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ABSTRACT

Topological indices and dominating problems are popular topics in Graph Theory.

There are various topological indices such as degree-based topological indices, distance-

based topological indices and counting related topological indices et al. These topological

indices correlate certain physicochemical properties such as boiling point, stability of chem-

ical compounds. The concepts of domination number and independent domination number,

introduced from the mid-1860s, are very fundamental in Graph Theory.

In this dissertation, we provide new theoretical results on these two topics. We

study k-trees and cactus graphs with the sharp upper and lower bounds of the degree-based

topological indices(Multiplicative Zagreb indices). The extremal cacti with a distance-based

topological index(PI index) are explored. Furthermore, we provide the extremal graphs with

these corresponding topological indices.

We establish and verify a proposed conjecture for the relationship between the dom-

ination number and independent domination number. The corresponding counterexamples

and the graphs achieving the extremal bounds are given as well.
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1 INTRODUCTION

1.1 NOTATIONS

Throughout this dissertation, G = (V,E) is a connected finite simple undirected graph

with vertex set V = V (G) and edge set E = E(G). Let |G| or |V | denote the cardinality

of V . For a vertex v ∈ V (G), the neighborhood of v is the set N(v) = NG(v) = {w ∈

V (G), vw ∈ E(G)}. dG(v) or d(v) is the degree of v with dG(v) = |N(v)|. We use d(u, v) to

denote the distance between the vertices u and v in G, which is the number of edges of the

shortest path connecting u and v.

For S ⊆ V (G) and F ⊆ E(G), we use G[S] for the subgraph of G induced by S, and

G − S for the subgraph induced by V (G) − S and G − F for the subgraph of G obtained

by deleting F . Let w(G) be the number of components of G. We say that S is a cut set

if w(G − S) > w(G). We use G ∼= H to denote that G is isomorphic to H and G 6∼= H to

denote that G is not isomorphic to H.

A pendant vertex is a vertex of degree one. An edge is called a pendant edge if one of

its vertices is a pendant vertex. A tree T is called a pendant tree of G, if T has at most one

vertex shared with some cycles in G. A block is a K2 or a maximal 2-connected subgraph

of a graph. In particular, the end block of a graph G contains at most one cut vertex of G.

For r ≥ 1, let P1 = u1u2...upv1, P2 = u1u2...upv2, ..., Pr = u1u2...upvr be the paths of a

graph G such that there exists at most one cycle C with V (Pi)∩V (C) = {u1} and d(vi) = 1,

i ≥ 1, then the induced subgraph G[{vi, uj, i ∈ [1, r], j ∈ [1, p]}] is called a dense path. In

particular, when r = 1, the dense path is a pendant path. The length of a dense path is the
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length of its pendant path. Let Kn, Pn and Sn denote the clique, the path and the star on

n vertices, respectively. In particular, we say Kn is a k-clique for n = k.

Let bxc be the largest integer that is less than or equal to x and dxe be the smallest

integer that is greater than or equal to x. Let [a, b] be the set of all integers between a

and b with a ≤ b including a, b, where a, b are integers. Also, let (a, b] = [a, b] − {a} and

[a, b) = [a, b]− {b}. In particular, [a, b] = φ for a > b. For any integer p, if p ≥ 0, we denote

xmax{0,p} = xp; If p < 0, we say xmax{0,p} does not exist.

1.2 THE CONCEPT OF K-TREES

Tree is a fundamental concept in Graph Theory and Combinatorics of Mathematics,

and it has many applications in Computer Science, Chemistry, Biology, and so on. A tree is

an undirected graph in which any pair of two vertices are connected by exactly one path. In

other words, any acyclic connected graph is a tree. Based on the interests of trees, researchers

are continuing to study some complicate extentions of trees. One of the branches is the k-tree

for k ≥ 1. In particular, a k-tree is a tree for k = 1.

It is commonly known that the class of k-trees is an important subclass of trangular

graphs. Harry and Plamer [41] first introduced the 2-tree in 1968, which is showed to be

maximal outerplanar graphs [23, 45]. Beineke and Pippert [9] gave the definition of k-

trees in 1969. Relating to k-trees, there are many interesting applications to the study

of computational complexity and the intersection between Graph Theory and Chemistry

[19, 72]. We give the definitions below.

Definition 1.2.1. The k-tree, denoted by T kn , for positive integers n, k with n ≥ k, is defined

recursively as follows: The smallest k-tree is the k-clique Kk. If G is a k-tree with n ≥ k

vertices and a new vertex v of degree k is added and joined to the vertices of a k-clique in

G, then the graph is a k-tree with n+ 1 vertices.
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Definition 1.2.2. The k-path, denoted by P k
n , for positive integers n, k with n ≥ k, is

defined as follows: Starting with a k-clique G[{v1, v2, ..., vk}], for i ∈ [k + 1, n], the vertex vi

is adjacent to vertices {vi−1, vi−2, ..., vi−k} only.

Definition 1.2.3. The k-star, denoted by Sk,n−k, for positive integers n, k with n ≥ k, is

defined as follows: Starting with a k-clique G[{v1, v2, ..., vk}] and an independent set S with

|S| = n− k, for i ∈ [k + 1, n], the vertex vi is adjacent to vertices {v1, v2, ..., vk} only.

Definition 1.2.4. The k-spiral, denoted by T k∗n,c with c ∈ [1, k− 1], is defined as P k−c
n−c +Kc,

that is, V (T k∗n,c) = {v1, v2, ..., vn} and E(T k∗n,c) = E(P k−c
n−c )∪E(Kc)∪{v1vl, v2vl, ..., vn−cvl}, for

l ∈ [n− c+ 1, n].

Definition 1.2.5. A vertex v ∈ V (T kn ) is called a k-simplicial vertex if v is a vertex of

degree k of T kn . Let S1(T kn ) be the set of all k-simplicial vertices of T kn , for n ≥ k + 2, and

set S1(Kk) = φ, S1(Kk+1) = {v}, where v is any vetex of Kk+1. If G = G0, Gi = Gi−1 − vi,

where vi is a k-simplicial vertex of Gi−1, then {v1, v2, ..., vn} is called a simplicial elimination

ordering of the n-vertex graph G.

Definition 1.2.6. If w(G−S) ≤ 2 for any k-clique G[S] of T kn , we say T kn is a hyper pendent

edge; If there exists a k-clique G[S] with w(G − S) ≥ 3, let C be a component of T kn − S

and contain a unique vertex belonging to S1(G), then we say that G[V (S)∪V (C)] is a hyper

pendent edge of T kn , denoted by P. In particular, a k-path is a hyper pendent edge.

1.3 THE CONCEPT OF CACTUS GRAPHS

Cactus graphs were first studied under the name of Husimi trees. Husimi tree used

to refer to graphs in which every block is a complete graph (equivalently, the intersection

graphs of the blocks in some other graphs). The regular definition of the cactus graph is as

follows.
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Definition 1.3.1. A graph is a cactus if it is connected and all of its blocks are either edges

or cycles, i.e., any two of its cycles have at most one common vertex.

Since every cactus graph may have some pendant vertices which connect to one vertex

only, set Ckn to denote a set of cactus graphs with n vertices including k pendant vertices,

where n ≥ k ≥ 0.

It is not hard to see that if we replaced each block by a vertex for the cactus graph,

then the obtained graph is a tree. In other words, the cactus graphs are interesting extentions

of trees. A cactus graph is used to be called a cactus tree, a mixed Husimi tree, or a polygonal

cactus with bridges.

1.4 DEGREE-BASED TOPOLOGICAL INDICES

Chemical Graph Theory is a branch of Graph Theory whose focus of interest is finding

topological indices of chemical graphs which correlate well with chemical properties of the

chemical molecules. A topological index is a numerical parameter mathematically derived

from the graph structure.

One of the topological indices used in mathematical chemistry is that of the so-called

degree-based topological index, which is defined in terms of the degrees of the vertices of a

graph. The first and second Zagreb indices of G are respectively defined as

M1(G) =
∑

u∈V (G) d(u)2,

M2(G) =
∑

uv∈E(G) d(u)d(v).

The background and applications of Zagreb indices can be found in [33, 35]. In

the 1980s, Narumi and Katayama [63] characterized the structural isomers of saturated

hydrocarbons and considered the product

NK(G) =
∏

v∈V (G)

d(v),

4



which is called the NK index. Two fairly new indices with higher prediction ability [74],

named the first and second multiplicative Zagreb indices, are respectively defined as

Π1(G) =
∏

v∈V (G)

d(v)2, Π2(G) =
∏

uv∈E(G)

d(u)d(v).

Obviously, the first multiplicative Zagreb index is the power of the NK index. Moreover,

the second multiplicative Zagreb index can be rewritten as
∏

2(G) =
∏

u∈V (G) d(u)d(u). The

properties of
∏

1(G),
∏

2(G) for some chemical structures have been studied extensively in

[24, 34, 69, 81]

Due to this motivation, we consider the first generalized multiplicative Zagreb index

defined in (1) below and the second multiplicative Zagreb index: for any real number c > 0,

(1)
∏

1,c(G) =
∏

v∈V (G) d(v)c,

(2)
∏

2(G) =
∏

uv∈E(G) d(u)d(v).

Eventually, for c = 1, 2, (1) is just the NK index and the first multuplicative Zagreb, respec-

tively. For (2), it is easy to see that
∏

2(G) =
∏

v∈V (G) d(v)d(v).

1.4.1 Motivation on k-trees

There are many significant recent results about chemical indices and computational

complexity, that lie in the intersection between graph theory and chemistry. We just list

some interesting results about the chemical indices. In 2004, Das and Gutman provided

sharp bounds of Zagreb indices of trees. Estes and Wei extended the result to k-trees in

2014. Theorem 1.4.2 is a result that extended Theorem 1.4.1 from trees to generalized trees,

the k-trees below.
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Theorem 1.4.1 (Das and Gutman [14]). Let Tn be any tree with n vertices, then

(i)M1(Pn) ≤M1(Tn) ≤M1(Sn),

(ii)M2(Pn) ≤M2(Tn) ≤M2(Sn).

Moreover, the left-side and the right-side equalities of (i),(ii) are reached if and only if

Tn ∼= Pn and Tn ∼= Sn, respectively.

Theorem 1.4.2 (Estes and Wei [23]). Let T kn be any k-tree with n vertices, then

(i)M1(P k
n ) ≤M1(T kn ) ≤M1(Skn),

(ii)M2(P k
n ) ≤M2(T kn ) ≤M2(Skn).

Moreover, the left-side and the right-side equalities of (i),(ii) are reached if and only if

Tn ∼= P k
n and Tn ∼= Skn, respectively.

In 2011, Gutman [38] characterized the multipilicative Zagreb indices for trees and

determined the unique trees that obtained maximum and minimun values for
∏

1(G) and∏
2(G), respectively.

Theorem 1.4.3 (Gutman [38]). If n ≥ 5 and Tn is any tree with n vertices, then

(i)
∏

1(Sn) ≤
∏

1(Tn) ≤
∏

1(Pn);

(ii)
∏

2(Pn) ≤
∏

2(Tn) ≤
∏

2(Sn).

Moreover, the left-side and the right-side equalities of (i) are reached if and only if Tn ∼= Sn

and Tn ∼= Pn, respectively. The left-side and the right-side equalities of (ii) are reached if

and only if Tn ∼= Pn and Tn ∼= Sn, respectively.

These topological indices have been found to be useful for establishing correlations

between the structure of a molecular compound and its physicochemical properties or bio-

logical activity [13, 49, 58]. For other work on topological indices, the readers are referred

to [11, 27, 28, 29, 32, 48, 56, 57, 59, 63, 73, 85, 86].
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Motivated by the above results, we consider the multipilicative Zagreb indices for k-

trees. In this work, we extend Gutman’s result and find the bounds of the values of
∏

1,c(G),∏
2(G) for k-trees, respectively, and determine the extremal graphs which attain the bounds.

Theorem 1.4.4 presents the upper and lower bounds of the first generalized multi-

plicative Zagreb index of k-trees and states the corresponding extremal graphs.

Theorem 1.4.4 (Wang and Wei [76]). If T kn is a k-tree on n ≥ k vertices, then

∏
1,c(Sk,n−k) ≤

∏
1,c(T

k
n ) ≤

∏
1,c(P

k
n ),

the left-side and the right-side equalities are reached if and only if T kn
∼= Sk,n−k and T kn

∼= P k
n ,

respectively.

Theorem 1.4.5 provides upper and lower bounds of the second multiplicative Zagreb

index of k-trees and gives the corresponding extremal graphs.

Theorem 1.4.5 (Wang and Wei [76]). If T kn is a k-tree on n ≥ k vertices, then

∏
2(P k

n ) ≤
∏

2(T kn ) ≤
∏

2(Sk,n−k),

the left-side and the right-side equalities are reached if and only if T kn
∼= P k

n and T kn
∼= Sk,n−k,

respectively.

1.4.2 Motivation on Cactus graphs

In 1979, Cornuéjols and Pulleyblank[18] used the structure of a triangular cactus to

find equivalent conditions for the existence of {K2, Cn, n ≥ 4}-factor. In 2012, Li et al. [60]

gave upper bounds on Zagreb indices of cactus graphs and lower bounds of cactus graph

with at least one cycle. Chen [12] gave the first three smallest Gutman indices among the

cacti.
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Based on these results, we investigate the bounds of multiplicative Zagreb indices of

cactus graphs and try to characterize the extremal graphs. We obtain the following results.

Theorem 1.4.6 gives the lower bounds of the first generalized Zagreb index of cactus graphs

and states the corresponding extremal graphs.

Theorem 1.4.6 (Wang and Wei [77]). For any graph G in Ckn,

∏
1,c

(G) ≥

 3kc2(n−2k)c, if k = 0, 1,

2(n−k−1)ckc, if k ≥ 2,

the equalities hold if and only if their degree sequences are 3, 3, ..., 3︸ ︷︷ ︸
k

, 2, 2, ..., 2︸ ︷︷ ︸
n−2k

, 1, 1, ..., 1︸ ︷︷ ︸
k

and k, 2, 2, ..., 2︸ ︷︷ ︸
n−k−1

, 1, 1, ..., 1︸ ︷︷ ︸
k

, respectively.

Theorems 1.4.7 and 1.4.8 provide sharp upper bounds on the first generalized multi-

plicative Zagreb indices of cactus graphs and characterize the extremal graphs.

Theorem 1.4.7 (Wang and Wei [77]). For a graph G in Ckn with n ≤ k + 3,

∏
1,c

(G) ≤


kc, if n = k + 1,

(dk
2
e+ 1)c(bk

2
c+ 1)c, if n = k + 2,

(dk
3
e+ 2)c(bk

3
c+ 2)c(k − dk

3
e − bk

3
c+ 2)c, if n = k + 3,

the equalities hold if and only if corresponding degree sequences are k, 1, 1, ..., 1︸ ︷︷ ︸
k

; dk
2
e+1, bk

2
c+

1, 1, 1, ..., 1︸ ︷︷ ︸
k

and dk
3
e+ 2, bk

3
c+ 2, k − dk

3
e − bk

3
c+ 2, 1, 1, ..., 1︸ ︷︷ ︸

k

, respectively.

Theorem 1.4.8 (Wang and Wei [77]). For a graph G in Ckn with n ≥ k + 4 and t ≥ 0,

∏
1,c

(G) ≤


16c, if k = 0, n = 4,

2(3t+6)c, if k = 0, n = 2t+ 5,

2(3t+4)c9c, if k = 0, n = 2(t+ 3),

8



the equalities hold if and only if corresponding degree sequences are 2, 2, 2, 2; 4, 4, ..., 4︸ ︷︷ ︸
t+1

, 2, 2, ..., 2︸ ︷︷ ︸
t+4

and

4, 4, ..., 4︸ ︷︷ ︸
t

, 3, 3, 2, 2, ..., 2︸ ︷︷ ︸
t+4

, respectively;

For k 6= 0, if
∏

1,c(G) attains the maximal value, then one of the following statements holds:

For any nonpendant vertices u, v, either (i) |d(u)− d(v)| ≤ 1 or (ii) d(u) ∈ {2, 3, 4} and G

contains no cycles of length greater than 3, no dense paths of length greater than 1 except

for at most one of them with length 2, and no paths of length greater 0 that connects only

two cycles except for at most one of them with length 1.

Theorem 1.4.9 gives sharp lower bounds on the second multiplicative Zagreb indices

of cactus graphs and characterizes the extremal graphs.

Theorem 1.4.9 (Wang and Wei [77]). For any graph G in Ckn with γ = k−2
n−k ,

∏
2

(G) ≥

 33k22(n−2k), if k = 0, 1,

(2 + dγe)(2+dγe)[k−2−bγc(n−k)](2 + bγc)(2+bγc)[n−2k+2+bγc(n−k)], if k ≥ 2,

the equalities hold if and only if corresponding degree sequences are 3, 3, ..., 3︸ ︷︷ ︸
k

, 2, 2, ..., 2︸ ︷︷ ︸
n−2k

,

1, 1, ..., 1︸ ︷︷ ︸
k

and 2 + dγe, 2 + dγe, ..., 2 + dγe︸ ︷︷ ︸
k−2−bγc(n−k)

, 2 + bγc, 2 + bγc, ..., 2 + bγc︸ ︷︷ ︸
n−2k+2+bγc(n−k)

, 1, 1, ..., 1︸ ︷︷ ︸
k

, respectively.

Theorem 1.4.10 states sharp upper bounds on the second multiplicative Zagreb indices

of cactus graphs and characterizes the extremal graphs.

Theorem 1.4.10 (Wang and Wei [77]). For any graph G in Ckn,

∏
2

(G) ≤

 (n− 2)n−222(n−k−1), if n− k ≡ 0(mod 2),

(n− 1)n−122(n−k−1), if n− k ≡ 1(mod 2),
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the equalities hold if and only if corresponding degree sequences are n− 2, 2, 2, ..., 2︸ ︷︷ ︸
n−k−1

, 1, 1, ..., 1︸ ︷︷ ︸
k

and n− 1,

2, 2, ..., 2︸ ︷︷ ︸
n−k−1

, 1, 1, ..., 1︸ ︷︷ ︸
k

, respectively.

1.5 DISTANCE-BASED TOPOLOGICAL INDICES

One of most important topological indices used in mathematical chemistry is called

the distance-based topological index, which is proposed in terms of the distances of any pair

of vertices of a graph.

The Wiener index is the oldest and most thoroughly examined topological index

used in chemistry. In 1947, Harold Wiener[84] applied Wiener index to determine physical

properties of types of Alkanes known as Paraffins and defined as

W (G) =
∑

{x,y}⊂V (G)

d(x, y).

Similar to the Wiener index, Szeged index was given by Klavz̆ar and Gutman[47] in 1996 as

follows:

Sz(G) =
∑

xy∈E(G)

nxy(x)nxy(y),

where nxy(x) is the number of vertices w ∈ V (G) such that d(x,w) < d(y, w), nxy(y) is the

number of vertices w ∈ V (G) such that d(x,w) > d(y, w) and w 6= x, y. Currently, various

work relating the Wiener index, the Sz index and their chemical meaning have been studied

(see the surveys [2, 20, 21, 39]). Based on the considerable research of the Wiener index and

the Sz index, Khadikar[49] proposed edge Padmakar-Ivan(PIe) index in 2000, which is used

in the field of nano-technology, as follows:

PIe(G) =
∑

e=xy∈E(G)

[nex(e|G) + ney(e|G)],

10



where nex(e|G) denotes the number of edges which are closer to the vertex x than to the

vertex y, and ney(e|G) denotes the number of edges which are closer to the vertex y than

to the vertex x, respectively. The detailed applications of PIe indices between chemistry

and graph theory are investigated in [4, 5, 6, 7, 8, 49, 50, 51]. As this definition does not

count edges equidistant from both ends of the edge e = xy, Khalifeh et al.[52] continued to

introduce a new PI index of vertex version below:

PI(G) = PIv(G) =
∑

xy∈E(G)

[nxy(x) + nxy(y)],

where nxy(x) denotes the number of vertices which are closer to the vertex x than to the

vertex y.

