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1. INTRODUCTION

Let {Xi, i1} be a scquence of independent and identically

distributed (i.i.d.) non-ncgative random variables (r.v,) with the
distribution function (d.f.) Fe(x) =1 -e—x/e, x € [0, »), where 0(>0)
is an unknown parameter, For n(:1), items under life testing, thc

failures X s X are the order statistics corresponding to

s v
n,l n,n

Xl, ...,Xn and,from cost and time considerations, one may curtail

experimentation at the kﬂ failure X

n,k and estimate 0 by

PO | _vk cp -
(1.1) O, =k7V ., where V., _§i=1xn’i +(n =KX for 1-k-n.

Note that Vnk is the total life under test upto the kéﬁ-jbilurn,
2

_ 2 _ _ .
EVnk =k0 and E(Vnk -k6)® =k6”, for k=1, ...,n. Thus, if a1(> 0)
and a2(> 0) be respectively the cost of recruitment (per individual)
and of follow-up (per unit of test-life), then one may conceive of the

loss incurred in estimating 0 by §nk as

—6)2+a n+a.Vv (1 <k=<n),

(1.2) L, =a 1 2Vnk

nk = 20 Fnk

where the weights a0(>'0), a; and a, are all known. Thus, the risk

in estimating 6 by enk is

= I - -1 A2 = , '
(1.3) Rnk(g, f) = ELnk-k aOO +a1n-+azk0 (g-—(ao, s az) ),

and, naturally, one would seek to minimize (1.3) by a proper choice of
k. However, as 6 is unknown, no single value of k minimizes
Rnk(é" Gj for all 6(>0), and hence, a time-sequential procedurc for
choosing such a value of k is desirable.

Motivated by the works of Robbins (1959), Starr and Woodroofe (1972)

and Ghosh and Mukhopadhyay (1979) [all dealihg with the classical



-3-
sequential point estimation case], in Section 2, we formulate a time-
sequential procedure for our problem and under asymptotic setup (similar
to their cases) study its various properties. The derivation of the

main results are postponed to concluding section.

2. TIME-SEQUENTIAL POINT ESTIMATION OF 0O

Note that by (1.3),

VIIA

> .
(2.1) Rnk(g, 6)—Rnk+1(g, ) =0 according as k(k +1) eao/az. |
Thus, if n(n-1) <a06/az, then Rnk(g, 8) is ¥ in k(1 <k <n), and
hence, k=n 1is an optimal choice. On the other hand, if
n(n -1) zeaO/aZ, then there exists an optimal kn(= kn(g,e)) for
. . . P |
which kn'<n and Rnk(g, ) is minimized for k-—kn. Since enk =k Vnk

is an unbiased estimator of 60, motivated by the above, we consider

the following stopping number

5
smallest k(1 <k <n -1) for which Vok <k“(k + l)az/u(),

. 1.2
n if Vnk >k™(k +1)a2/a0, for every 1<k <n -1.

(2.2) Nn =Nn(g)

The corresponding stopping time is XN and the point estimator of
’n
B is enN . Then, the risk corresponding to GnN is
n n
A 2 .
* - —
(2.3) _ Rn(g, 6)—a0E(GnNn 8)" + aln-+a2EVnNn

We may recall that by definition,

smallest k(1 <k €£<n -1) for which k(k-+1)220a0/02.
(2.4) kn=kn(g, 8) =

n if n(n-1) <6a0/a2 .

Let then

0
(2.5) R (2, 6) = Rnkn(g, 6) .

Our primary interest centers around the behavior of (a) Nn/kn and
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(b) R;(g, 6)/Rg(g,6) when we jmpose some asymptotic considerations on
a and n.
In the classical sequential point estimation theory [c.f. Robbins

A 2 .
(1959) and others], a, =0, Ln —aO(Onn -0) +an and the problem is

to choose n in such a way that the corresponding risk is minimized.

In this context, one lets a1-+0 and, in this asymptotic sense, one

obtains some optimal results. In our case, however, for a given n,

the stopping number Nn depends on a, and a,s but not on a, and

» >0, keeping a, fixed. Note that

our main interest lies in the case where kn in (2,4) is <n and

we let a2/a0-+0 or, simply, a

in this case, a2n2 >azn(n -1) zeao >0. We assume that the sample size

n =n(a2) depends on a, in such a way that

2

(2.6) lim a,[n(a,)]° =a*: 0<a*<e .
2[n(a,
a,>0

We may note that by (1.3), Rn'k(%’ 8) = Rnk(g, 0) + al(n' -n) =
Rnk(g, 6), ¥ n'>n, and hence, therc is no point in increasing n(az)

indefinitely even when we allow a,->0, so that the restriction that

2

a* in (2.6) is <o is of no loss of generality. Secondly, we note

that for {n} satisfying (2.6), by (2.4),
1
(2.7) lim kn/n==y=(ea0/az)2 and we assume that 0<y<l1.
n-o

In terms of (2.6), (2.7) demands that a* >6a0. Finally, as in the

classical sequential point estimation case, we assume that a., -0,

1

More explicitly, we let

(2.8) a; = pay, where p >0, and allow a2-+0.

