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Abstrac/- Time synchronization is essential for several

ad-hoc network protocols and applications, such as TDMA

scheduling, dolo aggregation, caching, object tracking, and

security checking. Prior work on synchronization in wire­

less networks has not adequately addressed rapid conver·

gence and scalability requirements in dense networks serv­

ing time-sensitive applications, such as sensor networks. In

this paper, we propose a distributed clustering-based high­

level time synchronization framework for multi-hop od-hoc

networks that builds a two-tired. synchronized network.

We do not make any assumptions about node capabilities

(e.g.) being GPS-enabled), or the presence of reference

nodes in the network. Thus, global consensus on one time

value is not our goal. Rather, we assume Lhat relative

node synchronization is sufficient. We study both classes

of sensor network applications. namely, source-driven

and data-driven applications. We give fuUy distributed

protocols for regional synchronization (nodes within 2­

hops), path synchronization, and global (inter-cluster)

network synchronization. Our proposed path synchroniza­

tion protocol (SYNC-PATH) is reactive, while our inter­

cluster network synchronization protocol (SYNC-NET) is

proactive. The protocols exploit the fad Lhat for most

applications, coarse-grained accuracy is sufficient at the

global scale. Our framework is independent of the cluster­

ing and inter-cluster routing approach, and the underlying

low-level synchronization protocol, and thus is suitable

for use in conjunction wiLh both receiver-receiver and

sender-receiver synchronization approaches. We analyze

each protocol and prove that it terminates in 0(1) time.

We also provide a density model for validating SYNC­

NET, and evaluate all protocols via extensive simulations.

Our framework can be employed in any ad-hoc wireless

network setting.

Index Terms-System design, simulations, multi-hop ad­

hoc networks, sensor networks, time synchronization, node

clustering
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1. INTRODUCTION

Rapid advancements in sensor network technology

have provided incentives for research on sensor protocols

and services. Sensor nodes are typically left unattended,

rendering it infeasible to re-charge their batteries or syn­

chronize their clocks. Time synchronization, however, is

critical for several applications, including sensor network

applications. For example, data aggregation operations

require timing information to combine events which

occur within specified time frames. Applications that

exploit caching also need timestarnping to avoid adding

stale (or duplicate) information to the cache tables.

TDMA scheduling requires accurate knowledge of time

lags and continuous synchronization among participating

nodes to avoid interference. For secure communica­

tion, nodes typically use symmetric-key cryptography

for maintaining secure channels. This requires periodic

key re-distribution that is based on time triggers to

avoid possible cryplanalysis. For example, tLTESLA [1]

is an energy-efficient protocol proposed for message

authentication in sensor networks. tLTESLA requires the

network nodes be fully synchronized. Several crypto­

graphic schemes for ad-hoc networks also require that

timestamps be included as part of the digital signature

for validation. Lack of knowledge about the relative

synchronization among nodes in this case can lead to

erroneous conclusions. Although digital signatures are

not common for sensors, they can be used in any non

energy-constrained ad-hoc network setting, for which

Our framework is also suitable. Other time-sensitive

applications that require synchronization include object

tracking and navigation guidance.

Research on time synchronization in networked dis­

tributed systems has proceeded in two directions. In

the first direction, synchronization is based on virtual

clock ordering. This is sufficient in systems where ab­

solute timing is not necessary (i.e., event ordering is

sufficient) [2]. In the second direction, physical clock

synchronization is performed for applications sensitive to
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the flooded traffic.

Fig. I. Examples of sensor network classes

Several protocols have been proposed for time syn­

chronization at the application level [5], [6], [7], [8],

[9], [10]. Performing synchronization at layers higher

than the network layer gives more flexibility to ap­

plication needs and allows for more energy-efficiency.

Time synchronization can be classified as low-level and

high-level synchronization. Low-level synchronization

involves the physical process of synchronizing two or

more clocks within a region. Example protocols are [5],

[8], [11], [9], [6]. Low-level time synchronization can

further be classified into sender-receiver and receiver­

receiver approaches. In sender-receiver approaches, such

as TPSN [8], a receiver adjusts its clock according to the

timestamp received from a sender. In receiver-receiver

approaches, such as RBS [5], receivers use sender syn­

chronization pulses to synchronize among themselves

(by timestamping these pulses and exchanging these

timestamps). The sender is not synchronized with them

in this case. Receiver-receiver (RR) synchronization has

three advantages over sender-receiver (SR) synchroniza­

tion for sensor network applications. First, RR synchro­

nization does not require the presence of GPS-enabled

nodes in the network to act as reference nodes. Second,

RR approaches give higher accuracy than SR approaches

if timeslamping is not possible at the MAC layer. Third,

even if MAC layer timestamping is possible, it is not

reasonable for a node to follow the clock of another node

which does not have a reference lime clock. This occurs

in systems where all nodes have similar capabilities and

none has any special equipment, such as GPS. SR syn­

chronization, however, has negligible message exchange

overhead as compared to RR synchronization. In contrast

to these low-level approaches, high-level synchronization

describes how an entire path or network is synchronized,

regardless of the underlying protocol used to physically
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absolute timing, e.g., for data aggregation. The Network

Time Protocol (NTP) [3] has been very successful in

synchronizing the Internet and belongs to the latter

direction. For wireless ad-hoc networks, the Global Po­

sitioning System (GPS) has provided a solution for node

synchronization. A node equipped with a GPS antenna

can synchronize its clock with a satellite. Coarse gran­

ularity is easily achieved by setting the receiver clock

to that of the GPS-equipped initiator timestamp when a

synchronization.pulse is received. Several protocols use

this approach and assume that a few GPS enabled nodes

are available in the network to act as initiators.

Time synchronization in sensor networks faces three

challenges, namely, energy-scarcity, hardware cost, and

dense deployment. The foremost challenge is the energy­

efficiency requirement, which makes the use of energy­

consuming devices, such as GPS, inappropriate. Energy­

efficiency also entails using low overhead protocols,

which may trade off accuracy for network longevity and

fast convergence. The cost of adding hardware devices

for clock synchronization (such as GPS) is usually very

high compared to the price of the sensor itself, and

thus adding redundant nodes to synchronize the network

might be more cost-effective [4]. Dense deployment of

sensor nodes necessitates the design of scalable solu­

tions. The application requirements and environmental

conditions impose challenges on any proposed synchro­

nization framework. For example, if the application

requires fine-granUlarity, or if the clocks drift wilhin

short time periods, then node synchronization has to be

invoked frequently.

Sensor network applications can be classified into

two main categories: source-driven and data-driven. In

source-driven applications, nodes periodically send re­

ports to an observer (e.g., a base station) about a mea­

sured parameter(s). Figure l(a) depicts a source-driven

network where all lhe nodes report their readings to a

base station via a multi-hop routing path. Environmental

monitoring is an example of source-driven applications,

e.g., monitoring the lemperature, radiation, or chemical

activity within a certain field or plam. In data-driven

applications, an observer queries the network about

information of interest, and a source node in possession

of this information replies with an answer. An example

data-driven application is an object tracking system,

in which an observer queries the network about the

occurrence or behavior of an object. Figure l(b) depicts

a data-driven network where the sink sends two queries

that are answered by two different nodes. Note that

queries are typically flooded unless the sink knows the

ex.act sensor which has the answer it is looking for. We

only show the query/reply paths and ignore the rest of



synchronize the clocks. Example protocols are given

in [2], [IOJ, [7], [6] (multi-hop TPSN [8] and multi-hop

RES [5] also belong to this category).

The above approaches for high-level synchronization,

however, have not adequately considered several factors

that may hinder their application in multi-hop wireless

networks. These factors include: (1) rapidly synchroniz­

ing the network (Le., in 0(1) time) since fast response

is important for several applications, especially when the

network is dense and the synchronization algorithm has

to be invoked frequently (whenever the network goes

out-of-sync), (2) flexibility in selecting the appropriate

approaches to use according to the type of application

and expected frequency of queries, (3) defining synchro­

nization regions and electing synchronization initiator(s)

in the network, since not all the nodes lie within the same

broadcast range of each other (especially for those on

the boundary), (4) minimizing the message overhead of

the synchronization process, and (5) scalably perfonning

multi-hop synchronization, even if the synchronization

regions are not intersecting. Even for intersecting re­

gions, the routing protocol has to select synchronized

paths for forwarding data. Thus, we need to view the

network as a ''time-aware'' graph to ensure "time" con­

nectivity. At ule same time, the synchronization process

must be transparent to the underlying routing protocol.