1.5.1 Motivation on k-trees

Padmakar-Ivan indices are widely used in QSPR/QSAR/QSTR [65, 72]. In addition,

there are nice results regarding vertex PI index in the study of computational complexity

and the intersection between graph theory and chemistry. In [22], Das and Gutman obtained

a lower bound on the vertex PI index of a connected graph in terms of numbers of vertices,

edges, pendent vertices, and clique number. Hoji et al. [44] provided exact formulas for the

vertex PI indices of Kronecker product of a connected graph G and a complete graph. Ili

ć and Milosavljević[46] established basic properties of weighted vertex PI index and proved

some lower and upper bounds. Pattabiraman and Paulraja [66] presented the expressions

for vertex PI indices of the strong product of a graph and the complete multipartite graph.

Since the PI index is a distance-based index and not very easy to calculate, we first

consider the bipartite graph G with n vertices. Then G has no odd cycle. By the definition

of PI(G), one can obtain that every edge of G has the PI-value as n− 2. Thus, we can get

the following proposition.

11



Proposition 1.5.1. For any bipartite graph G with n vertices and m edges, PI(G) = (n−

2)m. In particular, if G is a tree, then PI(G) = (n− 1)(n− 2).

Since a bipartite graph has no odd cycles, we will consider some graphs with odd

cycles. For example, k-tree contains many odd cycles. Recently, we investigated the question

of whether or not a k-star or a k-path attains the maximal or minimal bound for PI-indices

of k-trees. The related results are listed below: Theorems 1.5.2 and 1.5.3 give the exact

PI-values of k-stars, k-paths and k-spirals.

Theorem 1.5.2 (Wang and Wei, [78]). For any k-star Skn and k-path P k
n with n = kp + s

vertices, where p ≥ 0 is an integer and s ∈ [2, k + 1],

(i)PI(Skn) = k(n− k)(n− k − 1),

(ii)PI(P k
n ) = k(k+1)(p−1)(3kp+6s−2k−4)

6
+ (s−1)s(3k−s+2)

3
.

Theorem 1.5.3 (Wang and Wei, [78]). For any k-spiral T k∗n,c with n ≥ k vertices, where

c ∈ [1, k − 1],

PI(T k∗n,c) =


(n−k)(n−k−1)(4k−n+2)

3
, if n ∈ [k, 2k − c],

3c(n−2k+c−1)(n−2k+c)+(k−c)(2c2+3nc−4kc+3kn−4k2−6k+3n−2)
3

, if n ≥ 2k − c+ 1.

Theorem 1.5.4 proves that k-stars achieve the maximal values of PI-values for k-trees.

Theorem 1.5.4 (Wang and Wei, [78]). For any k-tree T kn with n ≥ k ≥ 1, PI(T kn ) ≤ PI(Skn).

Theorem 1.5.5 shows that k-paths do not attain the minimal values and certain PI-

values of k-spirals are less than that of the PI-values of k-paths.

Theorem 1.5.5 (Wang and Wei, [78]). For any k-spiral T k∗n,c with n ≥ k ≥ 1, then

(i) PI(P k
n ) ≥ PI(T k∗n,c) if c ∈ [1, k+1

2
),

(ii) PI(P k
n ) ≤ PI(T k∗n,c) if c ∈ [k+1

2
, k − 1].
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1.5.2 Motivation on Cactus graphs

Many results were obtained by Lin, et al. on the cacti in both Chemistry and Graph

Theory. Lin et al.(2007) [61], and Liu and Lu (2008) [62] obtained some sharp bounds of

several chemical indices of cactus graphs, such as the Wiener index, the Merrifield-Simmons

index, the Hosoya index and the Randić index. Wang and Kang (2015) [82] found the

extremal bounds of another chemical index, the Harary index, for the cactus graphs as well.

Feng and Yu [26] found the cacti in Cn,k with the smallest hyper-Wiener indices, which is

a renovated version of Wiener index. Wang and Tan [83] characterized the extremal cacti

having the largest Wiener and hyper-Wiener indices in Cn,k. Motivated by the results of

chemical indices and their applications, it is worth noting that it is an interesting problem to

characterize the cacti in Cn,k with maximum and minimum vertex PI indices. The concept

of vertex PI index yields the following propostion.

Proposition 1.5.6. Let G ∈ Cn,k with n ≥ k ≥ 0, then

(i) If G is C3, C4 or C5, then PI(G) = 0, 8, 10.

(ii) If G is C3 attaching a pendent edge e(say C3 ∪ e), then PI(G) = 4.

In our work, we determine the graphs with the largest and smallest vertex PI indices

in Cn,k, and provide the extremal cacti in Figs 1, 2 of Figure 1.5.1, which extend Das and

Gutman’s result [22] by excluding the number of edges and cliques for the cacti. (In Figs 1

and 2, ◦ means that the vertex may exist.)
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Figure 1.5.1: The cacti with extremal PI indices
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Theorem 1.5.7 (Wang, Wang and Wei [80]). Let G ∈ Cn,k − {C3, C3 ∪ e, C4, C5} with

n ≥ k ≥ 0, then PI(G) ≤ (n − 1 + bn−k−1
3
c)(n − 2), where the equality holds if and only if

G is a tree for n ≤ k + 3 and otherwise, one of the following statements holds(See Fig. 1):

(i) All cycles have length 4 and there are at most k + 2 cut edges.

(ii) All cycles have length 4 except one of length 6 and there are exact k pendent edges.

Theorem 1.5.8 (Wang, Wang and Wei [80]). Let G ∈ Cn,k−{C3, C3∪e, C4} with n ≥ k ≥ 0,

then PI(G) ≥ (n− 1)(n− 2)− 2bn−k−1
2
c, where the equality holds if and only if G is a tree

for n ≤ k + 2 and otherwise, all cycles have length 3 and there are at most k + 1 cut edges

(See Fig. 2).

1.6 DOMINATION AND INDEPENDENT DOMINATION

A classical problem in domination-related theory that attracted many scholars’ at-

tention is the N-Queens Problem on an n× n chess board from the mid-1860s. De Jaenisch

[1] attempted to determine the minimum number of queens required to cover an n×n chess

board, so that no two queens attack each other. A solution exists for all natural numbers n

except 2 and 3. In 1892, two typical chess board problems were given by W.W. Rouse Ball

as follows.

• Covering: Determine the minimum number of chess pieces of a given type that are

necessary to cover (attack) every square of an n× n chess board.

• Independent Covering: Determine the smallest number of mutually nonattacking

chess pieces of a given type that are necessary to dominate every square of an n × n

board.

Based on these two typical chess board problems, the following concepts are prosposed.

Definition 1.6.1. A vertex set D ⊆ V (G) is a dominating set if every vertex of V (G)−D

is adjacent to some vertices of D. The minimum cardinality of a dominating set of G is

called the domination number, denoted by γ(G).
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Definition 1.6.2. A vertex set I ⊆ V (G) is an independent dominating set if I is both an

independent set and a dominating set in G, where an independent set is a set of vertices in

a graph such that no two of which are adjacent. The minimum cardinality of an independent

dominating set of G is called the independent domination number, denoted by i(G).

Definition 1.6.3. Let G be a graph. The ratio of domination number and independent

domination number is defined as

i(G)

γ(G)
.

1.6.1 Motivation on the ratio of domination numbers

In general, it is very difficult to find the domination and independent domination

numbers of a graph. Note that i(G) ≥ γ(G). This implies i(G)/γ(G) ≥ 1. A natural

problem is to determine an upper bound for i(G)/γ(G). Hedetniemi and Mitchell [43] in

1977 showed that if L is a line graph of a tree, then i(L)/γ(L) = 1, where the line graph L(G)

of a connected graph G is a graph such that each vertex of L(G) represents an edge of G and

two vertices of L(G) are adjacent if and only if their corresponding edges share a common

endpoint in G. Since a line graph does not have an induced subgraph isomorphic to K1,3,

Allan and Laskar [1] extended the previous result and obtained that if a graph G is a K1,3-

free graph, then i(G)/γ(G) = 1. In 2012, Goddard et al.[21] continued the similar approach

and proved that i(G)/γ(G) ≤ 3/2 if G is a cubic graph. In 2013, Southey and Henning [25]

improved the previous bound to i(G)/γ(G) ≤ 4/3 for a connected cubic graph G other than

K3,3. Additionally, Rad and Volkmann [67] obtained an upper bound of i(G)/γ(G) related

to the maximum degree ∆(G) for any graph G and proposed a conjecture below.

Theorem 1.6.1. (Rad and Volkmann [67]) If G is a graph, then

i(G)

γ(G)
≤


∆(G)

2
, if 3 ≤ ∆(G) ≤ 5,

∆(G)− 3 + 2
∆(G)−1

, if ∆(G) ≥ 6.
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Conjecture 1.6.4. [67] If G is a graph with ∆(G) ≥ 3, then

i(G)/γ(G) ≤ ∆(G)/2.

In 2014, Furuya et al. [25] proved that i(G)/γ(G) ≤ ∆(G) − 2
√

∆(G) + 2 and

gave a class of graphs which achieve the new upper bound. However, when ∆(G) 6= 4,

∆(G)− 2
√

∆(G) + 2 > ∆(G)/2. On the other hand, it is still very interesting to determine

other class of graphs, for which Conjecture 2 holds. One of the special class of graphs

achieved this bound is as follows.

Figure 1.6.1: One of the counterexamples of Furuya et al.

Motivated by Conjecture 1.6.4 and previous results, we show that:

Theorem 1.6.2 (Wang and Wei [79]). Let G be a bipartite graph with ∆(G) ≥ 2, then

i(G)

γ(G)
≤ ∆(G)

2
.

1.7 DISSERTATION STRUCTURE

In chapter 1, we introduce the outline of this work. All notation and definitions that

will be used in the following sections are given. The motivations and the history of the main

results are prospsed as well. The remaining chapters of this dissertation are organized as

follows.
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Chapters 2 covers the degree-based topological index with respective sharp graphs. In

Chapter 3, we study a distance-based topological index and provide the extremal bounds for

k-trees and cactus graphs. We explore another classic problem regarding domination number

and independent domination number in Chapter 4. We find the relationship between these

two domination numbers. Furthermore, we prove a related conjecture for bipartite graphs.

In addition, the future research plan to improve and expand the current results is

provided in Chapter 5.
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2 MULTIPLICATIVE ZAGREB INDICES

In this chapter, we provide the extremal k-trees and cactus graphs about the impor-

tant topological indices (Multiplicative Zagreb indices). First of all, we introduce a developed

method from two analytic lemmas to derive our results. Based on the calculations, the two

lemmas are as follows.

Lemma 2.0.1. The function f(x) =
x

x+m
is strictly increasing for x ∈ [0,∞), where m is

a positive integer.

Lemma 2.0.2. The function f(x) =
xx

(x+m)x+m
is strictly decreasing for x ∈ [0,∞), where

m is a positive integer.

2.1 K-TREES

In this section, we present the main results again and provide the complete proofs.

Theorem 2.1.1 (Wang and Wei [76]). If T kn is a k-tree on n ≥ k vertices, then

∏
1,c(Sk,n−k) ≤

∏
1,c(T

k
n ) ≤

∏
1,c(P

k
n ),

the left-side and the right-side equalities are reached if and only if T kn
∼= Sk,n−k and T kn

∼= P k
n ,

respectively.

Theorem 2.1.2 (Wang and Wei [76]). If T kn is a k-tree on n ≥ k vertices, then

∏
2(P k

n ) ≤
∏

2(T kn ) ≤
∏

2(Sk,n−k),
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the left-side and the right-side equalities are reached if and only if T kn
∼= P k

n and T kn
∼= Sk,n−k,

respectively.

Furthermore, if we let G[{v1, v2...vk}] denote the initial k-clique, then just by the

definition of k-trees, one can get some useful propositions.

Proposition 2.1.3. For the k-star, the degree of vertex vi can be characterized as follows:

d(vi) = n− k, for i ∈ [1, k]; d(vi) = k, for i ∈ [k + 1, n].

Proposition 2.1.4. For the k-path, the degree of vertex vi can be characterized as follows:

(1) If 4 ≤ n ≤ 2k, d(vi) = k+ i−1, for i ∈ [1, n−k−1]; d(vi) = n−1, for i ∈ [n−k, k+ 1];

d(vi) = k + n− i, for i ∈ [k + 2, n].

(2) If n ≥ 2k + 1, d(vi) = k + i − 1, for i ∈ [1, k]; d(vi) = 2k, for i ∈ [k + 1, n − k];

d(vi) = k + n− i, for i ∈ [n− k + 1, n].

One can deduce the first generalized multiplicative Zagreb indices and second multi-

plicative Zagreb indices of the k-path and k-star using induction and the above abservations

as shown below.

Proposition 2.1.5. Let Sk,n−k be a k-star on n ≥ k + 1 vertices, then

(1)
∏

1,c(Sk,n−k) = (n− k)ckkc(n−k);

(2)
∏

2(Sk,n−k) = (n− k)k(n−k)kk(n−k).

Proposition 2.1.6. Let P k
n be a k-path on n ≥ k + 1 vertices, then

(1.1)
∏

1,c(P
k
n ) = (n− 1)c

∏n−2
i=k i

2c, if n ∈ [k + 1, 2k];

(1.2)
∏

1,c(P
k
n ) = (2k)c(n−2k)

∏2k−1
i=k i2c, if n ≥ 2k + 1;

(2.1)
∏

2(P k
n ) = (n− 1)n−1

∏n−2
i=k i

2i, if n ∈ [k + 1, 2k];

(2.2)
∏

2(P k
n ) = (2k)2k(n−2k)

∏2k−1
i=k i2i, if n ≥ 2k + 1.

Prior to the proof of main results, we give some lemmas that are critical in the proof

of our main results.
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Lemma 2.1.7. For any k-tree G 6∼= Sk,n−k, let u ∈ S2, N(u) ∩ S1 = {v1, v2...vs}, where

s ≥ 1 is an integer. Then

(1) For any i with 1 ≤ i ≤ s, there exists a vertex v ∈ N(u)− {v1, v2...vs} of degree at least

k in G[V (G)− {v1, v2...vs}] such that vvi /∈ E(G).

(2)There exists a k-tree G∗ such that
∏

1,c(G
∗) <

∏
1,c(G) and

∏
2(G∗) >

∏
2(G).

Proof. F or (1), let G′ = G[V (G) − {v1, v2...vs}] and S = N(u) − {v1, v2...vs}, we obtain

that dG′(u) = |S| = k and G[S] is a k-clique by u ∈ S2. Since G 6∼= Skn, dG′(v) ≥ k for all

v ∈ S. And by the facts that N(vi) ⊆ (N(u) − {v1, v2...vs}) ∪ {u} with |N(vi)| = k and

|(N(u)− {v1, v2...vs}) ∪ {u}| = k + 1, we have for any i ∈ [1, s], there exists a vertex v ∈ S

such that vvi /∈ E(G).

For (2), choose v1 and by (1) there exists a vertex v ∈ N(u) − {v1, v2...vs} with

dG′(v) ≥ k such that vv1 /∈ E(G). If dG′(v) = k, and by uv ∈ E(G′), we obtain G′ is a

k+1-clique. Let x ∈ S be the vertex such that d(x) = minv∈S{d(v)}, and let vt be the vertex

such that vtx ∈ E(G), vty /∈ E(G) for some t ∈ [1, s] and y ∈ S, that is, d(x) − 1 < d(y).

Construct a new graph G∗ such that V (G∗) = V (G), and E(G∗) = E(G) − {vtx} + {vty}.

Denote G0 = G[V (G) − {x, y}], since d(x) − 1 < d(y), and by the definition of
∏

1,c(G),∏
2(G), Lemma 2.0.1 and Lemma 2.0.2, we have

∏
1,c(G)∏

1,c(G
∗)

=
[
∏

w∈V (G0) d(w)c]d(y)cd(x)c

[
∏

w∈V (G0) d(w)c][d(y) + 1]c[d(x)− 1]c

=
d(y)cd(x)c

[d(y) + 1]c[d(x)− 1]c

=

d(y)c

[d(y) + 1]c

[d(x)− 1]c

d(x)c

> 1.

Also,
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∏
2(G)∏

2(G∗)
=

[
∏

w∈V (G0) d(w)d(w)]d(y)d(y)d(x)d(x)

[
∏

w∈V (G0) d(w)d(w)][d(y) + 1]d(y)+1[d(x)− 1]d(x)−1

=
d(y)d(y)d(x)d(x)

[d(y) + 1]d(y)+1[d(x)− 1]d(x)−1

=

[
d(y)d(y)

[d(y) + 1]d(y)+1
]

[
[d(x)− 1]d(x)−1

d(x)d(x)
]

< 1.

Thus, we find that the k-tree G∗ satisfies
∏

1,c(G
∗) <

∏
1,c(G) and

∏
2(G∗) >

∏
2(G), we are

done.

If dG′(v) ≥ k + 1, reorder the subindices of {v1, v2...vs} such that vvi /∈ E(G) with

i ∈ [1, s1], where s1 ≤ s, and by the fact that G[N(u) − {v1, v2...vs}] is a k-clique, we have

d(u) = k+ s and d(v) ≥ k+ 1 + s− s1, that is, d(v) ≥ d(u)− s1 + 1. Construct a new graph

G∗ such that V (G∗) = V (G), and E(G∗) = E(G) − {uvi} + {vvi}, for all i ∈ [1, s1]. Since

G[N(u)−{v1, v2...vs}+{u}] is a (k+1)-clique, and for any i, N(vi) ⊆ NG−{v1,v2...vs}(u)∪{u},

we deduce that G∗ is a k-tree. Denote G0 = G[V (G)− {u, v}]. Since d(v) ≥ d(u)− s1 + 1,

and by the definition of
∏

1,c(G),
∏

2(G), Lemma 2.0.1 and Lemma 2.0.2, we have

∏
1,c(G)∏

1,c(G
∗)

=
[
∏

w∈V (G0) d(w)c]d(v)cd(u)c

[
∏

w∈V (G0) d(w)c][d(v) + s1]c[d(u)− s1]c

=
d(v)cd(u)c

[d(v) + s1]c[d(u)− s1]c

=

[
d(v)c

[d(v) + s1]c
]

[
[d(u)− s1]c

d(u)c
]

> 1.

Also,
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∏
2(G)∏

2(G∗)
=

[
∏

w∈V (G0) d(w)d(w)]d(v)d(v)d(u)d(u)

[
∏

w∈V (G0) d(w)d(w)][d(v) + s1]d(v)+s1 [d(u)− s1]d(u)−s1

=
d(v)d(v)d(u)d(u)

[d(v) + s1]d(v)+s1 [d(u)− s1]d(u)−s1

=

[
d(v)d(v)

[d(v) + s1]d(v)+s1
]

[
[d(u)− s1]d(u)−s1

d(u)d(u)
]

< 1.

Hence, we find that the k-tree G∗ satisfies
∏

1,c(G
∗) <

∏
1,c(G) and

∏
2(G∗) >

∏
2(G),

we are done.

Lemma 2.1.8. Let G be a k-tree. If either
∏

1,c(G) attains the maximal or
∏

2(G) attains

the minimal, then every hyper pendent edge is a k-path.