Then, we have the following
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Theorem 1., Under (2.6) and (2.7),

(2.9) Nn/kn-+1 almost surely (a.s.) as a2-+0.

Moreover, for every real X (- »< x<®), under (2.6) and (2.7),

1 1 1. 2
(2.10)  lim P{2(N_-k )/ ((ny)*6) <x} =(2n)'“fxe"2t dt.

n->co
- 00

Theorem 2. Under (2.6), (2.7) and (2.8),

0
. * -
(2.11) lim Rn(g, 6)/Rn(g,6) 1.

a2+0

We may remark that by (2.2), Nn==Nn(g) is | in a, and for any
given n, there exists an az(n)(>-0), such that Nn==n, YO <a, Saz(n).
Also, Nn <n, with probability 1, so that (2.7) and (2.9) insure
that ENn/kn~+1 as n o, Further, (2.11) holds even when in (2.8},
p=0. If al/a2-+oo as a2-+0, then R; or Rg are both dominated

by a,n, and hence, (2.11) holds trivially.

1

3. PROOFS OF THEOREMS 1 AND 2

Let us denote by VnO =0 and

(3.1) an.=vnk -vnk—l = (n —k-+1)(Xn’k _Xn,k—l)’ 1<k <n

{(where X =0). Then Z ., ..., 2 are i.i.d.r.v. each having the
n,0 nl nn

d.f. Fe(x) =1 -e—x/e. Also, note that for every n(z1),

(3.2) Vnk is f in k: O0<k<n.

Further, note that for every n >0,

(3.3) P{Xm 1 Pl , for some m=n}
< Vo PIX K <(n2k+j)_1—n for some 0 <j <n2*}
k=0" "ho¥e51
< Ty, oPIX <@ty =g o1 2@
= Lk20" kel (2'n) = Iisotl-e

2%*'n,1

22 ™M =201 -2 50 as 0o

IA

zkzO
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Thus, by (3.1) and (3.3), for every n >0,

(3.4) Vg >n”" a.s., as n ow,

Let us now choose a positive number A such that

3.5 1 2 . -
( ) —2-<)\<—§. i1.e.,, ¢ =

Then, under (2.6) and (2.7), by using (2.4) and (3.2),

-2>0,

W N

(3.6) P{NIn <n for some m=n}

2 A
P{mgn[vmk <k“(k +1)a2/a0, for some k<m"]}

IN

PLU [V, = (ayn’/ag) n @ + 1)/n711}
m2n ,

where a2m2/ao-+a*/a0(>(n while by (3,5), mzx(mk-kl)/m2~'m—€, so
that by (3.4), the right-hand side (rhs) of (3.6) converges to 0 as

n >»,. Let us now denote by
(3.7) kK cpax{k: kk+D) s -0k (k +1}, 0<c<1
) ne : - n n ’ ’ ’

where kn is defined by (2.4). Also, we choose n so large that

n <k . Then
(3.8) P{Nm Skm€ for some m=>n}
< P{Nm <m for some m=n} +

2
P{mgn[vmk <k“(k +1)a2/a0 for some k: m” <k<k_ ]},

By (3.6) the first term on the rhs of (3.3) converges to 0 as n > oo,
while by (3.7), the second term is bounded by
A

(3.9) Zmznp{(vmk-ke)/ke <-n, for some k: m" <k <k .},

where n(>0) depends on €(>0) in (3.7). By (3.1), for every n(z=1),

{(Vnk -k6)/6, 0<k<n} is a martingale, so that {(Vnk -k0)4/04, 0 <k <n}
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is a sub-martingale, and hence, by the Chow (1961) extension of the
Hdjek-Rényi inequality,

A
(3.10) 1>{(vmk -k8)/k6 < -n, for some m" <k skme}

A, 44 4 S
P{(mG—ke) /k' 6" >n for some k: m" <k skmc}

k
Jsfraoteli oy
=im

IA

1A

A

IN

AN (T R R IC R

so that by (3.5) and (3.10), the second term on the rhs of (3.8) converges
to 0 as n->». Thus, for every ¢ >0,
(3.11) Nn/kn>1-e a.s., as n->wo .
In a similar way, it follows that for every € >0,
‘ (3.12) Nn/kn<1+e a.s., as n-oro
and (2.9) follows from (3.11) and (3.12).
To prove (2.10), we note that for every (fixed) u e (-», «),

