On Topological Indices And Domination Numbers Of Graphs

Shaohui Wang
University of Mississippi

Follow this and additional works at: https://egrove.olemiss.edu/etd
Part of the Mathematics Commons

Recommended Citation

Wang, Shaohui, "On Topological Indices And Domination Numbers Of Graphs" (2016). Electronic Theses and Dissertations. 677.
https://egrove.olemiss.edu/etd/677

This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more information, please contact egrove@olemiss.edu.

ON TOPOLOGICAL INDICES AND DOMINATION NUMBERS OF GRAPHS

A Dissertation
presented in partial fulfillment of requirements for the degree of Doctor of Philosophy in the Department of Mathematics The University of Mississippi by SHAOHUI WANG

August 2016

Abstract

Topological indices and dominating problems are popular topics in Graph Theory. There are various topological indices such as degree-based topological indices, distancebased topological indices and counting related topological indices et al. These topological indices correlate certain physicochemical properties such as boiling point, stability of chemical compounds. The concepts of domination number and independent domination number, introduced from the mid-1860s, are very fundamental in Graph Theory.

In this dissertation, we provide new theoretical results on these two topics. We study k-trees and cactus graphs with the sharp upper and lower bounds of the degree-based topological indices(Multiplicative Zagreb indices). The extremal cacti with a distance-based topological index(PI index) are explored. Furthermore, we provide the extremal graphs with these corresponding topological indices.

We establish and verify a proposed conjecture for the relationship between the domination number and independent domination number. The corresponding counterexamples and the graphs achieving the extremal bounds are given as well.

DEDICATION

This dissertation is dedicated to my parents Xiliang Wang and Yinquan Yang, and my wife Yongli Sang. They have supported me throughout my entire educational career. Without their love and encouragement, this would not have been possible.

ACKNOWLEDGEMENTS

First of all, I would like to express gratitude to my adviser, Dr. Bing Wei, over the past four years. I am grateful for his willingness to take me as a graduate student and for challenging me to always keep learning and improving. Without his continuous support and inspiration during my whole research, this work would be never possible. I am sincerely grateful for Dr. Wei's vast knowledge, patience, and friendliness.

I would also like to thank Dr. Bahram Alidaee, Dr. Talmage James Reid, Dr. Haidong Wu and Dr. Hehui Wu for dedicating their time to serve on my committee. Their support and guidance guided me through both the writing and presentation processes. To Dr. Hehui Wu, thank you for providing interesting ideas to add to this work. Dr. Haidong Wu deliveried me lots of experience about the softwares in Computer Science.

I would like to thank Dr. Hailin Sang for his support. He has helped and encouraged me throughout my graduate career. Mr. Marlow Dorrough and Dr. Haidong Wu gave me a wonderful course for being a college teacher. Dr. Lanzhen Song provided me the wonderful opportunity of piloting a newly well-prepared statistics class. I am grateful for the experience and her confidence in me as an instructor. The office staff Colleen Gilman and Casandra Jenkins were always there to help in any way needed.

TABLE OF CONTENTS

ABSTRACT ii
DEDICATION iii
ACKNOWLEDGEMENTS iv
List of Figures vii
1 INTRODUCTION 1
1.1 NOTATIONS 1
1.2 THE CONCEPT OF K-TREES 2
1.3 THE CONCEPT OF CACTUS GRAPHS 3
1.4 DEGREE-BASED TOPOLOGICAL INDICES 4
1.5 DISTANCE-BASED TOPOLOGICAL INDICES 10
1.6 DOMINATION AND INDEPENDENT DOMINATION 15
1.7 DISSERTATION STRUCTURE 17
2 MULTIPLICATIVE ZAGREB INDICES 19
2.1 K-TREES 19
2.2 CACTUS GRAPHS 30
3 PADMAKAR-IVAN(PI) INDEX 45
3.1 K-TREES 45
3.2 CACTUS GRAPHS 56
4 THE RATIO OF DOMINATION AND INDEPENDENT DOMINATION 63
4.1 THE RATIO 63
4.2 EXTENDED RESULTS 65
5 FUTURE RESEARCH 67
5.1 TOPOLOGICAL INDICES 67
5.2 DOMINATION NUMBERS 67
5.3 LONG CYCLE 68
6 CONCLUSION 69
6.1 SUMMARY AND CONCLUSIONS 69
BIBLIOGRAPHY 70
VITA 80

LIST OF FIGURES

1.5.1 The cacti with extremal PI indices 14
1.6.1 One of the counterexamples of Furuya et al. 17
3.2.1 The cacti with extremal PI indices 56
4.2.1 One of the counterexamples for $\delta=2$ 66

1 INTRODUCTION

1.1 NOTATIONS

Throughout this dissertation, $G=(V, E)$ is a connected finite simple undirected graph with vertex set $V=V(G)$ and edge set $E=E(G)$. Let $|G|$ or $|V|$ denote the cardinality of V. For a vertex $v \in V(G)$, the neighborhood of v is the set $N(v)=N_{G}(v)=\{w \in$ $V(G), v w \in E(G)\} . d_{G}(v)$ or $d(v)$ is the degree of v with $d_{G}(v)=|N(v)|$. We use $d(u, v)$ to denote the distance between the vertices u and v in G, which is the number of edges of the shortest path connecting u and v.

For $S \subseteq V(G)$ and $F \subseteq E(G)$, we use $G[S]$ for the subgraph of G induced by S, and $G-S$ for the subgraph induced by $V(G)-S$ and $G-F$ for the subgraph of G obtained by deleting F. Let $w(G)$ be the number of components of G. We say that S is a cut set if $w(G-S)>w(G)$. We use $G \cong H$ to denote that G is isomorphic to H and $G \nsupseteq H$ to denote that G is not isomorphic to H.

A pendant vertex is a vertex of degree one. An edge is called a pendant edge if one of its vertices is a pendant vertex. A tree T is called a pendant tree of G, if T has at most one vertex shared with some cycles in G. A block is a K_{2} or a maximal 2-connected subgraph of a graph. In particular, the end block of a graph G contains at most one cut vertex of G.

For $r \geq 1$, let $P_{1}=u_{1} u_{2} \ldots u_{p} v_{1}, P_{2}=u_{1} u_{2} \ldots u_{p} v_{2}, \ldots, P_{r}=u_{1} u_{2} \ldots u_{p} v_{r}$ be the paths of a graph G such that there exists at most one cycle C with $V\left(P_{i}\right) \cap V(C)=\left\{u_{1}\right\}$ and $d\left(v_{i}\right)=1$, $i \geq 1$, then the induced subgraph $G\left[\left\{v_{i}, u_{j}, i \in[1, r], j \in[1, p]\right\}\right]$ is called a dense path. In particular, when $r=1$, the dense path is a pendant path. The length of a dense path is the
length of its pendant path. Let K_{n}, P_{n} and S_{n} denote the clique, the path and the star on n vertices, respectively. In particular, we say K_{n} is a k-clique for $n=k$.

Let $\lfloor x\rfloor$ be the largest integer that is less than or equal to x and $\lceil x\rceil$ be the smallest integer that is greater than or equal to x. Let $[a, b]$ be the set of all integers between a and b with $a \leq b$ including a, b, where a, b are integers. Also, let $(a, b]=[a, b]-\{a\}$ and $[a, b)=[a, b]-\{b\}$. In particular, $[a, b]=\phi$ for $a>b$. For any integer p, if $p \geq 0$, we denote $x_{\max \{0, p\}}=x_{p}$; If $p<0$, we say $x_{\max \{0, p\}}$ does not exist.

1.2 THE CONCEPT OF K-TREES

Tree is a fundamental concept in Graph Theory and Combinatorics of Mathematics, and it has many applications in Computer Science, Chemistry, Biology, and so on. A tree is an undirected graph in which any pair of two vertices are connected by exactly one path. In other words, any acyclic connected graph is a tree. Based on the interests of trees, researchers are continuing to study some complicate extentions of trees. One of the branches is the k-tree for $k \geq 1$. In particular, a k-tree is a tree for $k=1$.

It is commonly known that the class of k-trees is an important subclass of trangular graphs. Harry and Plamer [41] first introduced the 2-tree in 1968, which is showed to be maximal outerplanar graphs [23, 45]. Beineke and Pippert [9] gave the definition of k trees in 1969. Relating to k-trees, there are many interesting applications to the study of computational complexity and the intersection between Graph Theory and Chemistry [19, 72. We give the definitions below.

Definition 1.2.1. The k-tree, denoted by T_{n}^{k}, for positive integers n, k with $n \geq k$, is defined recursively as follows: The smallest k-tree is the k-clique K_{k}. If G is a k-tree with $n \geq k$ vertices and a new vertex v of degree k is added and joined to the vertices of a k-clique in G, then the graph is a k-tree with $n+1$ vertices.

Definition 1.2.2. The k-path, denoted by P_{n}^{k}, for positive integers n, k with $n \geq k$, is defined as follows: Starting with a k-clique $G\left[\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}\right]$, for $i \in[k+1, n]$, the vertex v_{i} is adjacent to vertices $\left\{v_{i-1}, v_{i-2}, \ldots, v_{i-k}\right\}$ only.

Definition 1.2.3. The k-star, denoted by $S_{k, n-k}$, for positive integers n, k with $n \geq k$, is defined as follows: Starting with a k-clique $G\left[\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}\right]$ and an independent set S with $|S|=n-k$, for $i \in[k+1, n]$, the vertex v_{i} is adjacent to vertices $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ only.

Definition 1.2.4. The k-spiral, denoted by $T_{n, c}^{k *}$ with $c \in[1, k-1]$, is defined as $P_{n-c}^{k-c}+K_{c}$, that is, $V\left(T_{n, c}^{k *}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(T_{n, c}^{k *}\right)=E\left(P_{n-c}^{k-c}\right) \cup E\left(K_{c}\right) \cup\left\{v_{1} v_{l}, v_{2} v_{l}, \ldots, v_{n-c} v_{l}\right\}$, for $l \in[n-c+1, n]$.

Definition 1.2.5. A vertex $v \in V\left(T_{n}^{k}\right)$ is called a k-simplicial vertex if v is a vertex of degree k of T_{n}^{k}. Let $S_{1}\left(T_{n}^{k}\right)$ be the set of all k-simplicial vertices of T_{n}^{k}, for $n \geq k+2$, and set $S_{1}\left(K_{k}\right)=\phi, S_{1}\left(K_{k+1}\right)=\{v\}$, where v is any vetex of K_{k+1}. If $G=G_{0}, G_{i}=G_{i-1}-v_{i}$, where v_{i} is a k-simplicial vertex of G_{i-1}, then $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is called a simplicial elimination ordering of the n-vertex graph G.

Definition 1.2.6. If $w(G-S) \leq 2$ for any k-clique $G[S]$ of T_{n}^{k}, we say T_{n}^{k} is a hyper pendent edge; If there exists a k-clique $G[S]$ with $w(G-S) \geq 3$, let C be a component of $T_{n}^{k}-S$ and contain a unique vertex belonging to $S_{1}(G)$, then we say that $G[V(S) \cup V(C)]$ is a hyper pendent edge of T_{n}^{k}, denoted by \mathcal{P}. In particular, a k-path is a hyper pendent edge.

1.3 THE CONCEPT OF CACTUS GRAPHS

Cactus graphs were first studied under the name of Husimi trees. Husimi tree used to refer to graphs in which every block is a complete graph (equivalently, the intersection graphs of the blocks in some other graphs). The regular definition of the cactus graph is as follows.

Definition 1.3.1. A graph is a cactus if it is connected and all of its blocks are either edges or cycles, i.e., any two of its cycles have at most one common vertex.

Since every cactus graph may have some pendant vertices which connect to one vertex only, set \mathcal{C}_{n}^{k} to denote a set of cactus graphs with n vertices including k pendant vertices, where $n \geq k \geq 0$.

It is not hard to see that if we replaced each block by a vertex for the cactus graph, then the obtained graph is a tree. In other words, the cactus graphs are interesting extentions of trees. A cactus graph is used to be called a cactus tree, a mixed Husimi tree, or a polygonal cactus with bridges.

1.4 DEGREE-BASED TOPOLOGICAL INDICES

Chemical Graph Theory is a branch of Graph Theory whose focus of interest is finding topological indices of chemical graphs which correlate well with chemical properties of the chemical molecules. A topological index is a numerical parameter mathematically derived from the graph structure.

One of the topological indices used in mathematical chemistry is that of the so-called degree-based topological index, which is defined in terms of the degrees of the vertices of a graph. The first and second Zagreb indices of G are respectively defined as

$$
\begin{aligned}
& M_{1}(G)=\sum_{u \in V(G)} d(u)^{2}, \\
& M_{2}(G)=\sum_{u v \in E(G)} d(u) d(v) .
\end{aligned}
$$

The background and applications of Zagreb indices can be found in 33, 35]. In the 1980s, Narumi and Katayama [63] characterized the structural isomers of saturated hydrocarbons and considered the product

$$
N K(G)=\prod_{v \in V(G)} d(v)
$$

which is called the NK index. Two fairly new indices with higher prediction ability [74], named the first and second multiplicative Zagreb indices, are respectively defined as

$$
\Pi_{1}(G)=\prod_{v \in V(G)} d(v)^{2}, \Pi_{2}(G)=\prod_{u v \in E(G)} d(u) d(v)
$$

Obviously, the first multiplicative Zagreb index is the power of the NK index. Moreover, the second multiplicative Zagreb index can be rewritten as $\prod_{2}(G)=\prod_{u \in V(G)} d(u)^{d(u)}$. The properties of $\prod_{1}(G), \prod_{2}(G)$ for some chemical structures have been studied extensively in [24, 34, 69, 81]

Due to this motivation, we consider the first generalized multiplicative Zagreb index defined in (1) below and the second multiplicative Zagreb index: for any real number $c>0$,

$$
\begin{aligned}
& \text { (1) } \prod_{1, c}(G)=\prod_{v \in V(G)} d(v)^{c} \\
& \text { (2) } \prod_{2}(G)=\prod_{u v \in E(G)} d(u) d(v)
\end{aligned}
$$

Eventually, for $c=1,2,(1)$ is just the NK index and the first multuplicative Zagreb, respectively. For (2), it is easy to see that $\prod_{2}(G)=\prod_{v \in V(G)} d(v)^{d(v)}$.

1.4.1 Motivation on k-trees

There are many significant recent results about chemical indices and computational complexity, that lie in the intersection between graph theory and chemistry. We just list some interesting results about the chemical indices. In 2004, Das and Gutman provided sharp bounds of Zagreb indices of trees. Estes and Wei extended the result to k-trees in 2014. Theorem 1.4.2 is a result that extended Theorem 1.4.1 from trees to generalized trees, the k-trees below.

