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Abstract

The linear stability of thdooundary layer developing on a flagpt in the presence of finitevglitude, steady and spanwise
periodic streamwise streaks is investigated. The streakitaings considered here are below the threshold for onset of the
inviscid inflectional instability of sinuouperturbations. It is found thaas the amplitude of the streaks is increased, the most
unstable viscous waves evolve from two-dimensional Tollmien—Schlichting waves into three-dimensional varicose fundamental
modes which compare well with early experimental findings. The analysis of the growth rates of these modes confirms the
stabilising effect of the streaks on the viscous instability and that this stabilising effect increases with the streak amplitude.
Varicose subharmonic modes are also found to be unstable but they have growth rates which typically are an order of magnitude
lower than those of fundamental modes. The perturbation kinetic energy production associated with the spanwise shear of the
streaky flow is found to play an essentialedh the observed stabilisation. The possit#levance of the streak stabilising role
for applications in boundary layeransition delay is discussed.

0 2004 Elsevier SAS. All rights reserved.

1. Introduction
1.1. Streaky boundary layers

In the absence of external perturbations or wall imperfections, the boundary layer developing on a flat plate is spanwise
uniform (two-dimensional) and is well described by the Blasius similarity solution (see, e.g., [1]). In the two-dimensional
boundary layer, however, small amounts of streamwise vorticity are very effective in pushing low momentum fluid away
from the wall and high momentum fluid towards the wall eventually leading to large elongated spanwise modulations of the
streamwise velocity called streamwise streaks. The mechanism of streak generation, described above and known as the ‘lift-up
effect’ [2], is based on an inviscid process and applies to shear flows in general [3]. The effect of viscosity eventually dominates
rendering the growth of the streaks, which however is of the order of the Reynolds number [4,5], only transient. The potential
of shear flows to exhibit such large transient growths is rdleag¢he non-normal nature of the diarised stability operator (for
a review the reader may refer to the book by Schmid and Henningson [6]). The most dangerous perturbations, leading to the
‘optimal transient growths’, have been found to consist of streamwise vortices and have been computed for a number of shear
flows. In flat plate boundary layers, the most amplified perturbations have spanwise scales of the order of the boundary layer
thickness [7,8]. The effect of vorticity on a boundary layer is also investigated in Choudhari [9], wherein it was demonstrated
that three-dimensional gusts can excite boundary layer motions that resemble the streaks due to weak free-stream turbulence.
Bertolotti [10] studied the receptivity to streamwise vortices in the free stream in a linear region excluding the leading edge,
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while Wundrow and Glodstein [11] (see references therein) considered the effect of incoming vorticity by means of asymptotic
expansions.

Streamwise streaks are therefore expected to appear whenever a boundary layer is exposed to perturbations with streamwise
and wall-normal vorticity in the incoming free stream. An extensively studied case is the boundary layer developing in the
presence of free-stream turbulence. In early observations, Dryden [12] and Taylor [13] reported that spanwise modulations of the
boundary layer thickness are generated in the presence of free-stream turbulence. These observations were confirmed and further
detailed by, among others, Arnal and Juillen [14] and Kendall [15] who coined the term ‘Klebanoff modes’ for the observed
streaks, referring to early observations by Klebanoff [16]. The streaks forced by free-stream turbulence typically slowly oscillate
in the boundary layer in a random way. Streamwise streaks may also be forced by streamwise vortices artificially generated in
the free stream (e.g. [17]), by blowing and suction at the wall (e.g. [18]) or by wall-roughness elements (e.g. [19,20]).

1.2. Stallity of streakyboundary layers

In the absence of streaks the (two-dimensional) Blasius boundary layer is linearly stable to inviscid perturbations.
Prandtl [21] suggested that viscosity magntrary to intuition, lead to istability if the work of the Reynolds stress, generated by
viscous modes, against the wall-normal shear is positive acekels the viscous dissipation. Based on approximate solutions of
the Orr—Sommerfeld equation, Tollmien [22] was then able tdiptdinear (viscous) instality of the Blasius boundary layer
when the Reynolds number exceeds a critical value later refigeSichlichting [23]. These ligar stability predictions were
later confirmed by the celebrated experiments of Schubauer and Skramstad [24] who, by periodically vibrating a ribbon in the
boundary layer, were able to observe unstafdlimien—Schlichting (TS) waves. AsSTwaves grow to amplitudes of the order
of 1% of the free-stream velocity, secondargtability sets in (for a reviewee Herbert [25]), evendlly leading to breakdown
and transition to turbulence. This scendsidoday well understood and often refatt® as the ‘classical’ transition scenario of
boundary layers in a low noise environment.

In the case of streaky boundary layers, the streamwise velocity profiles develop inflection points which may support inviscid
instabilities forsufficiently large streak amplitudes. For the optimakaks considered here, it has been found [26] that the
critical streak amplitude for the onset of inflectional instabilities is 26% of the free-stream vdlggitysinuous modes are the
first to become unstable. The sinuous transition scenario isndected in Brandt and Hennings [27]. The experiments of
boundary layer transition under free-stream turbulence by Wats and Alfredsson [28] seem to suggest that the breakdown
to turbulence is indeed caused by higéquency secondary stabilities of the streaks. Hower, Jacobs and Durbin [29]
could not clearly identify such secondangiabilities from their numecal simulations. Schoppa and Hussain [30] showed that
steady streaks in channel flows, stable to linear disturbances, can undergo a sinuous breakdown to turbulence if subjected to
a spanwise velocity perturbation of the order of few percents of the centreline velocity. The breakdown is characterised by
structures identical to those identified by Brandt and Henningson [27] in the case of a linearly unstable streak. The simulations
by Brandt et al. [31] and Brandt [32] show that the characteristic structures of the spot precursors in boundary layers subject
to free-stream turbulence are very simila those observed in previous modaldies on the secondaiystability of steady
symmetric streaks, both for the sinuous and the varicose symmetry (see Asai et al. [33] for a recent experimental investigation).
The authors conclude that the breakdown is related to local instabilities driven by the strong shear layers associated with the
streaks. They also note the importance of the interaction between the low- and high-speed streaks, and, consequently, of the
streak motions and unsteadiness in triggering the breakdown to turbulence (see also Wu and Choudhari [34]).

In the quest for other possible transitimechanisms in streaky boundary layers, the development of the TS waves in the
presence of streaks and their interaction have been studiée ipast (for a review see Reed and Saric [35]). Most of the
attention has been focused on possible destabilising resonances between TS waves and streaks of the same order. In particular,
the nonlinear interaction of finite amplitude TS waves with streaks received most of the attention (starting with Tani and
Komoda [17], and Komoda [36], and many others thereafter). Streaks may, however, reach finite amplitude before the TS waves
and therefore a preliminary step should be to consider the streaky boundary layer as a three-dimensional basic flow in which
linear three-dimensional waves develop. Only a few investigations, essentially experimental, concerning this linear growth phase
are currently available, as summarised below.

