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Abstract
The paper concerns the analysis of equilibrium problems for 2D elastic bodies with thin inclusions modeled in the frame-
work of Timoshenko beams. The first focus is on the well-posedness of the model problem in a variational setting. Then
delaminations of the inclusions are considered, forming a crack between the elastic body and the inclusion. Nonlinear
boundary conditions at the crack faces are considered to prevent a mutual penetration between the faces. The corre-
sponding variational formulations together with weak and strong solutions are discussed. The model contains various
physical parameters characterizing the mechanical properties of the inclusion, such as flexural and shear stiffness. The
paper provides an asymptotic analysis of such parameters. It is proved that in the limit cases corresponding to infinite and
zero rigidity, we obtain rigid inclusions and cracks with the non-penetration conditions, respectively. Finally, exemplary
networks of Timoshenko beams are considered as inclusions as well.

Keywords
Thin elastic inclusion, Timoshenko beams, crack, delamination, non-penetration boundary condition

1. Introduction
Damage and failure of deformable structures largely depend on the non-homogeneity of the bodies. The com-
monly used idea of strengthening structures is realized via the exploitation of different inclusions. The inclusions
can be divided into thin and thick ones. The terminology “thin inclusion” is used in the case when a dimension of
the inclusion is less then a dimension of the body. On the other hand, among thin inclusions we can distinguish
rigid and elastic ones. Cracks also can be viewed as thin inclusions with a zero rigidity, while thin rigid or elas-
tic inclusions may result from cracks filled with material. In view of this, elastic bodies containing rigid and/or
elastic thin inclusions are considered in problems with imperfections or damage and composites, where rein-
forcement plays a role. Whereas this is commonplace in continuum mechanics and its applications, bio-medical
applications are also now considered [1]. A mathematical treatment of thin elastic inclusions embedded into
elastic material has been provided by a number of authors. Here we refer to Bessoud et al. [2, 3], Pasternak [4],
Savula et al. [5], and Vynnytska and Savula [6] for recent articles treating thin 2D elastic inclusions embedded
into 3-D elastic material. In the works cited, and to the best knowledge of the authors, no delamination of such
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2 Mathematics and Mechanics of Solids
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Figure 1. Elastic body �γ with thin elastic inclusion γ .

inclusions have been studied in the context of composite materials of the kind described here. The aim of this
work is to partly fill that gap and initiate similar considerations for more complex composites.

As for cracks, it is known that the classical crack models are characterized by linear boundary conditions at
the crack faces [7–9]. These linear models allow the opposite crack faces to penetrate each other, which may lead
to inconsistency with applications. During the last 20 years a crack theory with non-penetration conditions at the
crack faces has been analyzed very actively. This theory is characterized by inequality type boundary conditions
leading to a free boundary approach to the modeling. Khludnev and Kovtunenko’s book [10] contains numerous
results on crack models with non-penetration conditions for different constitutive laws. The elastic behavior of
bodies with cracks and inequality type boundary conditions is analyzed in the monograph by Khludnev [11]
(see also [12–15]). In particular, differentiability of energy functionals with respect to the crack perturbation is
investigated. Finding the derivatives of the energy functionals with respect to the crack length is important from
the standpoint of the Griffith rupture criterion.

To analyze composite materials one has to consider mathematical models of elastic bodies with elastic and
rigid inclusions as well cracks. In such a case, new types of boundary value problems and boundary conditions
appear. In particular, nonlocal boundary conditions appear suitable from the mechanical standpoint. Rigid inclu-
sions may be delaminated, hence the crack approach with non-penetration conditions is to be applied. Existence
theorems and qualitative properties of solutions in equilibrium problems for elastic bodies with rigid inclusions
can be found in the literature [16–24].

In a recent paper [25], a model for an elastic body with a delaminated thin inclusion was proposed. The thin
inclusion was modeled by a Kirchhoff–Love beam incorporated in the elastic body. A solution existence was
proved, and passages to limits with respect to a rigidity parameter was investigated.

In the present paper, we propose a new model of a thin elastic inclusion inside of elastic body on the basis
of the Timoshenko approach. The inclusion is assumed to be delaminated, and, therefore, a crack appears. To
exclude a mutual penetration between the crack faces, non-linear boundary conditions of inequality type are
considered at the cracks. Different problem formulations are proposed relating to weak and strong solutions
which are proved to be equivalent under sufficient regularity conditions. We prove existence and uniqueness of
solutions and analyze limit cases describing a passage to infinity and zero of the rigidity parameter associated
with the inclusion. Both isotropic and anisotropic cases are investigated. In particular, different models of thin
rigid inclusions and crack models with the non-penetration conditions are obtained in the limits. Finally, we also
provide a first model for a network of Timoshenko beams embedded into a 2D elastic body.

2. Inclusion without delamination
Let� ⊂ R

2 be a bounded domain with Lipschitz boundary � such that γ̄ ∩� = (0, 0), γ = (0, 1)×{0}, γ ⊂ �.
Denote by ν = (0, 1) a unit normal vector to γ , τ = (1, 0), and set �γ = � \ γ̄ , see Figure 1. Assume that the
angle between � and γ is nonzero at the point (0, 0).