Theorem 1.4.1 (Das and Gutman [14]). Let T_{n} be any tree with n vertices, then

$$
\begin{aligned}
& \text { (i) } M_{1}\left(P_{n}\right) \leq M_{1}\left(T_{n}\right) \leq M_{1}\left(S_{n}\right) \\
& \left(\text { ii) } M_{2}\left(P_{n}\right) \leq M_{2}\left(T_{n}\right) \leq M_{2}\left(S_{n}\right)\right.
\end{aligned}
$$

Moreover, the left-side and the right-side equalities of (i),(ii) are reached if and only if $T_{n} \cong P_{n}$ and $T_{n} \cong S_{n}$, respectively.

Theorem 1.4.2 (Estes and Wei [23]). Let T_{n}^{k} be any k-tree with n vertices, then

$$
\begin{aligned}
& (i) M_{1}\left(P_{n}^{k}\right) \leq M_{1}\left(T_{n}^{k}\right) \leq M_{1}\left(S_{n}^{k}\right) \\
& (i i) M_{2}\left(P_{n}^{k}\right) \leq M_{2}\left(T_{n}^{k}\right) \leq M_{2}\left(S_{n}^{k}\right)
\end{aligned}
$$

Moreover, the left-side and the right-side equalities of (i),(ii) are reached if and only if $T_{n} \cong P_{n}^{k}$ and $T_{n} \cong S_{n}^{k}$, respectively.

In 2011, Gutman [38] characterized the multipilicative Zagreb indices for trees and determined the unique trees that obtained maximum and minimun values for $\prod_{1}(G)$ and $\prod_{2}(G)$, respectively.

Theorem 1.4.3 (Gutman [38]). If $n \geq 5$ and T_{n} is any tree with n vertices, then

$$
\begin{aligned}
(i) \prod_{1}\left(S_{n}\right) & \leq \prod_{1}\left(T_{n}\right) \leq \prod_{1}\left(P_{n}\right) ; \\
\text { (ii) } \prod_{2}\left(P_{n}\right) & \leq \prod_{2}\left(T_{n}\right) \leq \prod_{2}\left(S_{n}\right) .
\end{aligned}
$$

Moreover, the left-side and the right-side equalities of (i) are reached if and only if $T_{n} \cong S_{n}$ and $T_{n} \cong P_{n}$, respectively. The left-side and the right-side equalities of (ii) are reached if and only if $T_{n} \cong P_{n}$ and $T_{n} \cong S_{n}$, respectively.

These topological indices have been found to be useful for establishing correlations between the structure of a molecular compound and its physicochemical properties or biological activity [13, 49, 58]. For other work on topological indices, the readers are referred to [11, 27, 28, 229, 32, 48, 56, [57, 59, 63, 73, 85, 86].

Motivated by the above results, we consider the multipilicative Zagreb indices for k trees. In this work, we extend Gutman's result and find the bounds of the values of $\prod_{1, c}(G)$, $\prod_{2}(G)$ for k-trees, respectively, and determine the extremal graphs which attain the bounds.

Theorem 1.4.4 presents the upper and lower bounds of the first generalized multiplicative Zagreb index of k -trees and states the corresponding extremal graphs.

Theorem 1.4.4 (Wang and Wei [76]). If T_{n}^{k} is a k-tree on $n \geq k$ vertices, then

$$
\prod_{1, c}\left(S_{k, n-k}\right) \leq \prod_{1, c}\left(T_{n}^{k}\right) \leq \prod_{1, c}\left(P_{n}^{k}\right)
$$

the left-side and the right-side equalities are reached if and only if $T_{n}^{k} \cong S_{k, n-k}$ and $T_{n}^{k} \cong P_{n}^{k}$, respectively.

Theorem 1.4.5 provides upper and lower bounds of the second multiplicative Zagreb index of k-trees and gives the corresponding extremal graphs.

Theorem 1.4.5 (Wang and Wei [76]). If T_{n}^{k} is a k-tree on $n \geq k$ vertices, then

$$
\prod_{2}\left(P_{n}^{k}\right) \leq \prod_{2}\left(T_{n}^{k}\right) \leq \prod_{2}\left(S_{k, n-k}\right)
$$

the left-side and the right-side equalities are reached if and only if $T_{n}^{k} \cong P_{n}^{k}$ and $T_{n}^{k} \cong S_{k, n-k}$, respectively.

1.4.2 Motivation on Cactus graphs

In 1979, Cornuéjols and Pulleyblank [18] used the structure of a triangular cactus to find equivalent conditions for the existence of $\left\{K_{2}, C_{n}, n \geq 4\right\}$-factor. In 2012, Li et al. 60] gave upper bounds on Zagreb indices of cactus graphs and lower bounds of cactus graph with at least one cycle. Chen [12] gave the first three smallest Gutman indices among the cacti.

Based on these results, we investigate the bounds of multiplicative Zagreb indices of cactus graphs and try to characterize the extremal graphs. We obtain the following results. Theorem 1.4.6 gives the lower bounds of the first generalized Zagreb index of cactus graphs and states the corresponding extremal graphs.

Theorem 1.4.6 (Wang and Wei [77]). For any graph G in \mathcal{C}_{n}^{k},

$$
\prod_{1, c}(G) \geq \begin{cases}3^{k c} 2^{(n-2 k) c}, & \text { if } k=0,1, \\ 2^{(n-k-1) c} k^{c}, & \text { if } k \geq 2\end{cases}
$$

the equalities hold if and only if their degree sequences are $\underbrace{3,3, \ldots, 3}_{k}, \underbrace{2,2, \ldots, 2}_{n-2 k}, \underbrace{1,1, \ldots, 1}_{k}$
and $k, \underbrace{2,2, \ldots, 2}_{n-k-1}, \underbrace{1,1, \ldots, 1}_{k}$, respectively.
Theorems 1.4.7 and 1.4.8 provide sharp upper bounds on the first generalized multiplicative Zagreb indices of cactus graphs and characterize the extremal graphs.

Theorem 1.4.7 (Wang and Wei [77]). For a graph G in \mathcal{C}_{n}^{k} with $n \leq k+3$,

$$
\prod_{1, c}(G) \leq \begin{cases}k^{c}, & \text { if } n=k+1 \\ \left(\left\lceil\frac{k}{2}\right\rceil+1\right)^{c}\left(\left\lfloor\frac{k}{2}\right\rfloor+1\right)^{c}, & \text { if } n=k+2 \\ \left(\left\lceil\frac{k}{3}\right\rceil+2\right)^{c}\left(\left\lfloor\frac{k}{3}\right\rfloor+2\right)^{c}\left(k-\left\lceil\frac{k}{3}\right\rceil-\left\lfloor\frac{k}{3}\right\rfloor+2\right)^{c}, & \text { if } n=k+3\end{cases}
$$

the equalities hold if and only if corresponding degree sequences are $k, \underbrace{1,1, \ldots, 1}_{k} ;\left\lceil\frac{k}{2}\right\rceil+1,\left\lfloor\frac{k}{2}\right\rfloor+$ $1, \underbrace{1,1, \ldots, 1}_{k}$ and $\left\lceil\frac{k}{3}\right\rceil+2,\left\lfloor\frac{k}{3}\right\rfloor+2, k-\left\lceil\frac{k}{3}\right\rceil-\left\lfloor\frac{k}{3}\right\rfloor+2, \underbrace{1,1, \ldots, 1}_{k}$, respectively.

Theorem 1.4.8 (Wang and Wei [77]). For a graph G in \mathcal{C}_{n}^{k} with $n \geq k+4$ and $t \geq 0$,

$$
\prod_{1, c}(G) \leq \begin{cases}16^{c}, & \text { if } k=0, n=4 \\ 2^{(3 t+6) c}, & \text { if } k=0, n=2 t+5 \\ 2^{(3 t+4) c} 9^{c}, & \text { if } k=0, n=2(t+3)\end{cases}
$$

the equalities hold if and only if corresponding degree sequences are $2,2,2,2 ; \underbrace{4,4, \ldots, 4}_{t+1}, \underbrace{2,2, \ldots, 2}_{t+4}$ and
$\underbrace{4,4, \ldots, 4}_{t}, 3,3, \underbrace{2,2, \ldots, 2}_{t+4}$, respectively;
For $k \neq 0$, if $\prod_{1, c}(G)$ attains the maximal value, then one of the following statements holds: For any nonpendant vertices u, v, either (i) $|d(u)-d(v)| \leq 1$ or (ii) $d(u) \in\{2,3,4\}$ and G contains no cycles of length greater than 3, no dense paths of length greater than 1 except for at most one of them with length 2, and no paths of length greater 0 that connects only two cycles except for at most one of them with length 1.

Theorem 1.4.9 gives sharp lower bounds on the second multiplicative Zagreb indices of cactus graphs and characterizes the extremal graphs.

Theorem 1.4.9 (Wang and Wei [77]). For any graph G in \mathcal{C}_{n}^{k} with $\gamma=\frac{k-2}{n-k}$,

$$
\prod_{2}(G) \geq \begin{cases}3^{3 k} 2^{2(n-2 k)}, & \text { if } k=0,1 \\ (2+\lceil\gamma\rceil)^{(2+\lceil\gamma\rceil)[k-2-\lfloor\gamma\rfloor(n-k)]}(2+\lfloor\gamma\rfloor)^{(2+\lfloor\gamma\rfloor)[n-2 k+2+\lfloor\gamma\rfloor(n-k)]}, & \text { if } k \geq 2\end{cases}
$$

the equalities hold if and only if corresponding degree sequences are $\underbrace{3,3, \ldots, 3}_{k}, \underbrace{2,2, \ldots, 2}_{n-2 k}$, $\underbrace{1,1, \ldots, 1}_{k}$ and $\underbrace{2+\lceil\gamma\rceil, 2+\lceil\gamma\rceil, \ldots, 2+\lceil\gamma\rceil}_{k-2-\lfloor\gamma\rfloor(n-k)}, \underbrace{2+\lfloor\gamma\rfloor, 2+\lfloor\gamma\rfloor, \ldots, 2+\lfloor\gamma\rfloor}_{n-2 k+2+\lfloor\gamma\rfloor(n-k)}, \underbrace{1,1, \ldots, 1}_{k}$, respectively.

Theorem 1.4.10 states sharp upper bounds on the second multiplicative Zagreb indices of cactus graphs and characterizes the extremal graphs.

Theorem 1.4.10 (Wang and Wei [77]). For any graph G in \mathcal{C}_{n}^{k},

$$
\prod_{2}(G) \leq \begin{cases}(n-2)^{n-2} 2^{2(n-k-1)}, & \text { if } n-k \equiv 0(\bmod 2) \\ (n-1)^{n-1} 2^{2(n-k-1)}, & \text { if } n-k \equiv 1(\bmod 2)\end{cases}
$$

the equalities hold if and only if corresponding degree sequences are $n-2, \underbrace{2,2, \ldots, 2}_{n-k-1}, \underbrace{1,1, \ldots, 1}_{k}$ and $n-1$,
$\underbrace{2,2, \ldots, 2}_{n-k-1}, \underbrace{1,1, \ldots, 1}_{k}$, respectively.

1.5 DISTANCE-BASED TOPOLOGICAL INDICES

One of most important topological indices used in mathematical chemistry is called the distance-based topological index, which is proposed in terms of the distances of any pair of vertices of a graph.

The Wiener index is the oldest and most thoroughly examined topological index used in chemistry. In 1947, Harold Wiener [84] applied Wiener index to determine physical properties of types of Alkanes known as Paraffins and defined as

$$
W(G)=\sum_{\{x, y\} \subset V(G)} d(x, y) .
$$

Similar to the Wiener index, Szeged index was given by Klavz̆ar and Gutman[47] in 1996 as follows:

$$
S z(G)=\sum_{x y \in E(G)} n_{x y}(x) n_{x y}(y)
$$

where $n_{x y}(x)$ is the number of vertices $w \in V(G)$ such that $d(x, w)<d(y, w), n_{x y}(y)$ is the number of vertices $w \in V(G)$ such that $d(x, w)>d(y, w)$ and $w \neq x, y$. Currently, various work relating the Wiener index, the Sz index and their chemical meaning have been studied (see the surveys [2, 20, 21, 39]). Based on the considerable research of the Wiener index and the Sz index, Khadikar [49] proposed edge Padmakar-Ivan $\left(\mathrm{PI}_{e}\right)$ index in 2000, which is used in the field of nano-technology, as follows:

$$
P I_{e}(G)=\sum_{e=x y \in E(G)}\left[n_{e x}(e \mid G)+n_{e y}(e \mid G)\right],
$$

where $n_{e x}(e \mid G)$ denotes the number of edges which are closer to the vertex x than to the vertex y, and $n_{e y}(e \mid G)$ denotes the number of edges which are closer to the vertex y than to the vertex x, respectively. The detailed applications of $P I_{e}$ indices between chemistry and graph theory are investigated in [4, 5, 6, 7, 8, 49, 50, 51]. As this definition does not count edges equidistant from both ends of the edge $e=x y$, Khalifeh et al. [52] continued to introduce a new PI index of vertex version below:

$$
P I(G)=P I_{v}(G)=\sum_{x y \in E(G)}\left[n_{x y}(x)+n_{x y}(y)\right],
$$

where $n_{x y}(x)$ denotes the number of vertices which are closer to the vertex x than to the vertex y.

1.5.1 Motivation on k-trees

Padmakar-Ivan indices are widely used in QSPR/QSAR/QSTR [65, 72]. In addition, there are nice results regarding vertex PI index in the study of computational complexity and the intersection between graph theory and chemistry. In [22], Das and Gutman obtained a lower bound on the vertex PI index of a connected graph in terms of numbers of vertices, edges, pendent vertices, and clique number. Hoji et al. 44 provided exact formulas for the vertex PI indices of Kronecker product of a connected graph G and a complete graph. Ili ć and Milosavljević[46] established basic properties of weighted vertex PI index and proved some lower and upper bounds. Pattabiraman and Paulraja 66] presented the expressions for vertex PI indices of the strong product of a graph and the complete multipartite graph.

Since the $P I$ index is a distance-based index and not very easy to calculate, we first consider the bipartite graph G with n vertices. Then G has no odd cycle. By the definition of $P I(G)$, one can obtain that every edge of G has the $P I$-value as $n-2$. Thus, we can get the following proposition.

Proposition 1.5.1. For any bipartite graph G with n vertices and m edges, $P I(G)=(n-$ 2) m. In particular, if G is a tree, then $P I(G)=(n-1)(n-2)$.

Since a bipartite graph has no odd cycles, we will consider some graphs with odd cycles. For example, k-tree contains many odd cycles. Recently, we investigated the question of whether or not a k-star or a k-path attains the maximal or minimal bound for $P I$-indices of k-trees. The related results are listed below: Theorems 1.5.2 and 1.5.3 give the exact $P I$-values of k-stars, k-paths and k-spirals.