Proof. Let P= G[V (S) ∪ V (C)] be a hyper pendent edge, where G[S] = G[{x1, x2...xk}] is

a cut k-clique and V (C) = {u1, u2...up} with p is a positive ingeter such that u1 is the only

vertex of P in S1(G) and for i ∈ [1, p− 1], ui is the vertex added following by ui+1 through

the process of the definition of k-trees.

Fact 1. For any hyper pendent edge P= G[V (S)∪V (C)] as represented above, {u1, u2...up}

is a simplicial elimination ordering of P.

Proof. By contradiction, assume that {u1, u2...up} is not a simplicial elimination ordering of

P . Let ut be the first vertex from u1 to up such that {ut, ut+1} ∈ St for t ∈ [2, p− 1]. Then

utut+1 /∈ E(G) and {ut, ut+1} can not be in some k-cliques. And by the definition of k-trees,

there must be at least two vertices that belongs to S1 in V (C), a contradiction.

By Fact 1, we know {u1, u2...up} is a simplicial elimination ordering of P . For p ≤ 2,

P is a k-path by the definition of k-paths; For p ≥ 3, if P is a k-path, then we are done.

Otherwise, let us be the first vertex from up to u1 such that G[V (S) ∪ {up, up−1...us+1, us}]

is not a k-path. Since G[V (S) ∪ {up, up−1...us+1}] is a k-path, for each i ∈ [s + 1, p], let
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NG−{u1,u2...ui−1}(ui) = {ui+1, ui+2......umin{p,i+k}, x1, x2...xmax{0,k−p+i}}, and by Definition 2

and the symmetry of G[S], we have |N(us)∩{us+1, us+2...umin{p,s+k}}| = min{p−s−1, k−1},

where 1 ≤ s ≤ p− 1.

For p ≤ k + s, suppose that ut is the vertex such that ut /∈ N(us) with s + 2 ≤

t ≤ p. Let NG−{u1,u2...us−1}(us) = {us+1, us+2...ut−1, ut+1...up, x1, x2...xk−p+s+1}, and let

|N(xk−p+s+1) ∩ {u1, u2...us−1}| = m for m ∈ [0, s − 1]. By the defition of k-paths, we

have utui /∈ E(G) for i ∈ [1, s], and then d(ut) = k + t − s − 1 and d(xk−p+s+1) >

k + p − s + m − 1. Now construct a new graph G∗ such that V (G∗) = V (G), E(G∗) =

E(G) − {usxk−p+s+1, uixk−p+s+1} + {usut, uiut} with i ∈ [0,m], then G∗ is a k-tree. Since

t ≤ p, we have d(xk−p+s+1) > d(ut)+m+1, and by the definition of
∏

1,c(G),
∏

2(G), Lemma

2.0.1 and Lemma 2.0.2, we get

∏
1,c(G)∏
1,c(G∗)

=
d(ut)

cd(xk−p+s+1)c

[d(ut) +m+ 1]c[d(xk−p+s+1)−m− 1]c

=

[
d(ut)

d(ut) +m+ 1
]c

[
d(xk−p+s+1)−m− 1

d(xk−p+s+1)
]c

< 1,∏
2(G)∏

2(G∗)
=

d(ut)
d(ut)d(xk−p+s+1)d(xk−p+s+1)

[d(ut) +m+ 1]d(ut)+m+1[d(xk−p+s+1)−m− 1]d(xk−p+s+1)−m−1

=

d(ut)
d(ut)

[d(ut) +m+ 1]d(ut)+m+1

[d((xk−p+s+1)−m− 1]d((xk−p+s+1)−m−1

d(xk−p+s+1)d(xk−p+s+1)

> 1.

Thus,
∏

1,c(G
∗) >

∏
1,c(G) and

∏
2(G∗) <

∏
2(G), a contradiction.

For p ≥ k+s+1, let |N(uk+s+1)∩{u1, u2...us−1}| = m form ∈ [0, s−1]. SinceG[V (S)∪

{up, up−1...us+1}] is a k-path, we have G[{us+1, us+2...us+k+1}] is a (k + 1)-clique. Suppose

that ut is the vertex such that ut /∈ N(us) with s+ 2 ≤ t ≤ s+ k, let NG−{u1,u2...us−1}(us) =

{us+1, us+2...ut−1, ut+1...us+k+1}. Now we construct a new graph G∗ such that V (G∗) =
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V (G), E(G∗) = E(G) − {usuk+s+1, uiuk+s+1} + {usut, uiut} for i ∈ [0,m]. Then G∗ is

a k-tree and d(uk+s+1) = 2k + m, d(ut) = k + t − s − 1. Since t ≤ s + k, we have

d(uk+s+1) > d(ut) + m + 1, and by the definition of
∏

1,c(G),
∏

2(G), Lemma 2.0.1 and

Lemma 2.0.2, we get

∏
1,c(G)∏
1,c(G∗)

=
d(ut)

cd(uk+s+1)c

[d(ut) +m+ 1]c[d(uk+s+1)−m− 1]c

=

[
d(ut)

d(ut) +m+ 1
]c

[
d(uk+s+1)−m− 1

d(uk+s+1)
]c

< 1,∏
2(G)∏

2(G∗)
=

d(ut)
d(ut)d(uk+s+1)d(uk+s+1)

[d(ut) +m+ 1]d(ut)+m+1[d(uk+s+1)−m− 1]d(uk+s+1)−m−1

=

d(ut)
d(ut)

[d(ut) +m+ 1]d(ut)+m+1

[d((uk+s+1)−m− 1]d(uk+s+1)−m−1

d(uk+s+1)d(uk+s+1)

> 1.

Thus,
∏

1,c(G
∗) >

∏
1,c(G) and

∏
2(G∗) <

∏
2(G), a contradiction. Hence, for any

s ∈ [1, p] NG−{u1,u2...us−1}(us) = {us+1, us+2...umin{p,k+s}, x1, x2...xmax{0,k−p+s}}, that is, P is

a k-tree.

Lemma 2.1.9. Let G be a k-tree, if either
∏

1,c(G) attains the maximal or
∏

2(G) attains

the minimal, then |S1(G)| = 2.

Proof. W e know that |S1(G)| ≥ 2 for n ≥ k + 2, and by Lemma 2.1.8, every hyper pendent

edge is a k-path for
∏

1,c(G) to attain the maximal or
∏

2(G) to attain the minimal. If

|S1(G)| = 2, we are done; Suppose that |S1(G)| ≥ 3, it suffices to prove that there exists a

graph G′ such that |S1(G′)| = |S1(G)| − 1 with
∏

1,c(G
′) >

∏
1,c(G) and

∏
2(G′) <

∏
2(G).

Fact 2. For any k-tree G satisfying the conditions of Lemma 3, if |S1(G)| ≥ 3, then there

exists a k-clique G[S] such that w(G− S) ≥ 3.
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Proof. We will proceed by induction on n = |G|. For n = k + 3, it is trivial; For n ≥ k + 4,

assume that the fact is true for the k-tree G with n < k + p, and consider n = k + p. If

|S1(G)| ≥ 4, choose any vertex v ∈ S1(G), or |S1(G)| = 3 and |S2(G)| ≥ 2, choose the vertex

v ∈ S1(G) such that N(w) ∩ S1(G) = {v} for some w ∈ S2(G), then construct a new graph

G′ such that G′ = G− v. Since S2(G) is an dependent set and G[N(v)] is a k-clique for any

v ∈ S1(G), we obtain |S1(G′)| ≥ 3. By the induction hypothesis, there exists a k-clique G[S]

in G′ such that w(G′ − S) ≥ 3. Thus, by adding back v, G[S] is still a k-clique in G and

w(G− S) ≥ 3, we are done. Next, we only consider |S1(G)| = 3 and |S2(G)| = 1.

Let S1(G) = {v1, v2, v3} and G0 = G − {v1, v2, v3}, we have G0 is a (k + 1)-clique,

denoted by G[{x1, x2...xk+1}]. If there exists N(vi) = N(vj), for some i, j ∈ [1, 3] with

i 6= j, and take S = N(vi), then w(G − S) ≥ 3, we are done; If N(vi) 6= N(vj), for

any i, j ∈ [1, 3] with i 6= j, then reorder the index of xi such that N(v1) = {x1, x2...xk},

N(v2) = {x2, x3...xk+1} and N(v3) = {x1, x3...xk+1}. Construct a new graph G∗ such that

V (G∗) = V (G), E(G∗) = E(G)−{v1x1}+{v1v2}, then G∗ is still a k-tree and dG(x1) = k+2,

dG∗(x1) = k + 1, dG(v1) = dG(v2) = k and dG∗(v2) = k + 1. By the definition of
∏

1,c(G),∏
2(G), Lemma 2.0.1 and Lemma 2.0.2, we have

∏
1,c(G)∏

1,c(G
∗)

=
d(v2)cd(x1)c

[d(v2) + 1]c[d(x1)− 1]c

= [
k(k + 2)

(k + 1)2
]c

< 1,

∏
2(G)∏

2(G∗)
=

d(v2)d(v2)d(x1)d(x1)

[d(v2) + 1]d(v2)+1[d(x1)− 1]d(x1)−1

=
(k + 2)k+2kk

(k + 1)2(k+1)

=

[
kk

(k + 1)k+1
]

[
(k + 1)k+1

(k + 2)k+2
]

> 1.
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Thus, we find a graph G∗ with
∏

1,c(G
∗) >

∏
1,c(G) and

∏
2(G∗) <

∏
2(G), a con-

tradiction with that
∏

1,c(G) attains the maximal or
∏

2(G) attains the minimal, we are

done.

Choose a k-clique G[S] with w(G − S) ≥ 3 such that there are two components of

G− S: C1, C2 with |C1| = p, |C2| = q and p + q being minimal, for p ≥ q. Let u1 ∈ V (C1),

v1 ∈ V (C2) with {u1, v1} ⊆ S1(G). Let NG−{v1,v2...vi−1}(vi) = {vi+1, vi+2...vmin{k+1,q}, x1, x2...

xmax{0,k−q+i}, NG−{u1,u2...uj−1}(uj) = {uj+1, uj+2...umin{k+1,p}, y1, y2...ymax{0,k−p+i}} for i ≥

1, j ≥ 1, where {v1, v2...vq} and {u1, u2...up} are simplicial elimination orderings of G[S ∪

V (C1)] and G[S ∪ V (C2)], respectively. We will prove Lemma 2.1.9 by induction on q.

(1) If q = 1, then d(v1) = k. Choose xt ∈ N(v1), let |N(xt) ∩ {u1, u2...up}| = m for

m ∈ [1, k], we get d(xt) > k + 1 + m by w(G − S) ≥ 3, and then d(xt) > d(v1) + m + 1.

Now construct a new graph G∗ such that V (G∗) = V (G), E(G∗) = E(G)− {uixt} + {uiv1}

for i ∈ [1,m], then G∗ is a k-tree and |C1| + |C2| = p with G[{x1, x2...xt−1, xt+1...xk, v1}] is

a k-clique in G∗. Since d(xt) > d(v1) +m+ 1, by the definition of
∏

1,c(G),
∏

2(G), Lemma

2.0.1 and Lemma 2.0.2, we have

∏
1,c(G)∏
1,c(G∗)

=
d(v1)cd(xt)

c

[d(v1) +m]c[d(xt)−m]c

=

[
d(v1)

d(v1) +m
]c

[
d(xt)−m
d(xt)

]c

< 1,∏
2(G)∏

2(G∗)
=

d(v1)d(v1)d(xt)
d(xt)

[d(v1) +m]d(v1)+m[d(xt)−m]d(xt)−m

=

d(v1)d(v1)

[d(v1) +m]d(v1)+m

[d((xt)−m]d((xt)−m

d(xt)d(xt)

> 1.
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Then,
∏

1,c(G
∗) >

∏
1,c(G) and

∏
2(G∗) <

∏
2(G). Thus, let G′ = G∗, |S1(G′)| =

|S1(G)| − 1,
∏

1,c(G
′) >

∏
1,c(G) and

∏
2(G′) <

∏
2(G), and we are done.

(2) Assume that q = s, there exists a k-tree G′ such that |S1(G′)| = |S1(G)| − 1,∏
1,c(G

′) >
∏

1,c(G),
∏

2(G′) <
∏

2(G) and we consider q = s+ 1.

If q ≤ k, we have d(vq) = k + q − 1 by the fact that G[S ∪ V (C2)] is a k-path.

Choose xt ∈ N(v1), we know xt ∈ N(vi) for all i ∈ [1, p] by G[S ∪ V (C2)] is a k-path. Let

|N(xt)∩{u1, u2...up}| = m for m ∈ [1, k], we have d(xt) > k+q+m by w(G−S) ≥ 3, and then

d(xt) > d(vq) + m + 1. Now construct a new graph G∗ such that V (G∗) = V (G), E(G∗) =

E(G) − {uixt} + {uivq} for i ∈ [1,m], then G∗ is a k-tree and |C1| + |C2| = p + q − 1

with G[{x1, x2...xt−1, xt+1...xk, vq}] is a k-clique in G∗. Since d(xt) > d(vq) + m + 1, by the

definition of
∏

1,c(G),
∏

2(G), Lemma 2.0.1 and Lemma 2.0.2, we have

∏
1,c(G)∏
1,c(G∗)

=
d(vq)

cd(xt)
c

[d(vq) +m]c[d(xt)−m]c

=

[
d(vq)

d(vq) +m
]c

[
d(xt)−m
d(xt)

]c

< 1,∏
2(G)∏

2(G∗)
=

d(vq)
d(vq)d(xt)

d(xt)

[d(vq) +m]d(vq)+m[d(xt)−m]d(xt)−m

=

d(vq)
d(vq)

[d(vq) +m]d(vq)+m

[d((xt)−m]d((xt)−m

d(xt)d(xt)

> 1.

Then,
∏

1,c(G) <
∏

1,c(G
∗),

∏
2(G) >

∏
2(G∗) and q = s in G∗, then by the induction

hypothesis, there exists a k-tree G′ such that |S1(G′)| = |S1(G)| − 1,
∏

1,c(G
′) >

∏
1,c(G)

and
∏

2(G′) <
∏

2(G), we are done.

If q ≥ k + 1, we have N(u1) = {u2, u3...uk+1}, N(v1) = {v2, v3...vk+1} by the facts

that p ≥ q and G[S ∪ V (C1)], G[S ∪ V (C2)] are k-paths. We construct a new graph G∗ such
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that V (G∗) = V (G), E(G∗) = E(G) − {v1vi} + {ujv1} for i ∈ [2, k + 1], j ∈ [1, k]. And the

definition of
∏

1,c(G),
∏

2(G), Lemma 2.0.1 and Lemma 2.0.2, we obtain

∏
1,c(G)∏

1,c(G
∗)

=

∏k+1
i=2 d(vi)

c
∏k

j=1 d(uj)
c∏k+1

i=2 [d(vi)− 1]c
∏k,

j=1[d(uj) + 1]c

= 1,∏
2(G)∏

2(G∗)
=

∏k+1
i=2 d(vi)

d(vi)
∏k

j=1 d(uj)
d(uj)∏k+1

i=2 [d(vi)− 1]d(vi)−1
∏k

j=1[d(uj) + 1]d(uj)+1

= 1.

Then,
∏

1,c(G) =
∏

1,c(G
∗),

∏
2(G) =

∏
2(G∗) and q = s in G∗, then by the induction

hypothesis, there exists a k-tree G′ such that |S1(G′)| = |S1(G)| − 1,
∏

1,c(G
′) >

∏
1,c(G)

and
∏

2(G′) <
∏

2(G), we are done.

Next we turn to prove the main results of this section.

Proof of Theorem 2.1.1. F or any k-tree T kn , if |S1(T kn )| = n − k, then T kn
∼= Sk,n−k, we are

done. And if |S1(T kn )| ≤ n − k − 1, we can recursively use Lemma 2.1.7 to make
∏

1,c(T
k
n )

decreasing until |S1(T kn )| = n − k. Thus, we have T kn
∼= Sk,n−k for

∏
1,c(T

k
n ) to arrive the

minimal value.

By Lemma 2.1.8, if
∏

1,c(T
k
n ) get the maximal, then every hyper pendent edge is a

k-path, and by Lemma 2.1.9, |S1(T kn )| = 2, implying that T kn
∼= P k

n for
∏

1,c(T
k
n ) to arrive

the maximal value.

Proof of Theorem 2.1.2. F or any k-tree T kn , if |S1(T kn )| = n − k, then T kn
∼= Sk,n−k ,we are

done. And if |S1(T kn )| ≤ n − k − 1, we can recursively use Lemma 2.1.7 to make
∏

2(T kn )

increasing until |S1(T kn )| = n−k, then we have T kn
∼= Sk,n−k for

∏
2(T kn ) to arrive the maximal

value.

By Lemma 2.1.8, if
∏

2(T kn ) get the minimal, every hyper pendent edge is a k-path,

and by Lemma 2.1.9, |S1(T kn )| = 2. Then this k-tree is a k-path, that is, T kn
∼= P k

n for
∏

2(T kn )

to arrive the minimal value.
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2.2 CACTUS GRAPHS

In this section, we rewrite the results and give the complete proofs. Theorem 2.2.1

gives the lower bounds of the first generalized Zagreb index of cactus graphs and states the

corresponding extremal graphs.

Theorem 2.2.1 (Wang and Wei [77]). For any graph G in Ckn,

∏
1,c

(G) ≥

 3kc2(n−2k)c, if k = 0, 1,

2(n−k−1)ckc, if k ≥ 2,

the equalities hold if and only if their degree sequences are 3, 3, ..., 3︸ ︷︷ ︸
k

, 2, 2, ..., 2︸ ︷︷ ︸
n−2k

, 1, 1, ..., 1︸ ︷︷ ︸
k

and k, 2, 2, ..., 2︸ ︷︷ ︸
n−k−1

, 1, 1, ..., 1︸ ︷︷ ︸
k

, respectively.

Theorems 2.2.2 and 2.2.3 provide the sharp upper bounds on the first generalized

multiplicative Zagreb indices of cactus graphs and characterize the extremal graphs.

Theorem 2.2.2 (Wang and Wei [77]). For any graph G in Ckn with n ≤ k + 3,

∏
1,c

(G) ≤


kc if n = k + 1,

(dk
2
e+ 1)c(bk

2
c+ 1)c if n = k + 2,

(dk
3
e+ 2)c(bk

3
c+ 2)c(k − dk

3
e − bk

3
c+ 2)c if n = k + 3,

the equalities hold if and only if their degree sequences are k, 1, 1, ..., 1︸ ︷︷ ︸
k

; dk
2
e + 1, bk

2
c +

1, 1, 1, ..., 1︸ ︷︷ ︸
k

and dk
3
e+ 2, bk

3
c+ 2, k − dk

3
e − bk

3
c+ 2, 1, 1, ..., 1︸ ︷︷ ︸

k

, respectively.

Theorem 2.2.3 (Wang and Wei [77]). For any graph G in Ckn with n ≥ k + 4 and t ≥ 0,

∏
1,c

(G) ≤


16c if k = 0, n = 4,

2(3t+6)c if k = 0, n = 2t+ 5,

2(3t+4)c9c if k = 0, n = 2(t+ 3),
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the equalities hold if and only if their degree sequences are 2, 2, 2, 2; 4, 4, ..., 4︸ ︷︷ ︸
t+1

, 2, 2, ..., 2︸ ︷︷ ︸
t+4

and 4, 4, ..., 4︸ ︷︷ ︸
t

, 3, 3, 2, 2, ..., 2︸ ︷︷ ︸
t+4

, respectively;

For k 6= 0, if
∏

1,c(G) attains the maximal value, then one of the following statements holds:

For any nonpendant vertices u, v, either (i) |d(u)− d(v)| ≤ 1 or (ii) d(u) ∈ {2, 3, 4} and G

contains no cycles of length greater than 3, no dense paths of length greater than 1 except

for at most one of them with length 2, and no paths of length greater 0 that connects only

two cycles except for at most one of them with length 1.

