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Abstract

The linear stability of theboundary layer developing on a flat plate in the presence of finite-amplitude, steady and spanwis
periodic streamwise streaks is investigated. The streak amplitudes considered here are below the threshold for onset o
inviscid inflectional instability of sinuousperturbations. It is found that, as the amplitude of the streaks is increased, the m
unstable viscous waves evolve from two-dimensional Tollmien–Schlichting waves into three-dimensional varicose fund
modes which compare well with early experimental findings. The analysis of the growth rates of these modes con
stabilising effect of the streaks on the viscous instability and that this stabilising effect increases with the streak am
Varicose subharmonic modes are also found to be unstable but they have growth rates which typically are an order of m
lower than those of fundamental modes. The perturbation kinetic energy production associated with the spanwise sh
streaky flow is found to play an essential role in the observed stabilisation. The possible relevance of the streak stabilising ro
for applications in boundary layer transition delay is discussed.
 2004 Elsevier SAS. All rights reserved.

1. Introduction

1.1. Streaky boundary layers

In the absence of external perturbations or wall imperfections, the boundary layer developing on a flat plate is s
uniform (two-dimensional) and is well described by the Blasius similarity solution (see, e.g., [1]). In the two-dimen
boundary layer, however, small amounts of streamwise vorticity are very effective in pushing low momentum flui
from the wall and high momentum fluid towards the wall eventually leading to large elongated spanwise modulation
streamwise velocity called streamwise streaks. The mechanism of streak generation, described above and known as
effect’ [2], is based on an inviscid process and applies to shear flows in general [3]. The effect of viscosity eventually do
rendering the growth of the streaks, which however is of the order of the Reynolds number [4,5], only transient. The
of shear flows to exhibit such large transient growths is related to the non-normal nature of the linearised stability operator (fo
a review the reader may refer to the book by Schmid and Henningson [6]). The most dangerous perturbations, lead
‘optimal transient growths’, have been found to consist of streamwise vortices and have been computed for a numbe
flows. In flat plate boundary layers, the most amplified perturbations have spanwise scales of the order of the bound
thickness [7,8]. The effect of vorticity on a boundary layer is also investigated in Choudhari [9], wherein it was demon
that three-dimensional gusts can excite boundary layer motions that resemble the streaks due to weak free-stream
Bertolotti [10] studied the receptivity to streamwise vortices in the free stream in a linear region excluding the leadin
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while Wundrow and Glodstein [11] (see references therein) considered the effect of incoming vorticity by means of asymptotic
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Streamwise streaks are therefore expected to appear whenever a boundary layer is exposed to perturbations with

and wall-normal vorticity in the incoming free stream. An extensively studied case is the boundary layer developin
presence of free-stream turbulence. In early observations, Dryden [12] and Taylor [13] reported that spanwise modulati
boundary layer thickness are generated in the presence of free-stream turbulence. These observations were confirmed
detailed by, among others, Arnal and Juillen [14] and Kendall [15] who coined the term ‘Klebanoff modes’ for the ob
streaks, referring to early observations by Klebanoff [16]. The streaks forced by free-stream turbulence typically slowly
in the boundary layer in a random way. Streamwise streaks may also be forced by streamwise vortices artificially gen
the free stream (e.g. [17]), by blowing and suction at the wall (e.g. [18]) or by wall-roughness elements (e.g. [19,20]).

1.2. Stability of streakyboundary layers

In the absence of streaks the (two-dimensional) Blasius boundary layer is linearly stable to inviscid pertur
Prandtl [21] suggested that viscosity may, contrary to intuition, lead to instability if the work of the Reynolds stress, generated
viscous modes, against the wall-normal shear is positive and exceeds the viscous dissipation. Based on approximate solutio
the Orr–Sommerfeld equation, Tollmien [22] was then able to predict linear (viscous) instability of the Blasius boundary laye
when the Reynolds number exceeds a critical value later refinedby Schlichting [23]. These linear stability predictions wer
later confirmed by the celebrated experiments of Schubauer and Skramstad [24] who, by periodically vibrating a ribb
boundary layer, were able to observe unstable Tollmien–Schlichting (TS) waves. As TS waves grow to amplitudes of the ord
of 1% of the free-stream velocity, secondaryinstability sets in (for a reviewsee Herbert [25]), eventually leading to breakdown
and transition to turbulence. This scenariois today well understood and often referred to as the ‘classical’ transition scenario
boundary layers in a low noise environment.

In the case of streaky boundary layers, the streamwise velocity profiles develop inflection points which may support
instabilities forsufficiently large streak amplitudes. For the optimal streaks considered here, it has been found [26] that
critical streak amplitude for the onset of inflectional instabilities is 26% of the free-stream velocityU∞. Sinuous modes are th
first to become unstable. The sinuous transition scenario is documented in Brandt and Henningson [27]. The experiments o
boundary layer transition under free-stream turbulence by Matsubara and Alfredsson [28] seem to suggest that the breakd
to turbulence is indeed caused by high-frequency secondary instabilities of the streaks. However, Jacobs and Durbin [29
could not clearly identify such secondary instabilities from their numerical simulations. Schoppa and Hussain [30] showed
steady streaks in channel flows, stable to linear disturbances, can undergo a sinuous breakdown to turbulence if su
a spanwise velocity perturbation of the order of few percents of the centreline velocity. The breakdown is characte
structures identical to those identified by Brandt and Henningson [27] in the case of a linearly unstable streak. The sim
by Brandt et al. [31] and Brandt [32] show that the characteristic structures of the spot precursors in boundary layer
to free-stream turbulence are very similar to those observed in previous model studies on the secondaryinstability of steady
symmetric streaks, both for the sinuous and the varicose symmetry (see Asai et al. [33] for a recent experimental inves
The authors conclude that the breakdown is related to local instabilities driven by the strong shear layers associate
streaks. They also note the importance of the interaction between the low- and high-speed streaks, and, conseque
streak motions and unsteadiness in triggering the breakdown to turbulence (see also Wu and Choudhari [34]).

In the quest for other possible transition mechanisms in streaky boundary layers, the development of the TS waves
presence of streaks and their interaction have been studied inthe past (for a review see Reed and Saric [35]). Most of
attention has been focused on possible destabilising resonances between TS waves and streaks of the same order. I
the nonlinear interaction of finite amplitude TS waves with streaks received most of the attention (starting with T
Komoda [17], and Komoda [36], and many others thereafter). Streaks may, however, reach finite amplitude before the
and therefore a preliminary step should be to consider the streaky boundary layer as a three-dimensional basic flow
linear three-dimensional waves develop. Only a few investigations, essentially experimental, concerning this linear grow
are currently available, as summarised below.