Theorem 1.5.2 (Wang and Wei, [78]). For any k-star S_{n}^{k} and k-path P_{n}^{k} with $n=k p+s$ vertices, where $p \geq 0$ is an integer and $s \in[2, k+1]$,

$$
\begin{aligned}
& \text { (i) } P I\left(S_{n}^{k}\right)=k(n-k)(n-k-1), \\
& \text { (ii) } P I\left(P_{n}^{k}\right)=\frac{k(k+1)(p-1)(3 k p+6 s-2 k-4)}{6}+\frac{(s-1) s(3 k-s+2)}{3} .
\end{aligned}
$$

Theorem 1.5.3 (Wang and Wei, [78]). For any k-spiral $T_{n, c}^{k *}$ with $n \geq k$ vertices, where $c \in[1, k-1]$,

$$
\operatorname{PI}\left(T_{n, c}^{k *}\right)= \begin{cases}\frac{(n-k)(n-k-1)(4 k-n+2)}{3}, & \text { if } n \in[k, 2 k-c] \\ \frac{3 c(n-2 k+c-1)(n-2 k+c)+(k-c)\left(2 c^{2}+3 n c-4 k c+3 k n-4 k^{2}-6 k+3 n-2\right)}{3}, & \text { if } n \geq 2 k-c+1\end{cases}
$$

Theorem 1.5.4 proves that k-stars achieve the maximal values of $P I$-values for k-trees.
Theorem 1.5.4 (Wang and Wei, [78]). For any k-tree T_{n}^{k} with $n \geq k \geq 1, P I\left(T_{n}^{k}\right) \leq P I\left(S_{n}^{k}\right)$.
Theorem 1.5.5 shows that k-paths do not attain the minimal values and certain $P I$ values of k-spirals are less than that of the PI-values of k-paths.

Theorem 1.5.5 (Wang and Wei, [78]). For any k-spiral $T_{n, c}^{k *}$ with $n \geq k \geq 1$, then
(i) $P I\left(P_{n}^{k}\right) \geq P I\left(T_{n, c}^{k *}\right)$ if $c \in\left[1, \frac{k+1}{2}\right)$,
(ii) $P I\left(P_{n}^{k}\right) \leq P I\left(T_{n, c}^{k *}\right)$ if $c \in\left[\frac{k+1}{2}, k-1\right]$.

1.5.2 Motivation on Cactus graphs

Many results were obtained by Lin, et al. on the cacti in both Chemistry and Graph Theory. Lin et al.(2007) [61], and Liu and Lu (2008) [62] obtained some sharp bounds of several chemical indices of cactus graphs, such as the Wiener index, the Merrifield-Simmons index, the Hosoya index and the Randić index. Wang and Kang (2015) 82 found the extremal bounds of another chemical index, the Harary index, for the cactus graphs as well. Feng and Yu [26] found the cacti in $\mathcal{C}_{n, k}$ with the smallest hyper-Wiener indices, which is a renovated version of Wiener index. Wang and Tan [83] characterized the extremal cacti having the largest Wiener and hyper-Wiener indices in $\mathcal{C}_{n, k}$. Motivated by the results of chemical indices and their applications, it is worth noting that it is an interesting problem to characterize the cacti in $\mathcal{C}_{n, k}$ with maximum and minimum vertex PI indices. The concept of vertex PI index yields the following propostion.

Proposition 1.5.6. Let $G \in \mathcal{C}_{n, k}$ with $n \geq k \geq 0$, then
(i) If G is C_{3}, C_{4} or C_{5}, then $\operatorname{PI}(G)=0,8,10$.
(ii) If G is C_{3} attaching a pendent edge e $\left(\right.$ say $\left.C_{3} \cup e\right)$, then $P I(G)=4$.

In our work, we determine the graphs with the largest and smallest vertex PI indices in $\mathcal{C}_{n, k}$, and provide the extremal cacti in Figs 1,2 of Figure 1.5.1, which extend Das and Gutman's result [22] by excluding the number of edges and cliques for the cacti. (In Figs 1 and 2 , o means that the vertex may exist.)

Fig. 1

Fig. 2

Figure 1.5.1: The cacti with extremal PI indices

Theorem 1.5.7 (Wang, Wang and Wei [80]). Let $G \in \mathcal{C}_{n, k}-\left\{C_{3}, C_{3} \cup e, C_{4}, C_{5}\right\}$ with $n \geq k \geq 0$, then $\operatorname{PI}(G) \leq\left(n-1+\left\lfloor\frac{n-k-1}{3}\right\rfloor\right)(n-2)$, where the equality holds if and only if G is a tree for $n \leq k+3$ and otherwise, one of the following statements holds(See Fig. 1):
(i) All cycles have length 4 and there are at most $k+2$ cut edges.
(ii) All cycles have length 4 except one of length 6 and there are exact k pendent edges.

Theorem 1.5.8 (Wang, Wang and Wei [80]). Let $G \in \mathcal{C}_{n, k}-\left\{C_{3}, C_{3} \cup e, C_{4}\right\}$ with $n \geq k \geq 0$, then $\operatorname{PI}(G) \geq(n-1)(n-2)-2\left\lfloor\frac{n-k-1}{2}\right\rfloor$, where the equality holds if and only if G is a tree for $n \leq k+2$ and otherwise, all cycles have length 3 and there are at most $k+1$ cut edges (See Fig. 2).

1.6 DOMINATION AND INDEPENDENT DOMINATION

A classical problem in domination-related theory that attracted many scholars' attention is the N-Queens Problem on an $n \times n$ chess board from the mid-1860s. De Jaenisch [1] attempted to determine the minimum number of queens required to cover an $n \times n$ chess board, so that no two queens attack each other. A solution exists for all natural numbers n except 2 and 3. In 1892, two typical chess board problems were given by W.W. Rouse Ball as follows.

- Covering: Determine the minimum number of chess pieces of a given type that are necessary to cover (attack) every square of an $n \times n$ chess board.
- Independent Covering: Determine the smallest number of mutually nonattacking chess pieces of a given type that are necessary to dominate every square of an $n \times n$ board.

Based on these two typical chess board problems, the following concepts are prosposed.
Definition 1.6.1. A vertex set $D \subseteq V(G)$ is a dominating set if every vertex of $V(G)-D$ is adjacent to some vertices of D. The minimum cardinality of a dominating set of G is called the domination number, denoted by $\gamma(G)$.

Definition 1.6.2. A vertex set $I \subseteq V(G)$ is an independent dominating set if I is both an independent set and a dominating set in G, where an independent set is a set of vertices in a graph such that no two of which are adjacent. The minimum cardinality of an independent dominating set of G is called the independent domination number, denoted by $i(G)$.

Definition 1.6.3. Let G be a graph. The ratio of domination number and independent domination number is defined as

$$
\frac{i(G)}{\gamma(G)}
$$

1.6.1 Motivation on the ratio of domination numbers

In general, it is very difficult to find the domination and independent domination numbers of a graph. Note that $i(G) \geq \gamma(G)$. This implies $i(G) / \gamma(G) \geq 1$. A natural problem is to determine an upper bound for $i(G) / \gamma(G)$. Hedetniemi and Mitchell [43] in 1977 showed that if L is a line graph of a tree, then $i(L) / \gamma(L)=1$, where the line graph $L(G)$ of a connected graph G is a graph such that each vertex of $L(G)$ represents an edge of G and two vertices of $L(G)$ are adjacent if and only if their corresponding edges share a common endpoint in G. Since a line graph does not have an induced subgraph isomorphic to $K_{1,3}$, Allan and Laskar [1] extended the previous result and obtained that if a graph G is a $K_{1,3^{-}}$ free graph, then $i(G) / \gamma(G)=1$. In 2012, Goddard et al. 21] continued the similar approach and proved that $i(G) / \gamma(G) \leq 3 / 2$ if G is a cubic graph. In 2013, Southey and Henning [25] improved the previous bound to $i(G) / \gamma(G) \leq 4 / 3$ for a connected cubic graph G other than $K_{3,3}$. Additionally, Rad and Volkmann [67] obtained an upper bound of $i(G) / \gamma(G)$ related to the maximum degree $\Delta(G)$ for any graph G and proposed a conjecture below.

Theorem 1.6.1. (Rad and Volkmann [67]) If G is a graph, then

$$
\frac{i(G)}{\gamma(G)} \leq \begin{cases}\frac{\Delta(G)}{2}, & \text { if } 3 \leq \Delta(G) \leq 5 \\ \Delta(G)-3+\frac{2}{\Delta(G)-1}, & \text { if } \Delta(G) \geq 6\end{cases}
$$

Conjecture 1.6.4. 67] If G is a graph with $\Delta(G) \geq 3$, then

$$
i(G) / \gamma(G) \leq \Delta(G) / 2
$$

In 2014, Furuya et al. [25] proved that $i(G) / \gamma(G) \leq \Delta(G)-2 \sqrt{\Delta(G)}+2$ and gave a class of graphs which achieve the new upper bound. However, when $\Delta(G) \neq 4$, $\Delta(G)-2 \sqrt{\Delta(G)}+2>\Delta(G) / 2$. On the other hand, it is still very interesting to determine other class of graphs, for which Conjecture 2 holds. One of the special class of graphs achieved this bound is as follows.

Figure 1.6.1: One of the counterexamples of Furuya et al.

Motivated by Conjecture 1.6.4 and previous results, we show that:
Theorem 1.6.2 (Wang and Wei [79]). Let G be a bipartite graph with $\Delta(G) \geq 2$, then

$$
\frac{i(G)}{\gamma(G)} \leq \frac{\Delta(G)}{2}
$$

1.7 DISSERTATION STRUCTURE

In chapter 1, we introduce the outline of this work. All notation and definitions that will be used in the following sections are given. The motivations and the history of the main results are prospsed as well. The remaining chapters of this dissertation are organized as follows.

Chapters 2 covers the degree-based topological index with respective sharp graphs. In Chapter 3, we study a distance-based topological index and provide the extremal bounds for k -trees and cactus graphs. We explore another classic problem regarding domination number and independent domination number in Chapter 4. We find the relationship between these two domination numbers. Furthermore, we prove a related conjecture for bipartite graphs.

In addition, the future research plan to improve and expand the current results is provided in Chapter 5.

2 MULTIPLICATIVE ZAGREB INDICES

In this chapter, we provide the extremal k -trees and cactus graphs about the important topological indices (Multiplicative Zagreb indices). First of all, we introduce a developed method from two analytic lemmas to derive our results. Based on the calculations, the two lemmas are as follows.

Lemma 2.0.1. The function $f(x)=\frac{x}{x+m}$ is strictly increasing for $x \in[0, \infty)$, where m is a positive integer.

Lemma 2.0.2. The function $f(x)=\frac{x^{x}}{(x+m)^{x+m}}$ is strictly decreasing for $x \in[0, \infty)$, where m is a positive integer.

2.1 K-TREES

In this section, we present the main results again and provide the complete proofs.

Theorem 2.1.1 (Wang and Wei [76]). If T_{n}^{k} is a k-tree on $n \geq k$ vertices, then

$$
\prod_{1, c}\left(S_{k, n-k}\right) \leq \prod_{1, c}\left(T_{n}^{k}\right) \leq \prod_{1, c}\left(P_{n}^{k}\right)
$$

the left-side and the right-side equalities are reached if and only if $T_{n}^{k} \cong S_{k, n-k}$ and $T_{n}^{k} \cong P_{n}^{k}$, respectively.

Theorem 2.1.2 (Wang and Wei [76]). If T_{n}^{k} is a k-tree on $n \geq k$ vertices, then

$$
\Pi_{2}\left(P_{n}^{k}\right) \leq \prod_{2}\left(T_{n}^{k}\right) \leq \prod_{2}\left(S_{k, n-k}\right),
$$

the left-side and the right-side equalities are reached if and only if $T_{n}^{k} \cong P_{n}^{k}$ and $T_{n}^{k} \cong S_{k, n-k}$, respectively.

Furthermore, if we let $G\left[\left\{v_{1}, v_{2} \ldots v_{k}\right\}\right]$ denote the initial k-clique, then just by the definition of k-trees, one can get some useful propositions.

Proposition 2.1.3. For the k-star, the degree of vertex v_{i} can be characterized as follows: $d\left(v_{i}\right)=n-k$, for $i \in[1, k] ; d\left(v_{i}\right)=k$, for $i \in[k+1, n]$.

Proposition 2.1.4. For the k-path, the degree of vertex v_{i} can be characterized as follows:
(1) If $4 \leq n \leq 2 k, d\left(v_{i}\right)=k+i-1$, for $i \in[1, n-k-1]$; $d\left(v_{i}\right)=n-1$, for $i \in[n-k, k+1]$; $d\left(v_{i}\right)=k+n-i$, for $i \in[k+2, n]$.
(2) If $n \geq 2 k+1, d\left(v_{i}\right)=k+i-1$, for $i \in[1, k]$; $d\left(v_{i}\right)=2 k$, for $i \in[k+1, n-k]$;
$d\left(v_{i}\right)=k+n-i$, for $i \in[n-k+1, n]$.

One can deduce the first generalized multiplicative Zagreb indices and second multiplicative Zagreb indices of the k-path and k-star using induction and the above abservations as shown below.

Proposition 2.1.5. Let $S_{k, n-k}$ be a k-star on $n \geq k+1$ vertices, then
(1) $\prod_{1, c}\left(S_{k, n-k}\right)=(n-k)^{c k} k^{c(n-k)}$;
(2) $\prod_{2}\left(S_{k, n-k}\right)=(n-k)^{k(n-k)} k^{k(n-k)}$.

Proposition 2.1.6. Let P_{n}^{k} be a k-path on $n \geq k+1$ vertices, then
(1.1) $\prod_{1, c}\left(P_{n}^{k}\right)=(n-1)^{c} \prod_{i=k}^{n-2} i^{2 c}$, if $n \in[k+1,2 k]$;
(1.2) $\prod_{1, c}\left(P_{n}^{k}\right)=(2 k)^{c(n-2 k)} \prod_{i=k}^{2 k-1} i^{2 c}$, if $n \geq 2 k+1$;
(2.1) $\prod_{2}\left(P_{n}^{k}\right)=(n-1)^{n-1} \prod_{i=k}^{n-2} i^{2 i}$, if $n \in[k+1,2 k]$;
(2.2) $\prod_{2}\left(P_{n}^{k}\right)=(2 k)^{2 k(n-2 k)} \prod_{i=k}^{2 k-1} i^{2 i}$, if $n \geq 2 k+1$.

Prior to the proof of main results, we give some lemmas that are critical in the proof of our main results.