Theorem 2.2.4 gives sharp lower bounds on the second multiplicative Zagreb indices

of cactus graphs and characterizes the extremal graphs.

Theorem 2.2.4 (Wang and Wei [77]). For any graph G in Ckn with γ = k−2
n−k ,

∏
2

(G) ≥

 33k22(n−2k) if k = 0, 1,

(2 + dγe)(2+dγe)[k−2−bγc(n−k)](2 + bγc)(2+bγc)[n−2k+2+bγc(n−k)] if k ≥ 2,

the equalities hold if and only if their degree sequences are 3, 3, ..., 3︸ ︷︷ ︸
k

, 2, 2, ..., 2︸ ︷︷ ︸
n−2k

,

1, 1, ..., 1︸ ︷︷ ︸
k

and 2 + dγe, 2 + dγe, ..., 2 + dγe︸ ︷︷ ︸
k−2−bγc(n−k)

, 2 + bγc, 2 + bγc, ..., 2 + bγc︸ ︷︷ ︸
n−2k+2+bγc(n−k)

, 1, 1, ..., 1︸ ︷︷ ︸
k

, respectively.

Theorem 2.2.5 states sharp upper bounds on the second multiplicative Zagreb indices

of cactus graphs and characterizes the extremal graphs.

Theorem 2.2.5 (Wang and Wei [77]). For any graph G in Ckn,

∏
2

(G) ≤

 (n− 2)n−222(n−k−1) if n− k ≡ 0(mod 2),

(n− 1)n−122(n−k−1) if n− k ≡ 1(mod 2),

the equalities hold if and only if their degree sequences are n− 2, 2, 2, ..., 2︸ ︷︷ ︸
n−k−1

, 1, 1, ..., 1︸ ︷︷ ︸
k

and n− 1, 2, 2, ..., 2︸ ︷︷ ︸
n−k−1

, 1, 1, ..., 1︸ ︷︷ ︸
k

, respectively.
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Before we prove the theorems, we first give some lemmas that will be used later. By

the definition of Multiplicative Zagreb index, one can obtain the following lemmas.

Lemma 2.2.6. For G ∈ Ckn with k ≤ 1 and n ≥ 3, if
∏

1,c(G) or
∏

2(G) attains the minimal

value, then G is an unicyclic graph.

Proof. For k = 0 or 1, by the choice of G, one can obtain that G contains at least one

cycle. Otherwise, G is a tree which has at least two pendant vertices. Assume that there

exists at least two cycles in G, and choose two cycles C1 = x1x2...x1, C2 = y1y2...y1 and a

path P = z1z2...zp such that V (P ) ∩ V (C1) = {z1}, V (P ) ∩ V (C2) = {zp} and P has no

common vertices with any other cycles except C1, C2. Let N(z1) ∩ V (C1) = {x11, x12} and

N(zp) ∩ V (C1) = {xp1, xp2}, and set G′ = (G − {x11z1, xp1zp}) ∪ {x11xp1}, then dG′(z1) =

d(z1)− 1, dG′(zp) = d(zp)− 1. By the definitions of
∏

1,c(G) and
∏

2(G), we have
∏

1,c(G
′) <∏

1,c(G) and
∏

2(G′) <
∏

2(G), a contradiction to the choice of G. Thus, Lemma 2.2.6 is

ture.

Lemma 2.2.7. Let G′ be a proper subgraph of a connected graph G. Then
∏

1,c(G
′) <∏

1,c(G),
∏

2(G′) <
∏

2(G). In particular, for G ∈ Ckn with k ≥ 2, if
∏

1,c(G) or
∏

2(G) attains

the minimal value, then G is a tree.

Proof. Since G′ is a proper subgraph of G, by the definitions of
∏

1,c(G) and
∏

2(G), one

can easily obtain that
∏

1,c(G
′) <

∏
1,c(G) and

∏
2(G′) <

∏
2(G). For k ≥ 2, we proceed to

prove it by contradiction. For k ≥ 2, assume that G is not a tree. Let C be a cycle of G

and P1 = u1u2...up and P2 = v1v2...vq be two pendant paths such that V (P1)∩V (C) = {u1}

and d(vq) = 1. Let w1 ∈ N(u1) ∩ V (C1) and G′′ = (G − {u1w1, v1v2}) ∪ {v2w1}, then

dG′′(u1) = d(u1) − 1, dG′′(v1) = d(v1) − 1 and G′′ ∈Ckn. By the definitions of
∏

1,c(G) and∏
2(G), we have

∏
1,c(G

′′) <
∏

1,c(G),
∏

2(G′′) <
∏

2(G) and Lemma 2.2.7 is true.

Lemma 2.2.8. If
∏

2(G) attains the minimal value with k ≥ 2, then any non-pendant

vertices u, v of a connected graph G have the property: |d(u)− d(v)| ≤ 1.
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Proof. Since k ≥ 2, by Lemma 2.2.7, we have that G must be a tree. On the contrary, if there

are two non-pendant vertices u, v ∈ V (G) such that d(u)−d(v) ≥ 2, let x ∈ N(u)−N(v) and

G′ = (G−{ux})∪{vx}, by dG′(u) = d(u)− 1, dG′(v) = d(v) + 1, d(v) ≤ d(u)− 2 < d(u)− 1,

we deduce that

∏
2(G)∏
2(G′)

=
d(v)d(v)d(u)d(u)

[d(v) + 1]d(v)+1[d(u)− 1]d(u)−1
=

[ d(v)d(v)

[d(v)+1]d(v)+1 ]

[ [d(u)−1]d(u)−1

d(u)d(u)
]
> 1,

that is,
∏

2(G′) <
∏

2(G), a contradiction with the choice of G. Thus, Lemma 2.2.8 is

true.

Lemma 2.2.9. If
∏

1,c(G) or
∏

2(G) attains the maximal value, then all cycles of G have

length 3 except for at most one of them with length 4.

Proof. On the contrary, let Cm be a cycle of G with Cm = v1v2....vmv1 and m ≥ 5, G′ =

(G−{v3v4})∪{v1v3, v1v4}. Since G′ has k pendant vertices, then G′ ∈ Ckn. By the definitions

of
∏

1,c(G),
∏

2(G) and dG′(v1) = d(v1) + 2, we have

∏
1,c(G)∏
1,c(G

′)
=

d(v1)c

[d(v1) + 2]c
< 1,

∏
2(G)∏
2(G′)

=
d(v1)d(v1)

[d(v1) + 2]d(v1)+2
< 1,

that is,
∏

1,c(G) <
∏

1,c(G
′) and

∏
2(G) <

∏
2(G′), a contradiction with the choice of G. We

can proceed this process until all of the cycles have length 3 or 4.

Suppose that there exist two cycles of length 4, say C1 = x1x2x3x4x1, C2 = y1y2y3y4y1

in G. Since G is a cactus, then there exists a vertex xt ∈ V (C1) (say x4) such that there

are no paths connecting x4 and y1, x4 and y2 in G−{x1x4, x3x4}. Otherwise, if every vertex

of V (C) is either connected with y1 or with y2 in G− {x1x4, x3x4}, then there exist a cycle

that shares at least one common edge with C1, a contradiction with the definition of cactus

graph. Let G∗ = (G− {x1x4, x3x4, y1y4}) ∪ {x1x3, x4y1, x4y2, y2y4}. Since G∗ has k pendant

vertices, then G∗ ∈ Ckn. By the definitions of
∏

1,c(G),
∏

2(G) and dG∗(y2) = d(y2) + 2, we
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have ∏
1,c(G)∏

1,c(G
∗)

=
d(y2)c

[d(y2) + 2]c
< 1,

∏
2(G)∏

2(G∗)
=

d(y2)d(y2)

[d(y2) + 2]d(y2)+2
< 1,

that is,
∏

1,c(G) <
∏

1,c(G
∗) and

∏
2(G) <

∏
2(G∗), a contradiction with the choice of G and

Lemma 4 is true.

Lemma 2.2.10. If
∏

1,c(G) or
∏

2(G) attains the maximal value, then every dense path

has length 1 except for at most one of them with length 2.

Proof. On the contrary, let C be a cycle and P = v1v2...vp−1vpi with p ≥ 2 and j ≥ 1 be a

dense path such that V (C) ∩ V (P ) = {v1} and d(vpi) = 1. If p ≥ 4, let G′ = G ∪ {v1vp−1}.

Then G′ ∈ G[n, k] and dG′(v1) = d(v1) + 1, dG′(vp−1) = d(vp−1) + 1. Thus, by the definition,

we have
∏

1,c(G
′) >

∏
1(G) and

∏
2(G′) >

∏
2(G), a contradiction with the choice of G. We

can proceed this process until p ≤ 3, that is, all of the dense paths have the length as 1 or 2.

If there exist two such paths of length 2, say P1 = x1x2x3j, P2 = y1y2y3j′ with

x1 ∈ V (C2), y1 ∈ V (C3) such that d(x3j) = d(y3j′) = 1 and j, j′ ≥ 1, then let G∗ =

(G−{y1y2, y2y31})∪{y1y31, x1y2, x2y2}. Since G∗ has k pendant vertices, then G∗ ∈ G[n, k].

By the definitions of
∏

1,c(G),
∏

2(G) and dG∗(x1) = d(x1) + 1, dG∗(x2) = d(x2) + 1, we have∏
1,c(G

∗) >
∏

1(G) and
∏

2(G∗) >
∏

2(G), a contradiction with the choice of G and Lemma

2.2.10 is true.

Lemma 2.2.11. If
∏

1,c(G) or
∏

2(G) attains the maximal value, then G can not have both

a dense path of length 2 and a cycle of length 4.

Proof. On the contrary, let C1 be a cycle, P = y1y2y3i be a dense path such that V (C1) ∩

V (P ) = {y1} and d(y3i) = 1 for i ≥ 1, C2 be a cycle of length 4, say C2 = x1x2x3x4x1.

By the definition of the cactus, there exists xt ∈ V (C2) (say x2) such that there is no

paths connecting x2 and y1, x2 and y1 in G − {x1x2, x2x3}. Let G′ = (G − {x1x2, x2x3}) ∪

{x2y1, x2y2, x1x3}, then G′ has k pendent vetices, dG′(y1) = d(y1)+1 and dG′(y2) = d(y2)+1.
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By the definitions of
∏

1,c(G),
∏

2(G), we have
∏

1,c(G
′) >

∏
1(G) and

∏
2(G′) >

∏
2(G), a

contradiction with the choice of G and Lemma 2.2.11 is true.

Lemma 2.2.12. Let C be a cycle of G in Ckn and u, v ∈ V (C), if min{d(u), d(v)} > 2, then

there exist a graph G′ such that
∏

2(G′) >
∏

2(G).

Proof. Since min{d(u), d(v)} ≥ 3, without loss of generality, let d(u) ≥ d(v) ≥ 3. Then

there exists x ∈ N(v)−V (C)−N(u). Otherwise, there will be two cycles containing at least

two common vertices. Let G′ = (G− {vx}) ∪ {ux}, we have d(u) ≥ d(v) > d(v)− 1. Then

we have ∏
2(G)∏
2(G′)

=
d(u)d(u)d(v)d(v)

[d(u) + 1]d(u)+1[d(v)− 1]d(v)−1
=

[ d(u)d(u)

[d(u)+1]d(u)+1 ]

[ [d(v)−1]d(v)−1

d(v)d(v)
]
< 1.

Thus,
∏

2(G′) >
∏

2(G) and Lemma 2.2.12 is true.

Lemma 2.2.13. If
∏

2(G) attains the maximal value, then any three cycles have a common

vertex.

Proof. By the definition of the cactus, any two cycles have at most one common vertex.

Now assume that there exist two disjoint cycles C1, C2 contained in G such that the path

P connecting C1 and C2 is as short as possible. For convenience, let P = u1u2...up, V (P ) ∩

V (C1) = {u1} and V (P ) ∩ V (C2) = {up}.

If the path P has no common edges with any other cycle(s) contained in G and

|E(P )| ≥ 2, let the new graph G′ = G ∪ {u1up}, then G′ ∈ G[n, k], dG′(u1) = d(u1) + 1, and

dG′(u2) = d(u2) + 1. By the definition of
∏

2(G), we have
∏

2(G′) >
∏

2(G). If |E(P )| = 1,

without loss of generality, let d(u1) ≥ d(u2) and C2 = u2v2v3...u2, we have v2 /∈ N(u1).

Otherwise, there are two cycles who have the common edge contradicted with the definition

of the cactus. Let G∗ = (G − {u2v2}) ∪ {u1v2}, we have G∗ ∈ G[n, k], dG∗(u1) = d(u1) + 1

and dG∗(u2) = d(u)− 1. Since d(u1) ≥ d(u2) > d(u2)− 1, then

∏
2(G)∏

2(G∗)
=

d(u1)d(u1)d(u2)d(u2)

[d(u1) + 1]d(u1)+1[d(u2)− 1]d(u2)−1
=

[ d(u1)d(u1)

[d(u1)+1]d(u1)+1 ]

[ [d(u2)−1]d(u2)−1

d(u2)d(u2)
]
< 1,
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that is,
∏

2(G∗) >
∏

2(G), a contradiction with the choice of G.

If P has some common edges with some other cycle, say C3, by the choice of C1, C2

and the definition of cactus graph, we have {u1} = C3 ∩ C1 and {up} = C3 ∩ C2. Since

min{d(u1), d(up)} ≥ 3, by Lemma 2.2.12, we can get that there existG∗∗ such that
∏

2(G∗∗) >∏
2(G), a contradiction with the choice of G.

Thus, any two cycles of G have one common vertex. By the definition of cactus

graph, we have that any three cycles have exactly one common vertex and Lemma 2.2.13 is

true.

Lemma 2.2.14. Let T be a tree attached to a vertex v0 of a cycle of G. If
∏

2(G) attains

the maximal value, then d(v) ≤ 2 for any v ∈ V (T )− {v0}.

Proof. Choose a graph G such that
∏

2(G) achieves the maximal value. On the contrary,

assume that u ∈ V (T ) − {v0} is of degree r ≥ 3 and closest to a pendant vertex. For

d(u, v0) ≥ 2, let G′ = G ∪ {uv0}, we have G′ ∈ G[n, k], dG′(u) = d(u) + 1 and dG′(v0) =

d(v0) + 1. By the definition of
∏

2(G), we can obtain that
∏

2(G′) >
∏

2(G), a contradiction

with the choice of G. For d(u, v0) = 1, let {y1, y2, ..., yr−2} be the r − 2 neighbors of u such

that d(yi, v0) > d(u, v0), y be a neighbor of v0 which belongs to a cycle C0.

Since v0uy1 is a pendant path of length 2, by Lemma 2.2.11, we have that every cycle

has length 3. Let C0 = v0w1yv0, G′′ = (G− {uy1}) ∪ {v0y1} and G′′′ = (G− {v0y}) ∪ {uy}.

Then G′′, G′′′ ∈ G[n, k], dG′′(u) = d(u) − 1, dG′′(v0) = d(v0) + 1 and dG′′′(u) = d(u) +

1, dG′′′(v0) = d(v0)− 1. By the definition of
∏

2(G), Lemma 2.0.1 and Lemma 2.0.2, we can

obtain

∏
2(G)∏

2(G′′)
=

d(u)d(u)d(v0)d(v0)

[d(u)− 1]d(u−1)[d(v0) + 1]d(v0)+1
=

[ d(v0)d(v0)

[d(v0)+1]d(v0)+1 ]

[ [d(u)−1]d(u)−1

d(u)d(u)
]
< 1, if d(v0) ≥ d(u),

∏
2(G)∏

2(G′′′)
=

d(u)d(u)d(v0)d(v0)

[d(u) + 1]d(u+1)[d(v0)− 1]d(v0)−1
=

[ d(u)d(u)

[d(u)+1]d(u)+1 ]

[ [d(v0)−1]d(v0)−1

d(v0)d(v0)
]
< 1, if d(v0) < d(u),
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that is,
∏

2(G′′) >
∏

2(G) and
∏

2(G′′′) >
∏

2(G), a contradiction with the choice of G.

Thus, Lemma 2.2.14 is true.

Lemma 2.2.15. If
∏

2(G) attains the maximal value, then all attached trees are attached

to a common vertex v0.

Proof. On the contrary, suppose that there exist two trees T1, T2 attached to different vertices

v1, v2 of some cycles, say C1, C2, such that V (C1)∩V (T1) = {v1}, V (C2)∩V (T2) = {v2}. By

Lemma 2.2.13, all the cycles have a common vertex v0. Without loss of generality, let v1 6= v0,

we have d(v0) ≥ 3, d(v1) ≥ 3. By Lemma 2.2.12, there exists G′ such that
∏

2(G′) >
∏

2(G),

a contradiction to the choice of G. Thus, Lemma 2.2.15 is true.

Next, we turn to prove the main results. For any graph G in Ckn, if n = 1 or 2, then∏
1,c(G) =

∏
2(G) = 0 or 1, that is, all upper and lower bounds of Multiplicative Zagreb

indices have the same values, respectively. Thus, all of the Theorems are true. Now we may

assume that n ≥ 3.

Proof of Theorem 2.2.1. Choose a graph G in Ckn such that
∏

1,c(G) achieves the minimal

value. For k ≤ 1, by Lemma 2.2.6, G is an unicyclic graph. If k = 0, then G is a cycle, that

is, the degree sequence of G is 2, 2, ..., 2︸ ︷︷ ︸
n

; If k = 1, then G has only one pendant path, that

is, the degree sequence of G is 3, 2, 2, ..., 2︸ ︷︷ ︸
n−2

, 1. Thus, Theorem 2.2.1 is true.

For k ≥ 2, by the choice of G and Lemma 2.2.7, we obtain that G is a tree. If k = 2,

then G is a path, that is, the degree sequence of G is 2, 2, ..., 2︸ ︷︷ ︸
n−2

, 1, 1 and Theorem 2.2.1 is true;

For k ≥ 3, if there is a vertex v with d(v) ≥ k + 1, since G is a tree, then G has more than

k pendant vertices, a contradiction to the choice of G. Thus, d(v) ≤ k for any v ∈ V (G).

Now let v be the vertex with maximal degree ∆. If ∆ = k, then G − v is a set of paths.

Otherwise, there exists a vertex u ∈ V (G) − {v} such that d(u) ≥ 3 and since G is a tree,

then G contains more than k pendant vertices, a contradiction to the choice of G. Thus, the

degree sequence of G is k, 2, 2, ..., 2︸ ︷︷ ︸
n−k−1

, 1, 1, ..., 1︸ ︷︷ ︸
k

.

37



If ∆ < k, then G contains at least 2 cut vertices, say u1, u2, ..., ut, such that G − ui

has at least 3 components with i ∈ [1, t] and t ≥ 2. Otherwise, since G is a tree, G

only contains ∆ pendant vertices. Let P = w1w2...ws be a path of G − {u1, u2, ..., ut}

such that ws ∈ {u1, u2, ..., ut} − {v} and P contains only a unique pendant vertex w1. Set

G′ = (G−{ws−1ws})∪{ws−1v}, we have G′ ∈ Ckn, dG′(v) = d(v)+1 and dG′(ws) = d(ws)−1.