Tani and Komoda [17] considered the development of viscous waves in a streaky boundary layer. Small wings
outside the boundary layer were used to generate steady streamwise vortices which, upon entering the boundary la
the development of steady spanwise periodic modulations of its thickness, i.e. to steady streamwise streaks. A ribbon
vibrated in the boundary layer at the frequency and Reynolds number where unstable TS waves exist in the two-dimensio
Blasius boundary layer (to which we refer from here on, as Blasius-TS waves). For small ribbon vibration amplitudes, three
dimensional waves were detected with mode shapes similar to the Blasius-TS waves but with a distinct two-peak (or M
structure in thermsstreamwise perturbation velocity near the wall in the low speed region. Unfortunately, no explicit m
of the growth rates of such waves was provided.
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Kachanov and Tararykin [18] generated streamwise steady streaks by blowing and suction at the wall and used a vibrating
the Blasius-
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ribbon to generate TS-type waves. They found three-dimensional waves having essentially the same phase speed as
TS waves and with essentially the same M-shaped structure observed by Tani and Komoda [17]. Surprisingly, howe
streaky-TS waves did not amplify as they would have done in the absence of the streaks in the same parameter range

Arnal and Juillen [14] detected ‘natural’ (not forced) TS-type waves riding on the unsteady streaks induced by free-stream
turbulence. Grek et al. [37] and Boiko et al. [38] forced TS waves with a vibrating ribbon in a boundary layer expo
free-stream turbulence. Using refined wave detection techniques they found unstable streaky-TS waves, which were
less amplified than Blasius-TS waves. These streaky-TS waves had a phase speed and shapes very similar to Blasius
Boiko et al. [38] attributed the growth rate defect to the stabilising role of the two-dimensional averaged basic flow di
induced by the streaks; however, they also found that a mere two-dimensional stability analysis ofthe average velocity profile
was unable to predict a correct growth rate.

Based on perturbation expansions valid in the limit of large ratios of the streak spanwise scale to the boundary layer t
Wu and Luo [39] predict, for small streak amplitudes, the existence of ‘modified TS waves’ having a growth rate larg
the Blasius-TS waves. In this approximation, however, the effect of the spanwise shear is negligible to the leading o
modified TS-waves analysed by the latter authors correspond to localised distortions in the base flow, while spanwise
perturbations have been considered by Goldstein and Wundrow [40]. On the other hand, using temporal and spatial
simulations, the present authors (Cossu and Brandt [41], from now on referred as CB), found that steady streaks of s
large amplitude are able to reduce the linear growth of viscous instabilities up to their complete stabilisation. Further,
study by Kogan and Ustinov [42], appeared during the revision of the present article, shows the possibility of increa
boundary layer stability by means of a spanwise-periodic stationary mass force distributedin the streamwise direction. Th
force generates a transverse flow which results in the appearance of streaks. These authors show that the suppression
disturbances can increase the laminar-flow interval by 3–4 times.

1.3. Aim of the present study

The results presented in CB were limited to fundamental modes and to one single Reynolds number; only a
explanation was given for the observed stabilisation and no detailed analysis of the most unstable perturbations was
It is therefore not clear if the phenomenon observed by CB is the same experimentally observed, for instance, by
Komoda [17] and Kachanov and Tararykin [18]. Furthermore, results of CB would be in contradiction with those of W
Luo [39] if it is not proven that the stabilising action of the streaks observed by CB relies on the basic flow spanwis
absent from the long-wavelength analysis in Wu and Luo [39].

The aim of the present article is therefore: (a) to compute the shape and phase speed of the most unstable line
modes living in streaky boundary layers to allow comparison with previous experimental results; (b) to analyse analo
differences between these modes and the well known Tollmien–Schlichting waves developing in the absence of stre
analyse the energy production and dissipation for the most unstable waves, elucidating the role played by the streak
shear on the stabilisation mechanism; (d) to compute neutralstability curves of the whole streaky boundary layers therefo
quantifying for the first time the streamwise extension of the streak stabilising action; (e) to check the stabilityof subharmonic
modes, neglected in CB. This analysis enables us also to obtain the critical modes, necessary in view of the weakly
analysis of finite amplitude waves developing in the streaky boundary.

We therefore implement a linear temporal viscous stability analysis based on the extension of the classical Orr–So
and Squire equations to basic flows which are non-uniform in the spanwise direction. The same kind of three-dim
stability analysis, summarised by Schmid and Henningson [6], has already been applied to analyse the secondary, infle
type, instability of streaks induced by Görtler vortices in the inviscid [43] and viscous approximation [44,45], of finite amplitud
streaks developing in Couette[46] and Poiseuille [47] flows. We considerboth sinuous and varicose symmetries of
perturbations for low and large amplitude streaks. Sinuous modes, however, have been found unstable only to inflect
instabilities for large amplitude streaks with eigenfuctions and growth rates closely matching those computed in the
approximation by Andersson et al. [26]. We therefore present only the results concerning streaks of intermediate a
stable to inflectional instabilities, and discussonly the varicose modes, the sinuous modes being stable for the streaks und
consideration. The linear stability analysis of viscous waves in spanwise modulated boundary layers is thus provided here. Th
streaky basic flows that we will consider result, as in Andersson et al. [26], from the nonlinear evolution of the linear
optimal perturbations.

The article is organised as follows. In Section 2 we describe the streaky basic flows. In Section 3 we introduce the e
and the parameters governing the temporal stability of the three-dimensional basic flows to viscous perturbations a
recall the definition of the perturbation kinetic energy production and dissipation. The numerical results are presented
Section 4. In particular, the effect of the streak amplitude and of the Reynolds number on the stability and energy production and
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dissipation are described. In the same section we discuss the stability of the whole streaky boundary layers and the implications
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2. Basic flows

Following the standard boundary layer approach, we define the reference lengthL̄ and the corresponding Reynolds numb
ReL = L̄�U∞/ν̄, whereν̄ is the fluid kinematic viscosity,�U∞ is the free-stream velocity and dimensional quantities are den
by ¯. The boundary layer reference scale is defined asδ̄L = (L̄ν/�U∞)1/2. At the streamwise station�X, a local Reynolds numbe
ReX = �X�U∞/ν̄ and characteristic boundary layer reference scaleδ̄X = (�Xν/�U∞)1/2 are also defined. The streamwise, wa
normal and spanwise variables are denoted(�X, ȳ, z̄), with corresponding velocities(�U, �V , �W). The streamwise coordinat
and velocity component are respectively made dimensionless withL̄ and �U∞, while (ȳ, z̄) and(�V , �W) are respectively mad

dimensionless with̄δX and�U∞Re−1/2
X

.
In the framework of the linearised boundary layer equations Andersson et al. [7] and Luchini [8] computed the

perturbations that, applied at the flat plate leading edge, lead to the maximum perturbation energy at the reference do
distanceL̄. The task was not straightforward due to the non-parallel nature of the boundary layer equations and
singularity at the leading edge. In the largeReL limit, the optimal perturbations consisted in streamwise vortices and the
amplified disturbances in streamwise streaks. In both studiessteadiness and spanwise periodicity were assumed; the op
spanwise wavenumber, scaled onδ̄L, was found to beβopt = 0.45. Due to the large growth of the streaks, however, nonlin
terms soon come into play even for very small amplitudes of thestreamwise optimal vortices. The effect of nonlinear term
to quasi-saturate the streamwise energy growth and to move slightly upstream the location of maximum streak amplitude.