In this work, we consider the above challenges that

must be addressed to achieve fast high-level synchroniza­

tion at the global scale. We propose a new framework for

time synchronization in multi-hop sensor networks that

integrates synchronization with node clustering to con­

struct two-tiered, synchronized networks. Our framework

provides efficient and flexible synchronization mecha­

nisms to serve different types of applications (source­

driven and data-driven) for different network loads (num­

ber of queries and reports). Our framework is indepen~

dent of the clustering and inter-cluster routing approach,

and the underlying low-level synchronization protocol.

We will consider the more demanding scenario for

low-level synchronization, namely, the receiver-receiver

approach, which provides fine-grained synchronization

and does not assume any infra-structure support. To the

best of our knowledge, our proposed framework for high­

level time synchronization is unique in its underlying

assumptions, objectives, and methodology, compared to

previous work. More specifically, the diffusion-based

method [10] and TPSN [8], proposed for global syn­

chronization, assume an application that requires global

network agreement on one clock value. This requirement

is too strict for most applications, since local knowledge

of clock differences is typically sufficient for translation

of reported time values. In addition, we do not assume

3

the presence of any special node(s) in the network as

in [8]. Our goal is end-to-end synchronization of any

querying/receiving entity and any node in the network,

and not common time consensus among all network

nodes. We propose high-level protocols suitable for use

with both receiver-receiver and sender-receiver low-level

synchronization mechanisms.

The remainder of this paper is organized as follows.

Section II defines the terms used throughout the paper,

and outlines the problem addressed in this work. Sec­

tion III provides the design rationale and approach used.

It also presents algorithms for intra-cluster and inter­

cluster synchronization, and argues that they satisfy our

goals. Section IV evaluates the proposed algorithms via

simUlation. Section V discusses design and deployment

issues in our framework. Section VI briefly surveys

related work. Finally, Section vn summarizes our work

and suggests directions for future research.

II. PROBLEM DEFINITION

In this section, we define new terms and functions

that will be used throughout this paper. Later, we will

formulate the problem that we address by outlining the

system model and the goals of our proposed framework.

A. Definitions

We define the function SYNC, the types of node

synchronization, and the notion of a synchronized path.

Definition I: For any two nodes u and v, the func­

tion SYNC(u,v) = 1 if v is synchronized with u; and

SYNC(u,v) = 0 otherwise. SYNC(u,v) is a transitive

function, i.e., if SYNC(u,v) = 1 and SYNC(v,w) = 1,

then SYNC(u,w) = 1.

Definition 2: Nodes u and v are said to be physically

synchronized if Iclock(u) - clock(v) I ::::; €, where €

is the target accuracy. This type of synchronization is

symmetric since SYNC(u,v) = SYNC(v,u).

Definition 3: Nodes u and v are said to be rela­

tively synchronized if one of them (or both) is aware

of the difference Idock(u) - dock(vll. This type of

synchronization is asymmetric since SYNC(u,v) = i r
SYNC(v,u) = i, where i = 0, 1.

Definition 4: A strictly synchro"ized path P(VI. vIPI)

is an ordered set of nodes between a source VI and a

destination vIPI' such that either SYNC(vI,vIPI) = 1, if

[PI = 2, or'r/vi E P, S Y N C ( V j ~ I , vd =SYNC(vj, vi+})

= I, where I < i < IFI.
Defillitiofl 5: A loosely synchronized path P(VI, vIPI)

is an ordered set of nodes between a source VI and a

destination vlPl' such that either SYNC(Vl,vIPI) = I, if

IFI = 2, or 3i,j : 1 < i,j < IFI. such that Vi,Vj E



4

Fig. 2. An example of strictly versus loosely synchronized paths

Definition 6: Let V denote lhe set of nodes in the net­

work, and B denote the set of observers. A synchronized

network is one in which'r/v E V, and Vb E B, 3 at least

one synchronized path P(v, b).

B. System Model

We use a general model for ad-hoc sensor networks

and do not assume any infrastructure support. This is im­

portant for the generality and robustness of the proposed

framework, since in environments with malicious users,

attacks can be launched at more highly equipped nodes,

e.g., nodes with GPS antennae.

Assume that n sensors are dispersed in a square field

of side lenglh L. Assume the network has the following

properties:

• The network is quasi-stationary.

• Each node has a unique identifier and a fixed

number of transmission power levels.

• Nodes are left unattended after deployment and are

location unaware.

We also make two assumptions related to the synchro­

nization process:

• Any two neighboring nodes can be synchronized in

0(1) time.

• A synchronization initiator node (one that generates

synchronization pulses) can synchronize its neigh­

bors, but cannot be synchronized with them unless

its neighbors will directly copy its reported clock

value (I.e., the underlying low-level synchronization

mechanism is allowed to be receiver-receiver).

The first assumption is reasonable since two nodes

can typically be synchronized by exchanging a fixed

number of messages and averaging the delay. There is no

guarantee in this case, however, about the fine granularity

of synchronization if messages can be lost or delay can

be unbounded [12]. The second assumption makes it

possible to utilize receiver-receiver, fine-grained, low­

level synchronization mechanisms, such as RBS [5].

If the network does not rely on infrastructure sup­

port, then a synchronization initiator is just an arbitrary

node. Therefore, its neighbors are not likely to copy its

clock value, but will just use it to synchronize among

themselves. This is in contrast to mechanisms such as

TPSN [8J which assume the existence of at least one

reference node (e.g., equipped with a GPS antenna), and

thus builds a hierarchy to synchronize the network using

a sender-receiver approach.

C. Goals

The ultimate goal of this work is to provide a frn..me­

work for fast and scalable time synchronization in ad­

hoc networks_ The framework suggests approaches and

mechanisms to use for data-driven and source-driven

networks, according to the expected offered load. The

synchronizalion process should be of 0(1) time com­

plexity. We focus on relative synchronization in this

work which is sufficient for sensor network applications

that do not rely on any infrastructure. OUf framework

will provide mechanisms for synchronizing a region, a

path, or an entire inter-cluster network. A region R in

the network can be defined as follows. Any two nodes

U 1 v E R can reach each other in either: (1) one hop, or

(2) two hops through a node w, such that w E R.

In other words, we design mechanisms to support the

following requirements:

• Regional synchronization: Assume that 3 a node

W E R, such that 'r/v E R, distance(v, w) = l.

Then, SYNC(v,w) = 1 (R is a region in the

network).

• Relative path synchronization: For any query Q
issued by an observer VI and answered by a source

7 ~ 7 \ 7 \
.-e__o__o-._I-I__o
1234567B

7\'1\'1\1\'7\'7\'7\'
________I 1 e------e 1 1--1
12345678

P(Vl,VIPI)' j ~ i, SYNceVI1Vd = I, SYNceVj1VIPI) =
1, and the path P(VilVj) is loosely synchronized.

In other words, a strictly synchronized path is one

in which every two adjacent nodes on the path are

synchronized. The definition of a loosely synchronized

path is recursive. It requires that a node on the path

is synchronized with the source and another node on

the path is synchronized with the receiver, and the path

among these two nodes is also loosely synchronized.

This is usually sufficient for query-driven applications.

For example, assume a military application, where a

soldier (observer) floods a query asking if any node has

sensed a moving tank, and at what time. One or more

nodes (senders) around the network will reply positively

and report their timestamps. The soldier device should

be able to interpret these timestamps according to its

clock. Synchronization with all the nodes on the paths

from the senders to the soldier is not useful in this

case. However, if data aggregation occurs on different

paths to the soldier, then strict path synchronization is

required. Figure 2 gives an example of strictly versus

loosely synchronized paths.



VIPI' 3 at least one loosely synchronized path

P(vl,vlPl)'
• Relative global synchronization; For a multi-hop

network with a set V of nodes, 3 at least one

strictly synchronized path P from any Vi E V to

the observer(s).

Note that our goal is not to achieve a certain synchro­

nization accuracy between the sender and the receiver,

or bring the network to a common time consensus. We

are merely interested in rapid relative synchronization

between senders and receivers lo the best that the under­

lying low-level synchronization mechanism can provide.

We find loose synchronization useful for applications

that only require the ability of the sink to translate a

timestamp obtained from a source. Strict synchroniza­

tion, on the other hand, is useful for any scenario where

synchronization is required at every node on a path from

sources to sinks, e.g., in data aggregation. The overhead

of translating the timestamp in a packet as it is forwarded

on a path is cheap since a node only holds the relative

time differences with a limited set of neighboring nodes

(as described later).