Thus, by ∆ ≥ d(ws) > d(ws)− 1, we have

∏
1,c(G)∏
1,c(G

′)
=

∆cd(ws)
c

(∆ + 1)c(d(ws)− 1)c
=

∆c

(∆+1)c

[d(ws)−1]c

d(ws)c

> 1,

that is,
∏

1,c(G) is not minimal, a contradiction with the choice of G. If the maximal degree

of G′ is still less than k, then we can continue this process until ∆ = k, thus we can find the

desired graph with the degree sequence of k, 2, 2, ..., 2︸ ︷︷ ︸
n−k−1

, 1, 1, ..., 1︸ ︷︷ ︸
k

. Therefore, Theorem 2.2.1 is

true.

Proof of Theorem 2.2.2. Choose a graph G in Ckn such that
∏

1,c(G) achieves the maximal

value. Let S = {v ∈ V (G), d(v) = 1} and G′ = G − S. If |G′| = 1, then for k = 0,

the degree sequence of G is 0 and for k 6= 0, G is a star, that is, its degree sequence is

k, 1, 1, ..., 1︸ ︷︷ ︸
k

. If |G′| = 2 and for k = 0, there is no such simple connected graph; For k 6= 0, by

”Arithmetic-Mean and Geometric-Mean inequality: x1x2...xn ≤ (x1+x2+...+xn
n

)n, the equality

holds if and only if x1 = x2 = ... = xn”, one can obtain that the degree sequence of G is

dk
2
e + 1, bk

2
c + 1, 1, ..., 1︸ ︷︷ ︸

k

. If |G′| = 3 and k = 0, by Lemma 2.2.7, we can obtain that G

is a cycle of length 3, that is, its degree sequence is 2, 2, 2. For k 6= 0, it is similar to the

above proof, that is, the degree sequence of G is dk
3
e+ 2, bk

3
c+ 2, k − dk

3
e − bk

3
c+ 2, 1, ..., 1︸ ︷︷ ︸

k

.

Therefore, Theorem 2.2.2 is true.

Proof of Theorem 2.2.3. Choose a graph G in Ckn such that
∏

1,c(G) achieves the maximal

value. By Lemma 2.2.7 and n−k ≥ 4, G contains some cycles. For n−k = 4, G−S contains

only one cycle C0, where S = {v ∈ V (G), d(v) = 1}. If k = 0, by the choice of G, one can
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obtain that G is a cycle, that is, its degree sequence is 2, 2, 2, 2. If k 6= 0 and |C0| = 4, by

adding any deleted vertex back to G−S, one can get a new graph G01 with degree sequence

3, 2, 2, 2, 1; If k 6= 0 and |C0| = 3, by adding back any deleted vertex to G − S such that it

is adjacent to the pendant vertex in G− S, one can obtain a new graph G′01. Since G01 and

G′01 have the same degree sequences, by Arithmetic-Mean and Geometric-Mean inequality,

we can continue to add any deleted vertex back to G01 or G′01 such that it is adjacent to the

nonpendant vertex of smallest degree in G01 or G′01. After adding back all of the deleted

vertices, we can obtain the graph of maximal
∏

1,c-value and Theorem 2.2.3 is true. Thus

we will consider the case when n − k ≥ 5 below. By the choice of G and Lemma 2.2.9, G

contains at least two cycles.

Claim 1. The longest path connecting only two cycles has length at most 1.

Proof. On the contrary, let Cl, Cl′ be two cycles and P1 = x1x2...xp be a path such that

V (Cl)∩V (P1) = {x1}, V (Cl′)∩V (P1) = {xp}. If p ≥ 3, set G′ = G∪{x1xp}, then dG′(x1) =

d(x1)+1 and dG′(x2) = d(x2)+1. By the definition of
∏

1,c(G), we have
∏

1,c(G
′) >

∏
1,c(G),

a contradiction to the choice of G. Thus, p ≤ 2 and Claim 1 is true. 2

We first deal with the case when k = 0.

Claim 2. Any three cycles have no common vertex if k = 0.

Proof. On the contrary, let C1, C2, C3 be the cycles of G such that ∩3
i=1V (Ci) = {v0}, and

N(v0) ∩ V (Ci) = {vi1, vi2} for i ∈ [1, 3]. Choose v of degree 2 such that v is in an end block

Ct of G and N(v) ∩ V (Ct) = {vt1, vt2}. Set G′′ = (G − {v21v0, v22v0}) ∪ {v21v, v22v}, then

dG′′(v0) = d(v0)− 2 and dG′′(v) = d(v) + 2. Since d(v0)− 2 ≥ 4 > d(v), By the definitions of∏
1,c(G), we have

∏
1,c(G)∏

1,c(G
′′)

=
d(v0)cd(v)c

[d(v0)− 2]c[d(v) + 2]c
=

[ d(v)c

[d(v)+2]c
]

[ [d(v0)−2]c

d(v0)c
]
< 1,

that is,
∏

1,c(G
′′) >

∏
1(G), a contradiction to the choice of G.

Claim 3. Every vertex of G has the degree 2, 3 or 4 if k = 0.
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Proof. We will prove it by the contradiction. If there is a vertex w1 with d(w1) ≥ 5, by Claim

2, we can assume that there are two cycles C4, C4′ and a path P2 such that V (C4)∩V (C4′)∩

V (P2) = {w1}, since k = 0 and G is a cactus, there exists a vertex w0 of an end block such

that d(w0) = 2, that is, d(w0) < d(w1) − 2. Without loss of generality, assume that w0 is

closer to C4′ , let N(w1)∩ V (C4) = {w2, w3} and G′′′ = (G−{w1w2, w1w3})∪ {w0w2, w0w3},

by the definition of
∏

1,c(G), we have

∏
1,c(G)∏

1,c(G
′′′)

=
d(w1)cd(w0)c

[d(w1)− 2]c[d(w0) + 2]c
=

[ d(w0)c

[d(w0)+2]c
]

[ [d(w1)−2]c

d(w1)c
]
< 1,

that is,
∏

1,c(G
′′′) >

∏
1,c(G), a contradiction to the choice of G. Thus, Claim 3 is true. 2

Claim 4. There do not exist two paths of length 1 such that every path connects with only

two cycles if k = 0.

Proof. On the contrary, assume that there are two such paths P5 = z1z2, P6 = y1y2 with

z1 ∈ C6, z2 ∈ C7, y1 ∈ C8, y2 ∈ C9 such that N(y1) ∩ V (C8) = {y11, y12} and d(z1) = d(z2) =

d(y1) = d(y2) = 3. Let G∗ = (G − {y1y2, y1y11, y1y12}) ∪ {y2y11, y2y12, z1y1, z2y1}. Since

dG∗(z1) = dG∗(z2) = dG∗(y2) = 4, dG∗(y1) = 2. By the definition of
∏

1,c(G), we have

∏
1,c(G)∏

1,c(G
∗)

=
d(z1)cd(z2)cd(y1)cd(y2)c

[d(z1) + 1]c[d(z2) + 1]c[d(y1)− 1]c[d(y2) + 1]c
=

3c3c3c3c

4c4c2c4c
< 1,

that is,
∏

1,c(G
∗) >

∏
1,c(G), a contradiction to the choice of G and Claim 4 is true. 2

Claim 5 G can not have both a cycle of length 4 and a path of length 1 connecting only

with two cycles if k = 0.

Proof. On the contrary, let C10, C11, C12 be the cycles and P = w1w2 be a path such that

V (C10) ∩ V (P ) = {w1}, V (C11) ∩ V (P ) = {w2}. If |C10| = |C11| = 3 and |C12| = 4, then

there exists a vertex w3 ∈ V (C12) such that d(w3) = 3 or 4. Let C12 = w3x2x3x4w3 and

G∗∗ = (G− {w1w2, x2x3}) ∪ {w2w3, w2x2, w3x3}, then dG∗∗(w1) = d(w1)− 1 = 2, dG∗∗(w2) =

d(w2) + 1 = 4, dG∗∗(w3) = d(w3) + 2 = 5 or 6 and G∗∗ has no pendent vetices. By the
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definitions of
∏

1,c(G), we have

∏
1,c(G)∏

1,c(G
∗∗)

=
d(w1)cd(w2)cd(w3)c

[d(w1)− 1]c[d(w2) + 1]c[d(w3) + 2]c
=

3c3c3c

2c4c5c
or

3c3c4c

2c4c6c
< 1,

that is,
∏

1,c(G
∗∗) >

∏
1,c(G), a contradiction with the choice of G.

If |C10| = |w1w12w13w14w1| = 4 and |C11| = |w2w22w23w2| = 3, then d(w1) = d(w2) =

3, d(w14) = 2 or 4. Let G∗∗∗ = (G − {w1w12}) ∪ {w12w14, w2w14}, we have G∗∗∗ ∈Ckn,

dG∗∗∗(w1) = d(w1)− 1, dG∗∗∗(w14) = d(w14) + 2, dG∗∗∗(w2) = d(w2) + 1. By the definitions of∏
1,c(G), we have

∏
1,c(G)∏

1,c(G
∗∗∗)

=
d(w1)cd(w14)cd(w2)c

[d(w1)− 1]c[d(w14) + 2]c[d(w2) + 1]c
=

3c2c3c

2c4c4c
or

3c4c3c

2c6c4c
< 1.

that is,
∏

1,c(G
∗∗∗) >

∏
1,c(G), a contradiction with the choice of G and Claim 5 is true.

Thus, for k = 0 and n = 5, by the choice of G and Lemma 2.2.9, there exist two cycles

of length 3, that is, its degree sequence is 4, 2, 2, 2, 2; For n = 6, G can be Gl or Gs such that

Gl contains two cycles of length 3 or Gs contains one cycle of length 3 and one cycle of length

4, that is, the degree sequences are 3, 3, 2, 2, 2, 2 and 4, 2, 2, 2, 2, 2. Since
∏

1,c(Gl) >
∏

1,c(Gs),

then
∏

1,c(Gl) attains the maximal value; Similarly, for n ≥ 7, if n = 2t + 5 with t ≥ 1,

then Ga contains only the cycles of length 3 and its degree sequence is 4, 4, .., 4︸ ︷︷ ︸
t+1

, 2, 2, .., 2︸ ︷︷ ︸
t+4

; If

n = 2(t+3), then Gb contains some cycles of length 3 and one path of length 1 that connects

only two cycles, that is, its degree sequence is 4, 4, .., 4︸ ︷︷ ︸
t

, 3, 3, 2, 2, .., 2︸ ︷︷ ︸
t+4

.

Now we consider the case when k 6= 0 and define the following algorithm, say Pro :

Step 1. Build GT0 by deleting all the dense paths such that GT0 satisfies the case of k = 0,

that is, GT0 is either Ga or Gb; Step 2. Build GTi by adding a deleted path to GTi−1
such

that it is adjacent to a non-pendant vertex of smallest degree in GTi−1
, i ≥ 1; Step 3. Stop,

if there is no remaining deleted paths; Go to Step 2, if otherwise.
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By the choice of G and Lemma 2.2.10, all of the dense paths of G have length 1

except for at most one of them with length 2. If all of the dense paths of G have length 1, by

Arithmetic-Mean and Geometric-Mean inequality, we can directly use Pro to get a new graph

GT of maximal
∏

1,c-value. Thus, for k < 4 + t, GT contains no cycles of length greater than

3, no dense paths of length greater than 1, no paths of length greater 0 that connects only two

cycles except for at most one of them with length 1 and dGT
(wa) ∈ {2, 3, 4}, where wa is any

nonpendant vertex of GT ; For k ≥ 4 + t, we have |dGT
(wb)− dGT

(wc)| ≤ 1, where wb, wc are

any nonpendant vertices of GT , that is, the statement (i) or (ii) is true. If there is one of the

dense paths of G with length 2, then set P1 = u1u2u31, P2 = u1u2u32, ..., Pr−1 = u1u2u3(r−1)

with d(u3i) = 1, i ∈ [1, r − 1]. By Arithmetic-Mean and Geometric-Mean inequality, we can

use Pro to get a new graph GT such that
∏

1,c(GT ) ≥
∏

1,c(G).

By the proof of the case for k = 0, if GT contains a path PT = wT1wT2 connecting

only two cycles, say CT1, CT2, such that V (CT1)∩V (PT ) = {wT1}, V (CT2)∩V (PT ) = {wT2},

then set G1 = (GT − {u2ui, i ∈ [1, r − 1]}) ∪ {u31wT1, u31wT2, u31uj, i ∈ [2, r − 1]}. Since

G1 ∈ Ckn, dG1(wT1) = d(wT1) + 1, dG1(wT2) = d(wT2) + 1, d(u2) = r, dG1(u2) = 1, d(u31) = 1

and dG1(u31) = r, by the definition of
∏

1,c(G), we have

∏
1,c(G)∏

1,c(G1)
=

d(wT1)cd(wT2)cd(u31)cd(u2)

[d(wT1) + 1]c[d(wT2) + 1]cd(u31)cd1(u2)
< 1,

that is,
∏

1,c(G1) >
∏

1,c(G), a contradiction to the choice of G.

If GT contains no such path PT and |d(u2)− d(vT )| ≤ 1 for any nonpendant vertices

vT , v
′
T of GT , when |d(vT )−d(v′T )| ≤ 1, then the statement (i) is true; When there exist vT , v

′
T

such that |d(vT ) − d(v′T )| > 1, by the construction of GT , we have d(vT ), d(v′T ) ∈ {2, 3, 4}

and G contains no dense paths of length greater than 1 except for at most one of them

with length 2, that is, the statement (ii) is true. Otherwise, if there exists a vertex vT

such that |d(u2) − d(vT )| > 1, then without loss of generality, choose CT3 and CT4 such

that V (CT3) ∩ V (CT4) = {vT} and let N(vT ) = {vci, i ≥ 4} such that vc1, vc2 ∈ V (CT3),
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vc3, vc4 ∈ V (CT3). When d(vT ) − d(u2) > 1, set G2 = (GT − {vTvc1, vTvc2, u2u3i, i ≥ 1}) ∪

{u31vc1, u31vc2, u31vT , u31u3i, i ≥ 2}, then dG2(u2) = 1, dG2(u31) = d(u2) + 1 and dG2(vT ) =

d(vT )−1. When d(u2)−d(vT ) > 1, that is, d(u2) > 3, set G3 = (GT−{vTvc1, vTvc2, u2u3i, i ≥

1})∪{u31vc1, u31vc2, u31vT , u32vT , u33vT , u31u3i, i ≥ 4}, then dG3(u2) = 1, dG3(u31) = d(u2)−1

and dG3(vT ) = d(vT ) + 1. Since G2, G3 ∈ Ckn, by the definition of
∏

1,c(G) and Fact 1, we

have

∏
1,c(G)∏

1,c(G2)
=

d(u31)cd(u2)cd(vT )c

[d(u2) + 1]c1c[d2(vT )− 1]c
< 1,

∏
1,c(G)∏

1,c(G3)
=

d(u31)cd(u2)cd(vT )c

[d(u2)− 1]c1c[d(vT ) + 1]c
< 1,

that is,
∏

1,c(G2) >
∏

1,c(G),
∏

1,c(G3) >
∏

1,c(G), a contradition to the choice of G. There-

fore, Theorem 2.2.3 is true.

Proof of Theorem 2.2.4. Choose a graph G in Ckn such that
∏

2(G) achieves the minimal

value. By Lemma 2.2.6, G is an unicyclic graph for k ≤ 1. If k = 0, then G is a cycle, that

is, its degree sequence is 2, 2, ..., 2︸ ︷︷ ︸
n

; If k = 1, then G has only one pendant path, that is, its

degree sequence is 3, 2, 2, ..., 2︸ ︷︷ ︸
n−2

, 1.

For k ≥ 2, by Lemma 2.2.7, we only need to considerG as a tree. Since
∑

v∈V (G) d(v) =

2(n − 1), then the average degree of G except the pendant vertices is
∑

v∈V (G) d(v)−k
n−k =

2(n−1)−k
n−k = 2 + k−2

n−k = 2 + γ. By Lemma 2.2.8, if all of nonpendant vertices have degree

2 + bγc or 2 + dγe, then
∏

2(G) attains the minimal value. Set the number of the vertices

with degree 2 + bγc to be y1, the number of the vertices with degree 2 + dγe to be y2,

we have y1 + y2 + k = n and (2 + bγc)y1 + (2 + dγe)y2 + k = 2(n − 1). If bγc = dγe,

then Theorem 2.2.4 is true; If dγe − bγc = 1, by solving the above equations, we have

y1 = n − 2k + 2 + bγc(n − k), y2 = k − 2 − bγc(n − k), that is, its degree sequence is

2 + dγe, 2 + dγe, ..., 2 + dγe︸ ︷︷ ︸
k−2−bγc(n−k)

, 2 + bγc, 2 + bγc, ..., 2 + bγc︸ ︷︷ ︸
n−2k+2+bγc(n−k)

, 1, 1, ..., 1︸ ︷︷ ︸
k

. Therefore, Theorem 2.2.4

is true.
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Proof of Theorem 2.2.5. Choose G in Ckn such that
∏

2(G) achieves the maximal value. By

Lemma 2.2.9, the lengths of all cycles in G are 3 except for at most one of them with

length 4; By Lemmas 2.2.10 and 2.2.14, every pendant path has length of 1 except for at

most one of them with length 2. By Lemma 2.2.11, G can not have both a dense path

of length 2 and a cycle of length 4; By Lemma 2.2.13, any three cycles have a common

vertex v0; By Lemma 2.2.15, any tree attachs to the same vertex u. Now we show that

u = v0. Otherwise, if u 6= v0 and d(v0) ≥ d(u), let C∗ be the cycle that contains u and

G′ = (G − {uy|y ∈ N(u) − V (C∗)}) ∪ {v0y|N(u) − V (C∗)} with |N(u) − V (C∗)| = t1, by

dG′(u) = d(u)− t1, dG′(v0) = d(v0) + t1, we have

∏
2(G)∏
2(G′)

=
d(v0)d(v0)d(u)d(u)

[d(v0) + t1]d(v0)+t1 [d(u)− t1]d(u)−t1
=

d(v0)d(v0)

[d(v0)+t1]d(v0)+t1

[d(u)−t1]d(u)−t1

d(u)d(u)

< 1,

that is,
∏

2(G′) >
∏

2(G), a contradiction with the choice of G; If d(u) > d(v0), let G′′ =

(G − {v0y|y ∈ N(v0) − V (C∗)}) ∪ {uy|y ∈ N(v0) − V (C∗)} with |N(u) − V (C∗)| = t2, by

dG′′(v0) = d(v0)− t2, dG′′(u) = d(u) + t2, we have

∏
2(G)∏

2(G′′)
=

d(u)d(u)d(v0)d(v0)

[d(u) + t2]d(u)+t2 [d(v0)− t2]d(v0)−t2
=

d(u)d(u)

[d(u)+t2]d(u)+t2

[d(v0)−t2]d(v0)−t2

d(v0)d(v0)

< 1,

that is,
∏

2(G′′) >
∏

2(G), a contradiction with the choice of G. Therefore, we can obtain

the construction of G as follows: If n − k ≡ 0(mod 2), then the degree sequence of G

is n − 2, 2, 2, ..., 2︸ ︷︷ ︸
n−k−1

, 1, 1, ..., 1︸ ︷︷ ︸
k

; if n − k ≡ 1(mod 2), then the degree sequence of G is n −

1, 2, 2, ..., 2︸ ︷︷ ︸
n−k−1

, 1, 1, ..., 1︸ ︷︷ ︸
k

. Thus, Theorem 2.2.5 is true.
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3 PADMAKAR-IVAN(PI) INDEX

In this chapter, we provide the extremal k-trees and cactus graphs regarding to an

interesting topological index (Padmakar–Ivan index).