Lemma 2.1.7. For any k-tree $G \not \approx S_{k, n-k}$, let $u \in S_{2}, N(u) \cap S_{1}=\left\{v_{1}, v_{2} \ldots v_{s}\right\}$, where $s \geq 1$ is an integer. Then
(1) For any i with $1 \leq i \leq s$, there exists a vertex $v \in N(u)-\left\{v_{1}, v_{2} \ldots v_{s}\right\}$ of degree at least k in $G\left[V(G)-\left\{v_{1}, v_{2} \ldots v_{s}\right\}\right]$ such that $v v_{i} \notin E(G)$.
(2)There exists a k-tree G^{*} such that $\prod_{1, c}\left(G^{*}\right)<\prod_{1, c}(G)$ and $\prod_{2}\left(G^{*}\right)>\prod_{2}(G)$.

Proof. For (1), let $G^{\prime}=G\left[V(G)-\left\{v_{1}, v_{2} \ldots v_{s}\right\}\right]$ and $S=N(u)-\left\{v_{1}, v_{2} \ldots v_{s}\right\}$, we obtain that $d_{G^{\prime}}(u)=|S|=k$ and $G[S]$ is a k-clique by $u \in S_{2}$. Since $G \not \approx S_{n}^{k}, d_{G^{\prime}}(v) \geq k$ for all $v \in S$. And by the facts that $N\left(v_{i}\right) \subseteq\left(N(u)-\left\{v_{1}, v_{2} \ldots v_{s}\right\}\right) \cup\{u\}$ with $\left|N\left(v_{i}\right)\right|=k$ and $\left|\left(N(u)-\left\{v_{1}, v_{2} \ldots v_{s}\right\}\right) \cup\{u\}\right|=k+1$, we have for any $i \in[1, s]$, there exists a vertex $v \in S$ such that $v v_{i} \notin E(G)$.

For (2), choose v_{1} and by (1) there exists a vertex $v \in N(u)-\left\{v_{1}, v_{2} \ldots v_{s}\right\}$ with $d_{G^{\prime}}(v) \geq k$ such that $v v_{1} \notin E(G)$. If $d_{G^{\prime}}(v)=k$, and by $u v \in E\left(G^{\prime}\right)$, we obtain G^{\prime} is a $k+1$-clique. Let $x \in S$ be the vertex such that $d(x)=\min _{v \in S}\{d(v)\}$, and let v_{t} be the vertex such that $v_{t} x \in E(G), v_{t} y \notin E(G)$ for some $t \in[1, s]$ and $y \in S$, that is, $d(x)-1<d(y)$. Construct a new graph G^{*} such that $V\left(G^{*}\right)=V(G)$, and $E\left(G^{*}\right)=E(G)-\left\{v_{t} x\right\}+\left\{v_{t} y\right\}$. Denote $G_{0}=G[V(G)-\{x, y\}]$, since $d(x)-1<d(y)$, and by the definition of $\prod_{1, c}(G)$, $\prod_{2}(G)$, Lemma 2.0.1 and Lemma 2.0.2, we have

$$
\begin{aligned}
\frac{\prod_{1, c}(G)}{\prod_{1, c}\left(G^{*}\right)} & =\frac{\left[\prod_{w \in V\left(G_{0}\right)} d(w)^{c}\right] d(y)^{c} d(x)^{c}}{\left[\prod_{w \in V\left(G_{0}\right)} d(w)^{c}\right][d(y)+1]^{c}[d(x)-1]^{c}} \\
& =\frac{d(y)^{c} d(x)^{c}}{[d(y)+1]^{c}[d(x)-1]^{c}} \\
& =\frac{\frac{d(y)^{c}}{[d(y)+1]^{c}}}{\frac{[d(x)-1]^{c}}{d(x)^{c}}} \\
& >1
\end{aligned}
$$

Also,

$$
\begin{aligned}
\frac{\prod_{2}(G)}{\prod_{2}\left(G^{*}\right)} & =\frac{\left[\prod_{w \in V\left(G_{0}\right)} d(w)^{d(w)}\right] d(y)^{d(y)} d(x)^{d(x)}}{\left[\prod_{w \in V\left(G_{0}\right)} d(w)^{d(w)}\right][d(y)+1]^{d(y)+1}[d(x)-1]^{d(x)-1}} \\
& =\frac{d(y)^{d(y)} d(x)^{d(x)}}{[d(y)+1]^{d(y)+1}[d(x)-1]^{d(x)-1}} \\
& =\frac{\left[\frac{d(y)^{d(y)}}{[d(y)+1]^{d(y)+1}}\right]}{\left[\frac{[d(x)-1]^{d(x)-1}}{d(x)^{d(x)}}\right]} \\
& <1 .
\end{aligned}
$$

Thus, we find that the k-tree G^{*} satisfies $\prod_{1, c}\left(G^{*}\right)<\prod_{1, c}(G)$ and $\prod_{2}\left(G^{*}\right)>\prod_{2}(G)$, we are done.

If $d_{G^{\prime}}(v) \geq k+1$, reorder the subindices of $\left\{v_{1}, v_{2} \ldots v_{s}\right\}$ such that $v v_{i} \notin E(G)$ with $i \in\left[1, s_{1}\right]$, where $s_{1} \leq s$, and by the fact that $G\left[N(u)-\left\{v_{1}, v_{2} \ldots v_{s}\right\}\right]$ is a k-clique, we have $d(u)=k+s$ and $d(v) \geq k+1+s-s_{1}$, that is, $d(v) \geq d(u)-s_{1}+1$. Construct a new graph G^{*} such that $V\left(G^{*}\right)=V(G)$, and $E\left(G^{*}\right)=E(G)-\left\{u v_{i}\right\}+\left\{v v_{i}\right\}$, for all $i \in\left[1, s_{1}\right]$. Since $G\left[N(u)-\left\{v_{1}, v_{2} \ldots v_{s}\right\}+\{u\}\right]$ is a $(k+1)$-clique, and for any $i, N\left(v_{i}\right) \subseteq N_{G-\left\{v_{1}, v_{2} \ldots v_{s}\right\}}(u) \cup\{u\}$, we deduce that G^{*} is a k-tree. Denote $G_{0}=G[V(G)-\{u, v\}]$. Since $d(v) \geq d(u)-s_{1}+1$, and by the definition of $\prod_{1, c}(G), \prod_{2}(G)$, Lemma 2.0.1 and Lemma 2.0.2, we have

$$
\begin{aligned}
\frac{\prod_{1, c}(G)}{\prod_{1, c}\left(G^{*}\right)} & =\frac{\left[\prod_{w \in V\left(G_{0}\right)} d(w)^{c}\right] d(v)^{c} d(u)^{c}}{\left[\prod_{w \in V\left(G_{0}\right)} d(w)^{c}\right]\left[d(v)+s_{1}\right]^{c}\left[d(u)-s_{1}\right]^{c}} \\
& =\frac{d(v)^{c} d(u)^{c}}{\left[d(v)+s_{1}\right]^{c}\left[d(u)-s_{1}\right]^{c}} \\
& =\frac{\left[\frac{d(v)^{c}}{\left[d(v)+s_{1}\right]^{c}}\right]}{\left[\frac{\left[d(u)-s_{1}\right]^{c}}{d(u)^{c}}\right]} \\
& >1 .
\end{aligned}
$$

Also,

$$
\begin{aligned}
\frac{\prod_{2}(G)}{\prod_{2}\left(G^{*}\right)} & =\frac{\left[\prod_{w \in V\left(G_{0}\right)} d(w)^{d(w)}\right] d(v)^{d(v)} d(u)^{d(u)}}{\left[\prod_{w \in V\left(G_{0}\right)} d(w)^{d(w)}\right]\left[d(v)+s_{1}\right]^{d(v)+s_{1}}\left[d(u)-s_{1}\right]^{d(u)-s_{1}}} \\
& =\frac{d(v)^{d(v)} d(u)^{d(u)}}{\left[d(v)+s_{1}\right]^{d(v)+s_{1}}\left[d(u)-s_{1}\right]^{d(u)-s_{1}}} \\
& =\frac{\left[\frac{d(v)^{d(v)}}{\left[d(v)+s_{1}\right]^{d(v)+s_{1}}}\right]}{\left[\frac{\left[d(u)-s_{1}\right]^{d(u)-s_{1}}}{d(u)^{d(u)}}\right]} \\
& <1 .
\end{aligned}
$$

Hence, we find that the k-tree G^{*} satisfies $\prod_{1, c}\left(G^{*}\right)<\prod_{1, c}(G)$ and $\prod_{2}\left(G^{*}\right)>\prod_{2}(G)$, we are done.

Lemma 2.1.8. Let G be a k-tree. If either $\prod_{1, c}(G)$ attains the maximal or $\prod_{2}(G)$ attains the minimal, then every hyper pendent edge is a k -path.

Proof. Let $\mathcal{P}=G[V(S) \cup V(C)]$ be a hyper pendent edge, where $G[S]=G\left[\left\{x_{1}, x_{2} \ldots x_{k}\right\}\right]$ is a cut k-clique and $V(C)=\left\{u_{1}, u_{2} \ldots u_{p}\right\}$ with p is a positive ingeter such that u_{1} is the only vertex of \mathcal{P} in $S_{1}(G)$ and for $i \in[1, p-1], u_{i}$ is the vertex added following by u_{i+1} through the process of the definition of k -trees.

Fact 1. For any hyper pendent edge $\mathcal{P}=G[V(S) \cup V(C)]$ as represented above, $\left\{u_{1}, u_{2} \ldots u_{p}\right\}$ is a simplicial elimination ordering of \mathcal{P}.

Proof. By contradiction, assume that $\left\{u_{1}, u_{2} \ldots u_{p}\right\}$ is not a simplicial elimination ordering of \mathcal{P}. Let u_{t} be the first vertex from u_{1} to u_{p} such that $\left\{u_{t}, u_{t+1}\right\} \in S_{t}$ for $t \in[2, p-1]$. Then $u_{t} u_{t+1} \notin E(G)$ and $\left\{u_{t}, u_{t+1}\right\}$ can not be in some k-cliques. And by the definition of k-trees, there must be at least two vertices that belongs to S_{1} in $V(C)$, a contradiction.

By Fact 1, we know $\left\{u_{1}, u_{2} \ldots u_{p}\right\}$ is a simplicial elimination ordering of \mathcal{P}. For $p \leq 2$, \mathcal{P} is a k-path by the definition of k-paths; For $p \geq 3$, if \mathcal{P} is a k-path, then we are done. Otherwise, let u_{s} be the first vertex from u_{p} to u_{1} such that $G\left[V(S) \cup\left\{u_{p}, u_{p-1} \ldots u_{s+1}, u_{s}\right\}\right]$ is not a k-path. Since $G\left[V(S) \cup\left\{u_{p}, u_{p-1} \ldots u_{s+1}\right\}\right]$ is a k-path, for each $i \in[s+1, p]$, let
$N_{G-\left\{u_{1}, u_{2} \ldots u_{i-1}\right\}}\left(u_{i}\right)=\left\{u_{i+1}, u_{i+2} \ldots \ldots u_{\min \{p, i+k\}}, x_{1}, x_{2} \ldots x_{\max \{0, k-p+i\}}\right\}$, and by Definition 2 and the symmetry of $G[S]$, we have $\left|N\left(u_{s}\right) \cap\left\{u_{s+1}, u_{s+2} \ldots u_{\min \{p, s+k\}}\right\}\right|=\min \{p-s-1, k-1\}$, where $1 \leq s \leq p-1$.

For $p \leq k+s$, suppose that u_{t} is the vertex such that $u_{t} \notin N\left(u_{s}\right)$ with $s+2 \leq$ $t \leq p$. Let $N_{G-\left\{u_{1}, u_{2} \ldots u_{s-1}\right\}}\left(u_{s}\right)=\left\{u_{s+1}, u_{s+2} \ldots u_{t-1}, u_{t+1} \ldots u_{p}, x_{1}, x_{2} \ldots x_{k-p+s+1}\right\}$, and let $\left|N\left(x_{k-p+s+1}\right) \cap\left\{u_{1}, u_{2} \ldots u_{s-1}\right\}\right|=m$ for $m \in[0, s-1]$. By the defition of k-paths, we have $u_{t} u_{i} \notin E(G)$ for $i \in[1, s]$, and then $d\left(u_{t}\right)=k+t-s-1$ and $d\left(x_{k-p+s+1}\right)>$ $k+p-s+m-1$. Now construct a new graph G^{*} such that $V\left(G^{*}\right)=V(G), E\left(G^{*}\right)=$ $E(G)-\left\{u_{s} x_{k-p+s+1}, u_{i} x_{k-p+s+1}\right\}+\left\{u_{s} u_{t}, u_{i} u_{t}\right\}$ with $i \in[0, m]$, then G^{*} is a k-tree. Since $t \leq p$, we have $d\left(x_{k-p+s+1}\right)>d\left(u_{t}\right)+m+1$, and by the definition of $\prod_{1, c}(G), \prod_{2}(G)$, Lemma 2.0.1 and Lemma 2.0.2, we get

$$
\begin{gathered}
\frac{\prod_{1, c}(G)}{\prod_{1, c}\left(G^{*}\right)}=\frac{d\left(u_{t}\right)^{c} d\left(x_{k-p+s+1}\right)^{c}}{\left[d\left(u_{t}\right)+m+1\right]^{c}\left[d\left(x_{k-p+s+1}\right)-m-1\right]^{c}} \\
=\frac{\left[\frac{d\left(u_{t}\right)}{d\left(u_{t}\right)+m+1}\right]^{c}}{\left[\frac{d\left(x_{k-p+s+1}\right)-m-1}{d\left(x_{k-p+s+1}\right)}\right]^{c}} \\
<1, \\
\frac{\prod_{2}(G)}{\prod_{2}\left(G^{*}\right)}=\frac{d\left(u_{t}\right)^{d\left(u_{t}\right)} d\left(x_{k-p+s+1}\right)^{d\left(x_{k-p+s+1}\right)}}{\left[d\left(u_{t}\right)+m+1\right]^{d\left(u_{t}\right)+m+1}\left[d\left(x_{k-p+s+1}\right)-m-1\right]^{d\left(x_{k-p+s+1}\right)-m-1}} \\
=\frac{d\left(u_{t}\right)^{d\left(u_{t}\right)}}{\left[d\left(u_{t}\right)+m+1\right]^{d\left(u_{t}\right)+m+1}} \\
> \\
\\
\\
\frac{1 .}{}
\end{gathered}
$$