Tani and Komoda [17] considered the development of viscous waves in a streaky boundary layer. Small wings located
outside the boundary layer were used to generate steady streamwise vortices which, upon entering the boundary layer, led to
the development of steady spanwise periodic modulations of its thickness, i.e. to steady streamwise streaks. A ribbon was then
vibrated in the boundary layer at the frequency and Reynolds nuwiere unstable TS waves exist in the two-dimensional
Blasius boundary layetd which we refer from here on, as Blasius-TS wagvé-or small fbbon vibration amplitudes, three-
dimensional waves were detected with mode shapes similar to the Blasius-TS waves but with a distinct two-peak (or M-shaped)
structure in thems streamwise perturbation velocity near the wall in the low speed region. Unfortunately, no explicit measure
of the growth rates of such waves was provided.
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Kachanov and Tararykin [18] generated streamwise steady streaks by blowing and suction at the wall and used a vibrating
ribbon to generate TS-type waves. They found three-dimensional waves having essentially the same phase speed as the Blasius-
TS waves and with essentially the same M-shaped structure observed by Tani and Komoda [17]. Surprisingly, however, these
streaky-TS waves did not amplify as they would have done in the absence of the streaks in the same parameter range.

Arnal and Juillen [14] detected ‘natutdhot forced) TS-type waves riding ohé unsteady streaksduced by free-stream
turbulence. Grek et al. [37] and Boiko et al. [38] forced TS waves with a vibrating ribbon in a boundary layer exposed to
free-stream turbulence. Using refined wave detection techniques they found unstable streaky-TS waves, which were, however,
less amplified than Blasius-TS waves. These streaky-TS waves had a phase speed and shapes very similar to Blasius-TS waves.
Boiko et al. [38] attributed the growth rate defect to the stabilising role of the two-dimensional averaged basic flow distortion
induced by the streaks; however, they also found that a mere itnerdional stability analysis dhe average velocity profile
was unable to predict a correct growth rate.

Based on perturbation expansions valid in the limit of large ratios of the streak spanwise scale to the boundary layer thickness,
Wu and Luo [39] predict, for small streak amplitudes, the existence of ‘modified TS waves’ having a growth rate larger than
the Blasius-TS waves. In this approximation, however, the effect of the spanwise shear is negligible to the leading order. The
modified TS-waves analysed by the latter authors correspond to localised distortions in the base flow, while spanwise periodic
perturbations have been considered by Goldstein and Wundrow [40]. On the other hand, using temporal and spatial numerical
simulations, the present authors (Cossu and Brandt [41], from now on referred as CB), found that steady streaks of sufficiently
large amplitude are able to reduce the linear growth of viscous instabilities up to their complete stabilisation. Further, a recent
study by Kogan and Ustinov [42], appeared during the revision of the present article, shows the possibility of increasing the
boundary layer stality by means of a spanwise-perioditationary mass force distributéd the streamwise direction. This
force generates a transverse flow which results in the appearance of streaks. These authors show that the suppression of unstable
disturbances can increase the laminar-flow interval by 3—4 times.

1.3. Aim of the present study

The results presented in CB were limited to fundamental modes and to one single Reynolds number; only a heuristic
explanation was given for the observed stabilisation and no detailed analysis of the most unstable perturbations was provided.
It is therefore not clear if the phenomenon observed by CB is the same experimentally observed, for instance, by Tani and
Komoda [17] and Kachanov and Tararykin [18]. Furthermore, results of CB would be in contradiction with those of Wu and
Luo [39] if it is not proven that the stabilising action of the streaks observed by CB relies on the basic flow spanwise shear,
absent from the long-wavelength analysis in Wu and Luo [39].

The aim of the present article is therefore: (a) to compute the shape and phase speed of the most unstable linear viscous
modes living in streaky boundary layers to allow comparison with previous experimental results; (b) to analyse analogies and
differences between these modes and the well known Tollmien—Schlichting waves developing in the absence of streaks; (c) to
analyse the energy production and dissipation for the most unstable waves, elucidating the role played by the streak spanwise
shear on the stabilisation mextism; (d) to compute neutratability curves of the whole staky boundary layers therefore
quantifying for the first time the streamwise extension of tiheadt stabilising action; (e) tcheck the stabilityof subharmonic
modes, neglected in CB. This analysis enables us also to obtain the critical modes, necessary in view of the weakly nonlinear
analysis of finite amplitude waves developing in the streaky boundary.

We therefore implement a linear temporal viscous stability analysis based on the extension of the classical Orr—Sommerfeld
and Squire equations to basic flows which are non-uniform in the spanwise direction. The same kind of three-dimensional
stability analysis, summarised ISchmid and Henningson [6], has already been applied to analyse the secondary, inflectional
type, instability of streakinduced by Gértler vortices in the inviscid [43]dviscous approximation [44,45], of finite amplitude
streaks developing in Couet{d6] and Poiseuille [47] flows. We considéoth sinuous and varicose symmetries of the
perturbations for low and large amplitude streaks. Sinuous modes, however, have been found unstable only to inflectional type
instabilities for large amplitude streaks with eigenfuctions and growth rates closely matching those computed in the inviscid
approximation by Andersson et al. [26]. We therefore present only the results concerning streaks of intermediate amplitude,
stable to inflectional instélities, and discus®nly the varicose modes, the sinuous nmoteing stable for the streaks under
consideration. The linear stitity analysis of viscous wavesispanwise modulated boundary leyés thus provided here. The
streaky basic flows that we will consider result, as in Andersson et al. [26], from the nonlinear evolution of the linear spatial
optimal perturbations.

The article is organised as follows. In Section 2 we describe the streaky basic flows. In Section 3 we introduce the equations
and the parameters governing the temporal stability of the three-dimensional basic flows to viscous perturbations and briefly
recall the definition of the perturbation kinetic energy prdduc and dissipation. The numeal results are presented in
Section 4. In particular, the effect of the streak amplitudd@fithe Reynolds number on thebility and energ production and
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dissipation are described. In the sametiseove discuss the didity of the whole steaky boundary layers and the implications
for transition delay. The main results are summarised in Section 5.

2. Basicflows

Following the standard boundary layer approach, we define the reference Ieagththe corresponding Reynolds number
Re, = LUso /v, Whereb is the fluid kinematic viscosityl/ is the free-stream velocity and dimensional quantities are denoted
by . The boundary layer reference scale is defineftas (Lv/Uso)Y/2. At the streamwise statioki, a local Reynolds number
Rey = XUso/v and characteristic boundary layer reference s&gle- (Xv/Uxo)Y/2 are also defined. The streamwise, wall-
normal and spanwise variables are denat&dy, z), with corresponding velocitieg, V, W). The streamwise coordinate
and velocity component are respectively made dimensionlessintid U, while (7, z) and (V, W) are respectively made
dimensionless withy andUaRé, /2.

In the framework of the linearised boundary layer equations Andersson et al. [7] and Luchini [8] computed the optimal
perturbations that, applied at the flat plate leading edge, lead to the maximum perturbation energy at the reference downstream
distanceL. The task was not straightforward due to the non-parallel nature of the boundary layer equations and to their
singularity at the leading edge. In the laige limit, the optimal perturbations consisted in streamwise vortices and the most
amplified disturbances in streamwise streaks. In both stistéesliness and spanwise periodicity were assumed; the optimal
spanwise wavenumber, scaled&n was found to be8opt = 0.45. Due to the large growth of the streaks, however, nonlinear
terms soon come into play even for very small amplitudes obtteamwise optimal vortices. The effect of nonlinear terms is
to quasi-saturate the streamwise energy growth and to niighelys upstream the location of maximum streak amplitude.

