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Abstract—In this paper, we study gradient-like flows without heteroclinic intersections on an
n-sphere up to topological conjugacy. We prove that such a flow is completely defined by a
bicolor tree corresponding to a skeleton formed by codimension one separatrices. Moreover, we
show that such a tree is a complete invariant for these flows with respect to the topological
equivalence also. This result implies that for these flows with the same (up to a change
of coordinates) partitions into trajectories, the partitions for elements, composing isotopies
connecting time-one shifts of these flows with the identity map, also coincide. This phenomenon
strongly contrasts with the situation for flows with periodic orbits and connections, where
one class of equivalence contains continuum classes of conjugacy. In addition, we realize every
connected bicolor tree by a gradient-like flow without heteroclinic intersections on the n-sphere.
In addition, we present a linear-time algorithm on the number of vertices for distinguishing these
trees.
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1. INTRODUCTION

It is well known that the Morse functions exist on any manifolds and, hence, there exist gradient
flows. Generically, they are structurally stable and the dynamics of such systems is a basis for
the class of gradient-like flows, i.e., flows whose nonwandering set consists of a finite number of
hyperbolic fixed points, whose invariant manifolds are transversally intersected.

Gradient flows are used for modeling regular processes in different natural sciences (see, for
example, [18]). In particular, these flows model solar corona reconnection processes (see, for
example, [7]). This is the reason why it is important to be able to compare, regardless of the
nature of their origin, the dynamics of such models and to compare, depending on research goals,
both the qualitative behavior of a system (partition into trajectories) and time-based motion along
trajectories. In dynamical systems theory, the relation preserving the partition into trajectories up
to a homeomorphism is called topological equivalence and the relation additionally preserving the
time of motion along trajectories is called topological conjugacy. Revealing invariants that uniquely
determine the equivalence class for a system is called topological classification.

The finiteness of the set of nonwandering orbits of a gradient-like flow leads to the idea of
reducing the problem of topological classification to a combinatorial problem. This was first done by
E. Leontovich and A.Mayer [11, 12] for the classification of flows on a two-dimensional sphere with
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CLASSIFICATION OF GRADIENT-LIKE FLOWS 717

a finite set of singular orbits. Later, it was developed in the studies of M. Peixoto [17], A.Oshemkov,
V. Sharko [15], S. Pilyugin [19], A.Prishlyak [20], where a similar problem was solved for Morse –
Smale flows on closed manifolds in dimensions 2, 3 and higher.

All these works were devoted to the topological classification of gradient-like systems with respect
to topological equivalence. In [9], it is shown that classes of equivalence and conjugacy coincide for
gradient-like flows on surfaces and, hence, all classification results on topological equivalence are
also true for topological conjugacy of such flows. In this paper, we give a similar result for the class
G of gradient-like flows without heteroclinic intersections on an n-sphere, where n � 3.

Namely, we prove that a flow from G is completely defined by a bicolor tree corresponding
to a skeleton formed by codimension one separatrices. Moreover, we show that such a tree is a
complete invariant for these flows with respect to the topological equivalence also. This result
implies that for the flows of interest with the same (up to a change of coordinates) partitions into
trajectories, the partitions for elements composing isotopies connecting time-one shifts of these
flows with the identity map also coincide. This phenomenon strongly contrasts with the situation
for flows with periodic orbits and connections, where one class of equivalence contains continuum
classes of conjugacy. In addition, we realize every connected bicolor tree by a gradient-like flow
without heteroclinic intersections on an n-sphere. In addition, we present a linear-time algorithm
on the size of input data for distinguishing these trees.

2. FORMULATION OF THE RESULTS

2.1. Dynamics of Flows of Class G

Let us begin with some definitions.

Definition 1. By a hyperbolic fixed point we mean any fixed point whose eigenvalues have nonzero
real part.

Definition 2. By class G we mean the class of gradient-like flows without heteroclinic intersections
on an n-sphere, where n � 3.