Thus, $\prod_{1, c}\left(G^{*}\right)>\prod_{1, c}(G)$ and $\prod_{2}\left(G^{*}\right)<\prod_{2}(G)$, a contradiction.
For $p \geq k+s+1$, let $\left|N\left(u_{k+s+1}\right) \cap\left\{u_{1}, u_{2} \ldots u_{s-1}\right\}\right|=m$ for $m \in[0, s-1]$. Since $G[V(S) \cup$ $\left.\left\{u_{p}, u_{p-1} \ldots u_{s+1}\right\}\right]$ is a k-path, we have $G\left[\left\{u_{s+1}, u_{s+2} \ldots u_{s+k+1}\right\}\right]$ is a $(k+1)$-clique. Suppose that u_{t} is the vertex such that $u_{t} \notin N\left(u_{s}\right)$ with $s+2 \leq t \leq s+k$, let $N_{G-\left\{u_{1}, u_{2} \ldots u_{s-1}\right\}}\left(u_{s}\right)=$ $\left\{u_{s+1}, u_{s+2} \ldots u_{t-1}, u_{t+1} \ldots u_{s+k+1}\right\}$. Now we construct a new graph G^{*} such that $V\left(G^{*}\right)=$
$V(G), E\left(G^{*}\right)=E(G)-\left\{u_{s} u_{k+s+1}, u_{i} u_{k+s+1}\right\}+\left\{u_{s} u_{t}, u_{i} u_{t}\right\}$ for $i \in[0, m]$. Then G^{*} is a k-tree and $d\left(u_{k+s+1}\right)=2 k+m, d\left(u_{t}\right)=k+t-s-1$. Since $t \leq s+k$, we have $d\left(u_{k+s+1}\right)>d\left(u_{t}\right)+m+1$, and by the definition of $\prod_{1, c}(G), \prod_{2}(G)$, Lemma 2.0.1 and Lemma 2.0.2, we get

$$
\begin{gathered}
\frac{\prod_{1, c}(G)}{\prod_{1, c}\left(G^{*}\right)}=\frac{d\left(u_{t}\right)^{c} d\left(u_{k+s+1}\right)^{c}}{\left[d\left(u_{t}\right)+m+1\right]^{c}\left[d\left(u_{k+s+1}\right)-m-1\right]^{c}} \\
=\frac{\left[\frac{d\left(u_{t}\right)}{d\left(u_{t}\right)+m+1}\right]^{c}}{\left[\frac{d\left(u_{k+s+1}\right)-m-1}{d\left(u_{k+s+1}\right)}\right]^{c}} \\
<1, \\
\frac{\prod_{2}(G)}{\prod_{2}\left(G^{*}\right)}=\frac{d\left(u_{t}\right)^{d\left(u_{t}\right)} d\left(u_{k+s+1}\right)^{d\left(u_{k+s+1}\right)}}{\left[d\left(u_{t}\right)+m+1\right]^{d\left(u_{t}\right)+m+1}\left[d\left(u_{k+s+1}\right)-m-1\right]^{d\left(u_{k+s+1}\right)-m-1}} \\
=\frac{d\left(u_{t}\right)^{d\left(u_{t}\right)}}{\left[d\left(\left(u_{k+s+1}\right)-m-1\right]^{d\left(u_{k+s+1}\right)-m-1}\right.} \\
>1\left(u_{k+s+1}\right)^{d\left(u_{k+s+1}\right)}
\end{gathered}
$$

Thus, $\prod_{1, c}\left(G^{*}\right)>\prod_{1, c}(G)$ and $\prod_{2}\left(G^{*}\right)<\prod_{2}(G)$, a contradiction. Hence, for any $s \in[1, p] N_{G-\left\{u_{1}, u_{2} \ldots u_{s-1}\right\}}\left(u_{s}\right)=\left\{u_{s+1}, u_{s+2} \ldots u_{\min \{p, k+s\}}, x_{1}, x_{2} \ldots x_{\max \{0, k-p+s\}}\right\}$, that is, \mathcal{P} is a k-tree.

Lemma 2.1.9. Let G be a k-tree, if either $\prod_{1, c}(G)$ attains the maximal or $\prod_{2}(G)$ attains the minimal, then $\left|S_{1}(G)\right|=2$.

Proof. We know that $\left|S_{1}(G)\right| \geq 2$ for $n \geq k+2$, and by Lemma 2.1.8, every hyper pendent edge is a k-path for $\prod_{1, c}(G)$ to attain the maximal or $\prod_{2}(G)$ to attain the minimal. If $\left|S_{1}(G)\right|=2$, we are done; Suppose that $\left|S_{1}(G)\right| \geq 3$, it suffices to prove that there exists a graph G^{\prime} such that $\left|S_{1}\left(G^{\prime}\right)\right|=\left|S_{1}(G)\right|-1$ with $\prod_{1, c}\left(G^{\prime}\right)>\prod_{1, c}(G)$ and $\prod_{2}\left(G^{\prime}\right)<\prod_{2}(G)$.

Fact 2. For any k-tree G satisfying the conditions of Lemma 3, if $\left|S_{1}(G)\right| \geq 3$, then there exists a k-clique $G[S]$ such that $w(G-S) \geq 3$.

Proof. We will proceed by induction on $n=|G|$. For $n=k+3$, it is trivial; For $n \geq k+4$, assume that the fact is true for the k-tree G with $n<k+p$, and consider $n=k+p$. If $\left|S_{1}(G)\right| \geq 4$, choose any vertex $v \in S_{1}(G)$, or $\left|S_{1}(G)\right|=3$ and $\left|S_{2}(G)\right| \geq 2$, choose the vertex $v \in S_{1}(G)$ such that $N(w) \cap S_{1}(G)=\{v\}$ for some $w \in S_{2}(G)$, then construct a new graph G^{\prime} such that $G^{\prime}=G-v$. Since $S_{2}(G)$ is an dependent set and $G[N(v)]$ is a k-clique for any $v \in S_{1}(G)$, we obtain $\left|S_{1}\left(G^{\prime}\right)\right| \geq 3$. By the induction hypothesis, there exists a k-clique $G[S]$ in G^{\prime} such that $w\left(G^{\prime}-S\right) \geq 3$. Thus, by adding back $v, G[S]$ is still a k-clique in G and $w(G-S) \geq 3$, we are done. Next, we only consider $\left|S_{1}(G)\right|=3$ and $\left|S_{2}(G)\right|=1$.

Let $S_{1}(G)=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $G_{0}=G-\left\{v_{1}, v_{2}, v_{3}\right\}$, we have G_{0} is a $(k+1)$-clique, denoted by $G\left[\left\{x_{1}, x_{2} \ldots x_{k+1}\right\}\right]$. If there exists $N\left(v_{i}\right)=N\left(v_{j}\right)$, for some $i, j \in[1,3]$ with $i \neq j$, and take $S=N\left(v_{i}\right)$, then $w(G-S) \geq 3$, we are done; If $N\left(v_{i}\right) \neq N\left(v_{j}\right)$, for any $i, j \in[1,3]$ with $i \neq j$, then reorder the index of x_{i} such that $N\left(v_{1}\right)=\left\{x_{1}, x_{2} \ldots x_{k}\right\}$, $N\left(v_{2}\right)=\left\{x_{2}, x_{3} \ldots x_{k+1}\right\}$ and $N\left(v_{3}\right)=\left\{x_{1}, x_{3} \ldots x_{k+1}\right\}$. Construct a new graph G^{*} such that $V\left(G^{*}\right)=V(G), E\left(G^{*}\right)=E(G)-\left\{v_{1} x_{1}\right\}+\left\{v_{1} v_{2}\right\}$, then G^{*} is still a k-tree and $d_{G}\left(x_{1}\right)=k+2$, $d_{G^{*}}\left(x_{1}\right)=k+1, d_{G}\left(v_{1}\right)=d_{G}\left(v_{2}\right)=k$ and $d_{G^{*}}\left(v_{2}\right)=k+1$. By the definition of $\prod_{1, c}(G)$, $\prod_{2}(G)$, Lemma 2.0.1 and Lemma 2.0.2, we have

$$
\begin{aligned}
& \frac{\prod_{1, c}(G)}{\prod_{1, c}\left(G^{*}\right)}= \frac{d\left(v_{2}\right)^{c} d\left(x_{1}\right)^{c}}{\left[d\left(v_{2}\right)+1\right]^{c}\left[d\left(x_{1}\right)-1\right]^{c}} \\
&=\left[\frac{k(k+2)}{(k+1)^{2}}\right]^{c} \\
&<1, \\
& \frac{\prod_{2}(G)}{\prod_{2}\left(G^{*}\right)}= \frac{d\left(v_{2}\right)^{d\left(v_{2}\right)} d\left(x_{1}\right)^{d\left(x_{1}\right)}}{\left[d\left(v_{2}\right)+1\right]^{d\left(v_{2}\right)+1}\left[d\left(x_{1}\right)-1\right]^{d\left(x_{1}\right)-1}} \\
&= \frac{(k+2)^{k+2} k^{k}}{(k+1)^{2(k+1)}} \\
&=\left.\frac{\left[\frac{k^{k}}{(k+1)^{k+1}}\right]}{(k+1)^{k+1}}\right] \\
&>1
\end{aligned}
$$

Thus, we find a graph G^{*} with $\prod_{1, c}\left(G^{*}\right)>\prod_{1, c}(G)$ and $\prod_{2}\left(G^{*}\right)<\prod_{2}(G)$, a contradiction with that $\prod_{1, c}(G)$ attains the maximal or $\prod_{2}(G)$ attains the minimal, we are done.

Choose a k-clique $G[S]$ with $w(G-S) \geq 3$ such that there are two components of $G-S: C_{1}, C_{2}$ with $\left|C_{1}\right|=p,\left|C_{2}\right|=q$ and $p+q$ being minimal, for $p \geq q$. Let $u_{1} \in V\left(C_{1}\right)$, $v_{1} \in V\left(C_{2}\right)$ with $\left\{u_{1}, v_{1}\right\} \subseteq S_{1}(G)$. Let $N_{G-\left\{v_{1}, v_{2} \ldots v_{i-1}\right\}}\left(v_{i}\right)=\left\{v_{i+1}, v_{i+2} \ldots v_{\min \{k+1, q\}}, x_{1}, x_{2} \ldots\right.$ $x_{\max \{0, k-q+i\}}, \quad N_{G-\left\{u_{1}, u_{2} \ldots u_{j-1}\right\}}\left(u_{j}\right)=\left\{u_{j+1}, u_{j+2} \ldots u_{\min \{k+1, p\}}, y_{1}, y_{2} \ldots y_{\max \{0, k-p+i\}}\right\}$ for $i \geq$ $1, j \geq 1$, where $\left\{v_{1}, v_{2} \ldots v_{q}\right\}$ and $\left\{u_{1}, u_{2} \ldots u_{p}\right\}$ are simplicial elimination orderings of $G[S \cup$ $\left.V\left(C_{1}\right)\right]$ and $G\left[S \cup V\left(C_{2}\right)\right]$, respectively. We will prove Lemma 2.1.9 by induction on q.
(1) If $q=1$, then $d\left(v_{1}\right)=k$. Choose $x_{t} \in N\left(v_{1}\right)$, let $\left|N\left(x_{t}\right) \cap\left\{u_{1}, u_{2} \ldots u_{p}\right\}\right|=m$ for $m \in[1, k]$, we get $d\left(x_{t}\right)>k+1+m$ by $w(G-S) \geq 3$, and then $d\left(x_{t}\right)>d\left(v_{1}\right)+m+1$. Now construct a new graph G^{*} such that $V\left(G^{*}\right)=V(G), E\left(G^{*}\right)=E(G)-\left\{u_{i} x_{t}\right\}+\left\{u_{i} v_{1}\right\}$ for $i \in[1, m]$, then G^{*} is a k-tree and $\left|C_{1}\right|+\left|C_{2}\right|=p$ with $G\left[\left\{x_{1}, x_{2} \ldots x_{t-1}, x_{t+1} \ldots x_{k}, v_{1}\right\}\right]$ is a k-clique in G^{*}. Since $d\left(x_{t}\right)>d\left(v_{1}\right)+m+1$, by the definition of $\prod_{1, c}(G), \prod_{2}(G)$, Lemma 2.0.1 and Lemma 2.0.2, we have

$$
\begin{aligned}
& \frac{\Pi_{1, c}(G)}{\Pi_{1, c}\left(G^{*}\right)}= \frac{d\left(v_{1}\right)^{c} d\left(x_{t}\right)^{c}}{\left[d\left(v_{1}\right)+m\right]^{c}\left[d\left(x_{t}\right)-m\right]^{c}} \\
&= \frac{\left[\frac{d\left(v_{1}\right)}{d\left(v_{1}\right)+m}\right]^{c}}{\left[\frac{d\left(x_{t}\right)-m}{d\left(x_{t}\right)}\right]^{c}} \\
&<1, \\
& \frac{\prod_{2}(G)}{\prod_{2}\left(G^{*}\right)}=\frac{d\left(v_{1}\right)^{d\left(v_{1}\right)} d\left(x_{t}\right)^{d\left(x_{t}\right)}}{\left[d\left(v_{1}\right)+m\right]^{d\left(v_{1}\right)+m}\left[d\left(x_{t}\right)-m\right]^{d\left(x_{t}\right)-m}} \\
&= \frac{\frac{d\left(v_{1}\right)^{d\left(v_{1}\right)}}{\left[d\left(v_{1}\right)+m\right]^{d\left(v_{1}\right)+m}}}{\frac{\left[d\left(\left(x_{t}\right)-m\right]^{d\left(\left(x_{t}\right)-m\right.}\right.}{d\left(x_{t}\right)^{d\left(x_{t}\right)}}} \\
&>1 .
\end{aligned}
$$

Then, $\prod_{1, c}\left(G^{*}\right)>\prod_{1, c}(G)$ and $\prod_{2}\left(G^{*}\right)<\prod_{2}(G)$. Thus, let $G^{\prime}=G^{*},\left|S_{1}\left(G^{\prime}\right)\right|=$ $\left|S_{1}(G)\right|-1, \prod_{1, c}\left(G^{\prime}\right)>\prod_{1, c}(G)$ and $\prod_{2}\left(G^{\prime}\right)<\prod_{2}(G)$, and we are done.
(2) Assume that $q=s$, there exists a k-tree G^{\prime} such that $\left|S_{1}\left(G^{\prime}\right)\right|=\left|S_{1}(G)\right|-1$, $\prod_{1, c}\left(G^{\prime}\right)>\prod_{1, c}(G), \prod_{2}\left(G^{\prime}\right)<\prod_{2}(G)$ and we consider $q=s+1$.