Closely following Andersson et al. [26] and CB, we consider as basic flows zero-pressure-gradient boundary layers on a
flat plate with steady, nonlinear, spanwise periodic streaks geaebgt forcing ‘linearly-optimal’ perturbations of different
amplitudes at the leading edge. The assumed spanwise wavenumber is the optifitplen@.45. A set of nonlinear streaks
is computed following the procedure of Andersson et al. [26] in which the linear optimal velocity field, obtained in Andersson
et al. [7], is given as inflow ak = X/L = 0.4 and its nonlinear development is computed upkte= 6 by integrating the
Navier—Stokes equations with the pseudo-spectral code described in Lundbladh et al. [48]. Such a long computational domain
is obtained by following the spatial evolution of the inflow perturbations with two computational boxes. Their dimensions
and the corresponding numerical resolutions are reported in Table 1. The Reynolds number in the simulations was set to be
Re, = 185185 wherel (or X = 1) coincides with the position of optimal linear growth (see the comment below on the
Reynolds number independence of the basic flows). The first computational d@tidamtbie table) has the inlet & = 0.4,
corresponding tdRey = 74193. This first domain allows us to follow the perturbation upXte= 3. To further extend the
computations and follow the streak viscous decay, the second computational box is used. Its inflow: i2.68, corresponding
to Rey =486 750. The inflow condition is the full velocifield from the simulations with the first box.

Different indicators may be introduced to measure the streak amplitude. Tani and Komoda [17] defined the relative spanwise
variation of the local displacement thickness

max, §*(X, z) — min; §*(X, z)

Tx)= min. 8* (X, ) ’ @
with
o
5*(X,Z)=/[1—U(X,y,z)]dy. @)
0
Table 1

Dimensions of the computationdbmain and resolution for the sinations performed to generate the
streaky basic flows. The box dimensions are made dimensionless with respgcthe Blasius lenght
scale at the position of optimised linear groviRlg;, = 185 185. The spanwise extension of the domain
corresponds to one wavelength of the optimally grapétreaks and the spanwise collocation points
are extended across the full wavelength

Simulation InletRey Box dimensions{; ) Collocation points

B1 74193 1228« 21.77 x 13.97 576x 65x 32
B2 486 750 2509« 42.38 x 1397 576x 97 x 32
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Andersson et al. [26] used an indicator based on a local maximum of the streamwise velocity devi&Etigny, z) =
U(X,y,z) —Ug(X,y) from the Blasius profild/g (X, y):

1 .
AS(X)=—[maxAU(X,y,z)—mlnAU(X,y,z)], 3)
2L y.z v,z

to which they correlated the appaace of inflectional inmbilities. The hreshold amplitude was found to g = 0.26. Note

however that the analysis of the neutral conditions in Andersson et al. [26] was limited to the streak profiles extracted at the
streamwise statio = 2. During the present study it has been found that unstable subharmonic sinuous modes may occur also
for A; = 0.235. This lower critical value is obtained considering the streak at 2.75. Here, we will consider only streaks

stable to inflectional sinuousstabilities. Another indicator of the intensity of the stiks, used to optimise their linear growth

in the large Reynolds number limit [8], is given by the local integral of the streamwise velocity deviation:

1 Az 00 1/2
Ey(X)= |:A—//(AU(X,y,z))2dydz:| . 4)
Z
00

We will consider four basic flows, denoted ByB, CandD and listed in Table 2, correspomdj to four increasing amplitudes
of the upstream forcing. Cageis nothing but the Blasius boundary layer without streaks, while Baseighly represent the
limit case before secondary inflectional instabilife streamwise evdiion of streak amplitude® (X), As(X) andEy (X) is

Table 2

Streak amplituded for the computed basic flows. Ca8eorresponds
to the Blasius boundary layer. Cadg<C andD are obtained increasing
the amplitude of the upstream forcing

Case InletA Maximum Ag AgatX =2
A 0.0000 Q0000 Q0000
B 0.0618 01400 01396
C 0.0927 02018 02017
D 0.1158 02432 024317
(a) (b)
L4 ¢ 025 |
1.2 +
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Fig. 1. Streamwise evolution of the different indicators usedefine the amplitude of streaks in the computed basic flowg: (&), (b) As (X)
and (C)Ey (X).
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displayed in Fig. 1. Th& (X) andAs(X) measures are very similar and give essentially the same information. The maximum of

the streak amplitude, for both indicatdf$X) and As(X) is reached at roughl¥X = 2. The E;(X) measure is more sensitive

to the boundary layer growth and givesraximum of the sak amplitude around = 2.7, which is the station where the
maximum energy of the linear optimal streaks is attained Andersson et al. [7]. Streamwise velocity contour plots in the cross-
stream(y, z) plane are depicted in Fig. 2 for the basic flows under considerati&n=af. Note that the streaks are symmetric

about thez = 0 axis, which is situated in the low speed region. One clearly observes how the increase of the amplitude leads
to stronger variations in the boundary-layer thickness across the spanwise wavelength of the streak. The cross-plane profiles of
the wall-normaldU /9y and spanwis@U /dz streamwise velocity gradients of stre@lat X = 2 (cf. Fig. 2(c)) are reported in

Fig. 3. The maximum of the wall-normal shear is found in the near-wall high-speed region of the streak, while the maximum
spanwise velocity gradient is located in the middle of the boundary layer, in the flanks of the low-speed region.

It is worth introducing a scaling property of the cormidd nonlinear streaks whichilivbe used to perform stability
calculation of the streaky basic flows for a wide range of Reynolds numbers and related spanwise wave numbers. It is in
fact shown in Andersson et al. [26] that a streak fanbilgX, y, z), defined by the upstream amplitudg and by the spanwise
wavenumbersy, obeys the boundary layer equations and it is therefore independent of the Reynolds number. This results in a

(a) T T T T T T T T T 7 (b) T T T T T T T T T 7
! 16 . 16
5 /_\5
! 14 4
- 15V _///\\_3y
' |2 —————:
' 1! —— ———— 1
0 T ()

(@

S = N Wk 0O

Fig. 2. Contour plot of the streamwise velocity profiléy, z) at X = 2 for (a) the Blasius boundary layer (ca&g and for the streaky flows of
increasing amplitud8, C, andD (respectively (b), (c), (d)). The contours leveld,®.2, ..., 0.9,0.99 are the same in all the plots. Theand
z-coordinates are expressedig units.

