54. On Topological Characterizations of Complex Projective Spaces and Affine Linear Spaces

By Takao Fujita
Department of Mathematics, College of General Education, University of Tokyo
(Communicated by Kunihiko Kodaira, m. J. A., May 12, 1980)

In § 1 we present several conjectures. In § 2 we give partial answers to them. In $\S 3$ we discuss remaining problems.
§ 1. Conjectures. Conjecture $\left(A_{n}\right)$. Let U be a complex manifold of dimension n with the homotopy type of a point. Suppose that there is a Kähler smooth compactification M of U such that $D=M-U$ is a smooth divisor on M. Then U is isomorphic to an affine linear space \boldsymbol{A}^{n}.

Remark 1. The smoothness of D is the essential assumption. Without it, U need not be A^{n} (see [12]).

In § 2 we reduce $\left(A_{n}\right)$ to the following
Conjecture $\left(\boldsymbol{B}_{n}\right)$, Let M be a compact complex manifold with $\operatorname{dim} M=n$ and let D be a smooth ample divisor on M. Suppose that the natural homomorphism $H_{p}(D ; \boldsymbol{Z}) \rightarrow H_{p}(M ; Z)$ is bijective for $0 \leqq p$ $\leqq 2 n-2$. Then $M \cong P^{n}$ and D is a hyperplane section on it.

Remark 2. An affirmative answer to (B_{n}) would solve the question of [5] (4.15) and give a sharpened form of Proposition V in [13]. See also § 2, Corollary 3.

In § 2 we reduce (B_{n}) to the following
Conjecture $\left(C_{n}\right)$. Let M be a projective complex manifold such that the cohomology ring $H^{\cdot}(M ; Z)$ is isomorphic to $H^{\cdot}\left(\boldsymbol{P}^{n} ; \boldsymbol{Z}\right)$ $\cong Z[x] /\left(x^{n+1}\right)$. Suppose further that $c_{1}(M)$ is positive. Then $M \cong \boldsymbol{P}^{n}$.

Remark 3. It is well known that any projective manifold homeomorphic to \boldsymbol{P}^{n} is holomorphically isomorphic to \boldsymbol{P}^{n}, provided that c_{1} is positive. Moreover, the positivity assumption on c_{1} is not necessary if n is odd (see [8] and [11]). The proof depends on the theory of Pontrjagin classes.

Remark 4. (C_{n}) would not be true without the assumption on the ring structure. Indeed, any odd dimensional hyperquadric has a cohomology group isomorphic to that of \boldsymbol{P}^{n}.
§ 2. Partial answers. Theorem 1. Conjecture C_{n} is true for $n \leqq 5$.

We give an outline of our proof for the case $n=5$. In view of the isomorphism $H^{\cdot}(M ; Z) \cong H^{\cdot}\left(\boldsymbol{P}^{n} ; Z\right)$, we regard the Chern classes
$\left\{c_{i}\right\}$ of M as integers. First we have $c_{5}=6 . \quad c_{1}$ is a positive integer by assumption. Moreover, $M \cong P^{5}$ if $c_{1} \geqq 6$ (see [10] or [4]). So we may assume $5 \geqq c_{1} \geqq 1$.

Let L be the ample generator of $\operatorname{Pic}(M) \cong H^{2}(M ; Z) \cong Z$. Write down explicitly the Riemann-Roch-Hirzebruch formulae (see [7]) for $\chi\left(M, \mathcal{O}_{M}[t L]\right), \chi(M, \Omega[t L])$ and $\chi(M, \Theta[t L])$, where Ω is the sheaf of holomorphic 1-forms and Θ is the sheaf of holomorphic vector fields on M. Since $\chi(M, t L)$ is an integer for any $t \in Z$, we infer that c_{1} is even. Hence we should consider the cases $c_{1}=2$ or 4 .

In case $c_{1}=2$, the equations among $\left\{c_{j}\right\}$ derived from $\chi\left(M, \mathcal{O}_{M}\right)=1$ and $\chi(M, \Omega)=-1$ imply that $c_{4}=45$ and $3 c_{2}^{2}-4 c_{2}+2 c_{3}=765$. On the other hand, $\chi(M, L) \in Z$ and $\chi(M, \Theta[-L]) \in Z$ imply $-1 \equiv c_{2} \equiv c_{3}$ $+7 \bmod 12$. This is not consistent with the above equation.

In case $c_{1}=4$, we have $\chi\left(M, \mathcal{O}_{M}[t L]\right)=0$ for $t=-1,-2$ and -3 . Using this, we can derive a contradiction by a similar method as above.

The proofs in the cases $n \leqq 4$ are similar and simpler. Q.E.D.
Remark 5. In case $c_{1}=n-1$, we can also use the theory of Del Pezzo manifolds in order to derive a contradiction (cf. [3] or [6]).