Recall that by an n-ball or n-disk we mean a manifold with a boundary homeomorphic to a
standard ball Bn = {(x1, . . . , xn) ∈ R

n | x21 + . . .+ x2n � 1}. By an open n-ball or n-disk we mean a
manifold homeomorphic to the interior of Bn. By a sphere we mean a manifold Sn homeomorphic
to ∂Bn.

Let us consider the class G of gradient-like flows on an n-dimensional sphere Sn, n � 3, without
heteroclinic intersections, that is, flows whose nonwandering set consists of a finite number of
hyperbolic fixed points such that the invariant manifolds of saddle points have no intersections.

Let f t ∈ G. We will denote the stable and unstable invariant manifolds of a fixed point p by W u
p

and W s
p , respectively.

Proposition 1 ([19, Lemma 2.2]). 1. There is no fixed point p ∈ S of the flow f t ∈ G such that
2 � dimW u

p � n− 2;

2. For any fixed point p such that W u
p = n− 1 the ω-limit set of W u

p consists of a single stable
fixed point.

According to this proposition, the dimensions of the invariant saddle manifolds of f t have to be
only (n− 1) and 1. Let Ωf t denote the nonwandering set of f t, and let

Ωi
f t = {p ∈ Ωf t | dimW u

p = i}.

By [22, Theorem 2.3],

Sn =
⋃

p∈Ωft

W u
p =

⋃

p∈Ωft

W s
p .

It follows once again from Proposition 1 that for any saddle point σ of a flow f t the closure
of its invariant manifold W δ

σ with dimension (n− 1) contains, except the manifold itself, exactly
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one fixed point. That point is a sink if δ = u and a source if δ = s. Then the set clW δ
σ is a sphere

with dimension (n− 1). By [3] and [2] this sphere is cylindrically embedded1). Denote by mf t the

number of saddle points of a flow f t. Then the union

Wf t =
⋃

p∈Ω1
ft

clW s
p ∪

⋃

q∈Ωn−1

ft

clW u
q

of closures of all invariant manifolds of dimension (n − 1) divides a sphere Sn into kf t = mf t + 1
connected components. Denote such components by D1, . . . ,Dkft

, and let

Df t =

kft⋃

i=1

Di.

2.2. Description of a Graph and a Bicolor Tree

Recall several definitions from graph theory.
A graph is a pair (V,E), where V is a set of vertices and E is a set of pairs of vertices, which are

called edges. If E contains ordered pairs, then the graph is called a directed one. A k-edge-coloring
of a graph is an assignment of k colors to its edges.

Two vertices are called adjacent if they are connected by an edge (i. e., they constitute the edge),
and the edge is incident to each of the vertices. A loop is an edge whose end vertices coincide. A
simple graph is an undirected graph without loops.

The number of edges incident to a vertex is called the degree of the vertex.
A set {v1, (v1, v2), v2, . . . , vk−1, (vk−1, vk), vk} is called a path of length k. A graph is called

connected if every two of its vertices are joined by a path.
A tree is a simple connected graph in which any two vertices are connected by exactly one path.
Any tree has at least two pendant vertices, that is, vertices of degree 1.
Any tree becomes a directed planted tree if an arbitrary pendant vertex r of this tree is selected

as a root. In other words, a planted tree is a tree in which one vertex r has been designated as the
root and every edge is directed away from the root.

If v is a vertex in a planted tree other than the root, the parent of v is the unique vertex w such
that there is a directed edge (w, v). If w is the parent of v, then v is called a child of w.

By definition, the rooted vertex r has a level 0. The level d of any other vertex v in such a
planted tree is the number of edges in the unique path between the vertex v and the root r. The
depth of a tree D is the maximum level of any vertex there.

An ordered planted tree is a directed planted tree where the children of each vertex are ordered.