(@) ————————————————7  (b) ——————————— 7
6 i 16
5 s 15
4 ! 14
37 i 137
2 I 12
10-8 -6 -4 20 2 4 6 8 10 10-8 -6 4 20 2 4 6 8 10
Z Z

Fig. 3. Contour plot of (a) the wall-normal she#y /9y and (b) the spanwise she#ly/9z at X = 2 for the streaky flowC. The contour spacing
is 0.05 in both plots. In (a) the maximum contour levels arenatlower corners (high-speed region) and correspord/ithy = 0.8. In (b) the
inner positive and negative contours correspondiligdz = +0.2. They- andz-coordinates are expressedsig units.
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scaling property that couples the streamwise and spanwise scales, implying that the same solution is valid for every combination
of X andg such that the produdt'ﬁ2 stays constant. In other words, it is possible to freely choose the local Reynolds number
pertaining to a given streak profilé(y, z) extracted at any statioki. This amounts to moving along the plate and varying the
spanwise wavenumbg so that the local spanwise wavenumisgs/so remains constant (see also Brandt et al. [49]).

3. Formulation of the stability analysis
3.1. Governing equations

The stability analysis of the streaky afiows is performed under a set of standanahplifying assumpons. The streaky
flows satisfy the boundary layer approximation according to which variations of the streamwise VélagttyX are very slow,
and the (dimensional) wall-normal and spanwise velocity comporiéraad W are very small (of ordeRe}l/Z), compared
to U. Itis therefore justified to analyse the local stability of the streaks by considering, at each streamwis& statiquarallel
flow obtained by ‘freezing’ the local streamwise velocity profil€X, 7, 7) and neglecting th& and W velocity components.
Exactly the same assumptions are made to analyse the viscous instability of the two-dimensional Blasius flow in the so called
‘parallel flow approximation’ (see, e.g., Drazin and Reid [50], the inviscid instability of streaky basic flows [43,26] and the
viscous instability of Gortlevortices [44,45]. We therefore proceed to linearise Navier—Stokes equations about the parallel
basic flow(U (X, y, z), 0, 0). In this context X must be considered as a parameter and not as the current streamwise coordinate,
which we call instead. The linearised equations for the perturbation velocity compongnts, w” and pressure’ read:

ul + vl +w, =0,

u, + Uy + Uyt + Ugw' = —ply + (1/R)\V?, )
v + Uvy = —pl, + (1/R)V?V/,
w) + Uwly = —pl + (1/R)V2w/,

where all the velocities have been rescaled viitl, and all the lengths with the local boundary layer thickn&gs The
local Reynolds number based 8g is defined byR = Uxodx /b = Re}(/z. To allow easy comparisons of the results, we also
introduce the Reynolds number based on the local displacement thickness of the Blasius boundary layer in the absence of streaks
Rs+ = 1.72R. Homogeneous Dirichlet boundary conditions:gn v" andw’ are enforced at the wall and in the free stream.
The linearised Navier—Stokes equations (5) may be reduced in a straightforward way [46,6] to a system for the wall-normal
perturbation velocity’ and the wall-normal perturbation vorticity = u/, — w/:

V20, + (UV2 + Uyy — Uyy )V + 2U20,, — (I/R)VHY — 2U wl, — 2Uy w) =0,

Xy

’ ’ 2.7 ’ / ’ 1 (6)
ne+Un — (/R)Vey — Uzvy + Uypzv' + Uyvy + Uzzw’ =0,
wherew’ may be eliminated by using the equation
w;x—l—w;Z:—n; —v;z. )

Homogeneous boundary conditions hold at the wall and in the free strearh {Qr " andw’. Solutions to the system (6) are
sought in the form of normal modes

[, ’1/, w'] = [ﬁ(y, 2),1(y,2), W(y, Z)] ei(dxfwl) +c.c, ®)

where« is the streamwise wavenumbes,the circular frequency, + +/—1 and c.c. stands for ‘complex conjugate’. The
complex phase speed is defineddoy w/a; the wave phase speed is given by the real part Ghe following system, which
extends the usual Orr—Sommerfeld—Squire formulation to parallel spanwise non-uniform basic flows, is thus obtained:

[—i0V2 +ia(UV? + U, — Uyy) + 2iaU; D, — (1/ R)V4]0 — 2ia(U. Dy + Uy,) % =0,

- ©)
[~iw +iaU — (1/R)V2]i + (Uy; — U Dy)d + (Uy D; + Uz)W =0,
with the additional identity
(D — &) = —iaf) — Dy D, 1, (10)

whereDy =9/dy, D; =9/0z andV? = Dyy + Dz — a?. Homogeneous boundary conditions hold at the wall and in the free
stream ford, 9, n andw. Eq. (10) can be used to eliminaiefrom the system (9) which can then be recast in a standard
generalised eigenvalue problem.
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Due to the spanwise periodicity of the basic flow, the following Floquet expansion may be applied to the normal modes (see,

e.g., Schmid and Henningson [6]):
D(y,2) = €vPe N g dthos iy, o) = @YPer Y gy (y) oz, 11)
k=—00 k=—o00

where gy is the spanwise wavenumber corresponding to the basic flow periodicity éthe detuning parameter, assumed
real, which ranges from 0 to/2. The modes corresponding to the special valjues0 andy = 1/2 are respectively called
fundamental and subharmonic. As the basic flow is symmetric abeu®d, the modes can be further divided into separate
classes according to their odd or even symmetry with respect to the basic flow. In particular, the fundamental modes with an odd
symmetry, usually called varicose with reference to their streamline patterns(in, theplane, admit the following expansion:

o o0
O(y,2) =) D coskBoz;  A(y,2) =Y fik(y)sinkpoz. (12)
k=0 k=1

The fundamental modes with an even symmetry, usually called sinuous, are of the form

o o
0(y,2) =) De()sinkBoz; Ay, 2) =Y fix(y) coskBoz. (13)
k=1 k=0

For subharmonic modes, the same considerations hold, except that the spanwise periodicity of the disturbances is twice that of
the basic flow. In this case the odd modes that, by extension, we still call varicose, admit the expansion

o0 o0
N - k+1 ) . . (k+1
0.2 =) k() COS(T)ﬂoz, Ay, 2) =) _ iix(y)sin <T>ﬁoz (14)
k=0 k=1
while the even modes, called sinuous, are expanded according to
o0 o0
. - C(k+1 . . k+1
Oy, 2) =Y (y)sin (T>ﬁoz; Ay, =Y k() c05<7>ﬁoz. (15)
k=1 k=0

Note that spanwise uniform perturbations are considered to be ‘fundamental’ and are therefore not considered among
subharmonic modes. Note also that the ‘varicose’ (‘sinuous’) label attributed to the subharmonic odd (even) mode is somehow
arbitrary because this mode is varicose (sinuous) with respect to-th@ axis which we arbitrarily choose in the low speed
region of the streak; it would be sinuous (varicose) with respect to the high speed region of the streak.