Closely following Andersson et al. [26] and CB, we consider as basic flows zero-pressure-gradient boundary lay
flat plate with steady, nonlinear, spanwise periodic streaks generated by forcing ‘linearly-optimal’ perturbations of differen
amplitudes at the leading edge. The assumed spanwise wavenumber is the optimal oneβopt = 0.45. A set of nonlinear streak
is computed following the procedure of Andersson et al. [26] in which the linear optimal velocity field, obtained in And
et al. [7], is given as inflow atX = �X/L̄ = 0.4 and its nonlinear development is computed up toX = 6 by integrating the
Navier–Stokes equations with the pseudo-spectral code described in Lundbladh et al. [48]. Such a long computation
is obtained by following the spatial evolution of the inflow perturbations with two computational boxes. Their dime
and the corresponding numerical resolutions are reported in Table 1. The Reynolds number in the simulations was
ReL = 185185 whereL̄ (or X = 1) coincides with the position of optimal linear growth (see the comment below on
Reynolds number independence of the basic flows). The first computational domain (B1 in the table) has the inlet atX = 0.4,
corresponding toReX = 74193. This first domain allows us to follow the perturbation up toX = 3. To further extend the
computations and follow the streak viscous decay, the second computational box is used. Its inflow is atX = 2.63, corresponding
to ReX = 486750. The inflow condition is the full velocityfield from the simulations with the first box.

Different indicators may be introduced to measure the streak amplitude. Tani and Komoda [17] defined the relative s
variation of the local displacement thickness

T (X) = maxz δ∗(X, z) − minz δ∗(X, z)

minz δ∗(X, z)
, (1)

with

δ∗(X, z) =
∞∫

0

[
1− U(X,y, z)

]
dy. (2)

Table 1
Dimensions of the computationaldomain and resolution for the simulations performed to generate the
streaky basic flows. The box dimensions are made dimensionless with respect toδL, the Blasius lenght
scale at the position of optimised linear growthReL = 185185. The spanwise extension of the domain
corresponds to one wavelength of the optimally growing streaks and the spanwise collocation points
are extended across the full wavelength

Simulation InletReX Box dimensions (δL) Collocation points

B1 74193 1228× 21.77× 13.97 576× 65× 32
B2 486750 2509× 42.38× 13.97 576× 97× 32
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Andersson et al. [26] used an indicator based on a local maximum of the streamwise velocity deviation�U(X,y, z) =

ed at the
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s

U(X,y, z) − UB(X,y) from the Blasius profileUB(X,y):

As(X) = 1

2

[
max
y,z

�U(X,y, z) − min
y,z

�U(X,y, z)
]
, (3)

to which they correlated the appearance of inflectional instabilities. The threshold amplitude was found to beAs = 0.26. Note
however that the analysis of the neutral conditions in Andersson et al. [26] was limited to the streak profiles extract
streamwise stationX = 2. During the present study it has been found that unstable subharmonic sinuous modes may o
for As = 0.235. This lower critical value is obtained considering the streak atX = 2.75. Here, we will consider only streak
stable to inflectional sinuous instabilities. Another indicator of the intensity of the streaks, used to optimise their linear grow
in the large Reynolds number limit [8], is given by the local integral of the streamwise velocity deviation:

EU(X) =
[

1

λz

λz∫
0

∞∫
0

(
�U(X,y, z)

)2 dy dz

]1/2

. (4)

We will consider four basic flows, denoted byA,B,C andD and listed in Table 2, corresponding to four increasing amplitude
of the upstream forcing. CaseA is nothing but the Blasius boundary layer without streaks, while caseD roughly represent the
limit case before secondary inflectional instability. The streamwise evolution of streak amplitudesT (X), As(X) andEU(X) is

Table 2
Streak amplitudeAs for the computed basic flows. CaseA corresponds
to the Blasius boundary layer. CasesB, C andD are obtained increasing
the amplitude of the upstream forcing

Case InletAs MaximumAs As atX = 2

A 0.0000 0.0000 0.0000
B 0.0618 0.1400 0.1396
C 0.0927 0.2018 0.2017
D 0.1158 0.2432 0.24317

Fig. 1. Streamwise evolution of the different indicators used to define the amplitude of streaks in the computed basic flows: (a)T (X), (b) As(X)

and (c)EU(X).
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displayed in Fig. 1. TheT (X) andAs(X) measures are very similar and give essentially the same information. The maximum of
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the streak amplitude, for both indicatorsT (X) andAs(X) is reached at roughlyX = 2. TheEU(X) measure is more sensitiv
to the boundary layer growth and gives amaximum of the streak amplitude aroundX = 2.7, which is the station where th
maximum energy of the linear optimal streaks is attained Andersson et al. [7]. Streamwise velocity contour plots in th
stream(y, z) plane are depicted in Fig. 2 for the basic flows under consideration atX = 2. Note that the streaks are symmet
about thez = 0 axis, which is situated in the low speed region. One clearly observes how the increase of the amplitu
to stronger variations in the boundary-layer thickness across the spanwise wavelength of the streak. The cross-plane
the wall-normal∂U/∂y and spanwise∂U/∂z streamwise velocity gradients of streakC at X = 2 (cf. Fig. 2(c)) are reported in
Fig. 3. The maximum of the wall-normal shear is found in the near-wall high-speed region of the streak, while the m
spanwise velocity gradient is located in the middle of the boundary layer, in the flanks of the low-speed region.

It is worth introducing a scaling property of the considered nonlinear streaks which will be used to perform stability
calculation of the streaky basic flows for a wide range of Reynolds numbers and related spanwise wave number
fact shown in Andersson et al. [26] that a streak familyU(X,y, z), defined by the upstream amplitudeA0 and by the spanwis
wavenumberβ0, obeys the boundary layer equations and it is therefore independent of the Reynolds number. This re

Fig. 2. Contour plot of the streamwise velocity profileU(y, z) atX = 2 for (a) the Blasius boundary layer (caseA), and for the streaky flows o
increasing amplitudeB, C, andD (respectively (b), (c), (d)). The contours levels 0.1,0.2, . . . ,0.9,0.99 are the same in all the plots. They- and
z-coordinates are expressed inδ̄X units.

Fig. 3. Contour plot of (a) the wall-normal shear∂U/∂y and (b) the spanwise shear∂U/∂z atX = 2 for the streaky flowC. The contour spacing
is 0.05 in both plots. In (a) the maximum contour levels are at the lower corners (high-speed region) and correspond to∂U/∂y = 0.8. In (b) the
inner positive and negative contours correspond to∂U/∂z = ±0.2. They- andz-coordinates are expressed inδ̄X units.
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scaling property that couples the streamwise and spanwise scales, implying that the same solution is valid for every combination
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of X andβ such that the productXβ stays constant. In other words, it is possible to freely choose the local Reynolds n
pertaining to a given streak profileU(y, z) extracted at any stationX. This amounts to moving along the plate and varying
spanwise wavenumberβ0 so that the local spanwise wavenumberβ0δ/δ0 remains constant (see also Brandt et al. [49]).