3.1 K-TREES

In this section, we will answer the question that whether or not a k-star or a k-path

attains the maximal or minimal bound for PI-indices of k-trees. The related results are listed

again: Theorems 3.1.1 and 3.1.2 give the exact PI-values of k-stars, k-paths and k-spirals.

Theorem 3.1.1 (Wang and Wei, [78]). For any k-star Skn and k-path P k
n with n = kp + s

vertices, where p ≥ 0 is an integer and s ∈ [2, k + 1],

(i)PI(Skn) = k(n− k)(n− k − 1),

(ii)PI(P k
n ) = k(k+1)(p−1)(3kp+6s−2k−4)

6
+ (s−1)s(3k−s+2)

3
.

Theorem 3.1.2 (Wang and Wei, [78]). For any k-spiral T k∗n,c with n ≥ k vertices, where

c ∈ [1, k − 1],

PI(T k∗n,c) =


(n−k)(n−k−1)(4k−n+2)

3
if n ∈ [k, 2k − c],

3c(n−2k+c−1)(n−2k+c)+(k−c)(2c2+3nc−4kc+3kn−4k2−6k+3n−2)
3

if n ≥ 2k − c+ 1.

Theorem 3.1.3 proves that k-stars achieve the maximal values of PI-values for k-trees.

Theorem 3.1.3 (Wang and Wei, [78]). For any k-tree T kn with n ≥ k ≥ 1, PI(T kn ) ≤ PI(Skn).
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Theorem 3.1.4 shows that k-paths do not attain the minimal values and certain PI-

values of k-spirals are less than that of the PI-values of k-paths.

Theorem 3.1.4 (Wang and Wei, [78]). For any k-spiral T k∗n,c with n ≥ k ≥ 1, then

(i) PI(P k
n ) ≥ PI(T k∗n,c) if c ∈ [1, k+1

2
),

(ii) PI(P k
n ) ≤ PI(T k∗n,c) if c ∈ [k+1

2
, k − 1].

In order to consider the PI-value of any k-tree G, let G′ = G ∪ {u} be a k-tree

obtained by adding a new vertex u to G. For any v1, v2 ∈ V (G), let d(v1, v2) be the distance

between v1 and v2 in G, d′(v1, v2) be the distance between v1 and v2 in G′. Now we define a

function that measures the difference of PI-values of any edge relating a vertex from G to

G′ as follows: f : {w ∈ V (G′), xy ∈ E(G)} to {1, 0} as follows:

f(w, xy) =


0 if w = u and d′(x,w) = d′(y, w),

0 if w ∈ V (G) and d(x,w)− d′(x,w) = d(y, w)− d′(y, w),

1 if otherwise.

Using the construction of k-trees, we can derive the following lemmas.

Lemma 3.1.5. Let xy be any edge of a k-tree G with at least n ≥ k + 1 vertices, then

PI(xy) ≤ n− k − 1.

Proof. Since every vertex of any k-tree G with at least k+1 vertices must be in some (k+1)-

cliques, that is, |N(x)∩N(y)| ≥ k− 1 for any xy ∈ E(G), then PI(xy) ≤ n− (k− 1)− 2 =

n− k − 1.

Lemma 3.1.6. Let xy be any edge of a k-tree G with n vertices and G′ = G ∪ {u} be

a k-tree obtained by adding u to G, then f(w, xy) ≤ 1. Furthermore, if w ∈ V (G) , then

f(w, xy) = 0.
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Proof. By adding u to G, since G′ is a k-tree, we can get that the distance of any pair of

vertices of G will increase at most 1, then f(w, xy) ≤ 1. If w ∈ V (G), then there exists a

shortest path Pxw or Pyw such that u /∈ V (Pxw) or V (Pyw), that is, f(w, xy) = 0.

Lemma 3.1.7. For any k-path G with n vertices, where n ≥ k + 2, let S1(G) = {v1, vn}

and {v1, v2, ..., vn} be the simplicial elimination ordering of G. Then d(vi, vj) = d j−i
k
e, for

i < j and i, j ∈ [1, n]. Furthermore, if n = kp+ s with p ≥ 1, s ∈ [2, k + 1], then

d(v, vkp+s) =

 p+ 1 if v ∈ {v1, v2, ..., vs−1},

p− i if v ∈ {vki+s, vki+s+1, ..., vk(i+1)+s−1}, i ∈ [0, p− 1].

Proof. If j − i ≤ k, then vi, vj must be in the same (k + 1)-clique of G, and we have

d(vi, vj) = 1; If j − i ≥ k + 1, then Pvivj = vivi+kvi+2k...vi+(b j−i
k
c−1)kvi+b j−i

k
ckvj is one of the

shortest paths between vi and vj. Thus, d(vi, vj) = d j−i
k
e and Lemma 3.1.7 is true.

Lemma 3.1.8. For any k-spiral T k∗n,c with n vertices and vi, vj ∈ V (T k∗n,c) for i < j,

d(vi, vj) =


1 if j − i ≤ k − c, i, j ∈ [1, n− c],

1 if i or j ∈ [n− c+ 1, n],

2 if j − i ≥ k − c+ 1, i, j ∈ [1, n− c].

Proof. If j − i ≤ k − c with i, j ∈ [1, n − c], by Definition 4, we can get that vi, vj must be

in the same (k + 1)-clique of G and d(vi, vj) = 1; If i or j ∈ [n − c + 1, n], without loss of

generality, say vi such that i ∈ [n − c + 1, n], then N [vi] = V (T k∗n,c), that is, d(vi, vj) = 1;

If j − i ≥ k − c + 1 with i, j ∈ [1, n − c], then vi /∈ N(vj) and Pvivj = vivnvj is one of the

shortest paths between vi and vj, that is, d(vi, vj) = 2. Thus, Lemma 3.1.8 is true.

We next give the proofs of the main results using induction. For any k-tree T kn , if

n = k or k+1, then T kn is a k or (k+1)-clique, that is, PI(T kn ) = 0. Thus, all of the theorems

are true and we will only consider the case when n ≥ k + 2 below.
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Proof of Theorem 2.1.1. For (i), let V (Skn) = {u1, u2, ..., un}, G[{u1, ..., uk}] be a k-clique

and N(ul0) = {u1, u2, ..., uk} for l0 ≥ k + 1. Just by the definition of k-stars, we can get

that for i, j ∈ [1, k], N [ui] = N [uj] = V (Skn), then PI(uiuj) = nuiuj(ui) + nuiuj(uj) = 0; For

i ∈ [1, k] and l0 ∈ [k + 1, n], |N [ui]−N [ul0 ]| = n− k − 1, then PI(uiul) = n− k − 1. Thus,

we can get PI(Skn) =
∑

i,j∈[1,k] PI(uiuj) +
∑

i∈[1,k],l0∈[k+1,n] PI(uiul0) = k(n− k)(n− k − 1).

For (ii), we will proceed by induction on |P k
n | = n ≥ k + 2. If n = k + 2, let

{v1, v2, ..., vk+2} be the simplicial elimination ordering of P k
k+2. By Lemma 3.1.7, we can get

that PI(v1vi) = 1, P I(vivi′) = 0 and PI(vivk+2) = 1 for i, i′ ∈ [2, k + 1]. Thus, PI(P k
k+2) =∑k+1

i=2 PI(v1vi) +
∑k+1

i=2 PI(vivk+2) = 2k. Assume that Theorem 3.1.1 is true for a k-path

with at most kp+ s− 1 vertices, where p ≥ 1, 2 ≤ s ≤ k + 1. Let P k
n be a k-path such that

|P k
n | = kp+ s, V (P k

n ) = {v1, v2, ..., vkp+s} and {v1, v2, ..., vkp+s} be the simplicial elimination

ordering of P k
n . Set P k

n−1 = P k
n−{vkp+s}, then {v1, v2, ..., vkp+s−1} is the simplicial elimination

ordering of P k
n−1 and for any edge vivj ∈ E(P k

n ), d(vi, vj) or d′(vi, vj) is the distance of vi

and vj in P k
n−1 or P k

n , respectively.

Let α = [k(k+1)(p−1)(3kp+6s−2k−4)
6

+ (s−1)s(3k−s+2)
3

]− [k(k+1)(p−1)(3kp+6s−2k−10)
6

+ (s−2)(s−1)(3k−s+3)
3

] = pk2 + pk− k2− 3k+ 2ks− s2 + 3s− 2. If we can show that by adding

vkp+s to P k
n−1, PI(P k

n ) = PI(P k
n−1) + α, then Theorem 3.1.1 is true.

Set w = vkp+s, A1 = {v1vs, v1vs+1, ..., v1vk+1}, A2 = {v2vs, ..., v2vk+2}, ..., As−1 =

{vs−1vs, ..., vs−1vk+s−1} and B1 = {v1v2, v1v3, ..., v1vs−1}, B2 = {v2v3, ..., v2vs−1}, ..., Bs−2 =

{vs−2vs−1}, Bs−1 = φ. By the definition of k-paths and Lemma 3.1.7, we have d′(v1, vkp+s) =

p+ 1, d′(vs, vkp+s) = p and d′(v1, vkp+s) = p+ 1, d′(v2, vkp+s) = p+ 1, that is, d′(v1, vkp+s) 6=

d′(vs, vkp+s) and d′(v1, vkp+s) = d′(v2, vkp+s). Thus, f(w, v1vs) = 1 and f(w, v1v2) = 0. Simi-

larly, for any edge vh1vh2 ∈ ∪s−1
i=1Ai with h1 < h2, we have d′(vh1 , vkp+s) 6= d′(vh2 , vkp+s), that

is, f(w, vh1vh2) = 1; For vh1vh2 ∈ ∪s−1
i=1Bi with h1 < h2, we have d′(vh1 , vkp+s) = d′(vh2 , vkp+s),
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that is, f(w, vh1vh2) = 0. Thus, we can get that

f(vkp+s, xy) =

 1 if xy ∈ ∪s−1
i=1Ai,

0 if xy ∈ ∪s−1
i=1Bi.

For t ∈ [0, p− 2], set Akt+s = {vkt+svk(t+1)+s}, Akt+s+1 = {vkt+s+1vk(t+1)+s,

vkt+s+1vk(t+1)+s+1}, ..., Ak(t+1)+s−1 = {vk(t+1)+s−1vk(t+1)+s, vk(t+1)+s−1vk(t+1)+s+1, ...,

vk(t+1)+s−1vk(t+2)+s−1}, and Bkt+s = {vkt+svkt+s+1, ..., vkt+svk(t+1)+s−1}, Bkt+s+1 =

{vkt+s+1vkt+s+2, ..., vkt+s+1vk(t+1)+s−1}, ..., Bk(t+1)+s−2 = {vk(t+1)+s−2vk(t+1)+s−1}, Bk(t+1)+s−1 =

φ. For t = 0 and by Lemma 3.1.7, we have d′(vs, vkp+s) = p, d′(vk+s, vkp+s) = p − 1 and

d′(vs, vkp+s) = p, d′(vs+1, vkp+s) = p, that is, d′(vs, vkp+s) 6= d′(vk+s, vkp+s) and d′(vs, vkp+s) =

d′(vs+1, vkp+s). Thus, f(w, vsvk+s) = 1 and f(w, vsvs+1) = 0. Similarly, for any edge vh1vh2 ∈

∪k(t+1)+s−1
i=kt+s Ai with h1 < h2, we have d′(vh1 , vkp+s) 6= d′(vh2 , vkp+s), that is, f(w, vh1vh2) = 1;

For vh1vh2 ∈ ∪
k(t+1)+s−1
i=kt+s Bi with h1 < h2, we have d′(vh1 , vkp+s) = d′(vh2 , vkp+s), that is,

f(w, vh1vh2) = 0. Thus, we can get that

f(vkp+s, xy) =

 1 if xy ∈ ∪k(t+1)+s−1
i=kt+s Ai,

0 if xy ∈ ∪k(t+1)+s−1
i=kt+s Bi.

Next we only consider the edges in the (k + 1)-clique P k
n [N [vkp+s]]. For any edge

vh1vh2 with h1, h2 ∈ [k(p− 1) + s, kp+ s− 1], we have d′(vh1 , vkp+s) = d′(vh2 , vkp+s) = 1, that

is, f(w, vh1vh2) = 0. For any edge vhvkp+s with h ∈ [k(p−1)+s, kp], by Lemma 3.1.7, we can

obtain that d′(v1, vh) = p, d′(v1, vkp+s) = p+ 1, d′(vh−k, vh) = 1, d′(vh−k, vkp+s) = 2 and when

h 6= k(p−1)+s, d′(vk(p−1)+s, vh) = 1, d′(vk(p−1)+s, vkp+s) = 1, that is, d′(v1, vh) 6= d′(v1, vkp+s),

d′(vh−k, vh) 6= d′(vh−k, vkp+s) and d′(vk(p−1)+s, vh) = d′(vk(p−1)+s, vkp+s). Similarly, we get that

for j ∈ [1, p− 1], j′ ∈ [1, p] and l 6= h,

 d′(vl, vh) 6= d′(vl, vkp+s) if l ∈ [1, s− 1] ∪ [h− jk, k(p− j) + s− 1],

d′(vl, vh) = d′(vl, vkp+s) if l ∈ [k(p− j′) + s, h− j′k + k − 1] ∪ [h+ 1, kp+ s− 1].
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Thus, if vh = vk(p−1)+s, then d′(vl, vk(p−1)+s) 6= d′(vl, vkp+s) with l ∈ [1, s − 1] ∪ {∪p−1
j=1[k(p −

1) + s − jk, (p − j)k + s − 1]} = [1, (p − 1)k + s − 1] and d′(vl, vk(p−1)+s) = d′(vl, vkp+s)

with l ∈ [(p− 1)k + s + 1, kp + s], that is, PI(vk(p−1)+svkp+s) = (p− 1)k + s− 1; Similarly,

we can obtain that PI(vk(p−1)+s+1vkp+s) = (p − 1)(k − 1) + s − 1;PI(vk(p−1)+s+2vkp+s) =

(p− 1)(k − 2) + s− 1; ...;PI(vkpvkp+s) = (p− 1)s+ s− 1.

For any edge vhvkp+s with h ∈ [kp + 1, kp + s − 1], by Lemma 3.1.7, we can obtain

that d′(vh−k, vh) = 1, d′(vh−k, vkp+s) = 2 and d′(vk(p−1)+s, vh) = 1, d′(vk(p−1)+s, vkp+s) = 1,

that is, d′(vh−k, vh) 6= d′(vh−k, vkp+s) and d′(vk(p−1)+s, vh) = d′(vk(p−1)+s, vkp+s). Similarly, we

get that for j′′ ∈ [1, p] and l 6= h,

 d′(vl, vh) 6= d′(vl, vkp+s) if l ∈ [h− j′′k, k(p− j′′) + s− 1],

d′(vl, vh) = d′(vl, vkp+s) if l ∈ [k(p− j′′) + s, h− j′′k + k − 1] ∪ [h+ 1, kp+ s− 1].

Thus, if vh = vkp+1, then d′(vl, vkp+1) 6= d′(vl, vkp+s) for l ∈ ∪pj′′=1[kp + 1 − j′′k, k(p − j′′) +

s − 1] and d′(vl, vkp+1) = d′(vl, vkp+s) with l ∈ {∪pj′′=1[k(p − j′′) + s, k(p + 1 − j′′)]} ∪ [h +

1, kp + s − 1], that is, PI(vkp+1vkp+s) = (s − 1)p; Similarly, we have PI(vkp+1vkp+s) =

(s− 2)p; ...;PI(vkp+s−2vkp+s) = 2p;PI(vkp+s−1vkp+s) = p.

Set w ∈ V (P k
n−1), if xy ∈ E(P k

n ) with x or y 6= vkp+s, by Lemma 3.1.6, we have

f(w, xy) = 0. Thus,

PI(P k
n )− PI(P k

n−1) =
∑

xy∈∪k(p−1)+s−1
i=1 (Ai∪Bi)

f(w, xy) + PI(vk(p−1)+svkp+s)

+PI(vk(p−1)+s+1vkp+s) + ...+ PI(vkp+s−1vkp+s)

= [(k + 2− s) + (k + 3− s) + ...+ k] + (1 + 2 + ...+ k)(p− 1)

+[k(p− 1) + s− 1] + [(k − 1)(p− 1) + s− 1] + [(k − 2)(p− 1) + s

−1] + ...+ [s(p− 1) + s− 1] + [(s− 1)p+ (s− 2)p+ ...+ 2p+ p]

= pk2 + pk − k2 − 3k + 2ks− s2 + 3s− 2

= α.
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Thus, PI(P k
n ) = k(k+1)(p−1)(3kp+6s−2k−4)

6
+ (s−1)s(3k−s+2)

3
, for |P k

n | = kp+s and Theorem

3.1.1 is true.

Proof of Theorem 3.1.2. We will proceed by induction on n ≥ k + 2. If n = k + 2, by the

definition of the spiral, we have T k∗n,c is also a k-path, that is, PI(T k∗n,c) = 2k. If n ≥ k + 3,

assume that Theorem 3.1.2 is true for the k-spiral with at most n − 1 vertices, we will

consider T k∗n,c with n vertices. Let T k∗n,c be a k-spiral with V (T k∗n,c) = V (T k∗n−1,c) ∪ {v} and

E(T k∗n,c) = E(T k∗n−1,c) ∪ {vvn−1, vvn−2, ..., vvn−k} such that v1, v2, ..., vn−c−1 is the simplicial

ordering of P k−c
n−c−1, where T k∗n−1,c = P k−c

n−c−1 + Kc with V (T k∗n−1,c) = {v1, v2, ..., vn−1} and

E(T k∗n−1,c) = E(P k−c
n−c−1)∪E(Kc)∪ {v1vl, v2vl, ..., vn−c−1vl} for l ∈ [n− c, n− 1]. For any edge

vivj ∈ E(T k∗n,c), d(vi, vj) or d′(vi, vj) is the distance of vi and vj in T k∗n−1,c or T k∗n,c, respectively.

For k + 2 ≤ n ≤ 2k − c, let γ = (n−k)(n−k−1)(4k−n+2)
3

− (n−k−1)(n−k−2)(4k−n+3)
3

=

(n−k−1)(3k−n+2). If we can show that by adding v to T k∗n−1,c, PI(T k∗n,c) = PI(T k∗n−1,c)+γ,

then Theorem 3.1.2 is true.