2
(3.13) p{ankn+u/rT} —p{vnk >k“(k +Da,/ag, V¥ kskn+u/ﬁ} ,

and we choose n so large that k_+u/n > k__, where k is defined
» n ne ne
by (3.7) and kn by (2.4). Then, by using (3,11), the rhs of (3.13)

can be written as

2
(3.14) P{Vnk>k (k +1)ay/ay, V Koe <k skn+u/ﬁ} + o(1)

vV, -kB
_ nk k k(k+1)
= P{———-—----en >-—-n E(n kn+1 -E], ane Skskn+u\/n} +0(1).

Let us now consider a sequence {Wn = {wn(t), t [0, 11}, n=1} of

stochastic processes, where we let W _(t) =W (1(-), for 1(—st <k +1 s
n nn n n
0<ks<n-1 and W (k/n)=(V . -k8)/6v/n , k=0,1,...,n. Then by
. virtue of (3.1), the classical Donsker Theorem applies and we have

(3.15) wnp-»w= {we), telo, 11},
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where W 1is a standard Wiener process on [0, 1]. As a corollary to
(3.15), we have that for every ¢' >0 and n' >0 there exist a

§: 0<8<1 and an n, such that

(3.16) P{sup{lwn(t) —Wn(s)lz 0<ss<t<s+8§<1}>e'}<n', Vnzno.

To make use of (3.15) and (3.16) in (3.14), we note that for k =k_+ [uvn ]
n” % [k(k +1)/kn(kn +1) -1] »2u. Thus, the ths of (3:‘14) can be expressed
as

V.. -k6

nk k [ kx+) ] 2u-€} .
= > = kn(kn+1) -1, V¥ kne <k skn+u/rT, Wn(y) >3

-

(3.17) P{

] 2u - €
- <
o a/mlk (D) IJ’ V ke sk =k vum, W (y) <=5

=L
where € >0. The second term is bounded by P{Wn(n_lkn +un %) -Wn(y) >e/0}

V_, -k6 —
P{nk k | k(k+1) }+o(1),

and, by (3.16), it converges to 0 as n, >o (or a2—>0). Similarly, .

the first term is convergent-equivalent to
(3.18)  P{W_(¥) > (2u -€)/6} >P{W(y) > (2u -€)/6}

= PIW(1) > (2u -€) /W% }= (2m) 2 J exp(- 3t)dt.
(2u-e)/0/

Thus, (2.10) follows from (3.13), (3.14), (3.17) and (3.18) by letting
u=06/ x/2 and e-0. This completes the proof of Theorem 1.

To prove Theorem 2, we first note that under (2,6), (2.7) and (2.8) .

L
(3.19) (a*/az) zRg(g, 8) -+ aoez/y +pa* +a*y0 as a, »0,

Also, recalling that n'an <1, with probability 1, we have by (2.9)

2

Y'(<1), ¥m=1, 2,

(3.20) 1imE (n‘an)'“

n->o

Further, by (2.2), (3.1), and the fact that Zn is 20, Vk=21, we

k

2 2 -1
3.2 -
(3.21) Nn(Nn 1) az/ao <vnNn~1 <vnNn an (Nn + 1)a0 aZI(Nn<n) +VnnI(Nn=n) . .



Note that by (2.6) and (2.7),

2
(3.22) P{Nn-n} -P{Vnk>k (k+1)a2/a0, VvV 1<k<n-1}

IA

P{Vnn_1 >(n -l)znaz/ao} =P{Vnn-1 -(n-1)6>( -1)[n(n -1)a2/aO -01}

N

6%/(n -1) [n(n - Day/a, -01% ~ 6%/ [(n -1){a*/ay -6}°] =0(m™").

Also, E(Vﬁn) =n(n-+l)62, so that by the Schwarz inequality and (3.22),

(3.23) |E{vnnI(Nn=n)

} < o3RO0} =0 =0(a;"), by (2.6).

Further, by (3.21)

2
a
-1 3 2 2 -1 3
(3.24) aZIVnN -ag aanl < ——-2NnI(N a * a2|Vnn -agan |I(N o)
n 0 n n
-123 -1 o P . 2,2 2.2 N
where by (2.6), ag ayn” ~ag /5; (a*) “, while aZNnI(Nn<n) <ayn” »aja*.

Hence, by (3.22), (3,23) and (3.24), we have

-1 310 ALk
ag aZNn[} = 0(ay) » 0 as a,~0.