In what follows the domain�γ represents a region filled with an elastic material, and γ is an elastic inclusion
with specified properties. In particular, we consider γ as a Timoshenko beam incorporated in the elastic body.
By the assumptions, γ̄ crosses the external boundary � at the given point.
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Khludnev and Leugering 3

An equilibrium problem for the body �γ and the inclusion γ is formulated as follows. For given external
forces f = (f1, f2) ∈ L2(�)2 acting on the body we want to find a displacement field u = (u1, u2), a stress tensor
σ = {σij}, i, j = 1, 2, defined in �γ , and thin inclusion displacements v, w and a rotation angle ϕ defined on γ
such that

−div σ = f , σ − Aε(u) = 0 in �γ , (1)

−wxx = [στ ] on γ , (2)

−ϕxx + vx + ϕ = 0 on γ , (3)

−vxx − ϕx = [σν] on γ , (4)

u = 0 on �; v = w = ϕ = 0 as x = 0, (5)

ϕ + vx = wx = ϕx = 0 as x = 1, (6)

[u] = 0, v = u2, w = u1 on γ . (7)

Here [φ] = φ+ − φ− is a jump of a function φ on γ , where φ± are the traces of φ on the crack faces γ±. The
signs ± correspond to positive and negative directions of ν; wx = dw

dx , x = x1, (x1, x2) ∈ �; ε(u) = {εij(u)} is
the strain tensor, εij(u) = 1

2 (ui,j + uj,i), i, j = 1, 2; σν = (σ1jνj, σ2jνj), σν = σijνjνi, στ = σν · τ .
By A = {aijkl}, i, j, k, l = 1, 2, we denote a given elasticity tensor with the usual properties of symmetry and

positive definiteness,

aijkl = ajikl = aklij, i, j, k, l = 1, 2, aijkl ∈ L∞(�),

aijklξijξkl ≥ c0|ξ |2 ∀ξji = ξij, c0 = const > 0.

Summation convention over repeated indices is used; all functions with two lower indices are assumed to be
symmetric in those indices.

Functions defined on γ we identify with functions of the variable x.
Relations (1) are the equilibrium equations for the elastic body and Hooke’s law; (2)–(4) are Timoshenko

equilibrium equations for the inclusion γ with respect to vertical and tangential displacements v, w (along the
axes x2, x1, respectively) and for rotation angle ϕ. The right-hand sides [στ ], [σν] describe forces acting on γ
from the surrounding elastic media. According to (7), the displacements of the elastic body coincide at γ with
the inclusion displacements. Since there is no delamination the jump [u] is zero on γ .

Now we provide a variational formulation of the problem (1)–(7). To this end, we introduce the Sobolev
space

V = {(u, v, w,ϕ) | u ∈ H1
0 (�)2, (v, w,ϕ) ∈ H1,0(γ )3,

v = uν , w = uτ on γ },
where

H1,0(γ ) = {φ ∈ H1(γ ), φ = 0 as x = 0}, uν = uν, uτ = uτ ,

and the energy functional

π(u, v, w,ϕ) = 1

2

∫

�

σ (u)ε(u) −
∫

�

fu + 1

2

∫

γ

F(v, w,ϕ).

Here σ (u) = σ is defined from the second relation of (1), i.e. σ (u) = Aε(u), F(v, w,ϕ) = w2
x + ϕ2

x + (vx + ϕ)2,
and for simplicity we write σ (u)ε(u) = σij(u)εij(u), fu = fiui.

Consider the minimization problem:

Find (u, v, w,ϕ) ∈ V such that π(u, v, w,ϕ) = inf
V
π .
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4 Mathematics and Mechanics of Solids

This problem has a unique solution satisfying the identity

(u, v, w,ϕ) ∈ V , (8)∫

�

σ (u)ε(ū) −
∫

�

f ū (9)

+
∫

γ

(wxw̄x + ϕxϕ̄x + (vx + ϕ)(v̄x + ϕ̄)) = 0 ∀ (ū, v̄, w̄, ϕ̄) ∈ V .

To check a solvability of the problem (8), (9) it suffices to establish a coercivity of the functional π on the
space V since its weak lower semicontinuity is obvious. We have for α > 0,

2vxϕ ≥ −(1 + α)ϕ2 − 1

(1 + α)
v2

x .

Hence

F(v, w,ϕ) ≥ w2
x + ϕ2

x − αϕ2 + α

(1 + α)
v2

x . (10)

Due to Korn’s inequality, we obtain

π(u, v, w,ϕ) ≥ c0‖u‖2
1,� − c1‖u‖1,� + 1

2

∫

γ

F(v, w,ϕ), (11)

where ‖ · ‖1,� is the norm in H1
0 (�)2. Thus, by (10), from (11) for a small α > 0 it follows

π(u, v, w,ϕ) → +∞, ‖(u, v, w,ϕ)‖V → ∞,

what is needed.
In what follows we check an equivalence of (1)–(7) and (8), (9) for smooth solutions.

Theorem 2.1 Problem formulations (1)–(7) and (8), (9) are equivalent provided that solutions are quite smooth.