If $q \leq k$, we have $d\left(v_{q}\right)=k+q-1$ by the fact that $G\left[S \cup V\left(C_{2}\right)\right]$ is a k-path. Choose $x_{t} \in N\left(v_{1}\right)$, we know $x_{t} \in N\left(v_{i}\right)$ for all $i \in[1, p]$ by $G\left[S \cup V\left(C_{2}\right)\right]$ is a k-path. Let $\left|N\left(x_{t}\right) \cap\left\{u_{1}, u_{2} \ldots u_{p}\right\}\right|=m$ for $m \in[1, k]$, we have $d\left(x_{t}\right)>k+q+m$ by $w(G-S) \geq 3$, and then $d\left(x_{t}\right)>d\left(v_{q}\right)+m+1$. Now construct a new graph G^{*} such that $V\left(G^{*}\right)=V(G), E\left(G^{*}\right)=$ $E(G)-\left\{u_{i} x_{t}\right\}+\left\{u_{i} v_{q}\right\}$ for $i \in[1, m]$, then G^{*} is a k-tree and $\left|C_{1}\right|+\left|C_{2}\right|=p+q-1$ with $G\left[\left\{x_{1}, x_{2} \ldots x_{t-1}, x_{t+1} \ldots x_{k}, v_{q}\right\}\right]$ is a k-clique in G^{*}. Since $d\left(x_{t}\right)>d\left(v_{q}\right)+m+1$, by the definition of $\prod_{1, c}(G), \prod_{2}(G)$, Lemma 2.0.1 and Lemma 2.0.2, we have

$$
\begin{aligned}
& \frac{\prod_{1, c}(G)}{\prod_{1, c}\left(G^{*}\right)}= \frac{d\left(v_{q}\right)^{c} d\left(x_{t}\right)^{c}}{\left[d\left(v_{q}\right)+m\right]^{c}\left[d\left(x_{t}\right)-m\right]^{c}} \\
&= \frac{\left[\frac{d\left(v_{q}\right)}{d\left(v_{q}\right)+m}\right]^{c}}{\left[\frac{d\left(x_{t}\right)-m}{d\left(x_{t}\right)}\right]^{c}} \\
&<1, \\
& \frac{\prod_{2}(G)}{\prod_{2}\left(G^{*}\right)}=\frac{d\left(v_{q}\right)^{d\left(v_{q}\right)} d\left(x_{t}\right)^{d\left(x_{t}\right)}}{\left[d\left(v_{q}\right)+m\right]^{d\left(v_{q}\right)+m}\left[d\left(x_{t}\right)-m\right]^{d\left(x_{t}\right)-m}} \\
&= \frac{\frac{d\left(v_{q}\right)^{d\left(v_{q}\right)}}{\left[d\left(v_{q}\right)+m\right]^{d\left(v_{q}\right)+m}}}{\left[d\left(\left(x_{t}\right)-m\right]^{d\left(\left(x_{t}\right)-m\right.}\right.} \\
& d\left(x_{t}\right)^{d\left(x_{t}\right)}
\end{aligned} \quad 1 . \quad .
$$

Then, $\prod_{1, c}(G)<\prod_{1, c}\left(G^{*}\right), \prod_{2}(G)>\prod_{2}\left(G^{*}\right)$ and $q=s$ in G^{*}, then by the induction hypothesis, there exists a k-tree G^{\prime} such that $\left|S_{1}\left(G^{\prime}\right)\right|=\left|S_{1}(G)\right|-1, \prod_{1, c}\left(G^{\prime}\right)>\prod_{1, c}(G)$ and $\prod_{2}\left(G^{\prime}\right)<\prod_{2}(G)$, we are done.

If $q \geq k+1$, we have $N\left(u_{1}\right)=\left\{u_{2}, u_{3} \ldots u_{k+1}\right\}, N\left(v_{1}\right)=\left\{v_{2}, v_{3} \ldots v_{k+1}\right\}$ by the facts that $p \geq q$ and $G\left[S \cup V\left(C_{1}\right)\right], G\left[S \cup V\left(C_{2}\right)\right]$ are k-paths. We construct a new graph G^{*} such
that $V\left(G^{*}\right)=V(G), E\left(G^{*}\right)=E(G)-\left\{v_{1} v_{i}\right\}+\left\{u_{j} v_{1}\right\}$ for $i \in[2, k+1], j \in[1, k]$. And the definition of $\prod_{1, c}(G), \prod_{2}(G)$, Lemma 2.0.1 and Lemma 2.0.2, we obtain

$$
\begin{aligned}
\frac{\prod_{1, c}(G)}{\prod_{1, c}\left(G^{*}\right)} & =\frac{\prod_{i=2}^{k+1} d\left(v_{i}\right)^{c} \prod_{j=1}^{k} d\left(u_{j}\right)^{c}}{\prod_{i=2}^{k+1}\left[d\left(v_{i}\right)-1\right]^{c} \prod_{j=1}^{k}\left[d\left(u_{j}\right)+1\right]^{c}} \\
& =1, \\
\frac{\prod_{2}(G)}{\prod_{2}\left(G^{*}\right)} & =\frac{\prod_{i=2}^{k+1} d\left(v_{i}\right)^{d\left(v_{i}\right)} \prod_{j=1}^{k} d\left(u_{j}\right)^{d\left(u_{j}\right)}}{\prod_{i=2}^{k+1}\left[d\left(v_{i}\right)-1\right]^{d\left(v_{i}\right)-1} \prod_{j=1}^{k}\left[d\left(u_{j}\right)+1\right]^{d\left(u_{j}\right)+1}} \\
& =1 .
\end{aligned}
$$

Then, $\prod_{1, c}(G)=\prod_{1, c}\left(G^{*}\right), \prod_{2}(G)=\prod_{2}\left(G^{*}\right)$ and $q=s$ in G^{*}, then by the induction hypothesis, there exists a k-tree G^{\prime} such that $\left|S_{1}\left(G^{\prime}\right)\right|=\left|S_{1}(G)\right|-1, \prod_{1, c}\left(G^{\prime}\right)>\prod_{1, c}(G)$ and $\prod_{2}\left(G^{\prime}\right)<\prod_{2}(G)$, we are done.

Next we turn to prove the main results of this section.
Proof of Theorem 2.1.1. For any k-tree T_{n}^{k}, if $\left|S_{1}\left(T_{n}^{k}\right)\right|=n-k$, then $T_{n}^{k} \cong S_{k, n-k}$, we are done. And if $\left|S_{1}\left(T_{n}^{k}\right)\right| \leq n-k-1$, we can recursively use Lemma 2.1.7 to make $\prod_{1, c}\left(T_{n}^{k}\right)$ decreasing until $\left|S_{1}\left(T_{n}^{k}\right)\right|=n-k$. Thus, we have $T_{n}^{k} \cong S_{k, n-k}$ for $\prod_{1, c}\left(T_{n}^{k}\right)$ to arrive the minimal value.

By Lemma 2.1.8, if $\prod_{1, c}\left(T_{n}^{k}\right)$ get the maximal, then every hyper pendent edge is a k-path, and by Lemma 2.1.9, $\left|S_{1}\left(T_{n}^{k}\right)\right|=2$, implying that $T_{n}^{k} \cong P_{n}^{k}$ for $\prod_{1, c}\left(T_{n}^{k}\right)$ to arrive the maximal value.

Proof of Theorem 2.1.2. For any k-tree T_{n}^{k}, if $\left|S_{1}\left(T_{n}^{k}\right)\right|=n-k$, then $T_{n}^{k} \cong S_{k, n-k}$, we are done. And if $\left|S_{1}\left(T_{n}^{k}\right)\right| \leq n-k-1$, we can recursively use Lemma 2.1.7 to make $\prod_{2}\left(T_{n}^{k}\right)$ increasing until $\left|S_{1}\left(T_{n}^{k}\right)\right|=n-k$, then we have $T_{n}^{k} \cong S_{k, n-k}$ for $\prod_{2}\left(T_{n}^{k}\right)$ to arrive the maximal value.

By Lemma 2.1.8, if $\prod_{2}\left(T_{n}^{k}\right)$ get the minimal, every hyper pendent edge is a k-path, and by Lemma 2.1.9, $\left|S_{1}\left(T_{n}^{k}\right)\right|=2$. Then this k-tree is a k-path, that is, $T_{n}^{k} \cong P_{n}^{k}$ for $\prod_{2}\left(T_{n}^{k}\right)$ to arrive the minimal value.

2.2 CACTUS GRAPHS

In this section, we rewrite the results and give the complete proofs. Theorem 2.2.1 gives the lower bounds of the first generalized Zagreb index of cactus graphs and states the corresponding extremal graphs.

Theorem 2.2.1 (Wang and Wei [77]). For any graph G in \mathcal{C}_{n}^{k},

$$
\prod_{1, c}(G) \geq \begin{cases}3^{k c} 2^{(n-2 k) c}, & \text { if } k=0,1 \\ 2^{(n-k-1) c} k^{c}, & \text { if } k \geq 2\end{cases}
$$

the equalities hold if and only if their degree sequences are $\underbrace{3,3, \ldots, 3}_{k}, \underbrace{2,2, \ldots, 2}_{n-2 k}, \underbrace{1,1, \ldots, 1}_{k}$ and $k, \underbrace{2,2, \ldots, 2}_{n-k-1}, \underbrace{1,1, \ldots, 1}_{k}$, respectively.

Theorems 2.2.2 and 2.2.3 provide the sharp upper bounds on the first generalized multiplicative Zagreb indices of cactus graphs and characterize the extremal graphs.

Theorem 2.2.2 (Wang and Wei [77]). For any graph G in \mathcal{C}_{n}^{k} with $n \leq k+3$,

$$
\prod_{1, c}(G) \leq\left\{\begin{aligned}
k^{c} & \text { if } n=k+1 \\
\left(\left\lceil\frac{k}{2}\right\rceil+1\right)^{c}\left(\left\lfloor\frac{k}{2}\right\rfloor+1\right)^{c} & \text { if } n=k+2 \\
\left(\left\lceil\frac{k}{3}\right\rceil+2\right)^{c}\left(\left\lfloor\frac{k}{3}\right\rfloor+2\right)^{c}\left(k-\left\lceil\frac{k}{3}\right\rceil-\left\lfloor\frac{k}{3}\right\rfloor+2\right)^{c} & \text { if } n=k+3
\end{aligned}\right.
$$

the equalities hold if and only if their degree sequences are $k, \underbrace{1,1, \ldots, 1}_{k} ;\left\lceil\frac{k}{2}\right\rceil+1,\left\lfloor\frac{k}{2}\right\rfloor+$ $1, \underbrace{1,1, \ldots, 1}_{k}$ and $\left\lceil\frac{k}{3}\right\rceil+2,\left\lfloor\frac{k}{3}\right\rfloor+2, k-\left\lceil\frac{k}{3}\right\rceil-\left\lfloor\frac{k}{3}\right\rfloor+2, \underbrace{1,1, \ldots, 1}_{k}$, respectively.

Theorem 2.2.3 (Wang and Wei [77). For any graph G in \mathcal{C}_{n}^{k} with $n \geq k+4$ and $t \geq 0$,

$$
\prod_{1, c}(G) \leq\left\{\begin{aligned}
16^{c} & \text { if } k=0, n=4 \\
2^{(3 t+6) c} & \text { if } k=0, n=2 t+5 \\
2^{(3 t+4) c} 9^{c} & \text { if } \quad k=0, n=2(t+3)
\end{aligned}\right.
$$

the equalities hold if and only if their degree sequences are $2,2,2,2 ; \underbrace{4,4, \ldots, 4}_{t+1}, \underbrace{2,2, \ldots, 2}_{t+4}$ and $\underbrace{4,4, \ldots, 4}_{t}, 3,3, \underbrace{2,2, \ldots, 2}_{t+4}$, respectively;
For $k \neq 0$, if $\prod_{1, c}(G)$ attains the maximal value, then one of the following statements holds: For any nonpendant vertices u, v, either (i) $|d(u)-d(v)| \leq 1$ or (ii) $d(u) \in\{2,3,4\}$ and G contains no cycles of length greater than 3, no dense paths of length greater than 1 except for at most one of them with length 2, and no paths of length greater 0 that connects only two cycles except for at most one of them with length 1.

Theorem 2.2.4 gives sharp lower bounds on the second multiplicative Zagreb indices of cactus graphs and characterizes the extremal graphs.

Theorem 2.2.4 (Wang and Wei [77]). For any graph G in \mathcal{C}_{n}^{k} with $\gamma=\frac{k-2}{n-k}$,

$$
\prod_{2}(G) \geq\left\{\begin{aligned}
3^{3 k} 2^{2(n-2 k)} & \text { if } k=0,1 \\
(2+\lceil\gamma\rceil)^{(2+\lceil\gamma\rceil)[k-2-\lfloor\gamma\rfloor(n-k)]}(2+\lfloor\gamma\rfloor)^{(2+\lfloor\gamma\rfloor)[n-2 k+2+\lfloor\gamma\rfloor(n-k)]} & \text { if } k \geq 2
\end{aligned}\right.
$$

the equalities hold if and only if their degree sequences are $\underbrace{3,3, \ldots, 3}_{k}, \underbrace{2,2, \ldots, 2}_{n-2 k}$,
$\underbrace{1,1, \ldots, 1}_{k}$ and $\underbrace{2+\lceil\gamma\rceil, 2+\lceil\gamma\rceil, \ldots, 2+\lceil\gamma\rceil}_{k-2-\lfloor\gamma\rfloor(n-k)}, \underbrace{2+\lfloor\gamma\rfloor, 2+\lfloor\gamma\rfloor, \ldots, 2+\lfloor\gamma\rfloor}_{n-2 k+2+\lfloor\gamma\rfloor(n-k)}, \underbrace{1,1, \ldots, 1}_{k}$, respectively.
Theorem 2.2.5 states sharp upper bounds on the second multiplicative Zagreb indices of cactus graphs and characterizes the extremal graphs.

Theorem 2.2.5 (Wang and Wei [77]). For any graph G in \mathcal{C}_{n}^{k},

$$
\prod_{2}(G) \leq \begin{cases}(n-2)^{n-2} 2^{2(n-k-1)} & \text { if } n-k \equiv 0(\bmod 2) \\ (n-1)^{n-1} 2^{2(n-k-1)} & \text { if } n-k \equiv 1(\bmod 2)\end{cases}
$$

the equalities hold if and only if their degree sequences are $n-2, \underbrace{2,2, \ldots, 2}_{n-k-1}, \underbrace{1, \ldots, 1}_{k}$ and $n-1, \underbrace{2,2, \ldots, 2}_{n-k-1}, \underbrace{1,1, \ldots, 1}_{k}$, respectively.

Before we prove the theorems, we first give some lemmas that will be used later. By the definition of Multiplicative Zagreb index, one can obtain the following lemmas.

Lemma 2.2.6. For $G \in \mathcal{C}_{n}^{k}$ with $k \leq 1$ and $n \geq 3$, if $\prod_{1, c}(G)$ or $\prod_{2}(G)$ attains the minimal value, then G is an unicyclic graph.