Theorem 2. Suppose that (M, D) satisfies the hypothesis of Conjecture B_{n}. Then $H^{\cdot}(M ; Z) \cong H^{\cdot}\left(\mathbf{P}^{n} ; Z\right)$ and $H^{\cdot}(D ; Z) \cong H^{\cdot}\left(P^{n-1} ; Z\right)$ as graded rings. Moreover, $[D]$ generates $\operatorname{Pic}(M)$ and both $c_{1}(M)$ and $c_{1}(D)$ are positive.

Proof (mostly due to Sommese [13], Proposition V). Let $f: D \rightarrow M$ be the inclusion. $f^{*}: H^{p}(M ; \boldsymbol{Z}) \rightarrow H^{p}(D ; \boldsymbol{Z})$ is bijective for $0 \leqq p \leqq 2 n-\mathbf{2}$ since $f_{*}: H_{p}(D ; Z) \rightarrow H_{p}(M ; \boldsymbol{Z})$ is so. We have $H_{p}(D ; Z) \cong H^{2 n-2-p}(D ; Z)$ and $H_{p}(M ; \boldsymbol{Z}) \cong H^{2 n-p}(M ; \boldsymbol{Z})$ by the Poincaré duality. Hence f_{*} induces a bijection $f^{\prime}: H^{q}(D ; Z) \rightarrow H^{q+2}(M ; Z)$ for $0 \leqq q \leqq 2 n-2$. Putting $\alpha=c_{1}([D]) \in H^{2}(M ; Z)$, we see $f^{\prime} \circ f^{*}(x)=x \wedge \alpha$ for any $x \in H^{\cdot}(M ; Z)$. So the bijectivity of f^{\prime} and f^{*} implies that α^{k} generates $H^{2 k}(M ; \boldsymbol{Z}) \cong \boldsymbol{Z}$ for any $0 \leqq k \leqq n$. In particular we have $\alpha^{n}=1$ in $H^{2 n}(M)$.

Assume that $b_{1}(M)>0$. Then the Albanese mapping $\pi: M \rightarrow \mathrm{Alb}(M)$ is non-trivial. On the other hand, $H^{2}(M ; Z) \cong Z$ implies that $H^{2,0}(M)$ $=H^{0}\left(M, \Omega^{2}\right)=0$. Hence $\pi(M)$ is a curve, since otherwise $\pi^{*} \psi \neq 0$ for some holomorphic 2-form ψ on $\operatorname{Alb}(M)$ (see [14], p. 116). A fiber of π is an effective divisor on M which is not ample. This is impossible since $H^{2}(M ; Z) \cong Z$. This contradiction proves $b_{1}(M)=0$.

Now we have $H^{1}(M ; Z)=0$ since it is torsion free. In view of the bijections f^{\prime} and f^{*}, we infer that $H^{p}(M ; \boldsymbol{Z})=0$ for any odd p. Thus we obtain a ring isomorphism $H^{\cdot}(M ; Z) \cong H^{\cdot}\left(\boldsymbol{P}^{n} ; Z\right)$. Moreover, Pic (M) $\cong H^{2}(M ; Z)$ because $h^{0,1}(M)=h^{0,2}(M)=0$, and $\operatorname{Pic}(M)$ is generated by $[D]$. Using f^{*}, we see $H^{\cdot}(D ; \boldsymbol{Z}) \cong H^{\cdot}\left(\boldsymbol{P}^{n-1} ; \boldsymbol{Z}\right)$.

Assume that $c_{1}(M) \leqq 0$. Then the canonical bundle K of M is a non-negative multiple of $[D] \in \operatorname{Pic}(M)$. But $h^{0}(M, K)=h^{n, 0}(M)=0$ since
$H^{n}(M ; \boldsymbol{Z}) \cong H^{n}\left(\boldsymbol{P}^{n} ; \boldsymbol{Z}\right)$. This contradiction proves that $c_{1}(M)>0$. Hence $c_{1}(D)=c_{1}(M)-1 \geqq 0 . \quad h^{n-1,0}(D)=0$ implies $c_{1}(D) \neq 0$. So we have $c_{1}(D)>0$.
Q.E.D.

Corollary 1. $\left(C_{n}\right)$ implies $\left(B_{n}\right)$ and $\left(B_{n+1}\right)$.
Corollary 2. Conjecture B_{n} is true for $n \leqq 6$.
Corollary 3. Let $f: M \rightarrow S$ be a surjective holomorphic mapping between compact complex manifolds and let A be a smooth ample divisor on M such that the restriction $f_{A}: A \rightarrow S$ of f is everywhere of maximal rank. Suppose that $\operatorname{dim} M \leqq 2 \operatorname{dim} S+1$ and $\operatorname{dim} M \leqq \operatorname{dim} S$ +6 . Then both f and f_{A} are fiber bundles with fibers being isomorphic to projective spaces.