III. A TIME SYNCHRONIZATION FRAMEWORK

A. Design Rationale and Approach

The expected network load is detennined by the net­

work application. The application must therefore select

the appropriate synchronization mechanism according to

its offered load and the locality of generated queries. For

example, for low to moderate loads, the network does not

need be globally synchronized. Rather, synchronization

on the forwarding path is typically sufficient. This type

of synchronization can be performed "reactively" or "on­

demand" (we borrow these tenns from the routing liter­

ature). In contrast, global synchronization is a process

that involves all network nodes and must be periodically

performed in a heavily-loaded network where queries do

not follow a distinct locality pattern or the application is

sender-driven. We refer to this type of synchronization

as "proactive synchronization." Data-driven networks can

typically exploit locality of requests more than source­

driven networks, unless the observer is mobile and its

location changes significantly between the issuance of

queries. We do not make any assumptions about the mo­

bility of observers in our work. We provide algorithms

that are suitable for stationary and mobile observers,

and leave the choice of the appropriate algorithm to

the application. Table I summarizes these options for

different network applications.

A number of protocols, such as multi-hop RBS [5],

assume the nelwork to be divided into intersecting re­

gions and rely on nodes in the intersection areas to
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TABLE I

SELECTING THE APPROPRIATE SYNCliRONIZATION APPROACH

ACCORDlNG TO THE TYPE OF APPLICATION AND OFFERED LOAD

I uar.a-anven network Source-driven
network

I LOW un·oemand path syn- Un-OemanO path

load chronization synchronization f.,

localized requests
- Proactive global

synchronization fo'
distributed requests

Ilbgb Un-demand path t'roacllve global syn-

load synchronization fo, chronization

localized requests
- Proactive path syn-

chronization for dis-

tributed requests

propagate synchronization information as data is for~

warded. A region in this context is an area in which

single-hop communication is possible between every

pair of nodes. To understand the problems caused by

non-intersecting regions in the network, consider the

scenario in Figure 3. In this scenario, the network is

divided into three regions around nodes A, B, and C.

These regions are non-intersecting (because no nodes lie

in their intersection regions)_ Therefore, a packet sent

from node 1 to node 8 will not find a synchronized

path although this would have been possible if nodes

2, 5, and 7 were the synchronization initiators. This

problem depends on node density, node distribution, and

transmission range. Therefore, the network has to be

organized such that regions are clearly defined and inter­

regional communication is possible, even if regions are

non-intersecting.

-- 2·'....4·' -- ..

::--'..--.- - ...•_::' Unsynchronized
\ ';-.-:: paths
, 6· .

)/

9

Fig. 3. Multi-hop network with three regions. The figure demon·

Slrates the failure 10 find inter-regional synchronized paths

Node clustering increases scalability. In a clustered

network, a number of nodes acl as cluster heads, and

communicate with their cluster nodes (intra-cluster com­

munication), and their neighboring cluster heads (inter-



cluster communication) or with the observer. To achieve

inter-cluster connectivity, a clustering protocol can use

a small to medium transmission range (power level) for

building clusters, reserving higher ranges for inter-cluster

communication or communication with the observer.

We assume that a node subscribes to only one cluster.

Node clustering has been used for routing [13], [14], for

improving the network capacity [15], for supporting data

aggregation, and for prolonging the network lifetime by

distributing load among network nodes [16], [17]. For

node synchronization. clustering can play an important

role in: (1) defining synchronization regions (clusters),

by selecting the appropriate cluster power level, (2) se­

lecting the synchronization initiators in the network (e.g.,

cluster heads), (3) adapting to application requirements

by expanding or conlracting the synchronization regions

(cluster sizes), (4) increasing the synchronization accu­

racy by synchronizing 2-hop neighbors through cluster

heads, and (5) enabling scalable and efficient multi-hop

synchronization by synchronizing each cluster indepen­

dently and only relying on the cluster head overlay (i.e.,

the inter-cluster head network) for synchronizing the

network and propagating time information. This reduces

the message overhead, increases the perceived accuracy,

and increases scalability.

Typically, the application selects a power level Rc

for cluster formation and intra-cluster communication

according to the node capabilities and MAC protocol,

node density, and transmission paltems, in order to

maximize spatial reuse and reduce energy consumption.

The selection of the best cluster power level is beyond

the scope of this work. Our main concern is that the

cluster head overlay is connected. This can be achieved if

the relation between the number of nodes in this overlay,

no, and the maximum transmission range Rm > Re
(which can be used for inter-cluster communication)

of a node satisfies the connectivity conditions specified

in [18]. That is, assuming that a node is active with

probability p, the n e c e s s ~ condition for connectivity

and coverage is Q2 > c 09 no, where c = ~.r" and
''n! - P flO 'Trio'

f3 ~ 0.5 (this is a generalization of the result in [19]). We

will define our density model in Section ill-D to provide

the necessary conditions for connectivity and coverage

in our global synchronization algorithm.

Our synchronization approach is independent of the

clustering protocol and the inter-cluster routing protocol

used. Ideally, the clustering protocol should ensure that

cluster heads are well-distributed in the network area.

For example, cluster heads can be considered well­

distributed if no two cluster heads can communicate

using the cluster range Re, which is only sufficient

for intra-cluster communication. This allows multiple
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synchronization operations to proceed simultaneously in

the network without interference. Note that in [10], node

clustering was proposed to scale down the complex­

ity of the proposed centralized synchronization scheme

(however, the asymptotic time and message complexities

remain the same). In our work, node clustering plays an

important role in organizing the network for facilitating

the synchronization process.

We now present a number of algorithms for intra­

cluster and inter-cluster synchronization. For intra­

cluster synchronization, cluster members are synchro­

nized with their cluster heads. For inter-cluster synchro­

nization, nodes in the cluster head overlay are synchro­

nized, independent of the rest of the network. The inter­

cluster synchronization algorithms can be limited to the

path of the querying observer (path synchronization), or

can cover the entire clustered network (global synchro­

nization). Loose path synchronization is useful to appli­

cations requiring correct translation of a timestamp sent

by a source at its destination. An example application

is environmental monitoring, where a source sends a

timestamped temperature when it exceeds a threshold.

Strict inter-cluster synchronization is required if data

aggregation or caching is performed at every node along

the path. The transmitted packet does not increase in

length since at every hop on the path the timestamp value

is translated and only the new one is carried on to the

next hop.

B. Intra-cluster Synchronization (SYNC-IN)

For intra-cluster synchronization, all nodes within a

cluster only need to be synchronized with the cluster

head. The cluster head cannot synChronize itself with

the cluster nodes if it acts as a synchronization initiator

(assuming receiver-recei,:,er low-level synchronization)

as stared in Section II-B. The cluster head thus elects

nodes from within its cluster to act as initiators, one at a

time. It continues doing so until all the nodes subscribed

to its cluster are synchronized with the cluster head.

Since this is an intra-cluster operation, and to avoid

interference with neighboring clusters. pulses (messages)

for intra-cluster synchronization are sent using the cluster

range Re (i.e., the power level used for cluster forma­

tion). This also increases energy efficiency. Figure 4

shows pseudo-code for the intra-cluster synchronization

algorithm executed at each cluster head.

The best candidate to select as a synchronization

source is one which is closest to the cluster head. This is

because a close neighbor is likely able to cover most of

the nodes in the clusLer using the cluster range. A cluster

head can maintain lists of neighbors using each of iLs
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Fig. 4. SYNC-IN: IntnL-ciuster Synchronization Algorithm

Assuming that the cluster circle has a perimeler p,

the length of the arc covered in circle CH by circle A

is p/3. This is because the opposite angle 9 is 21T/3

(since cos(g/2) = 0.5). In the worst case, the next

elected node B is also on the perimeter of CHand A.

This covers another arc of CH of length rr/3. We can

add at most three other nodes on the perimeter of C H

to cover the entire area of CH. Therefore. the SYNC­

IN algorithm requires at most 5 iterations to visit all

"non-initiator" nodes and at most another 5 iterations to

visit each of the initiators again. SYNC-IN terminates

in at most 10 iterations (we will verify this result in

Section IV). An "iteration" in this context denotes a low­

level synchronization process of a group of nodes in the

cluster. Interference is also reduced since only one node

transmits synchronization pulses at any time. 0

Lemma 3: The SYNC-IN algorithm requires 0(1)
message transmissions per node in the cluster.

Proof. A node participates in the synchronization pro­

cess in only one iteration and sends only one message. A

node may act as an initiator only once. Thus, each node

(other than the cluster head) sends at most two messages

during the entire synchronization process (i.e., 0(1).
The cluster head sends two messages at each iteration

(one to elect an initiator and one for synchronization).

Since the number of iterations is 0(1). the cluster head

also sends 0(1) messages. 0

The synchronization initiator may actually send 0(1)
synchronization pulses, and not just one. This, however,

does not affect the validity of the above proof. It is also

worth mentioning that for sender-receiver synchroniza­

tion, intra-cluster synchronization wilI be much simpler.