2.3. The Classification Result

Definition 3. A bicolor graph of a flow f t ∈ G is a graph Γf t such that:

1) the set Γ0
f t of vertices of Γf t bijectively corresponds to Df t by a bijection

ξ0 : Γ
0
f t → Df t ,

the set Γ1
f t of edges of Γf t bijectively corresponds to the set Wf t by a bijection

ξ1 : Γ
1
f t → Wf t ;

2) two vertices vi, vj are connected by an edge ei,j iff domains Di = ξ0(vi), Dj = ξ0(vj) have a
common boundary;

3) an edge ei,j has a color u (resp. s) if it corresponds to a manifold W s
p ⊂ Wf t (resp. W u

p ⊂ Wf t)

(see Fig. 1).

1)A sphere Sn−1 ⊂ Mn is called cylindrically embedded in Mn if there exists a topological embedding h :
S
n−1 × [−1;+1] → Mn, such that h(Sn−1 × {0}) = Sn−1.
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Fig. 1. Example of a flow and its bicolor graph.

Definition 4. Two graphs Γf t and Γf ′t of some flows f t, f ′t are called isomorphic if there exists
an isomorphism η : Γf t → Γf ′t mapping the vertices and edges of Γf t into the vertices and edges of
Γf ′t preserving colors.

It follows from [5] that the flows f t, f ′t ∈ G are topologically equivalent iff their graphs Γf t and

Γf ′t are isomorphic. Indeed, for any flow f t ∈ G its bicolor graph is a tree, i. e., a connected graph
without cycles.

Theorem 1. Two flows f t, f ′t ∈ G are topologically conjugate iff their graphs Γf t and Γf ′t are
isomorphic.

Really we prove a stronger result in the following propositions.

Proposition 2. If the graphs Γf t, Γf ′t of the flows f t, f ′t ∈ G are isomorphic, then the flows f t, f ′t

are topologically conjugate.

Notice that, if f t and f ′t are topologically conjugate, then they are topologically equivalent.

Proposition 3. If the flows f t, f ′t ∈ G are topologically equivalent, then their graphs Γf t, Γf ′t are
isomorphic.

Besides, for any flow f t ∈ G its bicolor graph belongs to a specific type.

Proposition 4. For each flow f t ∈ G its bicolor graph is a tree, i. e., a connected graph without
cycles.

2.4. The Realization Theorem and the Linear-Time Algorithm

Then the realization theorem has the following form.

Theorem 2. For every bicolor tree Γ there is a flow f t ∈ G whose graph Γf t is isomorphic to

graph2) Γ.

An algorithm is called effective if its execution time is bounded by some polynomial on the length
of input information. We will present the fastest possible algorithm for recognizing the isomorphism
of graphs of the flows considered.

Theorem 3. The isomorphism problem for graphs of flows from G can be solved in linear time on
the number of their vertices.

3. SOLUTION OF THE CLASSIFICATION PROBLEM

In this part, we will prove Theorem 1, providing a list of necessary facts and proofs of
Propositions 2–4. It was proved by us in the Russian-language paper [10], but here we give its
proof in English.

2)Notice that flows of the class under consideration, under the assumption that they have a unique sink, were
classified and realized in [4] by means of a directed graph
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3.1. Necessary Facts

Proposition 5 ([16, Ch. 2, Theorem 4.10]; [9, Lemma 1]; [21, Ch. 4, Theorem 7.1]).
Let F : Mn → Mn be a Cr-vector field with a hyperbolic equilibrium point p, and let DFp : R

n → R
n

be the differential of F . Then there exists a neighborhood Up of the point p, where the flow f t,
generated by F , is topologically conjugate to the flow φt, generated by DFp.

Proposition 6 ([21, Ch. 4, Theorem 7.1]). Let A and B be two n× n real matrices, such that
all the eigenvalues of A and B have nonzero real parts and the dimension of the direct sum of all
the eigenspaces with negative (and, obviously, positive too) real part is the same for A and B. Then
two flows, generated by the vector fields ẋ = Ax and ẋ = Bx, are topologically conjugate.