Proof Let (1)–(7) be fulfilled. Take (ū, v̄, w̄, ϕ̄) ∈ V and multiply the first equation of (1) by ū, and (2)–(4) by
v̄, w̄, ϕ̄. Integrating over �γ and γ , respectively, we get

∫

�γ

(−div σ − f )ū +
∫

γ

(−wxx − [στ ])w̄ +
∫

γ

(−ϕxx + vx + ϕ)ϕ̄

+
∫

γ

(−vxx − ϕx − [σν])v̄ = 0.

Hence, by the boundary conditions (5)–(7),
∫

�γ

(σ (u)ε(ū) − f ū) +
∫

γ

[σν]ū (12)

+
∫

γ

(wxw̄x − [στ ]w̄) +
∫

γ

{vxv̄x + ϕv̄x − [σν]v̄}

+
∫

γ

{ϕxϕ̄x + (vx + ϕ)ϕ̄} = 0.
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We have [σν]ū = [σν]ūν + [στ ]ūτ on γ . Accounting (ū, v̄, w̄, ϕ̄) ∈ V , from (12) it follows the identity (9). In so
doing we change the integration domain �γ by � since [u] = 0 on γ .

Conversely, let (8), (9) be fulfilled. We take test functions of the form (ū, v̄, w̄, ϕ̄) = (φ, 0, 0, 0), φ ∈
C∞

0 (�γ )2. It gives the equilibrium equation from (1). Next, from (9) it follows

−
∫

γ

[σν]ū +
∫

γ

(wxw̄x + ϕxϕ̄x + (vx + ϕ)(v̄x + ϕ̄)) = 0.

Consequently

−
∫

γ

([σν]ū2 + [στ ]ū1) (13)

−
∫

γ

(wxxw̄ + (ϕxx − vx − ϕ)ϕ̄ + (vxx + ϕx)v̄)

+wxw̄|10 + ϕxϕ̄|10 + (vx + ϕ)v̄|10 = 0.

Taking here ϕ̄ = w̄ = v̄ = 0 as x = 1, by ū2 = v̄, ū1 = w̄ at γ , we get (2)–(4). Then, from (13) the boundary
conditions (6) follow.

Hence, the equivalence of (1)–(7) and (8), (9) is proved.

3. Delaminated elastic inclusion
Assume that a delamination of the elastic inclusion takes place at γ+, thus we have a crack between the elastic
body and the thin inclusion. In our model, inequality type boundary conditions will be considered to prevent a
mutual penetration between the crack faces. Displacements of the inclusion should coincide with the displace-
ments of the elastic body at γ−. The problem formulation is as follows. We have to find a displacement field
u = (u1, u2), a stress tensor σ = {σij}, i, j = 1, 2, defined in �γ , and thin inclusion displacements v, w and a
rotation angle ϕ defined on γ such that

−div σ = f , σ − Aε(u) = 0 in �γ , (14)

−wxx = [στ ] on γ , (15)

−ϕxx + vx + ϕ = 0 on γ , (16)

−vxx − ϕx = [σν] on γ , (17)

u = 0 on �; v = w = ϕ = 0 as x = 0, (18)

ϕ + vx = wx = ϕx = 0 as x = 1, (19)

[u]ν ≥ 0, v = u−
2 , w = u−

1 on γ , (20)

σ+
ν ≤ 0, σ+

τ = 0, σ+
ν · [u]ν = 0 on γ . (21)

Note that equations (14)–(17) coincide with (1)–(4). The inequality in (20) provides a mutual non-
penetration between the crack faces. The second and the third relations of (20) show that the inclusion dis-
placements coincide with the vertical and tangential displacements of the elastic body at γ−. Moreover, due to
(21) the normal stresses are non-positive on γ+ and tangential forces are zero. The last relation of (21) states
that σ+

ν or [u]ν are equal to zero. In particular, if σ+
ν = 0 we have σν = 0 on γ+.

First, we provide a variational formulation of the problem (14)–(21). Introduce a set of admissible
displacements

K = {(u, v, w,ϕ) | u ∈ H1
�(�γ )2, (v, w,ϕ) ∈ H1,0(γ )3;

[uν] ≥ 0, v = u−
ν , w = u−

τ on γ }
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6 Mathematics and Mechanics of Solids

and the energy functional

π1(u, v, w,ϕ) = 1

2

∫

�γ

σ (u)ε(u) −
∫

�γ

fu + 1

2

∫

γ

F(v, w,ϕ), (22)

where the Sobolev space H1
�(�γ ) is defined as

H1
�(�γ ) = {v ∈ H1(�γ ) | v = 0 on �}.

There exists a unique solution of the problem:

Find (u, v, w,ϕ) ∈ K such that π1(u, v, w,ϕ) = inf
K
π1.

This solution satisfies the variational inequality

(u, v, w,ϕ) ∈ K, (23)∫

�γ

σ (u)ε(ū − u) −
∫

�γ

f (ū − u) (24)

+
∫

γ

{wx(w̄x − wx) + ϕx(ϕ̄x − ϕx)}

+
∫

γ

(vx + ϕ)(v̄x + ϕ̄ − vx − ϕ) ≥ 0 ∀ (ū, v̄, w̄, ϕ̄) ∈ K.

The coercivity of the functional π1 can be proved as that in Section 2, hence the problem (23), (24) indeed has
a solution.