This is because the cluster head can act as an initiator in

this case, and lhe entire process tenninates in only one

iteration. The message overhead is still within the same

bounds as in receiver-receiver synchronization. Finally,

note that SYNC-IN takes the transmission range as an

input parameter. and therefore it can synchronize the

cluster head with nodes outside the cluster range if the

specified transmission range is larger.
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Fig. 5. Worst case scenario for electing initiators to perronn intra·
cluster synchronization
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Synchronize(u, CH)

ELSE

Apply low-level synchronization using u

8 ~ S u {v, SYNC(v.CH) = I}

/I Let S = rp, Cluster = C. Cluster head = CH

/I Range is given as an input parameter

1. Ve +- {v:v E C, v =I- CH}

2. WHILE 181 < [V,I
3. Pick u E (Vc - S) as synchronization initiator

4. Send S to u

5. IF (J3v E S, such that v E neighbor(u) and

v"CH)
6.

7.

8.

9.

available power levels, so that neighbors in the smallest

level are closest (this idea was used in CLUSTER­

POW [15] for minimum power communications). If the

cluster head cannot deduce the proximity of its cluster

members, random selection can be applied. During the

operation of this protocol, nodes are synchronized with

the cluster head and removed from the candidate set of

synchronization initiators. If the selected initiator does

not have any neighbors that are yet to be synchronized

with the cluster head. it directly synchronizes itself with

the cluster head. This can be done in 0(1) time using

techniques such as [12], We now prove the correctness

of this algorithm. We also show that the maximum

number of nodes required to act as initiators and fully

synchronize the entire cluster with its head is constant,

and thus fast intra-cluster synchronization is achieved.

Lemma 1: When the SYNC-IN algorithm terminates,

all nodes in the cluster are synchronized with the cluster

head, GH.

Proof. We first show that ISi+l1 > ISil, where Si

and Si+l are the sets of nodes synchronized with CH

at the beginning of iterations i and i + 1, respectively.

At iteration i, GH picks a node u ~ Si to act as

a synchronization initiator. This results in at least one

newly synchronized node(s) that was not in Si' Thus,

18i+l1 is strictly larger than ISil. The algorithm only

terminates when lSI = Wei. 0

Lemma 2: The SYNC-IN algorithm terminates in

0(1) iterations.

Proof. The algorithm terminates when all the nodes

in the cluster are visited as either initiators or receivers.

The number of iterations depends on the portion of the

cluster that is covered each time a node is elected to act

as an initiator. The worst case scenario is demonstrated

in Figure 5 where the elected nodes are very close to

the boundary of the cluster, i.e., on the perimeter of the

virtual transmission circle of the cluster head.



C. Inter-cluster PatTz Syncltroniza/ion (SYNC-PATH)

As discussed in Section ill-A, path synchronization

involves only the nodes in the cluster head overlay on

the path from a source to a destination. The return path

p can be determined using a routing protocol, such

as Directed Diffusion [20]. P can also be determined

on the fly if data is forwarded from the source to the

destination using routing tables. In the former case,

P is known before dam is sent from the source, and

thus synchronization can take place while data is being

forwarded. In the latter case, a synchronization trigger

packet can be sent prior to data transmission to record

nodes on the path and trigger synchronization at "some"

of these nodes (as explained below). In either case, each

node is aware of all the preceding nodes on the path

P, and synchronizes with at least one of them. The

action taken by our algorithm is similar in essence to

the post-facto protocol [7] since they are both "reactive"

approaches. However, the post-facto protocol is intended

for regional synchronization of nodes that collaborate to

report an event or stimulus and assumes that all nodes are

within communication range of each other. We consider

longer paths that require multi-hop communication, and

assume that a low-level synchronization protocol will be

used among every 2-hop neighbors.

The algorithm proceeds as follows. Assume that node

u E P (u f vIPI) is the one currently executing

the SYNC-PATH algorithm. Node u is aware of the

preceding nodes in P (call them Pi). Assume that UI E

P is the node directly preceding u (thus, UI E P'). If u is

synchronized with any u' E pi (not necessarily UI), then

it simply forwards the packets (data or synchronization

trigger) to the next hop U2 E P. Otherwise, U decides to

act as a synchronization initiator and applies a modified

version of SYNC-IN (SYNC-2HOPS) using a transmis­

sion range R t , where R t is the transmission range used

for inter·cluster communication. Only nodes in the clus­

ter head overlay that are within Rt distance from U are

involved in the SYNC-2HOPS algorilhm execution. The

SYNC·2HOPS algorithm uses u as a synchronization

initiator. The node u is also responsible for collecting the

timestamp information from its neighbor cluster heads

(within inter-cluster transmission range R t ), computing

the relative synchronization for all of its neighbors, and

sending this information back to them. The latter case

results in UI and U2 getting synchronized since they are

both cluster head neighbors of u. This process continues

until the destination is reached.

A side effect of applying SYNC-2HOPS with trans­

mission range R t in the cluster head overlay is the

synchronization of all neighbor cluster heads of u with

8

Fig. 6. SYNC-PATH; Inter-cluster Path Synchronization
/I This algorithm is e;w;.ecuted at node u E P

/I Let pi be lhe set of nodes on P preceding u

1. pi = {v: v E P, v is a predecessm'(u)}

2. IF J3v E pi, such lhal SYNC(u,v) = 1

3. SYNC-2HOPS(R,)

4. Forward lhe synchronization trigger packet

each other. This may be useful if the application requests

follow a distinct pattern. This approach can also be

implemented in the low-level synchronization protocol

used. For example, if RES is used, then U can act as an

initiator, collect the readings from UI and U2 (which may

not hear each other), and send them back their relative

synchronization information. Figure 6 gives pseudo-code

for Algorithm SYNC-PATH.

Lemma 4: The path P generated by SYNC-PATH

between a source VI and a destination vlPI is loosely

synchronized.

Proof. We prove this lemma by contradiction. Assume

that the path P is not loosely synchronized. Wilhout

loss of generality, assume that 3Vk E P, 1 < k <
IPI, such that the path P'(VI, Vk) is loosely synchro­

nized, while the path PII(vk,vlPl) is unsynchronized.

Vk is synchronized with one of its predecessors on

Pl. When Vk executes SYNC-PATH, it just forwards

the synchronization trigger packet to Vk+l' Now, vk+I

finds itself unsynchronized with Vk, and consequently

all Pl. SYNC-PATH forces vk+I to act as a synchro­

nization initiator and execute SYNC-2HOPS(Rt ). Con­

sequently, SYNC(Vk,Vk+2) becomes 1. Therefore, the

path (VI, Vk + 2) is loosely synchronized. This continues

throughout P" until vlPI is reached. Thus P is loosely

synchronized. 0

For odd length paths, the last cluster head on the path

will have to directly synchronize with the observer. It is

obvious that SYNC-PATH reduces the propagated error

compared to a straightforward approach in which every

pair of adjacent nodes on the path are synchronized. This

is because only every other node is synchronized using

SYNC-2HOPS, and not every pair of adjacent nodes.

For example, synchronization of a path with h hops and

a-h per-hop error is expected to result in an .,fha-II total

path error using multi-hop RBS [5], while SYNC-PATH

has the advantage of reducing the path length pertaining

to synchronization by half, thus reducing the expected

error as well. SYNC·PATH is also simple, general, and

independent of lhe underlying routing protocol. Figure 7

depicts an example of path synchronization using the

SYNC-PATH algorithm. In this example, we assume

that a general routing protocol is used, and thus the
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Fig. 7. 0pcr.J.tion of the SYNC·PATH algorithm. All nodes ex.eept

src nnd dst are cluster heads. All nodes on the path are assumed to
be initially unsynehronizcd.

lWe assume Ihe observer is included in the clustered network, but

if this is not the case, the observer can be synchronized with Ihe last
node(s) on ils rouling palh(s).

path P from STC to dst is not known a priori. The

synchronization trigger packet records nodes on the path

as it travels across P.

interference, since cluster heads are non-neighbors (the

LEACH protocol [17] may be ruled out because of its

assumptions that may result in unexpected cluster head

distribution). In addition, results from the analysis below

can be applied in this case to prove that the network

will asymptotically almost surely (a.a.s.) be synchronized

using SYNC-NET. This will also be demonstrated via the

experiments in Section IV.

Let Ccomm be the set of nodes in the cluster head

overlay. SYNC-NET will re-cluster the network using

the set V - Cccmm only. This results in another cluster

head overlay with a disjoint set of cluster heads CSYDe'

i.e., Ccomm n Gsyne = ¢. Since sensor networks are

usually dense, we assume that obtaining two disjoint

sets of cluster heads is possible (more details on the

asymptotic conditions for achieving this are given in

Section ill-D.!). The two cluster head overlays have dif­

ferent roles. The first overlay, Ccomm, is the overlay that

will later be used for "time-aware" forwarding. Cluster

heads in Cccmm are also responsible for applying SYNC­

IN for intra-cluster synchronization. Cluster heads in the

overlay Csyne are used to synchronize the set Ccomm,

and therefore, other nodes in the network do not need to

register themselves with cluster heads in Gsync.