Recall that a set A is called an attractor of f t if there exists a closed neighborhood U ⊂ Sn of
the set A such that f t(U) ⊂ int(U) and A =

⋃
t�0

f t(U). The set R is called a repeller of f t if R is

an attractor for f−t.

Let f t ∈ G. Suppose

Af t =
⋃

σj∈Ω1
ft

W u
σj

∪ Ω0
f t , Rf t =

⋃

σj∈Ωn−1

ft

W s
σj

∪ Ωn
f t , Vf t = Sn\(Af t ∪Rf t).

By [6, Theorem 2.2.2], At
f and Rf t are connected sets, besides, Af t is an attractor, Rf t is a repeller,

and Vf t consists of wandering trajectories going from Rf t to Af t .

Following [13], by the self-indexing energy function of the flow f t we mean the function
ϕ : Sn → [0, n] with the following properties:

1) ϕ is a Morse function, i. e., a C2-function with nondegenerate critical points;

2) the set of critical points of the function ϕ coincides with Ωf t ;

3) ϕ(f t(x)) < ϕ(x) for each x /∈ Ωf t and each t > 0;

4) ϕ(p) = dimW u
p ;

According to [13], any flow f t of class G has its self-indexing energy function ϕ : Sn → [0, n].
Suppose

Σ = ϕ−1
(n
2

)
.

By construction, the hypersurface Σ crosses every trajectory of f t ⊂ Vf t at a single point (see
Fig. 3, where a fragment of Σ is depicted) and is diffeomorphic to a sphere of dimension n− 1 (see,
for example, [5]).

3.2. Proof of Proposition 2

Let flows f t, f ′t belong to class G and their graphs Γf t , Γf ′t be isomorphic by means of an
isomorphism ξ = (ξ0, ξ1). Let us prove that these flows are topologically conjugate.

Step 1. Recall that D1, . . . ,Dkft
are connected components of the set Df t = Sn\(

⋃

p∈Ω1
ft

clW s
p ∪

⋃

q∈Ωn−1

ft

clW u
q ). Then for each set Di, i ∈ {1, . . . , kf t} there exists a set Ωi ⊂

(
Ωn−1
f t ∪ Ω1

f t

)
such that

∂Di =
⋃

σ∈Ωi

clW δ
σ , where δ = u if σ ∈ Ωn−1

f t and δ = s if σ ∈ Ω1
f t .

Without loss of generality let us assume that the connected components of the set Df ′t are num-

bered so that D′
i = ξ′0ξ

−1
0 (Di) and ∂D′

i =
⋃

σ′∈Ω′
i

clW δ
σ′ , where Ω′

i = {σ′ | clW δ
σ′ = ξ′1ξ

−1
1 (clW δ

σ), σ ∈

Ωi}.
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By Propositions 5 and 6 there exist neighborhoods Uσ and Uσ′ of saddle points σ, σ′ such that
f t|clUσ , f

′t|clUσ′ are topologically conjugate by means of a homeomorphism hσ : clUσ → clUσ′ , i.e.,

hσ ◦ f t|Uσ = f ′t|Uσ′ ◦ hσ for each t not carrying points outside Uσ, Uσ′ , respectively.

Without loss of generality we assume that the neighborhood Uσ is chosen so that any trajectory
crossing its boundary crosses Uσ exactly by a single connected component (one can always do so
by virtue of the conjugacy of a flow with a linear one in a neighborhood of σ, see Fig. 2).

Fig. 2. Neighborhood of a saddle point.

For a point z let Oz (O′
z) denote the trajectory of the flow f t (f ′t) going through z. Let

Vσ =
⋃

z∈clUσ

Oz, Vσ′ =
⋃

z∈clUσ′

O′
z .