Proof. For $k=0$ or 1 , by the choice of G, one can obtain that G contains at least one cycle. Otherwise, G is a tree which has at least two pendant vertices. Assume that there exists at least two cycles in G, and choose two cycles $C_{1}=x_{1} x_{2} \ldots x_{1}, C_{2}=y_{1} y_{2} \ldots y_{1}$ and a path $P=z_{1} z_{2} \ldots z_{p}$ such that $V(P) \cap V\left(C_{1}\right)=\left\{z_{1}\right\}, V(P) \cap V\left(C_{2}\right)=\left\{z_{p}\right\}$ and P has no common vertices with any other cycles except C_{1}, C_{2}. Let $N\left(z_{1}\right) \cap V\left(C_{1}\right)=\left\{x_{11}, x_{12}\right\}$ and $N\left(z_{p}\right) \cap V\left(C_{1}\right)=\left\{x_{p 1}, x_{p 2}\right\}$, and set $G^{\prime}=\left(G-\left\{x_{11} z_{1}, x_{p 1} z_{p}\right\}\right) \cup\left\{x_{11} x_{p 1}\right\}$, then $d_{G^{\prime}}\left(z_{1}\right)=$ $d\left(z_{1}\right)-1, d_{G^{\prime}}\left(z_{p}\right)=d\left(z_{p}\right)-1$. By the definitions of $\prod_{1, c}(G)$ and $\prod_{2}(G)$, we have $\prod_{1, c}\left(G^{\prime}\right)<$ $\prod_{1, c}(G)$ and $\prod_{2}\left(G^{\prime}\right)<\prod_{2}(G)$, a contradiction to the choice of G. Thus, Lemma 2.2.6 is ture.

Lemma 2.2.7. Let G^{\prime} be a proper subgraph of a connected graph G. Then $\prod_{1, c}\left(G^{\prime}\right)<$ $\prod_{1, c}(G), \prod_{2}\left(G^{\prime}\right)<\prod_{2}(G)$. In particular, for $G \in \mathcal{C}_{n}^{k}$ with $k \geq 2$, if $\prod_{1, c}(G)$ or $\prod_{2}(G)$ attains the minimal value, then G is a tree.

Proof. Since G^{\prime} is a proper subgraph of G, by the definitions of $\prod_{1, c}(G)$ and $\prod_{2}(G)$, one can easily obtain that $\prod_{1, c}\left(G^{\prime}\right)<\prod_{1, c}(G)$ and $\prod_{2}\left(G^{\prime}\right)<\prod_{2}(G)$. For $k \geq 2$, we proceed to prove it by contradiction. For $k \geq 2$, assume that G is not a tree. Let C be a cycle of G and $P_{1}=u_{1} u_{2} \ldots u_{p}$ and $P_{2}=v_{1} v_{2} \ldots v_{q}$ be two pendant paths such that $V\left(P_{1}\right) \cap V(C)=\left\{u_{1}\right\}$ and $d\left(v_{q}\right)=1$. Let $w_{1} \in N\left(u_{1}\right) \cap V\left(C_{1}\right)$ and $G^{\prime \prime}=\left(G-\left\{u_{1} w_{1}, v_{1} v_{2}\right\}\right) \cup\left\{v_{2} w_{1}\right\}$, then $d_{G^{\prime \prime}}\left(u_{1}\right)=d\left(u_{1}\right)-1, d_{G^{\prime \prime}}\left(v_{1}\right)=d\left(v_{1}\right)-1$ and $G^{\prime \prime} \in \mathcal{C}_{n}^{k}$. By the definitions of $\prod_{1, c}(G)$ and $\prod_{2}(G)$, we have $\prod_{1, c}\left(G^{\prime \prime}\right)<\prod_{1, c}(G), \prod_{2}\left(G^{\prime \prime}\right)<\prod_{2}(G)$ and Lemma 2.2.7 is true.

Lemma 2.2.8. If $\prod_{2}(G)$ attains the minimal value with $k \geq 2$, then any non-pendant vertices u, v of a connected graph G have the property: $|d(u)-d(v)| \leq 1$.

Proof. Since $k \geq 2$, by Lemma 2.2.7, we have that G must be a tree. On the contrary, if there are two non-pendant vertices $u, v \in V(G)$ such that $d(u)-d(v) \geq 2$, let $x \in N(u)-N(v)$ and $G^{\prime}=(G-\{u x\}) \cup\{v x\}$, by $d_{G^{\prime}}(u)=d(u)-1, d_{G^{\prime}}(v)=d(v)+1, d(v) \leq d(u)-2<d(u)-1$, we deduce that

$$
\frac{\prod_{2}(G)}{\prod_{2}\left(G^{\prime}\right)}=\frac{d(v)^{d(v)} d(u)^{d(u)}}{[d(v)+1]^{d(v)+1}[d(u)-1]^{d(u)-1}}=\frac{\left[\frac{d(v)^{d(v)}}{[d(v)+1]^{d(v)+1}}\right]}{\left[\frac{[d(u)-1]^{(u)-1}}{d(u)^{d(u)}}\right]}>1
$$

that is, $\prod_{2}\left(G^{\prime}\right)<\prod_{2}(G)$, a contradiction with the choice of G. Thus, Lemma 2.2.8 is true.

Lemma 2.2.9. If $\prod_{1, c}(G)$ or $\prod_{2}(G)$ attains the maximal value, then all cycles of G have length 3 except for at most one of them with length 4.

Proof. On the contrary, let C_{m} be a cycle of G with $C_{m}=v_{1} v_{2} \ldots v_{m} v_{1}$ and $m \geq 5, G^{\prime}=$ $\left(G-\left\{v_{3} v_{4}\right\}\right) \cup\left\{v_{1} v_{3}, v_{1} v_{4}\right\}$. Since G^{\prime} has k pendant vertices, then $G^{\prime} \in \mathcal{C}_{n}^{k}$. By the definitions of $\prod_{1, c}(G), \prod_{2}(G)$ and $d_{G^{\prime}}\left(v_{1}\right)=d\left(v_{1}\right)+2$, we have

$$
\frac{\prod_{1, c}(G)}{\prod_{1, c}\left(G^{\prime}\right)}=\frac{d\left(v_{1}\right)^{c}}{\left[d\left(v_{1}\right)+2\right]^{c}}<1, \frac{\prod_{2}(G)}{\prod_{2}\left(G^{\prime}\right)}=\frac{d\left(v_{1}\right)^{d\left(v_{1}\right)}}{\left[d\left(v_{1}\right)+2\right]^{d\left(v_{1}\right)+2}}<1,
$$

that is, $\prod_{1, c}(G)<\prod_{1, c}\left(G^{\prime}\right)$ and $\prod_{2}(G)<\prod_{2}\left(G^{\prime}\right)$, a contradiction with the choice of G. We can proceed this process until all of the cycles have length 3 or 4 .

Suppose that there exist two cycles of length 4 , say $C_{1}=x_{1} x_{2} x_{3} x_{4} x_{1}, C_{2}=y_{1} y_{2} y_{3} y_{4} y_{1}$ in G. Since G is a cactus, then there exists a vertex $x_{t} \in V\left(C_{1}\right)$ (say x_{4}) such that there are no paths connecting x_{4} and y_{1}, x_{4} and y_{2} in $G-\left\{x_{1} x_{4}, x_{3} x_{4}\right\}$. Otherwise, if every vertex of $V(C)$ is either connected with y_{1} or with y_{2} in $G-\left\{x_{1} x_{4}, x_{3} x_{4}\right\}$, then there exist a cycle that shares at least one common edge with C_{1}, a contradiction with the definition of cactus graph. Let $G^{*}=\left(G-\left\{x_{1} x_{4}, x_{3} x_{4}, y_{1} y_{4}\right\}\right) \cup\left\{x_{1} x_{3}, x_{4} y_{1}, x_{4} y_{2}, y_{2} y_{4}\right\}$. Since G^{*} has k pendant vertices, then $G^{*} \in \mathcal{C}_{n}^{k}$. By the definitions of $\prod_{1, c}(G), \prod_{2}(G)$ and $d_{G^{*}}\left(y_{2}\right)=d\left(y_{2}\right)+2$, we
have

$$
\frac{\prod_{1, c}(G)}{\prod_{1, c}\left(G^{*}\right)}=\frac{d\left(y_{2}\right)^{c}}{\left[d\left(y_{2}\right)+2\right]^{c}}<1, \frac{\prod_{2}(G)}{\prod_{2}\left(G^{*}\right)}=\frac{d\left(y_{2}\right)^{d\left(y_{2}\right)}}{\left[d\left(y_{2}\right)+2\right]^{d\left(y_{2}\right)+2}}<1
$$

that is, $\prod_{1, c}(G)<\prod_{1, c}\left(G^{*}\right)$ and $\prod_{2}(G)<\prod_{2}\left(G^{*}\right)$, a contradiction with the choice of G and Lemma 4 is true.

Lemma 2.2.10. If $\prod_{1, c}(G)$ or $\prod_{2}(G)$ attains the maximal value, then every dense path has length 1 except for at most one of them with length 2 .

Proof. On the contrary, let C be a cycle and $P=v_{1} v_{2} \ldots v_{p-1} v_{p_{i}}$ with $p \geq 2$ and $j \geq 1$ be a dense path such that $V(C) \cap V(P)=\left\{v_{1}\right\}$ and $d\left(v_{p_{i}}\right)=1$. If $p \geq 4$, let $G^{\prime}=G \cup\left\{v_{1} v_{p-1}\right\}$. Then $G^{\prime} \in G[n, k]$ and $d_{G^{\prime}}\left(v_{1}\right)=d\left(v_{1}\right)+1, d_{G^{\prime}}\left(v_{p-1}\right)=d\left(v_{p-1}\right)+1$. Thus, by the definition, we have $\prod_{1, c}\left(G^{\prime}\right)>\prod_{1}(G)$ and $\prod_{2}\left(G^{\prime}\right)>\prod_{2}(G)$, a contradiction with the choice of G. We can proceed this process until $p \leq 3$, that is, all of the dense paths have the length as 1 or 2 .

If there exist two such paths of length 2 , say $P_{1}=x_{1} x_{2} x_{3 j}, P_{2}=y_{1} y_{2} y_{3 j^{\prime}}$ with $x_{1} \in V\left(C_{2}\right), y_{1} \in V\left(C_{3}\right)$ such that $d\left(x_{3 j}\right)=d\left(y_{3 j^{\prime}}\right)=1$ and $j, j^{\prime} \geq 1$, then let $G^{*}=$ $\left(G-\left\{y_{1} y_{2}, y_{2} y_{31}\right\}\right) \cup\left\{y_{1} y_{31}, x_{1} y_{2}, x_{2} y_{2}\right\}$. Since G^{*} has k pendant vertices, then $G^{*} \in G[n, k]$. By the definitions of $\prod_{1, c}(G), \prod_{2}(G)$ and $d_{G^{*}}\left(x_{1}\right)=d\left(x_{1}\right)+1, d_{G^{*}}\left(x_{2}\right)=d\left(x_{2}\right)+1$, we have $\prod_{1, c}\left(G^{*}\right)>\prod_{1}(G)$ and $\prod_{2}\left(G^{*}\right)>\prod_{2}(G)$, a contradiction with the choice of G and Lemma 2.2.10 is true.

Lemma 2.2.11. If $\prod_{1, c}(G)$ or $\prod_{2}(G)$ attains the maximal value, then G can not have both a dense path of length 2 and a cycle of length 4 .

Proof. On the contrary, let C_{1} be a cycle, $P=y_{1} y_{2} y_{3 i}$ be a dense path such that $V\left(C_{1}\right) \cap$ $V(P)=\left\{y_{1}\right\}$ and $d\left(y_{3 i}\right)=1$ for $i \geq 1, C_{2}$ be a cycle of length 4 , say $C_{2}=x_{1} x_{2} x_{3} x_{4} x_{1}$. By the definition of the cactus, there exists $x_{t} \in V\left(C_{2}\right)$ (say x_{2}) such that there is no paths connecting x_{2} and y_{1}, x_{2} and y_{1} in $G-\left\{x_{1} x_{2}, x_{2} x_{3}\right\}$. Let $G^{\prime}=\left(G-\left\{x_{1} x_{2}, x_{2} x_{3}\right\}\right) \cup$ $\left\{x_{2} y_{1}, x_{2} y_{2}, x_{1} x_{3}\right\}$, then G^{\prime} has k pendent vetices, $d_{G^{\prime}}\left(y_{1}\right)=d\left(y_{1}\right)+1$ and $d_{G^{\prime}}\left(y_{2}\right)=d\left(y_{2}\right)+1$.

By the definitions of $\prod_{1, c}(G), \prod_{2}(G)$, we have $\prod_{1, c}\left(G^{\prime}\right)>\prod_{1}(G)$ and $\prod_{2}\left(G^{\prime}\right)>\prod_{2}(G)$, a contradiction with the choice of G and Lemma 2.2.11 is true.

Lemma 2.2.12. Let C be a cycle of G in \mathcal{C}_{n}^{k} and $u, v \in V(C)$, if $\min \{d(u), d(v)\}>2$, then there exist a graph G^{\prime} such that $\prod_{2}\left(G^{\prime}\right)>\prod_{2}(G)$.

Proof. Since $\min \{d(u), d(v)\} \geq 3$, without loss of generality, let $d(u) \geq d(v) \geq 3$. Then there exists $x \in N(v)-V(C)-N(u)$. Otherwise, there will be two cycles containing at least two common vertices. Let $G^{\prime}=(G-\{v x\}) \cup\{u x\}$, we have $d(u) \geq d(v)>d(v)-1$. Then we have

$$
\frac{\prod_{2}(G)}{\prod_{2}\left(G^{\prime}\right)}=\frac{d(u)^{d(u)} d(v)^{d(v)}}{[d(u)+1]^{d(u)+1}[d(v)-1]^{d(v)-1}}=\frac{\left[\frac{d(u)^{d(u)}}{[d(u)+1]^{d(u)+1}}\right]}{\left[\frac{[d(v)-1]^{(v)-1}}{d(v)^{d(v)}}\right]}<1 .
$$

Thus, $\prod_{2}\left(G^{\prime}\right)>\prod_{2}(G)$ and Lemma 2.2.12 is true.

Lemma 2.2.13. If $\prod_{2}(G)$ attains the maximal value, then any three cycles have a common vertex.

Proof. By the definition of the cactus, any two cycles have at most one common vertex. Now assume that there exist two disjoint cycles C_{1}, C_{2} contained in G such that the path P connecting C_{1} and C_{2} is as short as possible. For convenience, let $P=u_{1} u_{2} \ldots u_{p}, V(P) \cap$ $V\left(C_{1}\right)=\left\{u_{1}\right\}$ and $V(P) \cap V\left(C_{2}\right)=\left\{u_{p}\right\}$.