The synchronization process proceeds as follows.

Each cluster head v E Csync discovers its neighbor clus­

ter heads in Ccomm using a transmission range Rt. where

Rc < R l :::; Elm. (Rt is also used for sending inter-cluster

synchronization pulses.) A ''neighbor'' throughout this

section refers to a node within a range R t .2 Knowledge

of Ccomm neighbors is used by each node in Csync to

determine when to terminate the execution of SYNC­

NET, as described below. Each node v performs a few

iterations during the execution of SYNC-NET. In the first

iteration, v elects to become a synchronization initiator

for its neighbors in Ccomm with probability 0 < Ps S 1

(say 5%). Thus, a synchronization initiator v E Gayne

synchronizes a cluster head U E Ccomm that covers an

intersecting region with that of v, and all the cluster head

neighbors of u in Ccomm . The reason that we set nodes in

Csync:. to act as initiators probabilistically is to reduce the

number of messages exchanged in the synchronization

process. This is because a node in CsyDe may redun­

dantly act as an initiator, whereas if it waits for a few

iterations. the nodes it is "responsible for" in Ccomm

may be synchronized with lheir neighbors as a result of

other initiators in Csync.. In addition, starting with a small

value of Ps allows gradual network synchronization and

2Nole thai we assume that the multi-hop inter-cluster routing

protocol will exploit a neighbor as the next hop in the inter-cluster

routing path, whic.h must be the case if R! is the inter-cluster

communication range.
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Observe that with loose synchronization, building

routing tables for proactive routing approaches, such as

DSDV, has to consider an extra parameter (synchro­

nization) in addition to connectivity and cost. Similarly,

reactive routing protocols, such as AODV or Directed

Diffusion, have to compute paths only in synchronized

directions. We assume, however, that SYNC-PATH will

only be used in lightly-loaded networks, where queries

occur rarely.. and in random parts of the network. ill this

case, SYNC-PATH will usually be invoked prior to data

forwarding from the source, thus paving the way for data

and relieving the routing protocol from the burden of

searching for synchronized paths.

D. lnter-clllster Global Synchronization (SYNC-NET)

In this section, we develop a proactive time synchro­

nization algorithm, SYNC-NET, for achieving relative

synchronization in the entire network. Since global syn­

chronization will usually be carried out in a heavily­

loaded network, our goal is to construct strictly syn­

chronized paths among every pair of nodes, and con­

sequently between any source node and the observer'

Applications that may use SYNC-NET are discussed in

Section I. Node clustering is exploited as described later

for scalability and fast convergence.

Our algorithm, SYNC-NET, strictly synchronizes the

cluster head overlay and uses SYNC-IN to synchronize

every cluster. The synchronization operation proceeds

on a network clustered using any clustering scheme for

ad-hoc networks, such as [21], [16J, [22], [23], [14].

A scheme that results in well-distributed cluster heads

in the network is ideal. This is because the resulting

clusters can communicate with low power causing little



thus lower interference. We will show in Section IV

that this approach significantly reduces the number of

synchronization initiators, and consequently the number

of messages exchanged.

At the end of the first iteration. a cluster head that has

elected to act as a synchronization initiator tenninates

its operation and exits SYNC-NET. A node u E Ccomm

that detects that it is currently synchronized with all

its neighbors in Ccmnm broadcasts a "SYNC-DONE"

message that it is done. and exits SYNC-NET. A cluster

head 11 E Csync that has not elected to act as an initiator

in this iteration checks if all its neighbors in Ccomm have

sent "SYNC-DONE" messages. If so, 11 exits SYNC­

NET. Otherwise. 11 doubles its Ps value, and proceeds

to the next iteration. This process is repeated until Ps

reaches 1. If the value of Ps of a node v reaches 1 before

all the Ccomm neighbors of 11 have sent "SYNC-DONE"

messages to v, it will definitely act as an initiator.

Note that when a node exits SYNC-NET, it ignores any

newly received synchronization pulses. Figure 9 provides

the pseudo-code for Algorithm SYNC-NET. It is clear

that the algorithm is asynchronous. i.e.• all nodes need

not start executing it simultaneously for getting correct

results. Figure 8 demonstrates the operation of SYNC·

NET synchronization. where five cluster heads in Csync

are able to fully synchronize Ccomm cluster heads with

their neighbors.

Fig. 8. ThIJ SYNC-NET protocol: 1\vo cluster head oVlJrlays arc
constructed on top of !.he physical network. Five initiators in C3~nc

synchronize Ccomm ' A node in Ceo",,,,, does nOL have any neighbors
on Ihe diagonal

I) Density Model: We now present the density model

required [0 satisfy the conditions for fonning two con­

nected cluster head overlays. Assume that n nodes are

unifonnly and independently dispersed at random in an

area R = [0, Lj2. Also assume that R is divided into N

square cells of size ~ x ~ (thus N = 2;,'). where

a cell is an approximation of a cluster. Thfs implies

that every node in each cell can reach every other node

residing in the same cell using a transmission range

Re. In [24], we presented a general density model for

fanning k connected cluster head overlays. This requires

10

Fig. 9. SYNC-NET: Inter-cluster Global Synchronization
/I SYNC·NET uses two cluster head overlays

/I Ceomm and C3ync , Ccomm n C~lInc = ¢

/I Execute the following at every node v E C3ync

/I P3 is the synchronization probability used by C3l1nc
nodes

1. Snbrs[V] (-- {u: U E Ccomm , distance(u,v)::; R t }

2. Max_iter = rlo92A 1+ 1

3. itel' = 0

4. REPEAT

5. iter (-- iter + 1

6. T _ UniformeO,1)

7. IF r < Ps

8. SYNC-2HOPS(R,)

9. EXIT SYNC-NET

10. Scovered = {u: u E Ccomm ,

u has sent message "SYNC-DONE"}

II. IF Scouered i- Sn!Jr3

12. P3 - min(Ps x 2, 1)

13. UNTIL (iter = Max_iter OR Seouered = Snbrs)

a mIDlmum cell occupancy of at least k > 1 nodes

asymptotically almost surely (a.a.s.)3 The following the·

orem provides the necessary conditions for minimum

cell occupancy, and we use it in proving the correctness

of our proposed algorithm (our algorithm requires that

k = 2). Let lJ(n, N) be a random variable that denotes

the minimum number of nodes in a cell.

Theorem 1: For any fixed arbitrary k > O. assume that

n nodes are uniformly and independently distributed at

random in an area R = [0, Lf. Assume R is divided into

N square cells, each of side Re/-I2. If R ~ n ; : : : aL2ln N
for some constant a ;::: 2, Rc « L. and n » 1, then

lim",N_ooE[ry(n,N)] ~ k iff k '" In N.

Proof. Refer to [24] for a complete proof.

2) Protocol Analysis:

Lemma 5: Each cell will a.a.s. have two distinct clus­

ter heads, one in Ccomm and the other in Csync .

Proof. Assuming that Theorem I hold where k = 2,

then every cell contains at least two nodes a.a.s.• and

consequently may easily contain two cluster heads, one

for each cluster head overlay. The property holds a.a.s.

because the nodes considered in constructing Csync do

not include the ones previously selected in Ccomm ' 0

Lemma 6: When all nodes in Csync lenninate SYNC­

NET. every node u E Ccomm is synchronized with all its

neighbors in Ccumm'

3We regard a cell as an approximation of a cluster. and thus Re

is used to define Ihe required density. and R! is used to define
connectivity.
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Proof. Assume that R t is selected such that it covers

every cluster head in the complete neighborhood of cells

around any cell A. The complete neighborhood around A

is all the eight cells surrounding A (this can be ensured

by enforcing a relation between R t and R c ). Also assume

lhat 3al E Ccomm • such that Snbr(ar) is the set of

neighbor cluster heads of al in Ccomm• We prove this

lemma by contradiction. Assume that 3u. E Snbr(ar).

such that SYNC(al1 u) = O. We assume that Theorem 1

holds (where k = 2). and therefore every cell contains

two cluster heads (one in Ccomm and the other in Csync ).