Let us check that (14)–(21) and (23), (24) are equivalent for smooth solutions. Assume that (14)–(21) hold.
Take (ū, v̄, w̄, ϕ̄) ∈ K and multiply the first equation of (14) by ū − u, and (15)–(17) by w̄ − w, ϕ̄ − ϕ, v̄ − v,
respectively. Integrating over �γ and γ , respectively, we have

∫

�γ

σ (u)ε(ū − u) −
∫

�γ

f (ū − u) +
∫

γ

[σν(ū − u)]+ (25)

+
∫

γ

{wx(w̄x − wx) + ϕx(ϕ̄x − ϕx) + (vx + ϕ)(v̄x + ϕ̄ − vx − ϕ)}

−
∫

γ

{[στ ](w̄ − w) + [σν](v̄ − v)}−

−wx(w̄ − w)|10 − ϕx(ϕ̄ − ϕ)|10 − vx(v̄ − v)|10 − ϕ(v̄ − v)|10 = 0.

To prove the variational inequality (24), it suffices to state that in (25) the following inequality holds
∫

γ

[σν(ū − u)] −
∫

γ

{[στ ](w̄ − w) + [σν](v̄ − v)} ≤ 0.

Let us check this. By the second condition of (21), we have

[στ (ūτ − uτ )] − [στ ](w̄ − w) = 0.

On the other hand, by (ū, v̄, w̄, ϕ̄) ∈ K and (21)

[σν(ūν − uν)] − [σν](v̄ − v) = σ+
ν ([ū]ν − [u]ν) ≤ 0,
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Figure 2. Neighborhood D near the point y.

what is needed. Consequently, the variational inequality (23), (24) follows from (14)–(21).
Now we prove the converse. Let (23), (24) be fulfilled. First, it is easy to derive the equilibrium equation (14)

from (23), (24). Indeed, we substitute test functions (ū, v̄, w̄, ϕ̄) = (u, v, w,ϕ)±(φ, 0, 0, 0) in (24), φ ∈ C∞
0 (�γ )2.

It gives the first equation of (14).
Let us prove the relations (21). Substitute test functions (ū, v̄, w̄, ϕ̄) = (u, v, w,ϕ) + (ũ, 0, 0, 0) in (24), ũ =

(ũ1, ũ2), ũ+
ν ≥ 0 on γ , supp ũ ⊂ D, see Figure 2. In this case the following inequality follows

∫

�γ

σ (u)ε(ũ) −
∫

�γ

f ũ ≥ 0.

Thus
∫

γ+

(σν ũν + στ ũτ ) ≤ 0,

i.e. the first two relations of (21) follow.
We next substitute test functions (ū, v̄, w̄, ϕ̄) = (u, v, w,ϕ) ± (ũ, ṽ, w̃, ϕ̃) in (24), [ũ]ν = 0, ũ−

ν = ṽ, ũ−
τ = w̃ on

γ , ϕ̃ = 0 as x = 0. This gives

∫

�γ

σ (u)ε(ũ) −
∫

�γ

f ũ +
∫

γ

(wxw̃x + ϕxϕ̃x + (vx + ϕ)(ṽx + ϕ̃)) = 0.

Hence

−
∫

γ

[σν · ũ] −
∫

γ

{wxxw̃ + (ϕxx − vx − ϕ)ϕ̃ + (vxx + ϕx)ṽ}+ (26)

+wxw̃|10 + ϕxϕ̃|10 + (vx + ϕ)ṽ|10 = 0.

Assuming ṽ = w̃ = ϕ̃ = 0 as x = 1, from (26) one gets (15)–(17). Also, from (26) it follows (19).
It remains to prove the last equality of (21). Assume that at any point y ∈ γ we have [u(y)]ν > 0. In this

case we substitute (ū, v̄, w̄, ϕ̄) = (u, v, w,ϕ) + (λũ, 0, 0, 0) in (24), supp ũ ⊂ D, λ ∈ R is small, and ũ is smooth
function (see Figure 2). This provides

∫

�γ

σ (u)ε(ũ) −
∫

�γ

f ũ = 0,
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8 Mathematics and Mechanics of Solids

hence
∫

γ

σ+
ν ũ+

ν = 0.

Due to arbitrariness of ũ+
ν we obtain σ+

ν = 0 near y. Conversely, if σν(y) < 0 we easily get [u(y)]ν = 0, and
again the last relation of (21) follows.

Thus we have proved the following statement.

Theorem 3.1 Problem formulations (14)–(21) and (23), (24) are equivalent provided that solutions are quite
smooth.

4. Rigidity convergence to infinity
In practice, a solution of the problem like (14)–(21) should depend on the rigidity parameter of the thin inclusion.
In the model (14)–(21) this parameter was taken to be equal to 1. In this section we introduce a parameter λ > 0
into the model and analyze its passage to infinity. To this end, the energy functional is considered,

πλ(u, v, w,ϕ) = 1

2

∫

�γ

σ (u)ε(u) −
∫

�γ

fu + λ

2

∫

γ

F(v, w,ϕ).

There exists a unique solution of the minimization problem:

Find (uλ, vλ, wλ,ϕλ) ∈ K such that πλ(u
λ, vλ, wλ,ϕλ) = inf

K
πλ.