Extend hσ to a homeomorphism hVσ : Vσ → Vσ′ by the following rule:

hVσ(z) = f ′−tz(hσ(f
tz(z))),

where z ∈ Vσ and tz ∈ R is such that f tz(z) ∈ clUσ. It can be checked directly that the constructed
map is a homeomorphism and does not depend on the way tz is chosen. Suppose

V =
⋃

σ∈Ωn−1

ft
∪Ω1

ft

Vσ, V ′ =
⋃

σ′∈Ωn−1

f ′t ∪Ω1
f ′t

Vσ′

and denote by hV : V → V ′ a homeomorphism constructed of the maps hVσ .

Fig. 3. Basic constructions from Statement 2.
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Step 2. Let Σ (Σ′) be a level hypersurface for the energy function of f t (f ′t). For σ ∈
Ωn−1
f t ∪Ω1

f t σ′ = hV (σ) ∈ Ωn−1
f ′t ∪Ω1

f ′t suppose Kσ = Σ ∩ Vσ, K
′
σ′ = Σ′ ∩ Vσ′ and K̃ ′

σ′ = hV (Kσ). By

construction, each of the three sets is homeomorphic to Sn−2 × [0, 1], and the relation f ′Tσ′(z)(z) ∈
K̃ ′

σ′ , z ∈ K ′
σ′ defines a real function Tσ′ , which can be continuously extended to some neighborhood

U(K ′
σ′) of an annulus K ′

σ′ so that Tσ′(∂U(K ′
σ′ )) = 0.

Without loss of generality assume that the annuli U(K ′
σ′) do not cross each other for different

saddle points. Then on the sphere Σ′ a continuous function TΣ′ coinciding with Tσ′ on U(K ′
σ′) and

equal to 0 outside the annuli is defined correctly. So, the sphere

Σ̃′ =
⋃

z∈Σ′

f ′TΣ′(z)(z)

is a section for the trajectories of the flow f ′t of the set Vf ′t . Suppose U = Vf t \ V , U ′ = Vf ′t \ V ′,

ΣV = Σ∩V , ΣU = Σ∩U , Σ̃′
V ′ = Σ̃′ ∩V ′ and Σ̃′

U ′ = Σ̃′ ∩U ′. Extend a homeomorphism hΣV
: ΣV →

Σ̃′
V ′ to a homeomorphism h

Σ
: Σ → Σ̃′.

To do this, we note that each connected component di of the set ΣU lies in a connected component
Di of the set Df t and is homeomorphic to (n− 2)-sphere with holes, whose number is equal to the

number of boundary components of Di (see Fig. 3). Denote by d̃′i a connected component of the

set Σ̃′
U ′ belonging to D′

i. From the isomorphism of the graphs it follows that ∂d̃′i = h
ΣV

(∂di). By

virtue of [14], the homeomorphism h
ΣV

|∂di may be extended to homeomorphism hdi : di → d̃′i.

Denote by h
ΣU

: ΣU → Σ̃′
U ′ a homeomorphism constructed of the maps hdi . Then the map hΣ

coinciding with hΣU
on ΣU and with h

ΣV
on ΣV is the sought-for homeomorphism.

Finally, let us define a homeomorphism hU : U → U ′ by the formula

hU (z) = f ′−tz(h
Σ
(f tz(z))),

where z ∈ U and tz ∈ R is such that f tz(z) ∈ Σ̃′. It can by directly checked that the map
h : U ∪ V → U ′ ∪ V ′ coinciding with hU on U and with hV on V is a homeomorphism and may be
continuously extended to the sought-for conjugating homeomorphism.

3.3. Proof of Proposition 3

Let us prove that, if the flows f t, f ′t ∈ G are topologically equivalent, then their graphs Γf t , Γf ′t

are isomorphic.
Let h : Sn → Sn be the homeomorphism sending the trajectories of f t into trajectories of f ′t

preserving the directions of trajectories.
Let clW δ

σ ⊂ ∂(Di), i = 1, k, δ = u, s. Then there exists a vertex vi ∈ Γ0
f t and an edge ei,j ∈ Γ1

f t

such that (Di, clW
δ
σ) = ξ(vi, ei,j). Without loss of generality supposeD′

i = h(Di). Then let us define
the isomorphism η : Γf t → Γf ′t by the formula

η = ξ′−1hξ,

where the isomorphism ξ′ = (ξ′0, ξ
′
1) is defined for f ′t similarly to the isomorphism ξ for f t.