Set w = v and let l ∈ [n − c, n − 1], by Lemma 3.1.8, we have d′(vl, v) = 1 and

d′(vi, v) = 2 for i ∈ [1, n − k − 1], that is, f(w, vlvi) = 1; d′(vl, v) = d′(vi, v) = 1

for i ∈ [n − k, n − 1], that is, f(w, vlvi) = 0. Set C1 = {v1v2, v1v3, ..., v1vn−k−1}, C2 =

{v2v3, v2v4, ..., v2vn−k−1}, ..., Cn−k−2 = {vn−k−2vn−k−1}, Cn−k−1 = φ, D1 = {v1vn−k, v1vn−k+1,

..., v1vk−c+1}, D2 = {v2vn−k, v2vn−k+1, ..., v2vk−c+2}, ..., Dn−k−1 = {vn−k−1vn−k, vn−k−1vn−k+1,

..., vn−k−1vn−c−1}. By Lemma 3.1.8, we have d′(v1, v) = d′(v2, v) = 2 and d′(vn−k, v) = 1,

that is, f(w, v1v2) = 0 and f(w, v1vn−k) = 1. Similarly, for vh1vh2 ∈ ∪n−k−1
i=1 Ci with h1 < h2,

we have d′(vh1 , v) = d′(vh2 , v) = 2, that is, f(w, vh1vh2) = 0; For vh1vh2 ∈ ∪n−k−1
i=1 Di

with h1 < h2, we have d′(vh1 , v) = 2 and d′(vh2 , v) = 1, that is, f(w, vh1vh2) = 1. Set

Cn−k = {vn−kvn−k+1, vn−kvn−k+2, ..., vn−kvn−c−1}, Cn−k+1 = {vn−k+1vn−k+2, vn−k+1vn−k+3, ...,

vn−k+1vn−c−1}, ..., Cn−c−2 = {vn−c−2vn−c−1}. By Lemma 3.1.8, we have d′(vn−k, v) =

d′(vn−k−1, v) = 1, that is, f(w, vn−kvn−k−1) = 0. Similarly, for vh1vh2 ∈ ∪n−c−2
i=n−kCi with

h1 < h2, we have d′(vh1 , v) = d′(vh2 , v) = 1, that is, f(w, vh1vh2) = 0.
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Set E1 = {vvi, i ∈ [n−k, n−c−1]}, by Lemma 3.1.8, we have d′(vi, v) = 2, d′(vi, vn−k) =

1 for i ∈ [1, n − k − 1] and d′(vj, v) = d′(vj, vn−k) = 1 for i ∈ [n − k + 1, n]. Thus,

PI(vn−kv) = n − k − 1. Similarly, PI(vn−k+1v) = PI(vn−k+2v) = ... = PI(vk−c+1v) =

n−k−1. Also, by Lemma 3.1.8, we have d′(vi, v) = 2, d′(vi, vk−c+2) = 1 for i ∈ [2, n−k−1],

d′(v1, v) = d′(v1, vk−c+2) = 2 and d′(vj, v) = d(vj, vk−c+2) = 1 for j ∈ [n − k, n]. Thus,

PI(vk−c+2v) = n − k − 2. Similarly, we have PI(vk−c+3v) = n − k − 3, P I(vk−c+4v) =

n−k−4, ..., P I(vn−c−1v) = 1. Set E2 = {vvl, l ∈ [n−c, n−1]}, since N [vl]−N [v] = n−k−1,

then PI(vvl) = n− k − 1. Set E3 = {vivl, i ∈ [1, n− c− 1], l ∈ [n− c, n− 1]}, by Lemma 4,

we have d′(vi, v) = 2 for i ∈ [1, n− k− 1], d′(vi, v) = 1 for i ∈ [n− k, n− c− 1], d′(vl, v) = 1

for l ∈ [n − c, n − 1]. Thus, f(w, vivl) = 1 for i ∈ [1, n − k − 1] and f(w, vivl) = 0 for

i ∈ [n− k, n− c− 1].

Set w ∈ V (T k∗n ) − {v}, if xy ∈ E(T k∗n,c) with x or y 6= v, by Lemma 3.1.6, we have

f(w, xy) = 0. Thus,

PI(T k∗n )− PI(T k∗n−1) =
∑

xy∈∪n−c−2
i=1 Ci

f(w, xy) +
∑

xy∈n−k−1
i=1 Di

f(w, xy)

+
∑

xy∈E1∪E2
PI(xy) +

∑
xy∈E3

f(w, xy)

= 0 + [(2k − n− c+ 2) + (2k − n− c+ 3) + ...+ (k − c)]

+[1 + 2 + ...+ (n− k − 2) + (n− k − 1)(2k − n− c+ 2)]

+c(n− k − 1) + c(n− k − 1)

= (n− k − 1)(3k − n+ 2)

= γ,

Theorem 3.1.2 is true.

For n ≥ 2k − c+ 1, let σ = 3c(n−2k+c−1)(n−2k+c)+(k−c)(2c2+3nc−4kc+3kn−4k2−6k+3n−2)
3

−
3c(n−2k+c−2)(n−1−2k+c)+(k−c)(2c2+3(n−1)c−4kc+3k(n−1)−4k2−6k+3n−2)

3
= k2− 4kc+ c2 + 2nc− 3c+ k.

If we can show that by adding v to T k∗n−1,c, PI(T k∗n,c) = PI(T k∗n−1,c) + σ, then Theorem 3.1.2 is

true.
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Set w = v, by Lemma 3.1.8, we have d′(vl, v) = 1 for l ∈ [n− c, n−1], d′(vi, v) = 2 for

i ∈ [1, n−k−1] and d′(vj, v) = 1 for j ∈ [n−k, n−c−1]. Thus, f(w, vlvi) = 1 and f(w, vlvj) =

0. Set C1 = {v1v2, v1v3, ..., v1vk−c+1}, C2 = {v2v3, v2v4, ..., v2vk−c+2}, ..., Cn−2k+c−1 =

{vn−2k+c−1vn−2k+c, vn−2k+c−1vn−2k+c+1, ..., vn−2k+c−1vn−k−1}, Cn−2k+c = {vn−2k+cvn−2k+s+1,

vn−2k+cvn−2k+s+2, ..., vn−2k+cvn−k−1}, Cn−2k+c+1 = {vn−2k+c+1vn−2k+c+2, vn−2k+c+1vn−2k+c+3,

..., vn−2k+c+1vn−k−1}, ...., Cn−k−1 = φ,Dn−2k+c = {vn−2k+cvn−k}, Dn−2k+c+1 = {vn−2k+c+1vn−k,

vn−2k+c+1vn−k+1}, ..., Dn−k−1 = {vn−k−1vn−k, vn−k−1vn−k+1, ..., vn−k−1vn−c−1}.

By Lemma 3.1.8, we can get that d′(v1, v) = d′(v2, v) = 2 and d′(vn−k, v) = 1, that

is, f(w, v1v2) = 0 and f(w, v1vn−k) = 1. Similarly, for vh1vh2 ∈ ∪n−k−1
i=1 Ci with h1 < h2,

we have d′(vh1 , v) = d′(vh2 , v) = 2, that is, f(w, vh1vh2) = 0; For vh1vh2 ∈ ∪n−k−1
i=n−2k+cDi

with h1 < h2, we have d′(vh1 , v) = 2 and d′(vh2 , v) = 1, that is, f(w, vh1vh2) = 1. Set

Cn−k = {vn−kvn−k+1, vn−kvn−k+2, ..., vn−kvn−c−1}, Cn−k+1 = {vn−k+1vn−k+2, vn−k+1vn−k+3, ...,

vn−k+1vn−c−1}, ..., Cn−c+2 = {vn−c−2vn−c−1}. By Lemma 3.1.8, we can get that d′(vn−k, v) =

d′(vn−k+1, v) = 1, that is, f(w, vn−kvn−k+1) = 0. Similarly, for vh1vh2 ∈ ∪n−c−2
i=n−kCi with

h1 < h2, we have d′(vh1 , v) = d′(vh2 , v) = 1, that is, f(w, vh1vh2) = 0.

Set E1 = {vvi, i ∈ [n − k, n − c − 1]}, by Lemma 3.1.8, we have d′(v, vn−k−1) =

2, d′(vn−c−1, vn−k−1) = 1, d′(v, vi) = d′(vn−c−1, vi) = 1 for i ∈ [n−k, n−c−2]∪[n−c, n−1] and

d′(v, vj) = d(vn−c−1, vj) = 2 for j ∈ [1, n−k−2]. Thus, PI(vvn−c−1) = 1. Similarly, we have

PI(vvn−c−2) = 2, P I(vvn−c−3) = 3, ..., P I(vvn−k) = k − c. Set E2 = {vvl, l ∈ [n− c, n− 1]},

since N [vl]−N [v] = n−k−1, then PI(vvl) = n−k−1. Set E3 = {vivl, i ∈ [1, n− c−1], l ∈

[n− c, n− 1]}, by Lemma 3.1.8, we have d′(v, vi) = 2, d′(v, vl) = 1 for i ∈ [1, n− k − 1] and

d′(v, vi) = d′(v, vl) = 1 for i ∈ [n − k, n − c − 1]. Thus, f(w, vivl) = 1 for i ∈ [1, n − k − 1]

and f(w, vivl) = 0 for i ∈ [n− k, n− c− 1].
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Set w ∈ V (T k∗n ) − {v}, if xy ∈ E(T k∗n,c) with x or y 6= v, by Lemma 3.1.6, we have

f(w, xy) = 0. Thus,

PI(T k∗n )− PI(T k∗n−1) =
∑

xy∈∪n−c−2
i=1 Ci

f(w, xy) +
∑

xy∈n−k−1
i=n−2k+cDi

f(w, xy) +
∑

xy∈E1∪E2
PI(xy)

+
∑

xy∈E3
f(w, xy)

= 0 + [1 + 2 + 3 + ...+ (k − c)] + [1 + 2 + 3 + ...+ (k − c)]

+c(n− k − 1) + c(n− k − 1)

= k2 − 4kc+ c2 + 2nc− 3c+ k

= σ.

Thus, Theorem 3.1.2 is true.

Proof of Theorem 3.1.3. For n ≥ k + 2, we will proceed by introduction on |T kn | = n. If

n = k + 2, T kn is also a k-path, that is, PI(T kn ) = 2k. If n ≥ k + 3, assume that Theorem

3.1.3 is true for the k-tree with at most n − 1 vertices, let v ∈ S1(T kn ) and T kn−1 = T kn − v,

by the induction of hypothesis, we have PI(T kn−1) ≤ PI(Skn−1) = k(n − k − 1)(n − k − 2).

By adding back v, let N(v) = {x1, x2, ..., xk} and w = v. Since T kn [v, x1, x2, ..., xk] is a

(k + 1)-clique, then f(w, xixj) = 0 for i, j ∈ [1, k]. By Lemma 3.1.5 and Lemma 3.1.6, we

can obtain that PI(vxi) ≤ n − k − 1 with i ∈ [1, k] and f(w, xy) ≤ 1 for any edge xy ∈

E(T kn )−E(T kn [v, x1, x2, ..., xk]). Next, set w ∈ V (T kn )− {v}, by Lemma 3.1.6, if xy ∈ E(T kn )

with x or y 6= v, we have f(w, xy) = 0. Since |E(T kn )−E(T kn [v, x1, x2, ..., xk])| = k(n−k−1),

we have

PI(T kn ) = PI(T kn−1) +
∑

xy∈E(Tk
n−{vxi,i∈[1,k]}) f(w, xy) +

∑k
i=1 PI(vxi)

≤ PI(Skn−k) + k(n− k − 1) + k(n− k − 1)

= k(n− k − 1)(n− k − 2) + k(n− k − 1) + k(n− k − 1)

= k(n− k)(n− k − 1)

= PI(Skn).

Thus, Theorem 3.1.3 is true.
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Proof of Theorem 3.1.4. For k = 1, every tree with the same number of vertices has the

same PI-value. So Theorem 3.1.4 is obvious in this case; For k ≥ 2, if k + 2 ≤ n ≤ 2k − c,

let n = kp + s with p = 1 and s = n− k, by Theorem 3.1.1, we have PI(P k
n )− PI(T k∗n,c) =

(s−1)s(3k−s+2)
3

− (n−k)(n−k−1)(4k−n+2)
3

= (n−k−1)(n−k)[3k−(n−k)+2]
3

− (n−k)(n−k−1)(4k−n+2)
3

= 0, and

Theorem 3.1.4 is true. If n ≥ 2k − c + 1, p = n−s
k

and by Theorem 3.1.1 and 3.1.2, define

the new functions as follows: For z ≥ 2k − c+ 1, 1 ≤ c ≤ k − 1 and 2 ≤ s ≤ k + 1,

g(z) = (k+1)(z−s−k)(3z+3s−2k−4)
6

+ s(s−1)(3k−s+2)
3

,

h(z, c) = c(z − 2k + c− 1)(z − 2k + c) + (k−c)(2c2+3zc−4kc+3kz−4k2−6k+3z−2)
3

,

l(z, c) = g(z)− h(z, c)

= (k
2

+ 1
2
− c)z2 + (−c2 + 2c+ 4kc− 11k2

6
− 5k

2
− 2

3
)z

+ ks2

2
− k2s

6
− ks

2
+ 5k3

3
+ 5k2

3
+ s2

2
+ 4k

3
− s3

3
− 6k2c+ 3kc2 − c3

3
− 4kc+ c2 − 2c

3
,

lz(z) = lz(z, c)

= (k + 1− 2c)z − c2 + 2c+ 4kc− 11k2

6
− 5k

2
− 2

3
.

Then, it is enough to determine that whether or not l(z, c) ≥ 0 is true. By some caculations,

we can obtain the following fact.

Note 1. z1 = 2k − c+ 1, z2 = 2k − c+ 2 are the two roots of l(z, c) = 0 with c 6= k+1
2

.

Proof: For any c ∈ [1, k − 1], let z1 = 2k − c+ 1, z2 = 2k − c+ 2, we have l(2k − c+ 1, c) =

0, l(2k − c+ 2, c) = 0. If c 6= k+1
2

, then Note 1 is true. 2

For fixed c ∈ [1, k+1
2

), that is, k
2

+ 1
2
− c > 0, then the function of l(z, c) about z is

open up. Since z is an integer and by Fact 2, then l(z, c) ≥ 0 for z ≥ 2k− c+1 and Theorem

8 is true; If c = k+1
2

and k ≥ 1, we have lz(z) = 1−k2
12
≤ 0, that is, l(z, k+1

2
) is decreasing

about z. By the proof of Note 2, we have l(2k− c+ 1, c) = 0. For z ≥ 2k− c+ 1, we can get

that l(z, k+1
2

) ≤ l(2k− c+ 1, k+1
2

) = 0 and Theorem 8 is true; For fixed c ∈ (k+1
2
, k− 1], that

is, k
2

+ 1
2
− c < 0, then the function of l(z, c) about z is open down. Since z is an integer and

by Note 1, we can obtain that l(z, c) ≤ 0 for z ≥ 2k − c+ 1 and Theorem 3.1.4 is true.
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Remark. The k-stars attain the maximal values of PI-values for k-trees, but the k-paths

do not attain the minimal values and not all PI-values of k-spirals are less than the values of

other type of k-trees. This fact indicates two interesting problems that what is the minimum

PI-value for k-trees and which type of k-trees will achieve the minimum PI-value?

3.2 CACTUS GRAPHS

The next figure gives some examples of the extremal graphs in the main results of

this section. Here are the two main results and their proofs.
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Figure 3.2.1: The cacti with extremal PI indices

Theorem 3.2.1 (Wang, Wang and Wei [80]). Let G ∈ Cn,k − {C3, C3 ∪ e, C4, C5} with

n ≥ k ≥ 0, then PI(G) ≤ (n − 1 + bn−k−1
3
c)(n − 2), where the equality holds if and only if

G is a tree for n ≤ k + 3 and otherwise, one of the following statements holds(See Fig. 1):

(i) All cycles have length 4 and there are at most k + 2 cut edges.

(ii) All cycles have length 4 except one of length 6 and there are exact k pendent edges.

Theorem 3.2.2 (Wang, Wang and Wei [80]). Let G ∈ Cn,k−{C3, C3∪e, C4} with n ≥ k ≥ 0,

then PI(G) ≥ (n− 1)(n− 2)− 2bn−k−1
2
c, where the equality holds if and only if G is a tree

for n ≤ k + 2 and otherwise, all cycles have length 3 and there are at most k + 1 cut edges

(See Fig. 2).

Next we provide some lemmas which are important in the proof of our main results.
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Lemma 3.2.3. Let G ∈ Cn,k and e ∈ E(G). Then

(i) PI(e) ≤ n− 2, the equality holds if e is a cut edge or an edge of an even cycle.

(ii) If e is an edge of an odd cycle Co, then PI(e) ≤ n − 3. Furthermore, if G = Co, then

PI(e) = n− 3.

(iii) For each odd cycle C of G, PI(C) = (n− 2)(|C| − 1)− 2.

Proof. Assume that e = uv ∈ E(G). Since PI(e) counts at most n − 2 vertices, then

PI(e) ≤ n− 2. If e is a cut edge, then G− e contains two components G1 and G2. Thus, all

vertices of G1 are closer to one of {u, v}, say u, and all vertices of G2 are closer to v. Thus,

PI(e) = ne(u) + ne(v) = n − 2 if e is a cut edge. Let C = v1v2...vav1 be a cycle of G and

vlv
′
l ∈ E(C). Since G is a cactus, then G− E(C) contains a components B1, B2, ..., Ba such

that vi ∈ V (Bi). If a is even, then d(vl, vi) 6= d(v′l, vi) for 1 ≤ i ≤ a, and d(vl, ui) 6= d(v′l, ui)

with ui ∈ V (Bi). We obtain that PI(e) = n− 2 if C is even. Thus, (i) is true.

For C = Co, a is odd. Then there exists a unique vertex vt ∈ V (C) such that

d(vl, vt) = d(v′l, vt), that is, PI(e) ≤ n− 3. When G = Co, we see PI(e) = n− 3. Thus, (ii)

is true.

For (iii), a is odd and
∑a

i=1 |Bi| = n. Note that if d(vl, vt) = d(v′l, vt) with vt ∈ V (C),

then d(vl, ut) = d(v′l, ut) with ut ∈ V (Bt). Similarly, if d(vl, vt) 6= d(v′l, v
′
t) with v′t ∈ V (C),

then d(vl, u
′
t) 6= d(v′l, u

′
t) with u′t ∈ V (Bt). Thus, PI(vlv

′
l) = n − 2 − |Bt| with t 6= l, l′. It

induces that

PI(C) =
∑

e∈E(C) PI(e) =
∑a

i=1(n− 2− |Bi|)

= a(n− 2)−
∑a

i=1 |Bi|

= |C|(n− 2)− n

= (|C| − 1)(n− 2)− 2

and Lemma 3.2.3 is true.

Lemma 3.2.4. Let C be a cycle of G. Define Transformation 1: G1 = G − xy with xy ∈

E(G) − E(C) and Transformation 2: G2 = G + x′y′, where at least one of {x′, y′} are in

V (G)− V (C). If G1, G2 ∈ Cn,k and e ∈ E(C), then PI(e) = PIG1(e) = PIG2(e).
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Proof. Let C = v1v2...vav1, vlv
′
l ∈ E(C). ThenG−E(C) contains a componentsB1, B2, ..., Ba

such that vi ∈ V (Bi). Since G is a cactus, then for vi ∈ V (C), if d(vl, vi) = d(v′l, vi), we

obtain d(vl, ui) = d(v′l, ui) with ui ∈ V (Bi). Similarly, if d(vl, vi) 6= d(v′l, vi), we obtain

d(vl, ui) 6= d(v′l, ui) with ui ∈ V (Bi). Note that G1 and G2 contain the same cycle C as G, and

the components Bi
j of Gi−C with vj ∈ V (Bi

j) has the property that V (Bi
j) = V (Bi′

j ). Then

for vi ∈ V (C), if d(vl, vi) = d(v′l, vi), then dG1(vl, vi) = dG1(v
′
l, vi) and dG2(vl, vi) = dG2(v

′
l, vi),

dG1(vl, ui) = dG1(v
′
l, ui) with ui ∈ VG1(Bi) and dG2(vl, ui) = dG2(v

′
l, ui) with ui ∈ VG1(Bi).

Similarly, if d(vl, vi) 6= d(v′l, vi), then dG1(vl, vi) 6= dG1(v
′
l, vi) and dG2(vl, vi) 6= dG2(v

′
l, vi),

dG1(vl, ui) 6= dG1(v
′
l, ui) with ui ∈ VG1(Bi) and dG2(vl, ui) 6= dG2(v

′
l, ui) with ui ∈ VG2(Bi).

Thus, PI(e) = PIG1(e) = PIG2(e) and Lemma 3.2.4 is true.