A solution of this problem exists and satisfies the variational inequality

(uλ, vλ, wλ,ϕλ) ∈ K, (27)∫

�γ

σ (uλ)ε(ū − uλ) −
∫

�γ

f (ū − uλ) (28)

+λ
∫

γ

{wλx (w̄x − wλx ) + ϕλx (ϕ̄x − ϕλx )

+(vλx + ϕλ)(v̄x + ϕ̄ − vλx − ϕλ)} ≥ 0 ∀(ū, v̄, w̄, ϕ̄) ∈ K.

We can also provide an equivalent differential formulation of the problem (27), (28). Indeed, it is necessary to
find a displacement field uλ = (uλ1, uλ2), a stress tensor σλ = {σλij }, i, j = 1, 2, defined in �γ , and thin inclusion
displacements vλ, wλ and a rotation angle ϕλ defined on γ , such that

−div σλ = f , σ − Aε(uλ) = 0 in �γ ,

−λwλxx = [σλτ ] on γ ,

−λϕλxx + λvλx + λϕλ = 0 on γ ,

−λvλxx − λϕλx = [σλν ] on γ ,

uλ = 0 on �; vλ = wλ = ϕλ = 0 as x = 0,

ϕλ + vλx = wλx = ϕλx = 0 as x = 1,

[uλ]ν ≥ 0, vλ = uλ−2 , wλ = uλ−1 on γ ,

σλ+ν ≤ 0, σλ+τ = 0, σλ+ν · [uλ]ν = 0 on γ .
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Now we are aiming to justify a passage to the limit as λ → ∞ in (27), (28).
From (28) it follows

∫

�γ

σ (uλ)ε(uλ) −
∫

�γ

fuλ + λ

∫

γ

F(vλ, wλ,ϕλ) = 0,

and, as in Section 2, we obtain the following inequality for α > 0,

λF(vλ, wλ,ϕλ) ≥ (29)

≥ λ{(wλx )2 + (ϕλx )2 − α(ϕλ)2 + α

(1 + α)
(vλx )2}.

Consequently, by Korn’s inequality, for a small α > 0, we derive uniformly in λ

‖uλ‖2
H1
�(�γ )2 ≤ c, λ‖(vλ, wλ,ϕλ)‖2

H1,0(γ )3 ≤ c. (30)

Now define a set of admissible displacements suitable for a limit problem,

Kr = {u ∈ H1
�(�γ )2 | u− = 0, [uν] ≥ 0 on γ }.

Taking into account the estimates (30) we can assume that as λ → ∞

uλ → u weakly in H1
�(�γ )2, (31)

(vλ, wλ,ϕλ) → (0, 0, 0) strongly in H1,0(γ )3. (32)

Hence, a passage to the limit in (27), (28) as λ → ∞ can be fulfilled. It gives

u ∈ Kr, (33)∫

�γ

σ (u)ε(ū − u) −
∫

�γ

f (ū − u) ≥ 0 ∀ ū ∈ Kr. (34)

Thus the following statement is proved.

Theorem 4.1 As λ → ∞, the solutions of the problem (27), (28) converge in the sense (31), (32) to the solution
of (33), (34).

Along with the variational formulation (33), (34) a differential formulation of this problem can be provided:
find functions u = (u1, u2), σ = {σij}, i, j = 1, 2, such that

−div σ = f in �γ , (35)

σ − Aε(u) = 0 in �γ , (36)

u = 0 on �, (37)

[u]ν ≥ 0, u− = 0 on γ , (38)

σ+
ν ≤ 0, σ+

τ = 0, σ+
ν · [u]ν = 0 on γ . (39)

In what follows we check that formulations (33), (34) and (35)–(39) are equivalent for smooth solutions.

Theorem 4.2 Problem formulations (35)–(39) and (33), (34) are equivalent provided that solutions are quite
smooth.

Proof Assume that (33), (34) hold. We take test functions in (34) of the form ū = u ± ϕ, ϕ ∈ C∞
0 (�γ )2. It

provides the equilibrium equation (35). All relations (39) also can be derived from (34). Indeed, assume that
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ψ = (ψ1,ψ2), supp ψ ⊂ D,ψ2 ≥ 0 on γ+ (see Figure 2). In this case ū = u + ψ ∈ Kr. Hence, from (34) it
follows ∫

�γ

σ (u)ε(ψ) −
∫

�γ

fψ ≥ 0.

Consequently
∫

γ+

(σνψν + στψτ ) ≤ 0,

and we derive the two first relations of (39). Next, assume that at a given point y ∈ γ an inequality [u(y)]ν > 0
holds. In this case a test function ū = u ± δψ , supp ψ ⊂ D, can be substituted in (34), where ψ is a smooth
function and δ ∈ R is small. We obtain ∫

�γ

σ (u)ε(ψ) −
∫

�γ

fψ = 0,

i.e.

∫

γ+

σνψν = 0.

This identity (due to arbitrariness of ψ) provides the last relation of (39). On the other hand, if σ+
ν (y) < 0 we

again get [u(y)]ν = 0. Hence (39) is proved.
Conversely, let us prove that (33), (34) can be derived from (35)–(39). To this end, multiply (35) by ū − u

and integrate over �γ , ū ∈ Kr. This gives
∫

�γ

σ (u)ε(ū − u) −
∫

�γ

f (ū − u) +
∫

γ

[σν(ū − u)] = 0 ∀ū ∈ Kr.

