymptotic Equipartition Theorem (cf. e.g. [5]).

V. Some thoughts on the random case. When we go from time-free functions to

random time-free functions, that is, to time-free processes, a natural generalization

of the functional equation 2/=/(«()) is the requirement that the time-free processes

A'and 2Jfhave the same distribution. Passing from time-free functions to matrices,

this becomes the requirement that all the rows of a random matrix have the same

distribution, or equivalently, that the distribution of rn be invariant under the

mapping K. The more stringent requirement of binary time-free stability can also

be generalized for the random case by requiring all elaborations to be independent,

with a common distribution for all elaborations of positive entries, and minus that

distribution for the negative on s. The processes defined this way are in some ways

similar to Dubins' and Freedman's random distribution functions [1], but the

latter all reduce to the identity function from the time-free point of view.

The lengths Lk of the k-oràer elaborations of some entry in row zero of the

matrix of such a process form a Galton-Watson branching process with X = E(Li)

2:2. If E(L\) is finite, X~nLn converges to a random variable, say IF (cf. [3, p. 13]).

Defining p = log2 A, we have X~n = (2~n)p, and therefore IF is the (random) p-power

variation of the path of the process during a unit step. One can therefore use

p-power variation as a canonical time-scale.
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If the common distribution of all elaborations is chosen to be coin-tossing

truncated after the first noncancelling pair, the process obtained has Brownian

motion as its canonical representative. An equivalent formulation of that distribu-

tion is the following: choose the number of pairs in each elaboration according to a

geometric distribution with parameter p=\, and then let each cancelling pair

independently be ( —1, 1) or (1, — 1) with probability \.

Choosing different values for p, we obtain a one-parameter class of time-free

processes, which we call Bp. Here A = E(Lx) = 2/p sind p = l— log2 p, and the canonical

versions of Bp form generalizations of Brownian motion, "wiggling faster or

slower" than Brownian motion according to whetherp<% orp>\. Forp=l, we

just obtain the identity function, and for the other extreme, p = 0, Bp is not defined.
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