3. Formulation of the stability analysis

3.1. Governing equations

The stability analysis of the streaky basic flows is performed under a set of standardsimplifying assumptions. The streaky
flows satisfy the boundary layer approximation according to which variations of the streamwise velocity�U with �X are very slow,

and the (dimensional) wall-normal and spanwise velocity components�V and �W are very small (of orderRe−1/2
X

), compared
to �U . It is therefore justified to analyse the local stability of the streaks by considering, at each streamwise station�X, the parallel
flow obtained by ‘freezing’ the local streamwise velocity profile�U(�X, ȳ, z̄) and neglecting the�V and �W velocity components
Exactly the same assumptions are made to analyse the viscous instability of the two-dimensional Blasius flow in the
‘parallel flow approximation’ (see, e.g., Drazin and Reid [50], the inviscid instability of streaky basic flows [43,26] a
viscous instability of Görtler vortices [44,45]. We therefore proceed to linearise the Navier–Stokes equations about the para
basic flow(U(X,y, z),0,0). In this context,X must be considered as a parameter and not as the current streamwise coo
which we call insteadx. The linearised equations for the perturbation velocity componentsu′, v′,w′ and pressurep′ read:

u′
x + v′

y + w′
z = 0,

u′
t + Uu′

x + Uyv′ + Uzw
′ = −p′

x + (1/R)∇2u′,

v′
t + Uv′

x = −p′
y + (1/R)∇2v′,

w′
t + Uw′

x = −p′
z + (1/R)∇2w′,

(5)

where all the velocities have been rescaled with�U∞ and all the lengths with the local boundary layer thicknessδ̄X . The

local Reynolds number based onδ̄X is defined byR = �U∞δ̄X/ν̄ = Re1/2
X . To allow easy comparisons of the results, we a

introduce the Reynolds number based on the local displacement thickness of the Blasius boundary layer in the absence
Rδ∗ = 1.72R. Homogeneous Dirichlet boundary conditions onu′, v′ andw′ are enforced at the wall and in the free strea
The linearised Navier–Stokes equations (5) may be reduced in a straightforward way [46,6] to a system for the wa
perturbation velocityv′ and the wall-normal perturbation vorticityη′ = u′

z − w′
x :

∇2v′
t + (

U∇2 + Uzz − Uyy

)
v′
x + 2Uzv

′
xz − (1/R)∇4v′ − 2Uzw

′
xy − 2Uyzw

′
x = 0,

η′
t + Uη′

x − (1/R)∇2η′ − Uzv
′
y + Uyzv

′ + Uyv′
z + Uzzw

′ = 0,
(6)

wherew′ may be eliminated by using the equation

w′
xx + w′

zz = −η′
x − v′

yz. (7)

Homogeneous boundary conditions hold at the wall and in the free stream forv′, v′
x , η′ andw′. Solutions to the system (6) a

sought in the form of normal modes

[v′, η′,w′] = [
v̂(y, z), η̂(y, z), ŵ(y, z)

]
ei(αx−ωt) + c.c., (8)

whereα is the streamwise wavenumber,ω the circular frequency, i= √−1 and c.c. stands for ‘complex conjugate’. T
complex phase speed is defined byc = ω/α; the wave phase speed is given by the real part ofc. The following system, which
extends the usual Orr–Sommerfeld–Squire formulation to parallel spanwise non-uniform basic flows, is thus obtained[−iω∇̂2 + iα

(
U ∇̂2 + Uzz − Uyy

) + 2iαUzDz − (1/R)∇̂4]
v̂ − 2iα(UzDy + Uyz)ŵ = 0,[−iω + iαU − (1/R)∇̂2]

η̂ + (Uyz − UzDy)v̂ + (UyDz + Uzz)ŵ = 0,
(9)

with the additional identity(
Dzz − α2)

ŵ = −iαη̂ − DyDzv̂, (10)

whereDy = ∂/∂y, Dz = ∂/∂z and∇̂2 = Dyy + Dzz − α2. Homogeneous boundary conditions hold at the wall and in the
stream forv̂, v̂x , η̂ and ŵ. Eq. (10) can be used to eliminatêw from the system (9) which can then be recast in a stan
generalised eigenvalue problem.
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Due to the spanwise periodicity of the basic flow, the following Floquet expansion may be applied to the normal modes (see,
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e.g., Schmid and Henningson [6]):

v̂(y, z) = eiγβ0z
∞∑

k=−∞
ṽk(y)eikβ0z; η̂(y, z) = eiγβ0z

∞∑
k=−∞

η̃k(y)eikβ0z, (11)

whereβ0 is the spanwise wavenumber corresponding to the basic flow periodicity andγ is the detuning parameter, assum
real, which ranges from 0 to 1/2. The modes corresponding to the special valuesγ = 0 andγ = 1/2 are respectively calle
fundamental and subharmonic. As the basic flow is symmetric aboutz = 0, the modes can be further divided into separ
classes according to their odd or even symmetry with respect to the basic flow. In particular, the fundamental modes w
symmetry, usually called varicose with reference to their streamline patterns in the(x, z) plane, admit the following expansion

v̂(y, z) =
∞∑

k=0

ṽk(y)coskβ0z; η̂(y, z) =
∞∑

k=1

η̃k(y)sinkβ0z. (12)

The fundamental modes with an even symmetry, usually called sinuous, are of the form

v̂(y, z) =
∞∑

k=1

ṽk(y)sinkβ0z; η̂(y, z) =
∞∑

k=0

η̃k(y)coskβ0z. (13)

For subharmonic modes, the same considerations hold, except that the spanwise periodicity of the disturbances is tw
the basic flow. In this case the odd modes that, by extension, we still call varicose, admit the expansion

v̂(y, z) =
∞∑

k=0

ṽk(y)cos

(
k + 1

2

)
β0z; η̂(y, z) =

∞∑
k=1

η̃k(y)sin

(
k + 1

2

)
β0z (14)

while the even modes, called sinuous, are expanded according to

v̂(y, z) =
∞∑

k=1

ṽk(y)sin

(
k + 1

2

)
β0z; η̂(y, z) =

∞∑
k=0

η̃k(y)cos

(
k + 1

2

)
β0z. (15)

Note that spanwise uniform perturbations are considered to be ‘fundamental’ and are therefore not considere
subharmonic modes. Note also that the ‘varicose’ (‘sinuous’) label attributed to the subharmonic odd (even) mode is s
arbitrary because this mode is varicose (sinuous) with respect to thez = 0 axis which we arbitrarily choose in the low spe
region of the streak; it would be sinuous (varicose) with respect to the high speed region of the streak.