To prove the variational inequality (35) it suffices to state the inequality
∫

γ

[σν(ū − u)] ≤ 0 ∀ū ∈ Kr.

But this relation easily follows from (38), (39). So we have proved an equivalence of (33), (34) and (35)–(39).

5. Rigidity convergence to zero
In this section we analyze a convergence to zero of the rigidity parameter λ of the elastic inclusion. Again,
consider the problem like (27), (28). We have to find a solution of the problem

(uλ, vλ, wλ,ϕλ) ∈ K, (40)∫

�γ

σ (uλ)ε(ū − uλ) −
∫

�γ

f (ū − uλ) (41)

+λ
∫

γ

{wλx (w̄x − wλx ) + ϕλx (ϕ̄x − ϕλx )

+(vλx + ϕλ)(v̄x + ϕ̄ − vλx − ϕλ)} ≥ 0 ∀(ū, v̄, w̄, ϕ̄) ∈ K.
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Our aim is to pass to the limit in (40), (41) as λ → 0. First note that (41) implies

∫

�γ

σ (uλ)ε(uλ) −
∫

�γ

fuλ + λ

∫

γ

F(vλ, wλ,ϕλ) = 0. (42)

We can use the inequality (29) for a small α > 0, and hence, from (42) it follows uniformly in λ

‖uλ‖2
H1
�(�γ )2 ≤ c, λ‖(vλ, wλ,ϕλ)‖2

H1,0(γ )3 ≤ c, (43)

with constants c independent of λ. Choosing a subsequence, if necessary, we assume that as λ → 0

uλ → u weakly in H1
�(�γ )2, (44)√

λvλ → ṽ,
√
λwλ → w̃,

√
λϕλ → ϕ̃ weakly in H1,0(γ ). (45)

By (44), (45), we can pass to the limit in (40), (41) as λ → 0. To this end, introduce a set of admissible
displacements,

K0 = {u ∈ H1
�(�γ )2 | [uν] ≥ 0 on γ }.

We choose ū ∈ K0 such that ū is smooth at γ−, and define the function v̄ = ū−
2 , w̄ = ū−

1 on γ . Then (ū, v̄, w̄, ϕ̄) ∈
K, where ϕ̄ ∈ H1,0(γ ) is an arbitrary function. After a substitution of this test function in (41) and passage to
the limit as λ → 0 we get

∫

�γ

σ (u)ε(ū − u) −
∫

�γ

f (ū − u) ≥ 0. (46)

The inequality (46) holds for all functions ū ∈ K0 such that ū is quite smooth at γ−. Hence it will be valid for
all ū ∈ K0. A suitable result for the density can be found in Khludnev and Negri [25]. Hence the limit function
u from (46) satisfies the variational inequality

u ∈ K0, (47)∫

�γ

σ (u)ε(ū − u) −
∫

�γ

f (ū − u) ≥ 0 ∀ū ∈ K0. (48)

Thus we have proved that the limit problem for (40), (41) as λ → 0 coincides with the well-known bound-
ary value problem describing an equilibrium of the elastic body with the crack γ . An equivalent differential
formulation of the problem (47), (48) is as follows. We have to find functions u = (u1, u2), σ = {σij}, i, j = 1, 2,
defined in �γ such that

−div σ = f in �γ ,

σ − Aε(u) = 0 in �γ ,

u = 0 on �,

[uν] ≥ 0, σ±
ν ≤ 0, [σν] = 0, σ±

τ = 0, σν[uν] = 0 on γ .

This model has been extensively analyzed in the books by Khludnev and Kovtunenko [10, 11].
Consequently, the following result has been proved.

Theorem 5.1 As λ → 0, the solutions of the problem (40), (41) converge in the sense (44), (45) to the solution
of (47), (48).
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6. Anisotropic elastic inclusion
We can consider a model corresponding to the anisotropic thin inclusion inside the elastic body. In this case we
have two positive parameters λ,μ. The problem formulation is as follows. We have to find a displacement field
u = (u1, u2), a stress tensor σ = {σij}, i, j = 1, 2, defined in �γ , and thin inclusion displacements v, w and a
rotation angle ϕ defined on γ such that

−div σ = f , σ − Aε(u) = 0 in �γ , (49)

−λwxx = [στ ] on γ , (50)

−λϕxx + μvx + μϕ = 0 on γ , (51)

−μvxx − μϕx = [σν] on γ , (52)

u = 0 on �; v = w = ϕ = 0 as x = 0, (53)

ϕ + vx = wx = ϕx = 0 as x = 1, (54)

[u]ν ≥ 0, v = u−
2 , w = u−

1 on γ , (55)

σ+
ν ≤ 0, σ+

τ = 0, σ+
ν · [u]ν = 0 on γ . (56)

For fixed λ > 0,μ > 0 we can prove a solution existence of this problem. It is interesting to pass to the limit as
λ → ∞ for a fixed μ, and μ → 0 for a fixed λ.