For a proof, use [13] Proposition V and [5], (4.9).
Theorem 3. Let U, M and D be as in Conjecture A_{n}. Then (M, D) satisfies the hypothesis of Conjecture B_{n}.

Proof. By the Lefschetz duality we have $H_{p}(M, D ; Z) \cong H^{2 n-p}(U ; Z)$ $=0$ for $p \leqq 2 n-1$. Hence, the long homology exact sequence proves $H_{p}(D ; Z) \cong H_{p}(M ; Z)$ for $p \leqq 2 n-2$. This implies, as in Theorem 2, that $H^{2}(M ; Z)$ is generated by $c_{1}([D])$. On the other hand M is Kähler. Therefore D is ample since any Kähler class of M is a positive multiple of $c_{1}([D])$.

Corollary 4. (B_{n}) implies $\left(A_{n}\right)$.
Corollary 5. Conjecture A_{n} is true for $n \leqq 6$.
Remark. Actually, we used only $H^{q}(U ; Z)=0$, and not $\pi_{i}(U)=0$.
§3. Comments. (3.1) It is doubtful if the computational method as in Theorem 1 works in higher dimensional cases. However, this method might work in (B_{n}) even though it doesn't in (C_{n-1}). So the first non-solved case is $\left(B_{7}\right)$.
(3.2) Without the assumption $c_{1}(M)>0,\left(C_{n}\right)$ might not be true. But, so far as I know, there is no counter-example. I suspect that there will be only few types of such manifolds. In particular, n might be necessarily even.
(3.3) Combining the results of Yau [15] and Kobayashi [9], we infer that $c_{1}(M)>0$ implies $\pi_{1}(M)=0$. So we may assume that M is simply connected in $\left(A_{n}\right)$, $\left(B_{n}\right)$ and $\left(C_{n}\right)$. Hence the rational homotopy type of M is same to that of P^{n} (cf. [2]). Does this imply that M is homeomorphic to \boldsymbol{P}^{n} ? If yes, then our conjectures are solved.
(3.4) In positive characteristic cases we can formulate analogues of $\left(A_{n}\right),\left(B_{n}\right)$ and (C_{n}) in terms of Chow rings and some cohomology theory. However, I have no answer except trivial cases. One of the main difficulties is the lack of vanishing theorems of Kodaira type.

References

[1] L. Brenton and J. Morrow: Compactifying C^{n}. Several complex variables (Proc. Symp. Pure Math., 30, Part 1), pp. 241-246, Amer. Math. Soc. (1977).
[2] P. Deligne, P. Griffiths, J. Morgan, and D. Sullivan: Real homotopy theory of Kähler manifolds. Invent. Math., 29, 245-274 (1975).
[3] T. Fujita: On 4 -genera of polarized varieties. Master Thesis, Univ. of Tokyo (1974) (in Japanese).
[4] -: On the structure of polarized varieties with Δ-genera zero. J. Fac. Sci. Univ. of Tokyo, 22, 103-115 (1975).
[5] -: On the hyperplane section principle of Lefschetz. J. Math. Soc. Japan, 32, 153-169 (1980).
[6] -: On the structure of polarized manifolds with total deficiency one. Parts I and III (in preparation).
[7] F. Hirzebruch: Neue Topologische Methoden in der Algebraische Geometrie. Berlin, Springer (1962).
[8] F. Hirzebruch and K. Kodaira: On the complex projective spaces. J. Math. Pure Appl., 36, 201-216 (1957).
[9] S. Kobayashi: On compact Kähler manifolds with positive definite Ricci Tensor. Ann. of Math., 74, 570-574 (1961).
[10] S. Kobayashi and T. Ochiai: Characterizations of complex projective spaces and hyperquadrics. J. Math. Kyoto Univ., 13, 31-47 (1973).
[11] J. Morrow: A survey of some results on complex Kähler manifolds. Global Analysis. (Papers in honor of Kodaira) pp. 315-324, Univ. of Tokyo Press (1969).
[12] C. P. Ramanujam: A topological characterization of the affine plane as an algebraic variety. Ann. of Math., 94, 69-88 (1971).
[13] A. J. Sommese: On manifolds that cannot be ample divisors. Math. Ann., 221, 55-72 (1976).
[14] K. Ueno: Classification theory of algebraic varieties and compact complex spaces. Lect. Notes in Math., vol. 439, Springer (1975).
[15] S. T. Yau: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampere equation. I. Comm. Pure Appl. Math., 31, 340412 (1978).