3.2. Numerical procedure

In order to solve the temporal eigenvalue problem, system (9) and the auxiliary equation (10), are discretised acc
the expansions (12), (13) or (14), (15) truncated toNz terms and Chebyshev expansions truncated toNy terms are assume
for ṽk(y), η̃k(y) andw̃k(y). The semi-infinitey domain is mapped to(0,Ly) through an algebraic transform and the veloc
and vorticity fields are evaluated at the Gauss–Lobatto collocation points (see, e.g., Canuto et al. [51]). The results
in the following have been obtained withNy + 1 = 65 collocation points in the wall normal direction andNz = 32 points in
the spanwise direction. Convergence tests were performed on a few selected cases using 97 points iny and 48 inz. For a set
of real streamwise wave numbersα at a given Reynolds numberR, the complex eigenvalueω with the largest imaginary par
was sought using an implicitly restarted Arnoldi method [52]. The results are consideredconverged when a relative error belo
10−9 is attained on the eigenvalues. The used numerical technique is similar to that implemented by Reddy et al. [47
that the products on the right-hand side of Eqs. (9(a), (b)) are evaluated in physical space and not by convolution in the
spectral space and a different technique is used to sort the leading eigenvalue. The numerical code has been carefully valid
in the case of sinuous modes by comparing the results obtained for large amplitude streaks (not discussed in this article) wi
the inviscid results of Andersson et al. [26] and with those obtained by using the code of Reddy et al. [47] for the sam
flow. In the case of varicose modes, the validation was obtained by recovering standard results for the two-dimension
profile. We also checked that we obtained the same growth rates as in the direct numerical simulations of the impulse
of the same streaky basic flows performed in CB.

3.3. Production and dissipation of the perturbation kinetic energy

Prandtl [21] used the perturbation kinetic energy equation to gain a physical understanding of the viscous instability
mechanism responsible for the destabilisation of TS waves in Blasius profileUB(y). His rationale was later extended toU(y, z)



C. Cossu, L. Brandt / European Journal of Mechanics B/Fluids 23 (2004) 815–833 823

profiles in the context of the inflectional secondary instability of Görtler vortices (see,e.g., [45,53]). The basic idea is to derive
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in the usual way the evolution equation for the perturbation kinetic energy densitye = (u + v + w )/2 from the linearised
Navier–Stokes equations (5). Upon integration over a wavelength in the streamwise and spanwise directions and from
to infinity in the wall-normal direction, the divergence terms in the evolution equation give a zero global contribution
energy balance and one is left with

∂E

∂t
= Ty + Tz − D, (16)

where the following definitions hold:

E = 1

λxλz

λz∫
0

∞∫
0

λx∫
0

e′ dx dy dz, (17)

D = 1

λxλz

1

R

λz∫
0

∞∫
0

λx∫
0

(
ξ ′2 + η′2 + ζ ′2)

dx dy dz, (18)

Ty = 1

λxλz

λz∫
0

∞∫
0

λx∫
0

(−u′v′) ∂U

∂y
dx dy dz, (19)

Tz = 1

λxλz

λz∫
0

∞∫
0

λx∫
0

(−u′w′) ∂U

∂z
dx dy dz. (20)

The quantityE is the total perturbation kinetic energy,D is the viscous dissipation term given by the square of the norm
the perturbation vorticity vector(ξ ′, η′, ζ ′). Ty andTz are the perturbation kinetic energy production terms associated
the work of the Reynolds stresses against, respectively, the wall-normal shear∂U/∂y and spanwise shear∂U/∂z. Assuming
the normal mode expansion (8) for the perturbations, and upon integration in the streamwise direction, the terms in th
balance equation are easily seen to be in the form(E,D,Ty,Tz) = (Ê, D̂, T̂y , T̂z)e2ωit with

Ê = 1

λz

λz∫
0

∞∫
0

ê dy dz, D̂ = 1

λz

λz∫
0

∞∫
0

d̂ dy dz, (21)

T̂y = 1

λz

λz∫
0

∞∫
0

τ̂uv
∂U

∂y
dy dz, T̂z = 1

λz

λz∫
0

∞∫
0

τ̂uw
∂U

∂z
dy dz, (22)

and

ê = (ûû∗ + v̂v̂∗ + ŵŵ∗), d̂ = 2(ξ̂ ξ̂∗ + η̂η̂∗ + ζ̂ ζ̂ ∗)/R,

τ̂uv = −(ûv̂∗ + û∗v̂), τ̂uw = −(ûŵ∗ + û∗ŵ).

The following identity is immediately derived from Eq. (16):

ωi = T̂y

2Ê
+ T̂z

2Ê
− D̂

2Ê
. (23)

In order to evaluate the different terms entering equation (23) one has to know the eigenmode and eigenvalue corre
to the selected velocity profileU(y, z), Reynolds numberR and streamwise wavenumberα. In the absence of errors i
the computation, the left-hand side, coming from the eigenvalue computation, and the right-hand side derived
corresponding mode shape, should match. However, Eq. (23) is more than an a posteriori consistency check of the e
problem solution, it provides an insight into the viscous instability mechanism by separating the three terms which co
to the temporal growth rateωi . A viscous instability is seen to appear when the work of the Reynolds stresses against the
shears is able to overcome viscous dissipation. In the following, Eq. (23) will therefore be used to analyse the magnitu
different physical contributions leading to a given growth rate.
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4.1. Role of the streak amplitude at a fixed streamwise station and Reynolds number

We begin by investigating the effect of an increasing streak amplitude on the boundary layer stability, keeping fixed the
streamwise stationX and the Reynolds number. For a set of wave numbersα we compute the eigenvalues having the larg
imaginary partωi pertaining to the streamwise velocity profiles of the Blasius boundary layer (A) and of the streaksB, C
andD prevailing atX = 2 (see Table 2). We selectReL = 650000 which gives, atX = 2, ReX = 1300000, R = 1124 and
Rδ∗ = 1934. All the streaks under consideration are stable to sinuous perturbations. In Fig. 4 we display the tempora
rate curvesωi(α) (on the top row) and the corresponding phase speedscr = ωr/α (on the bottom row) of varicose perturbatio
of respectively fundamental (on the left column) and subharmonic type (on the right column). At the Reynolds numb
consideration the Blasius boundary layer is unstable. The effectof streaks of increasing amplitude is to reduce the growth r
of fundamental modes (streaksB, C) up to their complete stabilisation for caseD. The fundamental modes phase speeds
roughly unchanged with respect to the Blasius-TS waves; they are only slightly reduced as the amplitude and/or wavenumb
increased. The fundamental varicose mode therefore appears to be a sort of ‘continuation’ of the two-dimensional B
waves into three-dimensional streaky-TS waves (see also Ustinov [54]).

Subharmonic modes exhibit growth rates which are an order of magnitude smaller than their fundamental cou
except for streakD which is stable to fundamental perturbations but is slightly unstable to subharmonic perturbations
however a very special case, as will be seen in the following). The subharmonic-mode phase speeds may differ up to
the Blasius-TS phase speeds and they follow an opposite trend since they decrease for increasing wave numbers. T
increasing amplitude is not monotone; the low amplitude streakB is stable while streaksC andD are unstable, but streakD is
less unstable than streakC.