3.2. Numerical procedure

In order to solve the temporal eigenvalue problem, system (9) and the auxiliary equation (10), are discretised according to
the expansions (12), (13) or (14), (15) truncatedvioterms and Chebyshev expansions truncated iderms are assumed
for vy (y), 7k (y) andwy (y). The semi-infinitey domain is mapped t(), Ly) through an algebraic transform and the velocity
and vorticity fields are evaluated at the Gauss—Lobatto collocation points (see, e.g., Canuto et al. [51]). The results presented
in the following have been obtained wit¥i, + 1 = 65 collocation points in the wall normal direction angd = 32 points in
the spanwise direction. Convergence tests were performed on a few selected cases using 97 paimds4i® inz. For a set
of real streamwise wave numbersat a given Reynolds numb@, the complex eigenvalue with the largest imaginary part
was sought using an implicitly restarted Ardbiethod [52]. The results are considecathverged when a relative error below
10-9 is attained on the eigenvalues. The used numerical technique is similar to that implemented by Reddy et al. [47], except
that the products on the right-hand side of Egs. (9(a), (b)) are evaluated in physical space and not by convolution in the spanwise
spectral space and a different technique is used to sort the ¢eeigianvalue. The numerical code has been carefully validated
in the case of sinuous modes by comparing rissults obtained for large amplitudeestks (not discussed in this article) with
the inviscid results of Andersson et al. [26] and with those obtained by using the code of Reddy et al. [47] for the same basic
flow. In the case of varicose modes, the validation was obtained by recovering standard results for the two-dimensional Blasius
profile. We also checked that we obtained the same growth rates as in the direct numerical simulations of the impulse response
of the same streaky basic flows performed in CB.

3.3. Production and dissipation of the perturbation kinetic energy

Prandtl [21] used the perturbation kinetic energy égmato gain a physical understandi of the visous instability
mechanism responsible for the destahiiisn of TS waves in Blasius profiléz (y). His rationale was later extendedt@y, z)



C. Cossu, L. Brandt / European Journal of Mechanics B/Fluids 23 (2004) 815-833 823

profiles in the context of the inflectionatsondary instability of Gortler vortices (seeg., [45,53]). The basic idea is to derive
in the usual way the evolution equation for the perturbation kinetic energy dehsityu’z + V2 + u/z)/z from the linearised
Navier—Stokes equations (5). Upon integration over a wavelength in the streamwise and spanwise directions and from the wall
to infinity in the wall-normal direction, the divergence terms in the evolution equation give a zero global contribution to the
energy balance and one is left with

0E

where the following definitions hold:

1 Az 00 Ay
_ ’
_)kaz// ¢ dxdydz, a7)
00O
Az 00 Ay
_ 1 i 2 2 2
D= [ [ [ e 18)
000
1 Az 00 Ay
, L 0U
Ty_)»x)»z///( uv)ay dx dydz, (29)
00O
1 )\zOO)nx
oU
T, = —u'w')— dx dydz. 20
¢ ?»x)»z///(uw)az v (20)
00O

The quantityE is the total perturbation kinetic energh, is the viscous dissipation term given by the square of the norm of

the perturbation vorticity vecto¢’, n’, ¢’). T, and T; are the perturbation kinetic energy production terms associated with

the work of the Reynolds stresses against, respectively, the wall-normaldligay and spanwise sheaty /dz. Assuming

the normal mode expansion (8) for the perturbations, and upon integration in the streamwise direction, the terms in the energy
balance equation are easily seen to be in the fdtqD, Ty, T;) = (E, D, Ty, T;) €' with

Az 00 Az 00
~ 1 ~ 1 A
Ez—//édydz, D=—//ddydz, (21)
Az Az
00 00
}'ZOO )\100
-~ 1 aU =~ 1 oUu
Ty =— Tyy — dy dz, T,=— Tyw — dy dz, 22
? z// uv@y v ¢ )Lz././‘ ”waz v e2)
00 00

and
é=@* + 00" + 0d%),  d=2EE"+ 4" +LF)/R,
Tyy = —(@0* + 4*0), Tyw = —(@W* + a*w).
The following identity is immediately derived from Eq. (16):
7, T. D
2E  2E 2E 3
In order to evaluate the different terms entering equation (23) one has to know the eigenmode and eigenvalue corresponding
to the selected velocity profil& (y, z), Reynolds numbeR and streamwise wavenumber In the absence of errors in
the computation, the left-hand side, coming from the eigenvalue computation, and the right-hand side derived from the
corresponding mode shape, should match. However, Eq. (23) is more than an a posteriori consistency check of the eigenvalue
problem solution, it provides an insight into the viscous instability mechanism by separating the three terms which contribute
to the temporal growth rate; . A viscous instability is seen tqpaear when the work of the Reynolds stresses against the basic
shears is able to overcome viscous dissipation. In the following, Eq. (23) will therefore be used to analyse the magnitude of the
different physical contributions leading to a given growth rate.

wj
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4. Results
4.1. Role of the streak amplitude at a fixed streamwise station and Reynolds number

We begin by investigating the effect of an increasingaitr amplitude on the boundary laystability, keeping fixed the
streamwise statio and the Reynolds number. For a set of wave numbenge compute the eigenvalues having the largest
imaginary partw; pertaining to the streamwise velocity profiles of the Blasius boundary la&)eard of the streak8, C
andD prevailing atX = 2 (see Table 2). We seleBte;, = 650000 which gives, aX =2, Rey = 1300000 R = 1124 and
Rs+ = 1934. All the streaks under consideration are stable to sinuous perturbations. In Fig. 4 we display the temporal growth
rate curvesy; (o) (on the top row) and the corresponding phase speegsw, /o (on the bottom row) of varicose perturbations
of respectively fundamental (on the left column) and subharmonic type (on the right column). At the Reynolds number under
consideration the Blasius boundary layer is unstable. The effestteaks of increasing amplitude is to reduce the growth rates
of fundamental modes (streaks C) up to their complete stabilisation for caBe The fundamental modes phase speeds are
roughly unchanged with respect to the Blasius-TS waves; treegray slightly reduced as the amplitude and/or wavenumber is
increased. The fundamental varicose mode therefore appears to be a sort of ‘continuation’ of the two-dimensional Blasius-TS
waves into three-dimensional streaky-TS waves (see also Ustinov [54]).

Subharmonic modes exhibit growth rates which are an order of magnitude smaller than their fundamental counterparts
except for streal® which is stable to fundamental perturbations but is slightly unstable to subharmonic perturbations (this is
however a very special case, as will be seen in the following). The subharmonic-mode phase speeds may differ up to 25% from
the Blasius-TS phase speeds and they follow an opposite trend since they decrease for increasing wave numbers. The effect of
increasing amplitude is not morwte; the low amplitude stredkis stable while streak€ andD are unstable, but stredkis
less unstable than stre@k