3.4. Proof of Proposition 4

Let us prove that for each flow f t ∈ G its bicolor graph Γf t is the tree, i. e., the connected graph
without cycles.

Each edge ei,j of Γf t corresponds to the closure clW δ
σ of the invariant saddle manifold of some

saddle σ of dimension n− 1, which is the (n− 1)-sphere Si,j, namely, embedded into Sn. Then
the sphere Si,j divides Sn into two connected components, and the graph Γf t may be assumed to
be embedded into the ambient manifold Sn so that each vertex vi is a point in Di and an edge
ei,j = (vi, vj) is a simple arc connecting vi with vj and crossing the sphere Si,j at a single point.
So, the connectivity of the graph Γf t directly follows from connectivity of the sphere Sn. Besides,
removing any edge ei,j from Γf t leads to dividing the graph into two connected components, which
contradicts to the existence of cycles in the graph.
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4. REALIZATION OF A BICOLOR TREE BY A FLOW

Let us prove Theorem 2.

To construct a required flow on the n-sphere S
n for the given bicolor tree Γ, choose a vertex r

of Γ as a root and order all children to get from the tree Γ an ordered planted tree. Denote by N
the number of all vertices of Γ.

To realize the bicolor tree Γ by a flow, we will use the idea of embedding of N − 1 pairwise
disjoint Cherry boxes Bv in a flow-shift gt0 : R

n → R
n, where the flow-shift is given by the formula

gt0(x1, . . . , xn) = (x1 + t, . . . , xn)

and the cherry box Bv has a form

Bv = {(x1, . . . , xn) ∈ R
n : |x1 − αv| � δv, (x2 − βv)

2 + x23 + . . . x2n � δ2v}
for some αv, βv ∈ R, δv > 0 which depends on the parameters of v. The dynamics in Bv coincides
with the flow-shift dynamics on the boundary of Bv and differs from that inside the box due to
the appearance of a saddle and a node. We will say that the dynamics in Bv is of type u (s) if the
saddle point has an (n − 1)-dimensional unstable (stable) manifold and the node point is a source
(sink) (see Fig. 4).

Fig. 4. An embedding of Cherry boxes of types u and s to the flow shift.

Below we give formulas for the following things:

1. Calculation of the position and size of the Cherry box Bv;

2. Definition of the flow gtv in Bv;

3. Embedding of the resulting dynamics in S
n.

4.1. Calculation of the Position and Size of the Cherry Box Bv

For the vertex y which is a unique child of the root r we put

αy = 2ρy

(
1

2
+

1

2N − 4
+ · · ·+ 1

(2N − 4)D−2

)
, βy = 0, δy = 1,

where ρy equals 1 (−1) if the edge (r, y) has a color s (u) and D is the depth of the tree Γ. For
any other vertex v with the level dv � 2 the parameters of the box Bv are determined through the
parameters αw, βw, δw of its parent’s box Bw, the order kv of v as a child and a number ρv which
equals 1 (−1) if the edge (w, v) has a color s (u) as follows:

δv =
δw

2N − 4
, αv = ρv (|αw| − δw − δv) , βv = βw +

δw
2

− (2kv − 1)δv .
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4.2. Definition of the Flow gtv in Bv

Let

Σv = (x1 − αv)
2 + (x2 − βv)

2 + x23 + · · ·+ x2n.

Define the flow gtv : Rn → R
n by the formulas

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 =

⎧
⎨

⎩
1− 16δ2v

9

(
Σv − δ2v

)2
, Σv � δ2v

1, otherwise

ẋ2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x2 − βv
2

(
sin

(π
2

(
4Σv
δ2v

− 3
))

− 1
)
,

δ2v
2

< Σv � δ2v

−(x2 − βv), Σv � δ2v
2

0, otherwise

. . . . . . . . . . . . . . . . . .