Lemma 3.2.5. If G ∈ Cn,k contains t1 cycles of lengths {l1, l2, ..., lt1} and t2 ≥ k cut edges,

then PI(G) is unique and these cycles can be shared a common vertex u0, k − 1 pendent

edges can be adjacent to u0 and a path of length t2 − k + 1 can be adjacent to u0. (See Fig.

2)

Proof. By Lemma 3.2.3(i) and (iii), PI values with cycles of fixed lengths and fixd number

of cut edges are determined. Then

PI(G) =
∑

C is a cycle of G

∑
e∈E(C)

PI(e) +
∑

e is an cut edge of G

PI(e)

is unique. By recombining these cycles and cut edges, t1 cycles can have a common vertex

u0, k−1 pendent edges can be adjacent to u0 and a path of length t2−k+1 can be adjacent

to u0. Thus, Lemma 3.2.5 is true.

Lemma 3.2.6. Let G ∈ Cn,k − {C3, C3 ∪ e, C5}, if PI(G) attains the maximal value, then

the length of each cycle, if any, is even.

Proof. IfG has a cycle, then n ≥ 3. Assume that there is an odd cycle C2t+1 = u1u2...u2tu2t+1u1

with t ≥ 1. If all vertices of C2t+1 have degree 2, then G = C2t+1. Since G 6= C3, C5, then
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n ≥ 7. By Lemma 3.2.3(ii), PI(e) = n − 3 for e ∈ E(C2t+1) and PI(C2t+1) = n(n − 3).

By Lemma 1(iii), PI(G) = (n− 2)(2t)− 2. We build a new graph G′ = (G− {u1u2t+1}) ∪

{u1u2t−2, u2t+1}. Then G′ contains a cycle C ′1 = u2t−2u2t−1u2tu2t+1u2t−2 of length 4 and a

cycle C ′2 = u1u2...u2t−2u1 of length 2t−2. By Lemma 3.2.3(i), PI(G′) = PI(C ′1)+PI(C ′2) =

(n− 2)(2t+ 2). Thus, PI(G′) > PI(G), contradicted that PI(G) is maximal.

Thus, there is a vertex of degree at least 3 in C2t+1. If the vertex of degree 3 is unique,

say u1, then there exists a pendent path u1v1v2.... Set G0 = (G−{u1u2})∪{u2v1}, then G0 ∈

Cn,k − {C3, C3 ∪ e, C5}. By Lemma 3.2.3, we obtain PI(G1) > PI(G), a contradiction. If at

least two vertices of {u1, u2, u3} has degree at least two, say u1, u2. Set G1 = G−{u1u2}, then

G1 ∈ Cn,k−{C3, C3∪e, C5}. By Lemma 3.2.3, we obtain PI(G) = PI(C)+k(k+1) = k(k+3)

and PI(G1) = (k + 1)(k + 3) > PI(G), a contradiction. If t ≥ 2, we construct a new graph

G2 such that G2 = G − {u1u2t+1} ∪ {u1u2t} with dG(u2t+1) ≥ 3. Then G2 ∈ Cn,k, C2t is an

even cycle and u2tu2t+1 is a cut edge. By Lemmas 3.2.3 and 3.2.4,

PI(G2)− PI(G) = (PI(u2tu2t+1) + PI(C2t))− PI(C2t+1)

= (n− 2)(2t+ 1)− [(n− 2)(2t)− 2]

> 0,

contradicted that PI(G) is maximal. Therefore, each cycle, if any, is even and Lemma 3.2.6

is true.

Lemma 3.2.7. Let G ∈ Cn,k−{C3, C3∪e, C5} with n ≥ k+4, if PI(G) attains the maximal

value, then all cycles are length 4 except at most one of them is 6.

Proof. By Lemma 3.2.6, all cycles are even. If there exists an cycle C = u1u2...u2tu1 with

t ≥ 4. Set G1 = (G − {u1u2t}) ∪ {u1u4, u4u2t}. Then G1 ∈ Cn,k − {C3, C3 ∪ e} and

|E(G1)| = |E(G)| + 1. Since each edge of G1 is either a cut edge or an edge of an even

cycle, then PI(G1) > PI(G) by Lemma 3.2.3(i), that is, the length of cycles are at most

6. Now suppose that there are two cycles of length 6. By Lemma 3.2.5, we can assume

these two cycles share a common vertex u1, say C1 = u1u2...u6u1 and C2 = u1v2...v6u1. Set
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G2 = G − {u1u2, u3u4, u1v2} ∪ {u1u4, u2v2, u3v3, u1v3}. Then G2 ∈ Cn,k − {C3, C3 ∪ e} and

|E(G2)| = |E(G)|+ 1. Since each edge of G2 is either a cut edge or an edge of an even cycle,

then PI(G1) > PI(G), that is, there are at most one cycle of length 6 and Lemma 3.2.7 is

true.

Lemma 3.2.8. Let G ∈ Cn,k −{C4}, if PI(G) attains the minimal value, then the length of

each cycle, if any, is odd.

Proof. Suppose G has an even cycle C2t = u1u2...u2tu1, then n ≥ k + 4 and t ≥ 2. If all

vertices of G have degree 2, then G = C2t and n = 2t. By Lemma 3.2.3(i), PI(G) = n(n−

2) = 2t(2t− 2). Since G 6= C4 and t ≥ 3, set G1 = (G− {u1u2}) ∪ {u1u4, u2u4}. Then G1 ∈

Cn,k−{C4}, C1,3 = u2u3u4u2 is an odd cycle and C1,2t−2 = u1u4u5...u2tu1 is an even cycle. By

Lemma 3.2.3(i) and (iii), PI(G1) = PI(C1,3)+PI(C1,2t−2) = (n−2)2−2+(n−2)(2t−2) =

2t(2t− 2)− 2 < PI(G), contradicted that PI(G) is minimal. If there exists a vertex u2 with

d(u2) ≥ 3, then we construct a new graph G2 = (G − {u1u2}) ∪ {u1u3}. Then G2 ∈ Cn,k,

u2u3 is a cut edge and C ′ = u1u3u4...u2tu1 is an odd cycle. By Lemma 3.2.3 and 3.2.5,

PI(G2)− PI(G) = (PIG2(u2u3) + PIG2(C
′))− PI(C2t)

= [(n− 2) + (n− 2)(2t− 2)− 2]− 2t(n− 2)

= −n < 0.

Thus, PI(G2) < PI(G), contradicted that PI(G) is minimal. Therefore, each cycle, if any,

is odd and Lemma 3.2.8 is true.

Lemma 3.2.9. Let G ∈ Cn,k − {C4} with n ≥ k + 3, if PI(G) attains the minimal value,

then all cycles have length 3.

Proof. By Lemma 3.2.8, we only consider all cycles of G are odd. Suppose that there is

an odd cycle of length greater than 3, say C2t+1 = u1u2...u2t+1u1 with t ≥ 2. Set a new

graph G1 = (G − {u2t−1u2t}) ∪ {u1u2t−1, u1u2t}. Then G1 ∈ Cn,k and we will show that

PI(G1) < PI(G). Let C1 = u1u2...u2t−1u1 and C2 = u1u2tu2t+1u1. By Lemma 1(iii),
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PI(C) = (n− 2)(|C| − 2)− 2 = 2t(n− 2)− 2 and PI(C1) + PI(C2) = [(n− 2)(|C1| − 2)−

2] + [(n− 2)(|C2| − 2)− 2] = 2t(n− 2)− 4. Thus, PI(C1) + PI(C2) < PI(C). By Lemma

3.2.4, PI(G1)− PI(G) = PI(C1) + PI(C2)− PI(C) < 0 and Lemma 3.2.9 is true.

Now, we prove the main results of this section.

Proof of Theorem 3.2.1. All length of cycles, if any, are even by Lemma 3.2.6. Since e ∈

E(G) is either a cut edge or an edge of an even cycle, then PI(e) = n − 2 by Lemma 1(i).

Thus, PI(G) = |E(G)|(n− 2) and it needs to maximize |E(G)|. For n ≤ k+ 3, bn−k−1
3
c = 0

and PI(G) = (n− 1)(n− 2). Thus, Theorem 3.2.1 is true. For n ≥ k+ 4, all length of cycles

are 4 except at most one of them is 6 by Lemma 3.2.7. By Lemma 3.2.5, all cycles of G have

a common vertex u0, k− 1 pendent edges are adjacent to u0 and a path of length t2 − k+ 1

is adjacent to u0.

Assume that there exists a cycle C6 = u0u1u2u3u4u5u0 and G contains more than

k+1 cut edges. Then G has a path u0v1v2... of length more than 2. Set G1 = (G−{u2u3})∪

{u2v1, u0u3}, then G2 ∈ Cn,k and |E(G2)| = |E(G)| + 1. Since e ∈ E(G1) is either an cut

edge or an edge of an even cycle, then PI(e) = n − 2 and PI(G1) = (n − 2)|E(G1)| >

PI(G) = (n− 2)|E(G)|, contradicting to the fact that PI(G) is maximal. Thus, G contains

exact k pendent edges. Next we will show that if all length of cycles are 4, then G contains

at most k + 2 cut edges. Otherwise, there exist a path u0v1v2... of length at least 4 by

Lemma 3.2.5. Set G2 = G ∪ {u0v3}, then G2 ∈ Cn,k and |E(G2)| = |E(G)| + 1. Since

e ∈ E(G1) is either an cut edge or an edge of an even cycle, then PI(e) = n − 2 and

PI(G2) = (n − 2)|E(G2)| > PI(G) = (n − 2)|E(G)|, contradicted that PI(G) is maximal.

Note that for n ≥ k+ 4, the number of cycles of G is bn−k−1
3
c and the number of edges of G

is n− 1 + bn−k−1
3
c. Thus, PI(G) = (n− 1 + bn−k−1

3
c)(n− 2) and Theorem 3.2.1 is true.

Proof of Theorem 3.2.2. For n ≤ k + 2, bn−k−1
2
c = 0 and PI(G) = (n − 1)(n − 2) by

Lemma 3.2.3. Thus, Theorem 3.2.2 is true. For n ≥ k + 3, the length of each edge of

G is 3 by Lemma 3.2.9. Next we will show that G contains at most k + 1 cut edges.
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Assume that G contains at least k + 2 cut edges. By Lemma 3.2.5, all cycles of G have a

common vertex u0, k − 1 pendent edges are adjacent to u0 and a path of length at least

(k + 2)− k + 1 = 3 is adjacent to u0. Denote the path as u0v1v2v3...., set G1 = G ∪ {u0v2}.

By Lemma 3.2.3(iii) and 3.2.4, PI(G1)−PI(G) = PIG1(v0u1u2v0)−PI(u0v1)−PI(v1v2) =

[(n− 2)(3− 1)− 2]− (n− 2)− (n− 2) = −2 < 0. Thus, PI(G1) < PI(G), contradicted that

PI(G) is minimal. Note that for n ≥ k + 3, the number of cycles of length 3 is bn−k−1
2
c and

the number of cut edges is n− 1− 2bn−k−1
2
c. Thus,

PI(G) = 2(n− 3)(bn−k−1
2
c) + (n− 1− 2bn−k−1

2
c)(n− 2)

= (n− 1)(n− 2)− 2bn−k−1
2
c,

and Theorem 3.2.2 is true.

Remarks. The maximal and minimal values of vertex PI vertices of cacti are uniqe, but the

cacti achieved the maximal and minimal vertex PI index are not unique. All cacti satisfying

the statements in Theorem 3.2.1 and Theorem 3.2.2 are arrived at the corresoponding sharp

values. Fig 1 and Fig 2 are special examples achieved the sharp bounds.
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4 THE RATIO OF DOMINATION AND INDEPENDENT DOMINATION

In this chapter, we study the ratio of the independent domination number and the

domination number for bipartite graphs. We also provide further results on such ratio for

any graphs.

4.1 THE RATIO

The main theorem of the ratio between domination number and independent domi-

nation number, and the proof are as follows.

Theorem 4.1.1 (Wang and Wei [67]). Let G be a bipartite graph with ∆(G) ≥ 2. Then

i(G)

γ(G)
≤ ∆(G)

2
.

Proof of Theorem 4.1.1. Let A,B be the two partitions of G and D be a minimum domi-

nating set. Thus, A,B are independent sets and γ(G) = |D|. Set I0 to be the set of isolated

vertices in G[D].

If |I0| = |D|, then D is an independent dominating set, that is, i(G)/γ(G) = 1 ≤

∆(G)/2. Otherwise, if |I0| < |D|, then there are some edges in G[D]. By setting A1 =

(D − I0) ∩ A and B1 = (D − I0) ∩ B, we have |A1| + |B1| = |D| − |I0|. Without loss of

generality, we can assume that |A1| ≥ |B1|.

Define a new vertex set I = I0 ∪ A1 ∪ (NG(B1) − A1 − NG(I0 ∩ B)). We first show

that I is an independent dominating set. Since D is a dominating set and I0 is the set of
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isolated vertices of G[D], then NG(I0 ∩B) ∩ A1 = φ and

I = (I0 ∩B) ∪ (I0 ∩ A) ∪ A1 ∪ (NG(B1 ∪ (I0 ∩B))− A1 −NG(I0 ∩B))

B1∪(I0∩B)=D∩B
= (I0 ∩B) ∪ ((I0 ∩ A) ∪ A1) ∪ (NG(D ∩B)− A1 −NG(I0 ∩B))

NG(D∩B)=A
= (I0 ∩B) ∪ A1 ∪ (A− A1 −NG(I0 ∩B))

= (I0 ∩B) ∪ (A−NG(I0 ∩B)). (4.1.1)

Thus, I is independent. By the equation (1), NG(I0 ∩ B) ⊆ NG(I). Since I0 ∩ B is a set of

isolated vertices in G[D], then A∩D ⊆ I and B− (I0∩B) ⊆ NG(I).Thus, I is a dominating

set of G as well.

By the definition of I and |NG(B1) − A1 − NG(I0 ∩ B)| ≤ |B1|(∆(G) − 1), we have

|I| ≤ |I0| + |A1| + |B1|(∆(G) − 1). Note that |A1| + |B1| = |D| − |I0|, |A1| ≥ |B1| ≥ 0 and

∆(G) − 1 ≥ 1. If |A1| + |B1|(∆(G) − 1) attains the maximal value, then B1 is as big as

possible. Also, |B1| ≤ |A1| and |A1| + |B1| = |D| − |I0| yield that |B1| ≤ |D|−|I0|
2

. Thus, |I|

achieves the maximal value if |A1| = |B1| = |D|−|I0|
2

, that is,

|I| ≤ |I0|+
|D| − |I0|

2
+
|D| − |I0|

2
(∆(G)− 1)

= |I0|+
|D| − |I0|

2
∆(G).

As ∆(G)
2
≥ 1 and γ(G) = |D|, then

i(G) ≤ |I| ≤ |I0|
∆(G)

2
+
|D| − |I0|

2
∆(G) = |D|∆(G)

2
= γ(G)

∆(G)

2
.

Thus,

i(G)

γ(G)
≤ |I|
γ(G)

≤ ∆(G)

2
.
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Remark. We see that the Conjecture holds for the bipartite graph G. For the examples, a

balanced double star and a complete balanced bipartite graph attain the upper bound.

4.2 EXTENDED RESULTS

Due to the main result, we can obtain the special theorem. If G has no cycles, the

following proposition is obvious.

Theorem 4.2.1 ([67]). Let G be a tree with ∆(G) ≥ 2, then i(G)
γ(G)
≤ ∆(G)

2
and the equality

holds if G is a balanced double star, where a balanced double star is a tree with exactly two

vertices of same degree greater than 1.

We now provide graphs containing some odd cycles, for which Conjecture 1.6.4 does

not hold. For any large n, the graph G′ consists of an odd cycle C2k+1 and (2k+ 1)s vertices

of degree 1 such that each vertex on C2k+1 is adjacent to exactly s degree-1 vertices, for

k, s ≥ 1. Then ∆(G′) = s + 2, γ(G′) = 2k + 1 and i(G′) = k + (k + 1)s. By caculations,

i(G′)/γ(G′) > ∆(G′)/2 if s > 2k + 2.

Furthermore, as suggested by Dr. Hehui Wu, we provide a series of examples for δ ≥ 2,

which disprove the Conjeture for any δ(G). The method of buiding the counterexamples is:

Starting with a complete graph, several independent sets of the same size, we add the vertices

between the complete graph and any independent set. In paticular, The counterexample

Figure 4.2.1 to the Conjecture with δ = 2 is as follows:
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Figure 4.2.1: One of the counterexamples for δ = 2
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5 FUTURE RESEARCH

In this chaper, we propose some further research problems on the topological indices,

domination numbers and the long cycles of chordal graphs.

5.1 TOPOLOGICAL INDICES

In my current study of topological indices, I found sharp bounds on the multiplicative

Zagreb indices of k-trees in Theorems 3.4 and 3.5. For a cactus graph with given number of

pendent vertices, sharp bounds on the multiplicative Zagreb indices are provided in Theorems

3.10-3.14. I will continue to explore the multiplicative Zagreb indices of k-trees with a given

number of vertices of degree k. I will apply the analytic tools of Lemmas 2.0.1 and 2.0.2 to

deal with the following problem.

Problem 5.1 What are the sharp bounds of multiplicative Zagreb indices of k-trees with fixed

number of vertices of degree k?

5.2 DOMINATION NUMBERS

In my study on domination numbers, all known counterexamples to Conjecture 4.2

contain a large number of vertices with all δ ≥ 1 are proposed. In 2012, Goddard et al.

[37] proved that i(G)/γ(G) ≤ 3/2 if G is a cubic graph. In 2013, Southey and Henning [25]

improved the previous bound to i(G)/γ(G) ≤ 4/3 for a connected cubic graph G other than

K3,3, which is better than 3/2. Since i(K4,4)/γ(K4,4) = 2, we consider the following problem

proposed by Goddard et al.[37].
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Problem 5.2 If G 6= K4,4 is a connected 4-regular graph, then is it true that i(G)/γ(G) ≤

3/2?

5.3 LONG CYCLE

Every two maximum length paths in a connected graph have a common vertex. Gallai

in [30] asked whether all maximum length paths share a common vertex of the graph. This

perfect ”Helly property” on maximum paths is not true in general. The first counter-example

was constructed by H. Walther, and the smallest known counter-example is due to Zamfirescu

[88]. These and many further examples in Skupien [70] all contain induced cycles longer than

three with no chord. In other words, the known counter-examples are not chordal graphs. We

have not been able to determine whether the maximum paths of every chordal graph have the

Helly property envisioned by Gallai. However, Klavizar and Petkovisek in [53] observed that

this is true in a connected split graph (split graphs are chordal graphs whose complement

is also chordal). In addition we shall prove that Gallai’s question has an affirmative answer

for a subfamily of chordal graphs.

A graph is a chordal graph if and only if it is an intersection graph of subgraphs of

a host tree. we will try to solve the following problem, which shows that the conjecture is

true for the chordal graph with a host tree as a subdivision of double star.

Problem 5.3 Given a chordal graph with a host tree as a subdivision of double star,

there is a common vertex for all maximum cycles.
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6 CONCLUSION

6.1 SUMMARY AND CONCLUSIONS

In this dissertation, we study k-trees and cactus graphs. We provide the sharp up-

per and lower bounds of the degree-based topological indices(Multiplicative Zagreb indices)

for these graphs. For a distance-based topological index (PI index), the extremal cacti of

upper and lower bounds are given. Furthermore, we provide the extremal graphs with the

corresponding topological indices.

We also establish and verify a proposed conjecture for the relationship between dom-

ination number and independent domination number. The corresponding counterexamples

and the graphs achieving the extremal bounds are given as well.
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