In Fig. 5 we display themsvelocity amplitudesii(y, z)|, |0(y, z)| and|w(y, z)| of the most unstable varicose fundamental
and subharmonic modes of stre@KThe contours of the basic flow velocity(y, z) = ¢, corresponding to the phase speed of
the mode, and/ (y, z) = 0.99U«, denoting the boundary layer thickness have also been included for reference. Fundamental
and subharmonic modes have quite different structures, but for both, most of the energy is in the streamwise camfimment
fundamental mode displays|al double-peaked structure concentrated in the low-speed and near the high-speed region: The
wall normal profile in the low-speed region has the M-shaped structure observed by Tani and Komoda [17] and Kachanov and
Tararykin [18]. The spanwise componédii| is mainly localised in the two regions below the position of maximum spanwise
shear|dU/dz| (see Fig. 3) and attains its maximum amplitude on the line whEne z) = ¢,. The |0|-component attains its
largest values in the low-speed region, it is smaller tidgand it protrudes further away from the wall, as for Blasius-TS waves.
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Fig. 4. Growth ratew; (top row) and corresponding real phase spge¢bottom row) versus streamwise wavenumbesf fundamental (left
column) and subharmonic (right colujnmodes for the Blasius boundary lay®and the streaky flowB, CandDat X = 2 for R = 1124.
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Fig. 5.Rmsamplitudes of thei(y, z) (top), ¥(y, z) (middle) andw(y, z) (bottom) components of the most unstable varicose fundamental (left)
and subharmonic (right) modes for the stré&xprofile extracted ak = 2 with R = 1124. The whole mode has been normalised wifax and

the contour levels are spaced hfinax for i, 0.0Limax for  and Q02imax for w. The maximum contour levels areémax for i, 0.12imax

and 004iimax for the wall-normal velocity of the fundamental and sutphanic mode respectively, while the peak contour fordtheomponent

has the value Q2iimax for the fundamental mode and2®imax for the subharmonic. The contouts= ¢, andU = 0.99U, represented by
dashed lines of the corresponding basic flows have also been included.

Table 3

Norms of the first spanwise harmonigg(y), #1(y), a2(y) of the
i(y, z) most unstable varicose fundamental modes of stréaks C
andDwith the same parameters as in Figs. 4 and 5

Case lioll llill ll2ll

A 1.000 Q000 Q000
B 1.000 0404 Q157
C 1.000 0548 Q307
D 1.000 0628 0421

The subharmonic mode displayg:g single-peaked structure concentrated in the low-speed region, jHils localised in
the high-speed regiomy| is smaller tharjii| and|w]|, it protrudes further away from the wall and has two peaks situated in the
flanks of the low-speed region. All the componenitshe mode reach their maximum amplitude on they, z) = ¢, line.
To give an idea of the level of three-dimensionality of tireaky-TS fundamental modese document in Table 3 the norms
g |l = [f0°° |ﬁk|2dy]1/2 (k =0, 1, 2) of the spanwise uniform paiity of the mode and of the first two spanwise harmori¢s
andiiz. The most unstable mode of the Blasius profile (o&sis two-dimensional, and therefore there is no energy in the first
two spanwise harmonics. For the streaky basic flows, however, the modes are truly three-dimensional: For increasing streak
amplitudes, the sum of the energies contained@jimndiio may exceed the energy containedig With this in mind we can
now analyse the shapes |@fy(y)|, |i1(y)| and|i2(y)|, plotted in Fig. 6. The spanwise oscillating paliig(y)| and |i2(y)|
keep a fairly constant shape even if their amplitude increases with streak amplitude, as documented above. On the contrary, the
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Fig. 6. Wall-normal distribution of: (a) the spanwise ipgadent, (b) the first and (che second harmonics of thecomponent for the
fundamental varicose modes considered in Fig. 4.jTheordinate is expressed dy units.

spanwise uniform patfig(y)| changes its shape. A local ‘minimum’ appears at the position of maximum amplitude(ef|
and|i2(y)|. This minimum deepens as the streak amplitude increases. For the streak of largest amplitude a local minimum is
seen to appear also in the first harmonic.

4.2. Analysis of the stabilisation mechanism

To gain physical insight into the mechanisms responsible for the observed reduction of the growth rates of the fundamental
mode, we report in Table 4 the different terms entering equation (23). These are evaluated for the wave numbers leading to the
maximum growth, i.e. at the peak of the(«) curves in the top left of Fig. 4. The relative difference between the imaginary part
of the computed eigenvalue, on the left-hand side, and the sum of the terms on the right-hand side of (23) was found to be below
4%. The instability of the Bsius boundary layer (cag9 must be ascribed, as already well known, to the excess of kinetic
energy productiorfy, over the viscous dissipatial. As the Blasius profile is two-dimensional, the spanwise sh&adz is
zero and therefore there is no contribution fr@m For streaky flow profiles, however, the teffn comes into play and it is
stabilising. The absoletvalue of the normalised productiondadissipation terms is seen ta@imease with streak amplitude but
the stabilising contributiOt(lTZ D)/2E grows more than the destabilising contrlbut[liﬁ/ZE thereby ultimately leading to
stability. The negatie production terrrTZ/ZE is of the same order of magnitude as the dissipation tBlytﬁE and therefore
it plays an essential role in the stabilisation process. Thus, an asymptotic analysis like the one in Wu and Luo [39] may not be
extended to the presently considered streaks. Our results show, in fact, that by not considering the effect of the spanwise shear,
streaky-TS waves more unstable than Blasius-TS waves are predicted.

A sample distribution of Reynolds stresses is given in Fig. 7 for the most unstable fundamental mode . Skresk;,
term (Fig. 7(a)) is concentrated in the low-speed region of the underlying streak and it is positivez,whilEig. 7(b)) is
localised on the flanks of the low-speed region and it is antisymmetric with respect 4o=tlleaxis. The distribution of the
corresponding induced production terms and of the viscous dissipation term are displayed in Fig. 8. The Reynofis stress
and the wall-normal she@U /dy having the same symmetry and the same sign almost everywhere (see Fig. 3), their product
gives a dominating positive contribution 1§ (Fig. 8(a)). The kinetic energy production is localised in the low-speed region, as
one would also expect from quasi-two-dimensional local analysis. On the other hand, the Reynoldg,sta@eskthe spanwise
sheardU/dz have the same symmetry but opposite sign therefore leading to the negative production distribution in Fig. 8(b),
and to the stabilising contribution df;. The kinetic energy negative production is localised on the flanks of the low-speed

Table 4
Maximum growth rates and normalised kinetic enepggduction and dissipation components pertaining to
the varicose fundamental modes for the streaks considered in Fig. 4

Case o; max x 103 Ty/2E x 10° T./2E x 103 D/2E x 10°

A 3.88491213 604493 0 2.617424
B 2.55295653 P995469 —2.9446254 45003829
C 1.1108635 1504101 —5.0824684 6316075
D —0.209021 13902289 —6.267457 78822505
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Fig. 7. Normalised Reynolds stresses £a)(y, z)/ZE and (b)T,w (v, z)/ZE pertaining to strealC at X = 2, R = 1124, fora = 0.122. The
contour spacing is.002imax. Dashed lines indicate negative values.
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Fig. 8. Normalised production of perturbation kinetic energy(aXaU/ay)/|Ty|, (b) tuw (3U/9z)/IT;, and (c) dissipatiod/|D| pertaining
to most unstable fundamental mode of str€aét X =2, R = 1124,a = 0.122. The contour spacing is@®. Dashed lines indicate negative
values.

region and may not be accounted for by quasi-two-dimensional loca) @malyses. The viscous dissipation, represented in
Fig. 8(c), is essentially concentrated very near the wall in the region of highest wall-normal shear. A local maximum of lower
intensity can be observed in the low-speed region, in the area of highest positive production.