ẋn =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xn
2

(
sin

(π
2

(
4Σv
δ2v

− 3
))

− 1
)
,

δ2v
2

< Σv � δ2v

−xn, Σv � δ2v
2

0, otherwise

By construction, the flow gtv has exactly two hyperbolic fixed points: the saddle (source) point
Pv(αv + ρvδv/2, βv , 0, . . . , 0) and the sink (saddle) point Qv(αv − ρvδv/2, βv , 0, . . . , 0) for ρv = 1
(ρv = −1). Define gtΓ : Rn → R

n in such a way that it coincides with gtv in Bv and is gt0 outside all
Cherry boxes (see Fig. 5).

Fig. 5. An example of a tree Γ and the flow gtΓ.

Note that the flow gtΓ has no heteroclinic intersections. Indeed, by construction, the interiors of
the Cherry boxes are pairwise disjoint. Moreover, in the hyperplane x1 = αv we have

ẋ1 < 0 if (x2 − βv)
2 + x23 + · · ·+ x2n < (δv/2)

2,

ẋ1 > 0 if (δv/2)
2 < (x2 − βv)

2 + x23 + · · · + x2n < δ2v .

Also, in Bv we have

ẋ2 � 0 if x2 � βv, ẋ2 � 0 if x2 � βv ,
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ẋi � 0 if xi � 0, ẋi � 0 if xi � 0, i = 3, . . . , n.

Thus, the invariant (n − 1)-manifold of the saddle point from Bv outside Bv coincides with a
cylinder

Cv = {(x1, . . . , xn) ∈ R
n : (x2 − βv)

2 + x23 + · · ·+ x2n � ν2v},

where δv/2 < νv < δv. By construction, these cylinders are pairwise disjoint, which proves the fact.

4.3. Embedding of the Resulting Dynamics in S
n

Let us define a flow ht : Rn → R
n by the formula

ht(x1, x2, . . . , xn) =
(
2tx1, 2

tx2, . . . , 2
txn

)
.

Let R
n
+ = {(x1, . . . , xn) ∈ R

n : x1 � 0} and C = {(x1, . . . , xn) ∈ R
n : x22 + · · ·+ x2n � 1}. It is easy

to verify that a diffeomorphism ζ : Rn
+ \O → C given by the formula

ζ(x1, . . . , xn) =

(
log2 �,

x2
�
, . . . ,

xn
�

)
, � =

√
x21 + · · ·+ x2n

conjugates the diffeomorphisms ht|∂Rn
+\O and gt|∂C . This allows us to define a flow ϕt : Rn −→ R

n

in such a way that ϕt coincides with ht outside intRn
+ and coincides with ζ−1gtΓζ on R

n
+.

Let us project the flow ϕt to the n-sphere by means of stereographic projection.

Denote by N (0, . . . , 0︸ ︷︷ ︸
n

, 1) the north pole of the sphere S
n. For every point x = (x1, . . . , xn+1)

in S
n ⊂ R

n+1 there is a unique line passing through the points N and x. This line intersects
R
n = Ox1 . . . xn at exactly one point ϑ(x) (see Fig. 6), which is called the stereographic projection

of the point x. One can easily check that ϑ : Sn \ {N} → R
n is a diffeomorphism given by the

formula

ϑ(x1, . . . , xn+1) =

(
x1

1− xn+1
, . . . ,

xn−1

1− xn+1
,

xn
1− xn+1

)
.

Fig. 6. The stereographic projection.

As flow ϕt coincides with ht in some neighborhoods of the origin O and of the infinity point, it
induces on S

n the required flow

f t(x) =

{
ϑ−1(ϕt(ϑ(x))), x �= N ;

N , x = N .
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5. PROOF OF THEOREM 3

In this section, we construct an O(n) algorithm to determine whether two n-vertex bicolor trees
are isomorphic or not. To this end, we first present a linear-time algorithm from [1] to distinguish
two simple trees with the same number of vertices.