There are two cases for u:

Case 1. The cell of node u is within the complete neigh·

borhood of the cell of al- For example. as depicted in

Figure 10, al is in cell A, u can be one of {b1 , dl, el, fI}.
In this case. the cluster head az E Csync can reach all

of these nodes. and therefore can synchronize them with

at. which is a contradiction_

Case 2. The cell of node u. is not in the neighborhood of

the cell of al (cell A). For example. cell G in Figure 10

is one such case. Assume that al and 91 are neighbors,

while az and 91 are not. However. there must exist

another cluster head in a neighbor cell that belongs to

Csync (node d2 in this example) which will not exit

SYNC-NET until al and 91 are synchronized and send

"SYNC-DONE" messages. This means that al and 91

will be synchronized, which is a contradiction. 0
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Fig_ 10_ Ex.ample of node synchronization using SYNC·NET_

{uI,b1,cl,dl,el,fJ} C Gcomm and {a2,d2} C G3l1nC

It

Lemma 8.- SYNC-NET has an 0(1) message over­

head per node in each cluster head overlay_

Proof. A node may elect to become a synchronization

initiator in Csync only once. and sends 0(1) synchro­

nization pulses. A node to be synchronized in Ccomm

replies to synchronization pulses until all its neighbors

are synchronized with it. The number of neighbors is

0(1) (which depends on the ratio RtJRc)- Thus. every

node in Gcomm also sends at most 0(1) messages. 0

Lemma 9: In the worst case. the synchronization ac­

curacy of S Y N C ~ N E T is O(../N x q). where N is the

number of cells in the network, and q is the accuracy

obtained by the applied low-level synchronization mech­

anism.

Proof. Assume that the clustering mechanism used

distributes cluster heads well across the network. We

consider only the cluster head overlay, since communica­

tions proceed through it. The cluster head overlay can be

approximated as a 2-D mesh network. Synchronization

accuracy depends on the length of the path from the

source to the destination, Lp • and the underlying low­

level synchronization mechanism. In the worst case.

Lp can be as long as the network diameter, which is

O( ../N)- Therefore, the accuracy provided by SYNC­

NET is O(-IN x q). 0

To quantitatively grasp the above lemma, consider a

simple example of a sensor network with thousands of

nodes_ Assume n = 10,000 and N = 100 and RBS [5] is

the underlying low-level synchronization scheme. RBS

achieves an absolute accuracy per hop in the order of

q :=::: 40,us on Berkeley sensor motes, as measured in [8].

Therefore. according to Lemma 9. SYNC-NET achieves

an accuracy of 10 x 40 X 10-6 = 400 ,us on the longest

expected path, in the worst case when errors add up.

IV. PERFORMANCE EVALUATION

In this section, we verify via simulations the properties

of our proposed approaches for intra-cluster and inter­

cluster synchronization.

Lemma 7: At every node v E Csync , SYNC-NET

tenninates in 0(1) iterations.

Proof. We assume that the clustering protocol is fast and

0(1) (e.g., [16], [22], [21]). The number of iterations

taken until SYNC-NET terminates depends on ps• since

the operation continues until Ps reaches 1. Therefore.

the number of iterations, Niter can be computed as:

which is 0(1). For example. if Ps

number of iterations, Niter, is 5_

(I)

IS 10%. then the

o

A. Intra-cluster Synchronization

The primary advantage of the SYNC-IN algorithm is

its fast convergence via exploiting knowledge of cluster

members at each cluster head. We explore the two

possibilities for selecting synchronization initiators that

were discussed in Section III-B: (1) randomly, and (2)

closest to the cluster head. In our experiment, we varied

the number of nodes per cluster from 10 to 1000 to

see how fast the algorithm tenninates for different node

densities. The transmission range (Rc ) was fixed at 10 m.

Thus. node density ranged from 0.1 nodes/m2 to 10
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nodes/m2. Figure 11 illustrates that: (1) the number

of iterations until SYNC-IN converges is less than 8

for different densities, which agrees with the result in

Lemma 2, and (2) the number of iterations when the

closest neighbors are selected as initiators is significantly

lower than that when random initiators are selected. This

is expected. However, selecting the closest neighbors as

initiators adds an extra overhead on the cluster head

for discovering neighbors at each power level (smaller

than the cluster power level). This also requires addi­

tional message exchanges. Note that we have assumed

in this experiment that there is an infinite number of

transmission ranges below the cluster range. Practically.

there will be only a few discrete usable power levels in

any node. Therefore. the actual curve for using closest

initiators will lie in the area between the two curves

in Figure 11. The illustrated curve for using closest

initiators simply gives a lower bound on the possible

number of iterations.

Fig. II. Convergence of the SYNC-IN protocol

B. Inter-cluster Synchro"izatio"

Since SYNC-PATH is part of SYNC-NET. we evalu­

ate the perfonnance of our inter-cluster communication

algorithms in the context of SYNC-NET. Throughout

this section, we will use the tenn "neighbors" to refer

to two cluster heads which can communicate using a

transmission range R[ > Rc:.. We will only consider

communications within the cluster head overlays, since

intra-cluster communication was considered above. Two

neighbor cluster heads can both belong to the same

cluster head overlay, or belong to different overlays.

As before, we use Ccamm and Csync to refer to the

forwarding and synchronizing overlay cluster structures.

respectively. We also use "node density" to refer to

the number of nodes per cluster (cell), as defined in

Section m-D.
In this section, we consider: (1) how the average

number of neighbors varies as the transmission range

grows. (2) how the average number of iterations un­

til lennination (convergence speed) varies as the node

12

density increases, (3) how our approach of probabilistic

synchronization initiation reduces the number of mes­

sages exchanged in the network. and finally. (4) what

synchronization accuracy is achieved assuming unifonn

synchronization error distribution across the network and

using RBS [5} as the underlying low-level synchroniza­

tion protocol. We assume that n nodes are dispersed

unifonnly and independently at random within a 100

rnx100 m area. We fix Rc in most experiments. Chang­

ing Re only results in changing the average number of

cluster heads in Ceomm and Csyne• and has no significant

impact on the general performance of SYNC-NET.

To verify that the density model defined in Theo­

rem 1 is sufficient for Csyne and Ccmnm• we carried

out an experiment where the transmission range R t is

varied from double the cluster range Re to four times

the cluster range. Rc was selected to be 10 m. We

perfonned this experiment for average node densities

of 2.5 nodes/cell. 5 nodes/cell, and 10 nodes/cell, for

500, 1000. and 2000 nodes. respectively (we have also

experimented with larger values). Figure 12 illustrates

that the average number of neighbors in Ccomm for each

node in Csyne exceeds five, for all values of R t . This

number is important since it roughly indicates how many

nodes will be synchronized if a node v E CSlJne acts as a

synchronization initiator. The figure also illustrates that

the number of neighbors increases with the increase of

RtfRe. Node density. as long as it satisfies Theorem 1

and is within certain bounds. does not appear to have as

significant an impact on the results in this case, since the

average number of neighbors is dominated by the ratio

Rt/R,.
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Fig. 12, Aver.lge number of neighbors from Ceomm (labeled C,)

for each node in C. llne (labeled C2 )

Now we turn to the main focus of our proposed work:

fast convergence. We compare the convergence speed of

our SYNC-NET protocol (for different values of Ps ) to

that of a multi-hop TPSN [8}. We chose mulLi-hop TPSN

as a representative of synchronization protocols whose



tennination speed is dependent on the network diameter.4

In TPSN, a reference node initiates synchronization by

fonning a hierarchy using message flooding. We use

4000 nodes in this experiment. The cluster range for

SYNC-NET and TPSN neighbor discovery. Re• varies

from 3.5 m to 10 m. We plot the average number

of iterations of TPSN for 100 random topologies. We

also plot the maximum number of iterations of SYNC­

NET for Ps = 0.01, 0.05, and 0.25 (which gives 8, 6,

and 4 iterations respectively). We assume that a fast

clustering protocol is used (i.e., an 0(1) protocol). Thus,

we add 6 iterations to the SYNC-NET iterations (which

is sufficient for protocols such as [16], [22], [21]), so that

each SYNC-NET value represents the convergence speed

of synchronization plus clustering. Figure 13 illustrates

a significant difference in convergence speed between

SYNC-NET and TPSN. especially for small Re values.

Note that TPSN was not slow in this experiment, due

to the network organization in a 2-dimensional space

and the uniform node distribution. In a I-dimensional

space, however, the number of iterations is expected to be

O(n) in the average case, which is much higher than the

results specified in Figure 13. Observe, however, that this

comparison is· only for demonstralion. since protocols

like TPSN and Li-Rus [10] assume that the application

needs to achieve a global time consensus in the network,

which is not the goal of this work.
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Fig. 13. Convergence speed of SYNC-NET and multi-hop TPSN

We now perform two experiments to verify Lemma 7.