4.3. Influence of viscosity on the streak temporal ifitslat fixed streakamplitude and stmwise station

In order to analyse the influence of viscosity on the jeral stability of the streakypoundary layer profiles, we now
consider the effect of varying the reference Reynolds nursgr, and therefore the local Reynolds numbierfor a fixed
streak amplitude (strea®) at a fixed streamwise statioX (= 2). The increase iR amounts to changing the spanwise scale
of the upstream disturbance so that the local spanwise scale prevaillhg=& is attained at increasing distances from the
leading edge. Sinuous modes are stable for this profile. The results concerning the varicose modes are presented in Fig. 9,
where the curves; (a, R) of the fundamental (Fig. 9(a)) and subharmonic (Fig. 9(b)) modes are displayed. For the profile
under consideration the critical Reynolds number is found t& be734, i.e. more than twice the critical Reynolds number of
the Blasius boundary layer in the absence of stre&ks 804). The critical mode is the fundamental. Except for a very small



828 C. Cossu, L. Brandt / European Journal of Mechanics B/Fluids 23 (2004) 815-833

T T T T T T 0.16 T T T T 0.16

@ 0.14 ®) 0.14

0.12 0.12

:< 0.1 o 0.1 o

0.08 Q 0.08

0.06 0.06

. : : . . : 0.04 . . : : 0.04

400 600 800 1000 1200 1400 1600 1800

R

400 600 800 1000 1200 1400 1600 1800

R
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Fig. 10. Neutral stability curves of (a) the fundamental varicased (b) subharmonic varicose modes as a function of the streamwise
wavenumber and the local Reynolds numbgrfor the Blasius profile (cas8) and streak®, C, andD (outermost to inner curves) extracted
at X = 2. Subharmonic modes of streBlprofiles are stable in the considered Reynolds number range.

region in the parameter plane (roughly< 0.07 andR > 1100), the subharmonic varicose modes become unstable at larger
Reynolds numbers and their growth rates are smaller than those of the fundamental modes. In principle, intermediate values
of the detuning parameter should also be examined. However, previous results (see, e.g., [25,26]) show a monotonic behaviour
with the Floguet exponent so that the fundamental afdharmonic modes can be seen as the limiting cases.

To compare the combined effects of viscosity and streak amplitude at Xix@ee repeated the calculations for the other
streak profiles ak = 2. In Figs. 10(a) and 10(b) we display, respectively, the varicose fundamental and subharmonic neutral
curves pertaining to each stredle effect of increasing streak amplitude isilay the instability ofthe fundamental modes,
as expected from the results in the previous section (see Fig. 4). The outermost neutral curve shown on the left of Fig. 10 is the
well-known neutral curve of the Blasius boundary layer (caseith a critical Reynolds numbek = 304). The neutral curves
corresponding to streakd mcreasing amplitud®, C andD are regularly ordered from outer to inner. The largest amplitude
profile, the one corresponding to strdakis able to delay the instability up ® ~ 1270. The amplitude effect on subharmonic
modes, as also seen in the previous section, is not monoton@gti@D profiles exhibit essentially the same critical Reynolds
number,R ~ 1100.

It is important to note that the neutral curves presented in Fig. 10oaed neutral curves corresponding to the velocity

profiles prevailing ak = 2. The variation ofR = Ré(/z = (XRe)1/2 has been obtained through a variatiorRef, at fixed X,
i.e. through a variation of the spanwise scale at the inleexpjoiting the scaling propty introduced in Section 2.

4.4. Staliity along the steaky boundary layer

We now consider the stdity of a streakyboundary layer by examining the propertidsts profiles at different streamwise
stationsX. For the selected we choose a range of local Reynolds numi®eand compute the growth rates(«; R, X).
The maximum growth rate; max(R, X) is obtained by maximising; over« for eachR and X. The results pertaining to the
varicose modes of stredk which is the one of largest allowed amplitude brefthe onset of sinuous iefttional ingabilities,
are documented in Fig. 11. From the previous sections we know that, for the Reynolds numbers under consideration, the effect
of increasingRr is destabilising. This is confirmed by the analysis of Fig. 11, where it is seen that, for a conistanincrease
in R leads to instability and themtan increase of the maximum growth ratelie unstable region for both fundamental and
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Fig. 11. Maximum growth rate; max Of (a) varicose fundamental and (b) subharmonic modes pertaining to Btesak function of streamwise
station X and local Reynolds numbek. Contour levels are O (thick line), 2 1074, 4 x 1074, 6 x 1074, ... The dashed lines represent
physically realizable streaks R, =2 x 10°, 4 x 10°, ..., 10P

subharmonic modes. The coordin&tedescribes the downstream evolution of the streaks and, as a consequence, its effect on
the variation of the flow stability featurés closely related to the éal streak amplitude. Congeng the fundamental modes,

we have shown that an increasing streak amplitude is stabilising. The maximum amplitude oDsiBesitained roughly at

X =2 whenT or Ay are used as measures of the streak amplitude and rougily=a®.5, whenEy; is used (see Fig. 1).

The former measure seems to better account for the effecteeddtteak amplitude on the boumgdayer stability; in fact,
upstream of the peak amplitud® « 2.5), we observe that increasirdg at constant® is stabilising since aX increases the

streak amplitude also increases. Downstream of the peak amplituge2(5), whenX increases the streak amplitude decreases
therefore leading to an increase of the growth rates. Subharmonic modes exhibit growth rates generally lower than those of the
fundamental modes.

A streaky boundary layer obtained in an experiment or in a numerical simulation sees the same viscosity and free-
stream velocity at each streamwise statiin Physically realizable streaks areethfore obtained at fixed reference
Reynolds numbeReg . Along a ‘physical streak’ the local Reynolds number is given by (ReLX)l/Z, whereRe; is
a constant. To visualise the stability properties of physicadlglizable streaks, dasheddm corresponding to streaks at
Re, =200000400000Q...,1000000 are introduced on Fig. 11. Asincreases, the local Reynolds numialso increases
so that the effects of varyingd and R on the stability are coupled. In particulan the part of the streak which is upstream
of its maximum amplitude, the destabilising role of increasih@gnd the stabilising role of increasirg are in competition.
Assuming, for instanceRe;, = 200000, streald is stable up taX = 3.95, corresponding t&® ~ 880, to both varicose and
subharmonic modes. FBg;, = 500000 a pocket of ingdlity to both varicose and subhaomic modes appears in the upstream
part of the streak (roughl¥ < 1.5) where the streak amplitude is not large enotgygbounterbalance the destabilising effect of
the Reynolds numbeRr. In the range B < X < 2.7 the stabilising effect of the streak amplitude dominates, but eventually, for
X > 2.7, at roughlyR = 1160, fundamental modes become unstable again.