The distance between two vertices of a simple graph Γ is the number of edges in the shortest
path, connecting these vertices. The eccentricity of a vertex of Γ is the maximum of distances
between this vertex and the other vertices of Γ. The minimum among the eccentricities of vertices
of Γ is called the radius of Γ. The center of Γ is the set of its vertices, whose eccentricity equals
the radius of Γ.

Suppose that Γ is a tree. Then its center consists of one vertex or two adjacent vertices, by
the known Jordan theorem [8]. The tree Γ is called central in the former case and bicentral in the
latter. Jordan in [8] proposed the following trimming procedure to find the center of a given tree. At
each step, all leaves of the current tree are deleted until we obtain a tree with one or two vertices.
The vertex set of this tree coincides with the center of the initial tree, by a result in [8]. Thus, the
center of Γ can be found in linear time on the number of its vertices.

Given two n-vertex simple trees Γ1 and Γ2, one may assume that they are either both central or
both bicentral. Otherwise, they are not isomorphic. The bicentral case is reduced in O(n) time to
the central one as follows. If {ai, bi} is the center of Γi, then the edge aibi is deleted, a new vertex
ci is added, and the new edges aici and bici are added. Clearly, the resulting trees Γ∗

1 and Γ∗
2 are

both central (with the centers {c1} and {c2}, respectively), and Γ∗
1 and Γ∗

2 are isomorphic if and
only if Γ1 and Γ2 are isomorphic.

The problem of an algorithm for identifying the isomorphism of simple trees from [1] works with
n-vertex central trees and constructs the so-called monotonous Dyck words, which turn out to be
canonical representations of the trees. In other words, two n-vertex central trees are isomorphic iff
their monotonous Dyck words coincide. Given a central tree, its monotonous Dyck word is a binary
word defined as follows. The word 10 is assigned to all its leaves. Next, if w1, w2, . . . , wk are all the
words, assigned to sons of a vertex x, then they are lexicographically sorted. Assuming that wi is
lexicographically no more than wj , for any i < j, we assign 1wkwk−1 . . . w10 to x (see Fig. 7 and
Fig. 8). By a result from [1], the canonical code of the whole tree is the monotonous Dyck word
corresponding to its central vertex. Obviously, it can be obtained in time linear in n.

Fig. 7. A vertex x of a tree Γ and the corresponding Dyck word.

Assume that we are given n-vertex bicolor trees Γ and Γ′. We will obtain two (simple) trees Γ̃

and Γ̃′ corresponding to Γ and Γ′, respectively, such that Γ̃ and Γ̃′ are isomorphic iff Γ and Γ′ are
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Fig. 8. A central tree with the canonical code 11101001100100.

isomorphic. To this end, we add four pendent vertices to every vertex of Γ or of Γ′. Next, for every
u-edge (respectively, s-edge) e = (a, b) of Γ or of Γ′, we delete it, add two edges (a, c) and (c, b), and
a pendent vertex adjacent to c (respectively, two pendent vertices, each adjacent to c), see Fig. 9.

Let us make sure that Γ̃ and Γ̃′ are isomorphic iff Γ and Γ′ are isomorphic.

Fig. 9. A bicolor tree Γ and the corresponding tree Γ̃.

Indeed, the nonleaf vertices of Γ̃ and Γ̃′ of degree at most 4 correspond to the edges of Γ, Γ′ and
to their colors. To determine the vertices of Γ and Γ′, we delete all nonleaf vertices in Γ̃, Γ̃′ of degree
at most 4 and their neighboring vertices. Next, we delete all the leaves in the resulting graph to
obtain the vertex set of a graph in {Γ,Γ′}. Since any n-vertex tree has exactly n− 1 edges, both

graphs Γ̃ and Γ̃′ have at most n+ 4n+ 4(n − 1) < 9n vertices. Therefore, Theorem 3 holds.
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