In Fig. 5 we display thermsvelocity amplitudes|û(y, z)|, |v̂(y, z)| and|ŵ(y, z)| of the most unstable varicose fundamen
and subharmonic modes of streakC. The contours of the basic flow velocityU(y, z) = cr , corresponding to the phase speed
the mode, andU(y, z) = 0.99U∞, denoting the boundary layer thickness have also been included for reference. Funda
and subharmonic modes have quite different structures, but for both, most of the energy is in the streamwise componû. The
fundamental mode displays a|û| double-peaked structure concentrated in the low-speed and near the high-speed reg
wall normal profile in the low-speed region has the M-shaped structure observed by Tani and Komoda [17] and Kach
Tararykin [18]. The spanwise component|ŵ| is mainly localised in the two regions below the position of maximum span
shear|∂U/∂z| (see Fig. 3) and attains its maximum amplitude on the line whereU(y, z) = cr . The |v̂|-component attains it
largest values in the low-speed region, it is smaller than|û| and it protrudes further away from the wall, as for Blasius-TS wa

Fig. 4. Growth rateωi (top row) and corresponding real phase speedcr (bottom row) versus streamwise wavenumberα of fundamental (left
column) and subharmonic (right column) modes for the Blasius boundary layerA and the streaky flowsB, C andD at X = 2 for R = 1124.
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Fig. 5.Rmsamplitudes of thêu(y, z) (top), v̂(y, z) (middle) andŵ(y, z) (bottom) components of the most unstable varicose fundamental
and subharmonic (right) modes for the streakC profile extracted atX = 2 with R = 1124. The whole mode has been normalised withûmax and
the contour levels are spaced by 0.1ûmax for û,0.01ûmax for v̂ and 0.02ûmax for ŵ. The maximum contour levels are 0.9ûmax for û, 0.12ûmax
and 0.04ûmax for the wall-normal velocity of the fundamental and subharmonic mode respectively, while the peak contour for theŵ component
has the value 0.12ûmax for the fundamental mode and 0.26ûmax for the subharmonic. The contoursU = cr andU = 0.99U∞ represented by
dashed lines of the corresponding basic flows have also been included.

Table 3
Norms of the first spanwise harmonicsũ0(y), ũ1(y), ũ2(y) of the
û(y, z) most unstable varicose fundamental modes of streaksA, B, C
andD with the same parameters as in Figs. 4 and 5

Case ‖ũ0‖ ‖ũ1‖ ‖ũ2‖
A 1.000 0.000 0.000
B 1.000 0.404 0.157
C 1.000 0.548 0.307
D 1.000 0.628 0.421

The subharmonic mode displays a|û| single-peaked structure concentrated in the low-speed region, while|ŵ| is localised in
the high-speed region.|v̂| is smaller than|û| and|ŵ|, it protrudes further away from the wall and has two peaks situated in
flanks of the low-speed region. All the components of the mode reach their maximum amplitude on theU(y, z) = cr line.

To give an idea of the level of three-dimensionality of the streaky-TS fundamental modes,we document in Table 3 the norm
‖ũk‖ = [∫ ∞

0 |ũk |2 dy]1/2 (k = 0,1,2) of the spanwise uniform part̃u0 of the mode and of the first two spanwise harmonicsũ1
andũ2. The most unstable mode of the Blasius profile (caseA) is two-dimensional, and therefore there is no energy in the
two spanwise harmonics. For the streaky basic flows, however, the modes are truly three-dimensional: For increas
amplitudes, the sum of the energies contained inũ1 andũ2 may exceed the energy contained inũ0. With this in mind we can
now analyse the shapes of|ũ0(y)|, |ũ1(y)| and |ũ2(y)|, plotted in Fig. 6. The spanwise oscillating parts|ũ1(y)| and |ũ2(y)|
keep a fairly constant shape even if their amplitude increases with streak amplitude, as documented above. On the co
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Fig. 6. Wall-normal distribution of: (a) the spanwise independent, (b) the first and (c) the second harmonics of thêu-component for the
fundamental varicose modes considered in Fig. 4. They coordinate is expressed in̄δX units.

spanwise uniform part|ũ0(y)| changes its shape. A local ‘minimum’ appears at the position of maximum amplitude of|ũ1(y)|
and|ũ2(y)|. This minimum deepens as the streak amplitude increases. For the streak of largest amplitude a local min
seen to appear also in the first harmonic.

4.2. Analysis of the stabilisation mechanism

To gain physical insight into the mechanisms responsible for the observed reduction of the growth rates of the fun
mode, we report in Table 4 the different terms entering equation (23). These are evaluated for the wave numbers lead
maximum growth, i.e. at the peak of theωi(α) curves in the top left of Fig. 4. The relative difference between the imaginary
of the computed eigenvalue, on the left-hand side, and the sum of the terms on the right-hand side of (23) was found to
4%. The instability of the Blasius boundary layer (caseA) must be ascribed, as already well known, to the excess of kin
energy productionTy , over the viscous dissipationD. As the Blasius profile is two-dimensional, the spanwise shear∂U/∂z is
zero and therefore there is no contribution fromTz. For streaky flow profiles, however, the termTz comes into play and it is
stabilising. The absolute value of the normalised production and dissipation terms is seen to increase with streak amplitude b
the stabilising contribution(T̂z − D̂)/2Ê grows more than the destabilising contributionT̂y/2Ê, thereby ultimately leading to
stability. The negative production term̂Tz/2Ê is of the same order of magnitude as the dissipation termD̂/2Ê and therefore
it plays an essential role in the stabilisation process. Thus, an asymptotic analysis like the one in Wu and Luo [39] ma
extended to the presently considered streaks. Our results show, in fact, that by not considering the effect of the spanw
streaky-TS waves more unstable than Blasius-TS waves are predicted.

A sample distribution of Reynolds stresses is given in Fig. 7 for the most unstable fundamental mode of streakC. The τ̂uv

term (Fig. 7(a)) is concentrated in the low-speed region of the underlying streak and it is positive, whileτ̂uw (Fig. 7(b)) is
localised on the flanks of the low-speed region and it is antisymmetric with respect to thez = 0 axis. The distribution of the
corresponding induced production terms and of the viscous dissipation term are displayed in Fig. 8. The Reynolds sτ̂uv

and the wall-normal shear∂U/∂y having the same symmetry and the same sign almost everywhere (see Fig. 3), their
gives a dominating positive contribution toTy (Fig. 8(a)). The kinetic energy production is localised in the low-speed regio
one would also expect from quasi-two-dimensional local analysis. On the other hand, the Reynolds stressτ̂uw and the spanwise
shear∂U/∂z have the same symmetry but opposite sign therefore leading to the negative production distribution in F
and to the stabilising contribution ofTz. The kinetic energy negative production is localised on the flanks of the low-s

Table 4
Maximum growth rates and normalised kinetic energyproduction and dissipation components pertaining to
the varicose fundamental modes for the streaks considered in Fig. 4

Case ωi,max× 103 T̂y/2Ê × 103 T̂z/2Ê × 103 D̂/2Ê × 103

A 3.88491213 6.504493 0. 2.617424
B 2.55295653 9.9995469 −2.9446254 4.5003829
C 1.1108635 12.504101 −5.0824684 6.316075
D −0.209021 13.902289 −6.267457 7.8822505
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Fig. 7. Normalised Reynolds stresses (a)τ̂uv(y, z)/2Ê and (b)τ̂uw(y, z)/2Ê pertaining to streakC at X = 2, R = 1124, forα = 0.122. The
contour spacing is 0.002ûmax. Dashed lines indicate negative values.