On the other hand, by (3.20) and (2.4) -(2.7),

(3.25) (a*/az)/zﬁ{a2|VnNn-

L. .23
* 2 *
(3.26) (a /a2) E(aan)/a0 -+ yvba* as a2->0.

Also, by (2.8),

1
* 2 *
(3.27) (a /a2) an > pa*, as a2-+0.

Hence, by (2.3), (3.19), (3.26) and (3.27), for (2.11), it suffices to

show that
. L. .. -1 2 2
(3.28) lim (a*/az) E(N_"V -0)" =06"/y.
n nN
a0 n
2
Note that
(3.29) (a*/a ) BNV . -8)2 = (a*/a )& 2E(V . -en )2+
: 2 n nNn 2 n nNn n

(a*/2,) 5 2LV, - NP [0 /NP - 11,
n

ok . .
Now, for every n(>1), {Vnk -k6 _Zj=1(znj -8), 1<k<n} is a martingale,
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2 2

E(an -0)" =6 and ENn <. Hence, by the Wald second lemma [viz.
Theorem 2 of Chow, Robbins and Teicher (1965)], we have E(VnN —GNn)2 =
GZENn, so that by (2.6), (2.7) and (3.20), the first term on :he ths of
(3.29) is equal to

(3.30) a*/az) nzeZEN >0%/y  as a, +0.

Thus, we need to show that the second term on the rhs of (3.29) converges
to 0 as a2-+0. Now, by the same technique as in (3.24) -(3,25), it
follows that
L -2 -1 3.2 2
*
(3.31) (a /az)zkn E{lV’nNn -2, aan] |(kn/Nn) -1|}

-om Yy = 0(/i;)>0 as a, 0.

Ontheoﬂwrhmm,by(ZA),(L6)am1(L7L

(3.32) (a*/:;lz)l/zkr'lzﬁ{[a"la N> - N 01| W RESTE ®
= VaF alta SZBLN - 0ap/a,)?1 - N /x %))
/2

a*

L kD)2 - /%)% [} +0(va;)

/—a/zazk ElN 2[3+0(/e§)

IA

%h -2, 3 -2 3
/a* a; ag 8nk_ Ean—knl +0(va,)

Thus, it suffices to show (by virtue of (2.6) - (2. 7)) that

|3= 0 Jas aVn +&1)é]

)
(3.33) lim k_ E|Nn -k 5

n->-c
Define A as in (3.5). Then
(3.34) k;zEan-kn|3=k;2E(|Nn-kn| I VKRN -k [P )
(IN -k |<n (IN_-k_|>1")
n n
where by (2.7), the first term on the rths of (3.34) converges to 0 as
n-+«, On the other hand, the second term is bounded by .

3, -2 A
(3.35) nk P{[Nn -k [ >n"}
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Let b1 =1/3-¢€, €>0. Then
b 2 b,
(3.36) p{Nn <n '} =P{vnk <k“(k +1)a2/a0 for some k<n "}

a 2b b1 : -2+3b1
nl+D)} =PV <0(n )}

[}
o
~
=
~—
[
o
~

Also, let kn€ be defined as in (3.7). Then proceeding as in (3.10)

but using the 8th order moment of (Vnk ~-k8), we obtain that

b b

(3.37) Pin 1< N_<k_}=0([n -4y _o(n /om4e

).

Finally, let k* =k —nA and assume n so large that k* >k . Then
n n n ne

*

k
¥} T D 1 k(k+1)
(3.38) "P{kne <Nn Skn} —zk=kngp{i{vn - k6) <6(E_TE;117—_1)}

*
k(k+1) 2r

-2r
k [k VR

< zk=knE E(Vik 'ke)

for any 1r(>0). Now,

(3.39) E(V ~k0)%T =0(k"), for every r=2,3,4, ... .
Also, for knE <k sk; ,
k_ -k
(3.40) |k&u+U/&Jkn+l)él|=0(n ),
n
so that the rhs of (3.38) is
n 2 2
n -T, T -4T
(3.41) 0(2k=k k k Tk, -K)"7)
k* L,
B T n 3 =2T
=o0m") (o Gk -k
ne
- O(Hr).o(n-A(Zr—l)) - O(n—(ZA-l)r+A).

Since (3.38) and (3.39) hold for every positive integer r and A > ,
we may choose r so large that (2X-1)r-A>1, and this leads to the
ths of (3.41) as O(n-lnn), for some n>0. A similar treatment holds
for the case of N =2k +nl, Thus, P{|N -k_| st =0 1™ for some

n >0, and this proves that (3.35) converges to 0 as n >, Q.E.D
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