Case (i): Let μ be fixed. We put μ = 1. Then the suitable solution of the problem (49)–(56) satisfies the
variational inequality

(uλ, vλ, wλ,ϕλ) ∈ K, (57)∫

�γ

σ (uλ)ε(ū − uλ) −
∫

�γ

f (ū − uλ) (58)

+
∫

γ

{λwλx (w̄x − wλx ) + λϕλx (ϕ̄x − ϕλx )

+(vλx + ϕλ)(v̄x + ϕ̄ − vλx − ϕλ)} ≥ 0 ∀(ū, v̄, w̄, ϕ̄) ∈ K.

Below we analyze a passage to the limit in (57), (58) as λ → ∞. From (57), (58) it follows∫

�γ

σ (uλ)ε(uλ) −
∫

�γ

fuλ

+
∫

γ

{λ(wλx )2 + λ(ϕλx )2 + (vλx + ϕλ)2} = 0.

Thus, taking into account the inequality with a small α > 0,

λ(wλx )2 + λ(ϕλx )2 + (vλx + ϕλ)2 ≥
≥ λ(wλx )2 + λ(ϕλx )2 − α(ϕλ)2 + α

(1 + α)
(vλx )2,

we derive uniformly for λ ≥ λ0

‖uλ‖2
H1
�(�γ )2 ≤ c, ‖(vλ,

√
λwλ,

√
λϕλ)‖2

H1,0(γ )3 ≤ c. (59)

Assume that as λ → ∞
uλ → u weakly in H1

�(�γ )2,

(wλ,ϕλ) → (0, 0) strongly in H1,0(γ )2, (60)

vλ → v weakly in H1,0(γ ).
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Now, introduce a set of admissible displacements

K1 = {u ∈ H1
�(�γ )2, v ∈ H1,0(γ ) | [uν] ≥ 0, u−

2 = v, u−
1 = 0 on γ }.

We take (ū, v̄) ∈ K1. Then (ū, v̄, 0, 0) ∈ K, and after a substitution of this test function into (58) we can pass to
the limit as λ → ∞. The limiting variational inequality takes the form

(u, v) ∈ K1, (61)∫

�γ

σ (u)ε(ū − u) −
∫

�γ

f (ū − u) (62)

+
∫

γ

vx(v̄x − vx) ≥ 0 ∀ (ū, v̄) ∈ K1.

We can provide an equivalent differential formulation of the problem (61), (62): find functions u = (u1, u2),
σ = {σij}, i, j = 1, 2, defined in �γ and a function v defined on γ such that

−div σ = f in �γ , (63)

σ − Aε(u) = 0 in �γ , (64)

u = 0 on �, (65)

−vxx = [σν] on γ , (66)

v = 0 as x = 0; vx = 0 as x = 1, (67)

[u]ν ≥ 0, u−
2 = v, u−

1 = 0 on γ , (68)

σ+
ν ≤ 0, σ+

τ = 0, σ+
ν · [u]ν = 0 on γ . (69)

Thus the following result has been established.

Theorem 6.1 As λ → ∞, the solutions of the problem (57), (58) converge in the sense (60) to the solution of
(61), (62).

Case (ii): Consider the case when λ is fixed. We put λ = 1. The solution of the problem (49)–(56) in this case
satisfies the variational inequality

(uμ, vμ, wμ,ϕμ) ∈ K, (70)∫

�γ

σ (uμ)ε(ū − uμ) −
∫

�γ

f (ū − uμ) (71)

+
∫

γ

{wμx (w̄x − wμx ) + ϕμx (ϕ̄x − ϕμx )

+μ(vμx + ϕμ)(v̄x + ϕ̄ − vμx − ϕμ)} ≥ 0 ∀(ū, v̄, w̄, ϕ̄) ∈ K.

Below we analyze a passage to the limit in (70), (71) as μ → 0. From (70), (71) it follows∫

�γ

σ (uμ)ε(uμ) −
∫

�γ

fuμ

+
∫

γ

{(wμx )2 + (ϕμx )2 + μ(vμx + ϕμ)2} = 0.

Hence, taking into account the inequality

(wμx )2 + (ϕμx )2 + μ(vμx + ϕμ)2 ≥
≥ (wμx )2 + (ϕμx )2 − μα(ϕμ)2 + μ

α

(1 + α)
(vμx )2,
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we derive, for a small α > 0, uniformly for μ ≤ μ0,

‖uμ‖2
H1
�(�γ )2 ≤ c, ‖(

√
μvμ, wμ,ϕμ)‖2

H1,0(γ )3 ≤ c.

Assume that as μ → 0

uμ → u weakly in H1
�(�γ )2,

(wμ,ϕμ) → (w,ϕ) wealky in H1,0(γ )2, (72)
√
μvμ → ṽ weakly in H1,0(γ ).