Fig. 8. Normalised production of perturbation kinetic energy: (a)τ̂uv(∂U/∂y)/|T̂y |, (b) τ̂uw(∂U/∂z)/|T̂z |, and (c) dissipation̂d/|D̂| pertaining
to most unstable fundamental mode of streakC at X = 2, R = 1124,α = 0.122. The contour spacing is 0.05. Dashed lines indicate negativ
values.

region and may not be accounted for by quasi-two-dimensional local (inz) analyses. The viscous dissipation, represente
Fig. 8(c), is essentially concentrated very near the wall in the region of highest wall-normal shear. A local maximum o
intensity can be observed in the low-speed region, in the area of highest positive production.

4.3. Influence of viscosity on the streak temporal stability at fixed streakamplitude and streamwise station

In order to analyse the influence of viscosity on the temporal stability of the streakyboundary layer profiles, we now
consider the effect of varying the reference Reynolds numberReL, and therefore the local Reynolds numberR, for a fixed
streak amplitude (streakC) at a fixed streamwise station (X = 2). The increase inR amounts to changing the spanwise sc
of the upstream disturbance so that the local spanwise scale prevailing atX = 2 is attained at increasing distances from
leading edge. Sinuous modes are stable for this profile. The results concerning the varicose modes are presented
where the curvesωi(α,R) of the fundamental (Fig. 9(a)) and subharmonic (Fig. 9(b)) modes are displayed. For the
under consideration the critical Reynolds number is found to beR = 734, i.e. more than twice the critical Reynolds numbe
the Blasius boundary layer in the absence of streaks (R = 304). The critical mode is the fundamental. Except for a very sm
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Fig. 9. Growth rateωi of the varicose fundamental (a) and subharmonic (b) modes in the streamwise wavenumberα and local Reynolds numbe
R plane for theC streak profile atX = 2. Contours start from the neutral curve and proceed, outer to inner, with a spacing of 10−4.

Fig. 10. Neutral stability curves of (a) the fundamental varicoseand (b) subharmonic varicose modes as a function of the stream
wavenumberα and the local Reynolds numberR for the Blasius profile (caseA) and streaksB, C, andD (outermost to inner curves) extracte
at X = 2. Subharmonic modes of streakB profiles are stable in the considered Reynolds number range.

region in the parameter plane (roughlyα < 0.07 andR > 1100), the subharmonic varicose modes become unstable at
Reynolds numbers and their growth rates are smaller than those of the fundamental modes. In principle, intermedia
of the detuning parameter should also be examined. However, previous results (see, e.g., [25,26]) show a monotonic
with the Floquet exponent so that the fundamental and subharmonic modes can be seen as the limiting cases.

To compare the combined effects of viscosity and streak amplitude at fixedX, we repeated the calculations for the oth
streak profiles atX = 2. In Figs. 10(a) and 10(b) we display, respectively, the varicose fundamental and subharmonic
curves pertaining to each streak. The effect of increasing streak amplitude is todelay the instability ofthe fundamental modes
as expected from the results in the previous section (see Fig. 4). The outermost neutral curve shown on the left of Fig
well-known neutral curve of the Blasius boundary layer (caseA, with a critical Reynolds numberR = 304). The neutral curve
corresponding to streaks of increasing amplitudeB, C andD are regularly ordered from outer to inner. The largest amplit
profile, the one corresponding to streakD, is able to delay the instability up toR ≈ 1270. The amplitude effect on subharmon
modes, as also seen in the previous section, is not monotone; theC andD profiles exhibit essentially the same critical Reyno
number,R ≈ 1100.

It is important to note that the neutral curves presented in Fig. 10 arelocal neutral curves corresponding to the veloc

profiles prevailing atX = 2. The variation ofR = Re1/2
X

= (XReL)1/2 has been obtained through a variation ofReL at fixedX,
i.e. through a variation of the spanwise scale at the inlet, byexploiting the scaling property introduced in Section 2.

4.4. Stability along the streaky boundary layer

We now consider the stability of a streakyboundary layer by examining the properties of its profiles at different streamwis
stationsX. For the selectedX we choose a range of local Reynolds numberR and compute the growth ratesωi(α;R,X).
The maximum growth rateωi,max(R,X) is obtained by maximisingωi overα for eachR andX. The results pertaining to th
varicose modes of streakD, which is the one of largest allowed amplitude before the onset of sinuous inflectional instabilities,
are documented in Fig. 11. From the previous sections we know that, for the Reynolds numbers under consideration,
of increasingR is destabilising. This is confirmed by the analysis of Fig. 11, where it is seen that, for a constantX, an increase
in R leads to instability and then to an increase of the maximum growth rate in the unstable region for both fundamental a
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Fig. 11. Maximum growth rateωi,max of (a) varicose fundamental and (b) subharmonic modes pertaining to streakD as a function of streamwis
stationX and local Reynolds numberR. Contour levels are 0 (thick line), 2× 10−4, 4 × 10−4, 6 × 10−4, . . . . The dashed lines represe
physically realizable streaks atReL = 2× 105,4× 105, . . . ,106.

subharmonic modes. The coordinateX describes the downstream evolution of the streaks and, as a consequence, its e
the variation of the flow stability featuresis closely related to the local streak amplitude. Concerning the fundamental mode
we have shown that an increasing streak amplitude is stabilising. The maximum amplitude of streakD is attained roughly a
X = 2 whenT or As are used as measures of the streak amplitude and roughly atX = 2.5, whenEU is used (see Fig. 1)
The former measure seems to better account for the effects of the streak amplitude on the boundary layer stability; in fact,
upstream of the peak amplitude (X < 2.5), we observe that increasingX at constantR is stabilising since asX increases the
streak amplitude also increases. Downstream of the peak amplitude (X > 2.5), whenX increases the streak amplitude decrea
therefore leading to an increase of the growth rates. Subharmonic modes exhibit growth rates generally lower than th
fundamental modes.

A streaky boundary layer obtained in an experiment or in a numerical simulation sees the same viscosity a
stream velocity at each streamwise station�X. Physically realizable streaks are therefore obtained at fixed referen
Reynolds numberReL. Along a ‘physical streak’ the local Reynolds number is given byR = (ReLX)1/2, whereReL is
a constant. To visualise the stability properties of physically realizable streaks, dashed lines corresponding to streaks
ReL = 200000,400000, . . . ,1000000 are introduced on Fig. 11. AsX increases, the local Reynolds numberR also increases
so that the effects of varyingX andR on the stability are coupled. In particular, in the part of the streak which is upstrea
of its maximum amplitude, the destabilising role of increasingR and the stabilising role of increasingX are in competition.
Assuming, for instance,ReL = 200000, streakD is stable up toX = 3.95, corresponding toR ≈ 880, to both varicose an
subharmonic modes. ForReL = 500000 a pocket of instability to both varicose and subharmonic modes appears in the upstrea
part of the streak (roughlyX < 1.5) where the streak amplitude is not large enoughto counterbalance the destabilising effect
the Reynolds numberR. In the range 1.5 < X < 2.7 the stabilising effect of the streak amplitude dominates, but eventuall
X > 2.7, at roughlyR = 1160, fundamental modes become unstable again.