We compute the actual average number of iterations in

lhese experiments to compare with the analytical upper

bound and prove fast convergence. In both experiments,

the transmission range Rt varies from 2Re to 4Re , and

Rc is fixed at 6 m. Experiments are performed for three

values of n (the number of nodes): 1000, 2000, and

3000. This results in node densities that range from about

4We do nol compare SYNC-NET with any approach in literature

in olher aspects, such as message complexilY or perceived accuracy

since our underlying assumptions. prospective applications, and ob­

jcctives are completely different from all relatcd work presented in

Section VI
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2 nodes/cell to 6 nodes/cell. Figure 14(a) shows lhat

SYNC-NET terminates more rapidly as Rt grows relative

to R c• However, we also need to examine other aspects

associated with longer transmission ranges. such as the

number of exchanged messages. Figure I4(b) shows

that the percentage of actual number of synchronization

initiators out of the total number of viable initiators in

Gsyne is about 95% for Rt = 2Rc, and about 60% for

R t = 3Re . This is a significant reduction in message

exchange compared to the simple approach of blindly

making every node in Gsync a synchronization initiator,

since the percentage of non-participating nodes in Gsync

reflects the percentage of reduced message overhead.

As an example. consider the case where n = 1000,

Rt = 4Rc, Rc = 6m, and Pa = 5%. The number of

cells N = jf?, Le., N=200 cells. Thus, the number of
c

cluster heads in Gsync is approximately 200, assuming

one cluster head exists per cell. Using the results in

the model validation experiment, the average number

of Gcomm neighbors of each Gsgnc node is about 12.

Also assume that the underlying low-level synchroniza­

tion protocol is receiver-receiver (e.g.. RBS [5]) and

sends 10 synchronization pulses per initiator. If all the

nodes in Gaync act as initiators, the expected number of

message exchanges is: 200x 10 (for initiation at Gsgnc) +
200x 12 (for replies at Gcomm ) = 4400 messages. If only

60% act as initiators, this number is reduced to 2640

messages. Synchronization pulses sent by Gayne nodes

can thus use the maximum available power level. This

will not cause severe interference or energy consumption,

since we synchronize the network "gradually" using a

synchronization probability Ps .

In another experiment, we study the effect of the

synchronization probability Ps on the convergence speed

and message overhead of S Y N C ~ N E T . The probability

Pa ranges from 0.01 to 1 in our experiments. The

number of nodes n is set to 2000. The cluster range

Rc is 6 m, while the transmission range Rt varies from

2Re to 4Rc . Figure 14(c) shows that (1) the average

number of iterations until all the nodes in Ccomm are

synchronized with their neighbors is strictly less than

the maximum specified by Lemma 7, and (2) as Pa

increases, termination is faster as expected, since the

synchronization probability goes to I quickly. This is not

a desirable behavior, however, since more nodes in Gsyne

may redundantly send synchronization pulses. This is

demonstrated in Figure 14(d), where smaller values of Pa

generally result in a lower average number of initiators,

and hence lower message overhead. The curves show

more than one local minimum which means that each

transmission range has a unique behavior with different

synchronization probabilities. We have not considered
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Fig. 14. Convergence speed and message overhead in SYNC-NET

the effect of interference in our simulations, which will

indeed be magnified by sending simultaneous long-range

synchronization pulses by neighboring nodes in Csync­

Therefore, we surmise that a small value of Ps (e.g., 5%)

will help achieve both goals: fast tennination and lower

message ex.change. This is because even for a small

probability, the convergence speed is within practical

bounds.

Finally, we consider the synchronization error propa­

gated across the network as reports are transmitted from

a source cluster head that is closest to the bottom left

comer of the network area to an observer cluster head

that is closest to the upper right comer. The number

of nodes used is 1500 and 3000, while the transmission

range Rt varies from 2Rc to 4Rc. The cluster range Rc is

fixed at 6 m. We use a simple error model: RBS low-level

synchronization is employed for an absolute receiver­

receiver synchronization error value of mean ±40 J1-s

introduced at every hop. This value was reported in [8]

based on an implementation of RBS and experimental

results on Berkeley sensor motes. Data is forwarded

using greedy geographic routing for simplicity. Figure 15

illustrates the absolute error for different RtfRc ratios.

Results show that the absolute error slightly increases

using longer transmission ranges (i.e., fewer hops). This

is not surprising in this scenario since the introduced

error can be a positive or a negative value, and thus

having a larger number of hops (i.e., smaller RtfRc )

may increase the chance for error cancelation.

V. DISCUSSION

In this section, we discuss several design and de­

ployment issues pertaining (0 lime synchronization in

clustered ad-hoc sensor networks:

Sensitivity to the underlying clustering protocol:

Our proposed algorithms are not dependent on the un­

derlying clustering protocol. In fact, they can be applied

to a non-clustered network, but will be less efficient

.
,

-----------i".l500 - ­
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Fig. 15. AbsoluLe average synchronization error for different

lransmission ranges

in terms of message exchange and perceived accuracy.

For example, in SYNC-NET, nodes can probabilistically

elect themselves as initiators to synchronize the network.

An initiator which was not synchronized with all its

neighbors can perform a one-to-one synchronization with

the remaining nodes. Node cluslering provides a better

organization for carrying out the synchronization process

with more predictable asymptotic behavior. If the net­

work is clustered only for synchronization, however, then

the selected cluslering mechanism should be fast in order

not to dominate the overhead of the synchronization

process. Examples of fast (0(1) clustering protocols

include [22], [21], [16], [17], [28].

Triggering synchronization: In many environments,

clock skewness is continuously variable due to condi­

tions such as temperature. In this case, SYNC-NET must

be periodically triggered to re-compute relative synchro­

nization in the network. SYNC-NET can be triggered at

any node by timer expiration or by message exchange.

For example, if the application can tolerate an error of

up to 1 ms, and due to clock skewness, Lwo clocks lose

synchronization at a rate of I J1-sec per minute, then

SYNC-NET should be triggered every 1000 minutes. It

is practically difficult to compute the clock skewness

for the entire network during the nelwork operation.



However. each node can set a timer according to trigger

synchronization taking into consideration the maximum

"expected" skewness. When the timer expires. a cluster

head in CS 1fl/C initiates a bounded-depth d-hop flooding to

inform its d-hop neighbors in Csync to start SYNC-NET.

A node that hears this message starts the execution of

SYNC-NET immediately. even if its timer has not yet

expired. In clustered networks where clustering is re­

triggered periodically to achieve certain goals, such as

energy~efficiency or load-balancing, synchronization can

be triggered separately from clustering, but should be

triggered at least as frequently as clustering to maintain

a synchronized clustered network.

Synchronization probability: We have shown how

the synchronization probability, Ps , can limit the number

of messages exchanged in the synchronization process.

Throughout the paper, we have considered a constant

Pll value for all nodes. A variable Pll can be used for

attaining certain desirable properties. For example, Ps

can be set to favor nodes with high degrees for faster

convergence. Another option for Ps is to favor nodes

with high remaining energy. This reduces the burden

on nodes running out of battery, but requires that the

clustering protocol provide "good" candidates in lhe

cluster head overlay. We plan to explore these options

in our future work.

Inter-cluster communication ranges: We have as­

sumed in SYNC-NET that one inter-cluster transmission

range will be used for communication within Ccomm and

CIl1fl/c' We have also recommended in Section IV that

the synchronization pulses be sent by Csync members

using the maximum transmission range. This does not

have to be the case for Ccomm communications. since

longer ranges will add more neighbors for each node,

which increases interference and energy consumption,

and requires more participation from nodes in the syn~

chronization overlay to synchronize all of the nodes in

Ccomm with their neighbors. Thus, it is preferable that

Ccomm communications use the minimum transmission

range that keeps the Ccomm overlay connected, but is

higher than Re. This range can be computed using prior

results such as [18], [19].

Sleeping nodes: Some applications require that nodes

are not always awake to save energy. This may be

problematic for cluster head overlay connectivity and

synchronized path availability. This may also result in

network partitioning. To avoid these problems, a node

lhat belongs to Ccomm should never go to the sleeping

mode until it is no longer a cluster head. In addition, the

application should control the sleep/wake up process to

ensure that the set of active nodes at any time satisfy the

density model in Theorem 1.

IS

Fault-tolerance: Networks deployed in hostile en­

vironments, such as volcanic areas or military fields,

may experience unexpected node failures. This might

hinder communication and synchronization if the failed

nodes are in the cluster head overlay. This is somewhat

mitigated by the fact that applications that use clustered

networks usually re-cluster the network periodically to

maintain connectivity and adjust to changing network

conditions due to dispersion of new nodes or failure

and energy depletion of others. Fault tolerance can

be achieved by maintaining backup independent cluster

head overlays, and not just one as we use in SYNC-NET.

These backup overlays can also be synchronized using

the synchronization pulses generated by the synchro­

nization overlay initiators. The number of independent

overlays that can be constructed, however, is limited by

the node density and distribution in the network [24l-

Applicability: Our proposed framework is applicable

to any wireless network setting that requires scalable

and fast convergence. We have explained our framework

within the context of sensor networks to show one viable

application. Several other types of distributed systems

running on wireless ad-hoc nodes can utilize our frame·

work, though. These include several data dissemination

peer-to-peer, and network monitOring applications. Ex­

amples are BitTorrent or KazaA or network monitoring

tools, running on handheld or laptop devices in a wireless

network in ad-hoc mode.