By the convergence (72), it is possible to pass to the limit in (70), (71) as μ → 0. The limiting function (u, w,ϕ)
satisfies the variational inequality

(u, w,ϕ) ∈ K2, (73)∫

�γ

σ (u)ε(ū − u) −
∫

�γ

f (ū − u) (74)

+
∫

γ

{wx(w̄x − wx) + ϕx(ϕ̄x − ϕx)} ≥ 0 ∀ (ū, w̄, ϕ̄) ∈ K2,

where

K2 = {u ∈ H1
�(�γ )2, (w,ϕ) ∈ H1,0(γ )2 | [uν] ≥ 0, u−

1 = w on γ }.
From (73), (74) it follows that the function ϕ is defined independently of u, w, and moreover, ϕ ≡ 0 on γ . It

is clear that the variational inequality (73), (74) can be modified since ϕ ≡ 0.
To conclude the analysis of passage to the limit as μ → 0, we provide an equivalent differential formulation

of the problem (73), (74): find functions u = (u1, u2), σ = {σij}, i, j = 1, 2, defined in �γ and a function w
defined on γ such that

−div σ = f in �γ , (75)

σ − Aε(u) = 0 in �γ , (76)

u = 0 on �, (77)

−wxx = [στ ] on γ , (78)

w = 0 as x = 0; wx = 0 as x = 1, (79)

[u]ν ≥ 0, u−
1 = w on γ , (80)

σ+
ν ≤ 0, [σν] = 0, σ+

τ = 0, σ+
ν · [u]ν = 0 on γ . (81)

The equivalence of (73), (74) and (75)–(81) means that for smooth solutions we can derive (73), (74) from
(75)–(81), and, conversely, (75)–(81) follow from (73), (74).

To conclude the section we formulate the result obtained.

Theorem 6.2 As μ → 0, the solutions of the problem (70), (71) converge in the sense (72) to the solution of
(73), (74).

7. Two thin inclusions
Consider a case of two thin inclusions crossing the external boundary � and having a joint point inside of the
body. For simplicity no delamination is assumed. Let γ1, γ2 be two straight lines, γ1, γ2 ⊂ �, see Figure 3.
Assume that γ1 = (−1, 0) × {0}, and γ̄1 ∩ γ̄2 = (0, 0) in the coordinate system (x1, x2). In our considerations,
γ1, γ2 correspond to thin elastic inclusions incorporated in the elastic body. Let n = (n1, n2) be a unit normal
vector to γ2; s = (n2, −n1). Denote by a an angle between γ1 and γ2. By vi, wi,ϕi, i = 1, 2, we denote orthogonal
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Figure 3. Two elastic inclusions γ1, γ2 inside elastic body �γ .

(in the directions ν, n), tangential (in the directions τ , s) displacements and rotation angles for the inclusions
γ1, γ2, respectively. Functions defined on γ2 we identify with functions of the variable y, (y1, y2) ∈ �γ , y = y1.
Also assume that γ2 = (−1, 0) × {0} in the coordinate system (y1, y2). An equilibrium problem for the elastic
body �γ and inclusions γ1, γ2 is formulated as follows. We have to find a displacement field u = (u1, u2), a
stress tensor σ = {σij}, i, j = 1, 2, defined in �γ , and thin inclusion displacements vi, wi and rotation angles
ϕi, i = 1, 2, defined on γ i, respectively, such that

−div σ = f , σ − Aε(u) = 0 in �γ , (82)

−w1
xx = [στ ] on γ1; −w2

yy = [σs] on γ2, (83)

−ϕ1
xx + v1

x + ϕ1 = 0 on γ1; −ϕ2
yy + v2

y + ϕ2 = 0 on γ2, (84)

−v1
xx − ϕ1

x = [σν] on γ1; −v2
yy − ϕ2

y = [σn] on γ2, (85)

u = 0 on �; vi = wi = ϕi = 0 at γ̄i ∩ �, i = 1, 2, (86)

[u] = 0 on γ1 ∪ γ2, (87)

v1 = uν , w1 = uτ on γ1; v2 = un, w2 = us on γ2, (88)

v2 = v1 cos a + w1 sin a, w2 = −v1 sin a + w1 cos a, (89)

ϕ1 = ϕ2 as (x1, x2) = (0, 0),

ϕ1
x + ϕ2

y = 0 as (x1, x2) = (0, 0), (90)

w1
x + w2

y cos a + (v2
y + ϕ2) sin a = 0, v1

x + ϕ1− (91)

−w2
y sin a + (v2

y + ϕ2) cos a = 0 as (x1, x2) = (0, 0).

The problem (82)–(91) is solvable. It admits a variational formulation. To this end, we denote ηi =
(vi, wi,ϕi), i = 1, 2, and consider the energy functional

π0(u, η1, η2) = 1

2

∫

�

σ (u)ε(u) −
∫

�

fu +
i=2∑
i=1

1

2

∫

γi

F(ηi).

Introduce the space

V = {(u, η1, η2) | u ∈ H1
0 (�)2, ηi ∈ H1,0(γi)

3, i = 1, 2;

conditions (88), (89) fulfilled}.
Then the minimization problem:

Find (u, η1, η2) ∈ V such that π0(u, η1, η2) = inf
V
π0

has a solution. We omit the details.
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8. Conclusion
In the paper, we propose a model for a 2D elastic body with a thin elastic Timoshenko inclusion and provide
its rigorous mathematical analysis. It is assumed that a delamination of the inclusion may take place providing
therefore a presence of a crack. Nonlinear boundary conditions at the crack faces are imposed to prevent mutual
penetration between the faces. Both variational and differential problem formulations are considered, and the
existence of solutions is established. Furthermore, we study the dependence of the solution on the rigidity of
the inclusion. It is proved that in the limit cases corresponding to infinite and zero rigidity, we obtain a rigid
inclusion and cracks with non-penetration conditions, respectively. Anisotropic behavior of the inclusion is also
analyzed, and limiting cases are investigated.
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