The computations have been repeated for the others streaky basic flows; the corresponding neutral curves are d
Fig. 12. As expected, streakD is the most effective in delaying the instability. Thefundamental-mode neutral curve for the
lowest amplitude streak is very close to the neutral curve of the Blasius boundary layer, which becomes unstable atR = 304 for
all X. It can be seen that for all the streaks under consideration the maximum amplitude profile, prevailing atX ≈ 2.5, may be
stable for quite large values ofR (e.g.R = 1270 for streakD). However, the stability of a physically realizable streak, obtaine
following one of the dashed lines in the plot, may be obtained only up to lowerR values (e.g.R = 880 for streakD) because in
the upstream part of the streak the amplitude is not large enough to counterbalance the destabilising increase ofR. This effect
is particularly strong for the streaks we consider here because, as their growth is optimised, they have, upstream of their p
value, amplitudes that are generally lower than for other possible non-optimal streaks. It should in fact be observed t
upstream vortices are induced using wall-roughness elements or blowing-suction slots, their amplitude evolution would not b
the same as for the optimal perturbations used here (see, e.g., [20]).
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Fig. 12. Neutral stability curves for (a) fundamental varicoseand (b) subharmonic varicose modes for the Blasius boundary layerA and the
streaksB, C andD as a function of streamwise stationX and local Reynolds numberR. The dashed lines represent physically realizable streaks
at ReL = 2× 105,4× 105, . . . ,106.

4.5. Implications for transition delay

Most of ‘open-loop’ transition delay methods rely on the suppression or reduction of the exponential growth of the unstab
waves in the linear regime, obtained for instance by enforcing favourable pressure gradients, through wall suction, flui
or cooling, etc. The forcing of steady streaks in a flat plate boundary layer might be as effective as other methods in
transition. A clear advantage of this scheme is the fact that the ‘actuators’ modifying the basic flow stability behaviou
placed upstream of the unstable region and presumably require little energy because the streak extracts its energy fro
flow itself through the ‘lift-up’ effect. In the previous section we have shown that for streakD it is possible to delay the onse
of instability up toR above 850 (corresponding toRδ∗ above 1450 andReX above 720000) by choosingReL = 200000. For
largestReL a pocket of instability appears in the upstream part of the streak, which is however followed by a large re
stable flow.

To allow a quantitative comparison with other transition delay methods, the computation of spatial growth rates would
necessary to estimate the total growths at fixed real frequency (the so calledn-factors used in the eN method). Further, a
complete analysis of the possible transition delay would also require a parametric study of the spanwise wavenumbeβ of the
streaks. The wavelength of optimal spatial growth is not necessarily optimal for the stabilisation process investigated h
in fact, one may expect that streaks of larger wave numbers, thus associated with stronger spanwise gradients, have
stabilising effect. Such a parametric studyis not attempted in this article since thecomputation of a number of streaky bounda
layers with different spanwise wave numbers and amplitudes is still a formidable task. The aim of the paper is to show
potentiality of spanwise modulated flows todelay viscous instabilities and give a physical explanation for it. We believe th
an experimental study is now more adequate to explore the effect of the wavenumberβ and estimate the spatial growth ra
reductions.

However, by considering the temporal growth rates and computing the group velocities from the results obtained (se
it is possible, using Gaster’s transformation, to roughly estimate the spatial growth rates from the temporal results [55].
shown that large reductions of the growth rates are attained both in the pocket of instability observed at lowX and downstream
of the neutral curves. For the fundamental varicose instability, the estimated growth rates are less than half of those pertaini
to the two-dimensional boundary layer, while the growth rates of the subharmonic modes are about 1% of those of th
profile.

To evaluate the performance of the proposed control strategy one must also evaluate the energy used in the gener
streaks and the energy loss due to the presence of the streaks in the boundary layer. No external energy is needed to g
streaks if passive methods, like vortex generators or roughness elements, are used. If instead the streaks are induce
methods, like blowing and suction at the wall, the energy used canstill be considered negligiblebecause the ‘lift-up’ effect act
as an amplifier of the actuator energy. Typically the lift-up gain is of orderReX in the linear approximation. On the other han
the skin friction coefficientCf pertaining to theB, C andD basic flows is larger than that of the Blasius two-dimensio
boundary layer. TheCf increase is due to the spanwise uniform part of the basic flow distortion induced by the streaks t
nonlinear effects. These lead to ‘fuller’ velocity profiles (see CB) and to larger shear at the wall. On Fig. 13 we disp
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streamwise evolution of normalised skin friction coefficientCf Re1/2
X

for the Blasius boundary layerA and the streaks unde
consideration. The skin friction coefficient increases at worst by less than 20% when compared to the Blasius case.

5. Conclusions

The linear viscous stability of the boundary layer on a flat plate in the presence of nonlinearstreamwise streaks assum
steady and spanwise periodic has been analysed by means of Floquet theory. The main results of the present stu
summarised as follows.

The most unstable waves are modified by the presence of the streaks: They evolve from two-dimensional TS w
three-dimensional varicose fundamental modes, here called ‘streaky-TS waves’. The latter have almost identical ph
but lower growth rates than the TS waves and a characteristic M-shaped structure of theirrmsstreamwise velocity amplitude
These results are in agreement with previous experimental investigations (cf. [17,18]).

The analysis of the growth rates of the streaky-TS waves confirms the stabilising effect of steady streaks on the
instability [18,41] and that this stabilising effect increases with the streak amplitude.

A physical explanation for the observed stabilisation is provided by considering the kinetic energy production for the m
unstable waves. The viscous instability is, in the presence of the streaks, fed by the work of theuv-Reynolds stress again
the wall normal shear∂U/∂y, just as in the two-dimensional boundary layer. However, the work of theuw-Reynolds stresse
against the spanwise shear∂U/∂z is stabilising. This stabilising contribution and the viscous dissipation increase with the
amplitude, thereby reducing the growth rate and eventually leading to stability.

Results for the varicose subharmonic modes are presented: these modes are also found to be unstable but they h
rates which typically are an order of magnitude lower than those of fundamental modes. For the family of interm
amplitude streaks considered in the present study, sinuous modes are always stable.

The possible relevance of streak stabilisation for applications in boundary layer transition delay has also been discussed
efficiency of the generation of the streaks, the fact that the actuators do not need to cover all the unstable domain, an
displacement of the neutral stability curves are seen as very promising trends. Asimilar control strategy has been suggested
order to delay cross-flow instabilityin swept wing boundary layers [56,57].

Our results may probably be related also to the observed average reduction of the growth of small amplitude T
developing in a boundary layer exposed to free-stream turbulence [38]. In this case however, the streaks are unstea
further investigations seem necessary in order to assess the importance of this additional factor and whether the stabili
of steady streaks can contrast the destibilising effect of free-stream turbulence.
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