VI. RELATED WORK

The Reference Broadcast Synchronization (RBS) [5J

is a low-level receiver-receiver protocol that aims at

high accuracy and low cost. RBS does not need any

infrastructure support and can achieve an accuracy of

6 J.LS on sensors with a 4 MHz clock. RBS, however,

suffers from a number of limitations when applied in

sensor networks. First. for single-hop synchronization,

RBS assumes that all the receivers are within the same

broadcast range. Second, the receivers (of the generated

sync pulses) are synchronized among themselves, while

the initiator of these pulses is not synchronized. Third,

for multi-hop synchronization. RBS assumes that certain

receivers will belong to multiple intersecting synchro­

nization regions, and thus synchronization information

can be propagated as packets are routed through nodes

in the intersection areas, which may not always be fea­

sible. Romer [6] provided a synchronization mechanism

for ad-hoc networks that assumes uni-directional links

and achieves 1 ms accuracy. Cristian [12] proposed a

probabilistic synchronization approach where synchro­

nization is achieved by sending multiple packets until

the error is bound by a pre-defined constant. The basic



TPSN [8] and Ping's technique [11] use sender-receiver

synchronization for a higher accuracy than RBS, assum­

ing that timestamping can be done at the MAC layer.

CesiumSpray [9] uses receiver-receiver synchronization

and applies a hierarchical structure to achieve scalable

synchronization. It assumes that the network contains a

number of distributed GPS-enabled sensors which can

contact the GPS satellite (the top of the hierarchy).

The Network Time Protocol (NTP) [3] is a sender­

receiver synchronization approach widely deployed in

the Internet and has proved to be scalable and robust.

In NTP, a hierarchy of time servers is deployed and

receivers consult with their parent servers to adjust their

clocks. These protocols provide both low-level and high­

level synchronization.

In addition to lhese, several protocols were proposed

for high-level synchronization. The idea of virtual clocks

was proposed in [2]. Virtual clocks are used for synchro­

nization if the absolute (physical) time is not necessary,

such as in the ordering of events. This work, however,

assumes that message reception preserves the event or­

dering. The post-facto synchronization mechanism [7]

is proposed for systems where events do not occur

too often, and thus synchronization is penomed only

when necessary. The Classless Time Protocol (CfP) [25]

fonnulates the clock offset problem as an optimization

problem and gives a distributed algorithm to reach the

optimal solution. High-level synchronization was also

proposed in [8] (which we refer to as multi-hop TPSN).

This work proposes a hierarchical approach for high­

level synchronization using message flooding. Building

the hierarchical structure can be O(n) depending on

the topology. Multi-level RBS [5] also relies on RBS

as the underlying low-level synchronization mechanism

and assumes that intersecting regions have nodes that

may carry out inter-regional synchronization. This also

requires time-aware routing protocols. Li and Rus [10]

assume that all network nodes need to agree on a

global clock value (which is different from our goal)

and propose centralized and distributed approaches to

reach this goal. The centralized approach does not scale,

while the distributed (diffusion-based) approach is O(n),
which does not satisfy our goal of fast convergence.

Table II classifies time synchronization research rele­

vant to ad-hoc and sensor networks according to goals

and approach. The mulLi-hop RBS protocol [5] relies

on the presence of nodes in the intersection areas of

regions, and thus does not incur any extm message or

processing overhead for the synchronization process. The

complexity, however, is pushed to the routing proto­

col. Global synchronization is not necessarily achieved

in this case as was described in Figure 3. According

16

to Gupta [19], connectIVIty in an ad-hoc network is

achieved if r 2 = cI°7~ n, where n is the number of nodes,

r is the transmission range, and c is a constant. Using

this fonnula, the number of neighbors of any node is

O(log n) if the network is connected. This is the message

complexity of certain protocols, such as the Diffusion­

based approach [1O} and multi-hop TPSN [8], in which

a node receives at least one message from each of its

neighbors, and forwards it.

Several distributed clustering approaches have been

proposed for mobile ad-hoc networks and sensor net­

works. In one approach, protocols are weight-based, i.e.,

clustering is according a certain parameter (weight) or a

number of parameters, such as node degree or residual

energy (e.g., [26], [16), [22], [17]). Examples of weight­

based approaches include the Distributed Clustering Al­

gorithm (DCA) [27], the Weighted Cluslering Algorilhm

(WeA) [26], Estrin et .1. [28], ACE [22], HEED [16],

and LEACH [17]. Another approach is to cluster the

network by selecting a dominating set, such as [29], [21],

[23]. In a third approach, protocols are heuristic-based,

e.g., cluster the network using node identifiers, e.g., [13].

Finally, a number of approaches construct a clustered

network in order to optimize routing while supporting

mobility, e.g., [14].

VII. CONCLUSION

In this work, we proposed a distributed, high-level

time synchronization framework for multi-hop sensor

networks that integrates node synchronization with node

clustering for scalability and fast convergence. OUT

framework serves the two major classes of network

applications, namely, source-driven and data-driven net­

work applications. We defined synchronization regions

as clusters where two-hop communication can take place

through a cluster head. We designed fully distributed

protocols for intra-cluster synchronization ( S Y N C ~ I N ) ,

and inter-cluster synchronization, including global path

synchronization (SYNC-PATH) and global network syn­

chronization (SYNC-NET). Our protocols focus on the

fact that for most applications, fast convergence and

scalability are the main objectives, and coarse-grained

granularity is sufficient at the global scale. We analyzed

our proposed approaches, and evaluated them via simu­

lations.

For intra-cluster synchronization, results show that a

2-hop region can be synchronized in less than 8 iLera­

tions using a receiver-receiver low-level synchronization

protocol. For inter-cluster synchronization, results show

that the proposed analytical density model is easily

achieved in moderately dense networks, where the e x ~

pected number of nodes per cell exceeds two. Results
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TABLE II

CLASSIACATION OF SYNCHRONIZATION PROTOCOLS FOR AD-HOC AND SENSOR NETWORKS. LL, AND HL DENOTE LOW-LEVEL AND

HIGH-LEVEL SYNCHRONIZATION, RESPECTIVELY. RR AND SR DENOTE RECEIVER-RECEIVER AND SENDER-RECEIVER APPROACHES,

RESPECTIVELY.

reo oeo I Primary Goal Major assumptions Convergence Message over-

,poed head

RBS [51 LL,RR High. accuracy All nodes can reach each 0(1) Sender: m, re-

other in one hop ceivcr: 1

TPSN [BI, LL, SR High accuracy and minimum TImestamping can be clone at 0(1) Sender: I

Ping [IIJ overhead the MAC layer

Romer [6] LL,SR Temporal ordering Nodes may be mobile 0(1) 0(1) per node

Cesium LUHL, RR Accur.J.cy and scalabiliry A few GPS-cnablcd nodes are LL, 0l'), HL, Sender: I

Spray (9) randomly scaltered O(log n)
Diffusion- HL All nodes have to agree on Only coarse-granularity is rc- O(n) G{log n) p'"
based [10] one lime value quired node

Multi-hop HL,RR Time-aware multi.hop com- Nodes ex-ist on !he intersec- N/A N/A

RBS [5] munications lion '"''
of regions, ~d

routing is time-aware

Multi-hop HL,SR All nodes have (0 agree 0' 3 at least one capable refer- C?t~). 10 build O(log n ~ per
TPSN [8J one reference time value ence node, i.e., GPE-enabled Ihe hierarchy node for flood-

ing

Post-facio [7] HL Synchronizing I-hop regions Rare occurrence of events Depends on Ihe Depends on the

unilerlying LL underlying LL

Lamport [2] HL Event ordering Messages reflect !he ordering O(n) 0(1)
of events

SYNC-NET HL Fast global synchronization, The node density allows 2 0(1) 0(1) per node
(this work) and minimizing message ex- independenl (node-disjoint)

change network c1uslerings

also indicate that by using high transmission power for

sending synchronization pulses, and by gradual network

synchronization (lhrough a probability Ps ), message

overhead can be significantly reduced.

As a result of using node clustering, energy-efficiency

can be achieved since periodic re-clustering distributes

energy consumption in the network, and thus prolongs

the network lifetime. Our framework is useful for a

number of ad-hoc wireless network settings. We have

presented it in the context of sensor networks to provide

a viable application in which this framework is impor­

tant. We plan to implement our proposed protocols on a

sensor testbed and carry out small scale experiments as

a proof-of-concept. We also plan to study the effect of

of node distribution in the network, and the impact of

variable probability Ps values.
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