The computations have been repeated for the others streaky basic flows; the corresponding neutral curves are displayed in
Fig. 12. As expected, stredkis the most effective in delayinthe instability. Thefundamental-mode mgral curve for the
lowest amplitude streak is very close to the neutral curve of the Blasius boundary layer, which becomes urigtatdéfor
all X. It can be seen that for all the streaks under conatdar the maximum amplitude profile, prevailingXts 2.5, may be
stable for quite large values & (e.g.R = 1270 for strealD). However, the stability of a physilta realizable streak, obtained
following one of the dashed lines in the plot, may be obtained only up to I&weues (e.gR = 880 for streakD) because in
the upstream part of the streak the amplitude is not langeigh to counterbalance the destabilising increase. dthis effect
is particularly strong for the streaks we consider here becasstheir growth is optimised, they have, upstream of their peak
value, amplitudes that are generally lower than for other possible non-optimal streaks. It should in fact be observed that if the
upstream vortices are induced using wallighness elements or blowing-suction sltteir amplitude evolution would not be
the same as for the optimal perturbations used here (see, e.g., [20]).
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Fig. 12. Neutral stability curves for (a) fundamental varicase (b) subharmonic varicose meder the Blasius boundary layérand the
streaksB, CandD as a function of streamwise statighand local Reynolds numbe&. The dashed lines represent picgdly realizable streaks
atRe, =2 x 10°,4 x 10°, ..., 10P.

4.5. Implications for transition delay

Most of ‘open-loop’ transitia delay methods rely on the suppression or rédnmf the exponential growth of the unstable
waves in the linear regime, obtained for instance by enforcing favourable pressure gradients, through wall suction, fluid heating
or cooling, etc. The forcing of steady streaks in a flat plate boundary layer might be as effective as other methods in delaying
transition. A clear advantage of this scheme is the fact that the ‘actuators’ modifying the basic flow stability behaviour can be
placed upstream of the unstable region and presumably require little energy because the streak extracts its energy from the basic
flow itself through the ‘lift-up’ effect. In the previous section we have shown that for stPatls possible to delay the onset
of instability up toR above 850 (corresponding Ry« above 1450 an&key above 720000) by choosirfge, = 200000. For
largestRe, a pocket of instability appears in the upstream part of the streak, which is however followed by a large region of
stable flow.

To allow a quantitative comparison withhatr transition delay methodthe computation of spatial growth rates would be
necessary to estimate the total growths at fixed real frequency (the so edtetbrs used in the’® method). Further, a
complete analysis of the possible transition delay would also require a parametric study of the spanwise waygofithieer
streaks. The wavelength of optimal spatial growth is not necessarily optimal for the stabilisation process investigated here, and,
in fact, one may expect that streaks of larger wave numbers, thus associated with stronger spanwise gradients, have a stronger
stabilising effect. Such a parametric stugyot attempted in this article since tbemputation of a number of streaky boundary
layers with different spanwise wave numbers and amplitudes is still a formidable task. The aim of the paper is to show the high
potentiality of spanwise modulated flowsdelay viscous insthilities and give a physical explanation for it. We believe that
an experimental study is now more adequate to explore the effect of the wavengrahdrestimate the spatial growth rate
reductions.

However, by considering the temporal growth rates and computing the group velocities from the results obtained (see Fig. 4),
itis possible, using Gaster’s transformation, to roughly estimate the spatial growth rates from the temporal results [55]. It can be
shown that large reductions of the growth rates are attained both in the pocket of instability observe andwownstream
of the neutral curves. For the fundamentalisase instability, the estimated growth ra@re less than half of those pertaining
to the two-dimensional boundary layer, while the growth rates of the subharmonic modes are about 1% of those of the Blasius
profile.

To evaluate the performance of the proposed control strategy one must also evaluate the energy used in the generation of the
streaks and the energy loss due to the presence of the streaks in the boundary layer. No external energy is needed to generate the
streaks if passive methods, like vortex generators or roughness elements, are used. If instead the streaks are induced by active
methods, like blowing and suction at the wall, the energy usedtilhhe considered negligibleecause the ‘lift-up’ effect acts
as an amplifier of the actuator energy. Typically the lift-up gain is of oR¥gr in the linear approximation. On the other hand,
the skin friction coefficienC ; pertaining to theB, C andD basic flows is larger than that of the Blasius two-dimensional
boundary layer. Th€ ; increase is due to the spanwise uniform part of the basic flow distortion induced by the streaks through
nonlinear effects. These lead to ‘fuller’ velocity profiles (see CB) and to larger shear at the wall. On Fig. 13 we display the



C. Cossu, L. Brandt / European Journal of Mechanics B/Fluids 23 (2004) 815-833 831

0.8
0.78 D
0.76
Q
Tx 074t N
&
. 072t
Q
07t ——— B |
0.68 |
A
0.66
05 1 15 2 25 3 35 4 45 5

X

Fig. 13. Streamwise evolution of normalised skin friction coeffici@gz\Rei(/2 for the Blasius boundary layérand for streaky boundary layers
B, CandD.

streamwise evolution of normalised skin friction coefficiér}tRei(/2 for the Blasius boundary layex and the streaks under
consideration. The skin friction coefficient increases at worst by less than 20% when compared to the Blasius case.

5. Conclusions

The linear viscous stability of thboundary layer on a flalgie in the presence of nonlinestreamwise streaks assumed
steady and spanwise periodic has been analysed by means of Floguet theory. The main results of the present study can be
summarised as follows.

The most unstable waves are modified by the presence of the streaks: They evolve from two-dimensional TS waves into
three-dimensional varicose fundamental modes, here called ‘streaky-TS waves'. The latter have almost identical phase speed
but lower growth rates than the TS waves and a characteristic M-shaped structure whsthreamwise velocity amplitude.

These results are in agreement with previous experimental investigations (cf. [17,18]).

The analysis of the growth rates of the streaky-TS waves confirms the stabilising effect of steady streaks on the viscous
instability [18,41] and that this stabilising effect increases with the streak amplitude.

A physical explanation for the observessilisation is provided Y considering the kinetic energy production for the most
unstable waves. The viscous instability is, in the presence of the streaks, fed by the work:ofRlegnolds stress against
the wall normal shea#U/dy, just as in the two-dimensional boundary layer. However, the work ofi thdRkeynolds stresses
against the spanwise shedy /97 is stabilising. This stabilising contribution and the viscous dissipation increase with the streak
amplitude, thereby reducing the growth rate and eventually leading to stability.

Results for the varicose subharmonic modes are presented: these modes are also found to be unstable but they have growth
rates which typically are an order of magnitude lower than those of fundamental modes. For the family of intermediate-
amplitude streaks considered in the present study, sinuous modes are always stable.

The possible relevance of etik stabilisation for applicaths in boundary layer transition delay has also been discussed. The
efficiency of the generation of the streaks, the fact that the actuators do not need to cover all the unstable domain, and the large
displacement of the neutral bility curves are seen as very promising trendsidilar control strategy has been suggested in
order to delay cross-flow instabilitp swept wing boundary layers [56,57].

Our results may probably be related also to the observed average reduction of the growth of small amplitude TS waves
developing in a boundary layer exposed to free-stream turbulence [38]. In this case however, the streaks are unsteady, so that
further investigations seem necessary in order to assess the importance of this additional factor and whether the stabilising effect
of steady streaks can contrast the destibilising effect of free-stream turbulence.
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