If the path P has no common edges with any other cycle(s) contained in G and $|E(P)| \geq 2$, let the new graph $G^{\prime}=G \cup\left\{u_{1} u_{p}\right\}$, then $G^{\prime} \in G[n, k], d_{G^{\prime}}\left(u_{1}\right)=d\left(u_{1}\right)+1$, and $d_{G^{\prime}}\left(u_{2}\right)=d\left(u_{2}\right)+1$. By the definition of $\prod_{2}(G)$, we have $\prod_{2}\left(G^{\prime}\right)>\prod_{2}(G)$. If $|E(P)|=1$, without loss of generality, let $d\left(u_{1}\right) \geq d\left(u_{2}\right)$ and $C_{2}=u_{2} v_{2} v_{3} \ldots u_{2}$, we have $v_{2} \notin N\left(u_{1}\right)$. Otherwise, there are two cycles who have the common edge contradicted with the definition of the cactus. Let $G^{*}=\left(G-\left\{u_{2} v_{2}\right\}\right) \cup\left\{u_{1} v_{2}\right\}$, we have $G^{*} \in G[n, k], d_{G^{*}}\left(u_{1}\right)=d\left(u_{1}\right)+1$ and $d_{G^{*}}\left(u_{2}\right)=d(u)-1$. Since $d\left(u_{1}\right) \geq d\left(u_{2}\right)>d\left(u_{2}\right)-1$, then
that is, $\prod_{2}\left(G^{*}\right)>\prod_{2}(G)$, a contradiction with the choice of G.
If P has some common edges with some other cycle, say C_{3}, by the choice of C_{1}, C_{2} and the definition of cactus graph, we have $\left\{u_{1}\right\}=C_{3} \cap C_{1}$ and $\left\{u_{p}\right\}=C_{3} \cap C_{2}$. Since $\min \left\{d\left(u_{1}\right), d\left(u_{p}\right)\right\} \geq 3$, by Lemma 2.2.12, we can get that there exist $G^{* *}$ such that $\prod_{2}\left(G^{* *}\right)>$ $\prod_{2}(G)$, a contradiction with the choice of G.

Thus, any two cycles of G have one common vertex. By the definition of cactus graph, we have that any three cycles have exactly one common vertex and Lemma 2.2.13 is true.

Lemma 2.2.14. Let T be a tree attached to a vertex v_{0} of a cycle of G. If $\prod_{2}(G)$ attains the maximal value, then $d(v) \leq 2$ for any $v \in V(T)-\left\{v_{0}\right\}$.

Proof. Choose a graph G such that $\prod_{2}(G)$ achieves the maximal value. On the contrary, assume that $u \in V(T)-\left\{v_{0}\right\}$ is of degree $r \geq 3$ and closest to a pendant vertex. For $d\left(u, v_{0}\right) \geq 2$, let $G^{\prime}=G \cup\left\{u v_{0}\right\}$, we have $G^{\prime} \in G[n, k], d_{G^{\prime}}(u)=d(u)+1$ and $d_{G^{\prime}}\left(v_{0}\right)=$ $d\left(v_{0}\right)+1$. By the definition of $\prod_{2}(G)$, we can obtain that $\prod_{2}\left(G^{\prime}\right)>\prod_{2}(G)$, a contradiction with the choice of G. For $d\left(u, v_{0}\right)=1$, let $\left\{y_{1}, y_{2}, \ldots, y_{r-2}\right\}$ be the $r-2$ neighbors of u such that $d\left(y_{i}, v_{0}\right)>d\left(u, v_{0}\right), y$ be a neighbor of v_{0} which belongs to a cycle C_{0}.

Since $v_{0} u y_{1}$ is a pendant path of length 2 , by Lemma 2.2.11, we have that every cycle has length 3. Let $C_{0}=v_{0} w_{1} y v_{0}, G^{\prime \prime}=\left(G-\left\{u y_{1}\right\}\right) \cup\left\{v_{0} y_{1}\right\}$ and $G^{\prime \prime \prime}=\left(G-\left\{v_{0} y\right\}\right) \cup\{u y\}$. Then $G^{\prime \prime}, G^{\prime \prime \prime} \in G[n, k], d_{G^{\prime \prime}}(u)=d(u)-1, d_{G^{\prime \prime}}\left(v_{0}\right)=d\left(v_{0}\right)+1$ and $d_{G^{\prime \prime \prime}}(u)=d(u)+$ $1, d_{G^{\prime \prime \prime}}\left(v_{0}\right)=d\left(v_{0}\right)-1$. By the definition of $\prod_{2}(G)$, Lemma 2.0.1 and Lemma 2.0.2, we can obtain

$$
\begin{aligned}
& \frac{\prod_{2}(G)}{\prod_{2}\left(G^{\prime \prime}\right)}=\frac{d(u)^{d(u)} d\left(v_{0}\right)^{d\left(v_{0}\right)}}{[d(u)-1]^{d(u-1)}\left[d\left(v_{0}\right)+1\right]^{d\left(v_{0}\right)+1}}=\frac{\left[\frac{d\left(v_{0} d^{d\left(v_{0}\right)}\right.}{\left[d\left(v_{0}\right)+1\right]^{d\left(v_{0}\right)+1}}\right]}{\left[\frac{[d(u)-1]^{d(u)-1}}{d(u)^{d(u)}}\right]}<1, \text { if } d\left(v_{0}\right) \geq d(u), \\
& \frac{\prod_{2}(G)}{\prod_{2}\left(G^{\prime \prime \prime}\right)}=\frac{d(u)^{d(u)} d\left(v_{0}\right)^{d\left(v_{0}\right)}}{[d(u)+1]^{d(u+1)}\left[d\left(v_{0}\right)-1\right]^{d\left(v_{0}\right)-1}}=\frac{\left[\frac{d(u)^{d(u)}}{\left.[d(u)+1]^{d(u)+1}\right]}\right.}{\left[\frac{\left[d\left(v_{0}\right)-1\right]^{d\left(v_{0}\right)-1}}{d\left(v_{0}\right)^{d\left(v_{0}\right)}}\right]}<1, \text { if } d\left(v_{0}\right)<d(u),
\end{aligned}
$$

that is, $\prod_{2}\left(G^{\prime \prime}\right)>\prod_{2}(G)$ and $\prod_{2}\left(G^{\prime \prime \prime}\right)>\prod_{2}(G)$, a contradiction with the choice of G. Thus, Lemma 2.2.14 is true.

Lemma 2.2.15. If $\prod_{2}(G)$ attains the maximal value, then all attached trees are attached to a common vertex v_{0}.

Proof. On the contrary, suppose that there exist two trees T_{1}, T_{2} attached to different vertices v_{1}, v_{2} of some cycles, say C_{1}, C_{2}, such that $V\left(C_{1}\right) \cap V\left(T_{1}\right)=\left\{v_{1}\right\}, V\left(C_{2}\right) \cap V\left(T_{2}\right)=\left\{v_{2}\right\}$. By Lemma 2.2.13, all the cycles have a common vertex v_{0}. Without loss of generality, let $v_{1} \neq v_{0}$, we have $d\left(v_{0}\right) \geq 3, d\left(v_{1}\right) \geq 3$. By Lemma 2.2.12, there exists G^{\prime} such that $\prod_{2}\left(G^{\prime}\right)>\prod_{2}(G)$, a contradiction to the choice of G. Thus, Lemma 2.2.15 is true.

Next, we turn to prove the main results. For any graph G in \mathcal{C}_{n}^{k}, if $n=1$ or 2 , then $\prod_{1, c}(G)=\prod_{2}(G)=0$ or 1 , that is, all upper and lower bounds of Multiplicative Zagreb indices have the same values, respectively. Thus, all of the Theorems are true. Now we may assume that $n \geq 3$.

Proof of Theorem 2.2.1. Choose a graph G in \mathcal{C}_{n}^{k} such that $\prod_{1, c}(G)$ achieves the minimal value. For $k \leq 1$, by Lemma 2.2.6, G is an unicyclic graph. If $k=0$, then G is a cycle, that is, the degree sequence of G is $\underbrace{2,2, \ldots, 2}_{n}$; If $k=1$, then G has only one pendant path, that is, the degree sequence of G is $3, \underbrace{2,2, \ldots, 2}_{n-2}, 1$. Thus, Theorem 2.2 .1 is true.

For $k \geq 2$, by the choice of G and Lemma 2.2.7, we obtain that G is a tree. If $k=2$, then G is a path, that is, the degree sequence of G is $\underbrace{2,2, \ldots, 2}_{n-2}, 1,1$ and Theorem 2.2.1 is true; For $k \geq 3$, if there is a vertex v with $d(v) \geq k+1$, since G is a tree, then G has more than k pendant vertices, a contradiction to the choice of G. Thus, $d(v) \leq k$ for any $v \in V(G)$. Now let v be the vertex with maximal degree Δ. If $\Delta=k$, then $G-v$ is a set of paths. Otherwise, there exists a vertex $u \in V(G)-\{v\}$ such that $d(u) \geq 3$ and since G is a tree, then G contains more than k pendant vertices, a contradiction to the choice of G. Thus, the degree sequence of G is $k, \underbrace{2,2, \ldots, 2}_{n-k-1}, \underbrace{1,1, \ldots, 1}_{k}$.

If $\Delta<k$, then G contains at least 2 cut vertices, say $u_{1}, u_{2}, \ldots, u_{t}$, such that $G-u_{i}$ has at least 3 components with $i \in[1, t]$ and $t \geq 2$. Otherwise, since G is a tree, G only contains Δ pendant vertices. Let $P=w_{1} w_{2} \ldots w_{s}$ be a path of $G-\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}$ such that $w_{s} \in\left\{u_{1}, u_{2}, \ldots, u_{t}\right\}-\{v\}$ and P contains only a unique pendant vertex w_{1}. Set $G^{\prime}=\left(G-\left\{w_{s-1} w_{s}\right\}\right) \cup\left\{w_{s-1} v\right\}$, we have $G^{\prime} \in \mathcal{C}_{n}^{k}, d_{G^{\prime}}(v)=d(v)+1$ and $d_{G^{\prime}}\left(w_{s}\right)=d\left(w_{s}\right)-1$. Thus, by $\Delta \geq d\left(w_{s}\right)>d\left(w_{s}\right)-1$, we have

$$
\frac{\prod_{1, c}(G)}{\prod_{1, c}\left(G^{\prime}\right)}=\frac{\Delta^{c} d\left(w_{s}\right)^{c}}{(\Delta+1)^{c}\left(d\left(w_{s}\right)-1\right)^{c}}=\frac{\frac{\Delta^{c}}{(\Delta+1)^{c}}}{\frac{\left(d\left(w_{s}-1\right]^{c}\right.}{\left.d w_{s}\right)^{c}}}>1,
$$

that is, $\prod_{1, c}(G)$ is not minimal, a contradiction with the choice of G. If the maximal degree of G^{\prime} is still less than k, then we can continue this process until $\Delta=k$, thus we can find the desired graph with the degree sequence of $k, \underbrace{2,2, \ldots, 2}_{n-k-1}, \underbrace{1,1, \ldots, 1}_{k}$. Therefore, Theorem 2.2.1 is true.

Proof of Theorem 2.2.2. Choose a graph G in \mathcal{C}_{n}^{k} such that $\prod_{1, c}(G)$ achieves the maximal value. Let $S=\{v \in V(G), d(v)=1\}$ and $G^{\prime}=G-S$. If $\left|G^{\prime}\right|=1$, then for $k=0$, the degree sequence of G is 0 and for $k \neq 0, G$ is a star, that is, its degree sequence is $k, \underbrace{1,1, \ldots, 1}_{k}$. If $\left|G^{\prime}\right|=2$ and for $k=0$, there is no such simple connected graph; For $k \neq 0$, by "Arithmetic-Mean and Geometric-Mean inequality: $x_{1} x_{2} \ldots x_{n} \leq\left(\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}\right)^{n}$, the equality holds if and only if $x_{1}=x_{2}=\ldots=x_{n}$ ", one can obtain that the degree sequence of G is $\left\lceil\frac{k}{2}\right\rceil+1,\left\lfloor\frac{k}{2}\right\rfloor+1, \underbrace{1, \ldots, 1}_{k}$. If $\left|G^{\prime}\right|=3$ and $k=0$, by Lemma 2.2.7, we can obtain that G is a cycle of length 3 , that is, its degree sequence is $2,2,2$. For $k \neq 0$, it is similar to the above proof, that is, the degree sequence of G is $\left\lceil\frac{k}{3}\right\rceil+2,\left\lfloor\frac{k}{3}\right\rfloor+2, k-\left\lceil\frac{k}{3}\right\rceil-\left\lfloor\frac{k}{3}\right\rfloor+2, \underbrace{1, \ldots, 1}_{k}$. Therefore, Theorem 2.2.2 is true.

Proof of Theorem 2.2.3. Choose a graph G in \mathcal{C}_{n}^{k} such that $\prod_{1, c}(G)$ achieves the maximal value. By Lemma 2.2.7 and $n-k \geq 4, G$ contains some cycles. For $n-k=4, G-S$ contains only one cycle C_{0}, where $S=\{v \in V(G), d(v)=1\}$. If $k=0$, by the choice of G, one can
obtain that G is a cycle, that is, its degree sequence is $2,2,2,2$. If $k \neq 0$ and $\left|C_{0}\right|=4$, by adding any deleted vertex back to $G-S$, one can get a new graph G_{01} with degree sequence $3,2,2,2,1$; If $k \neq 0$ and $\left|C_{0}\right|=3$, by adding back any deleted vertex to $G-S$ such that it is adjacent to the pendant vertex in $G-S$, one can obtain a new graph G_{01}^{\prime}. Since G_{01} and G_{01}^{\prime} have the same degree sequences, by Arithmetic-Mean and Geometric-Mean inequality, we can continue to add any deleted vertex back to G_{01} or G_{01}^{\prime} such that it is adjacent to the nonpendant vertex of smallest degree in G_{01} or G_{01}^{\prime}. After adding back all of the deleted vertices, we can obtain the graph of maximal $\prod_{1, c}$-value and Theorem 2.2.3 is true. Thus we will consider the case when $n-k \geq 5$ below. By the choice of G and Lemma 2.2.9, G contains at least two cycles.

Claim 1. The longest path connecting only two cycles has length at most 1.
Proof. On the contrary, let $C_{l}, C_{l^{\prime}}$ be two cycles and $P_{1}=x_{1} x_{2} \ldots x_{p}$ be a path such that $V\left(C_{l}\right) \cap V\left(P_{1}\right)=\left\{x_{1}\right\}, V\left(C_{l^{\prime}}\right) \cap V\left(P_{1}\right)=\left\{x_{p}\right\}$. If $p \geq 3$, set $G^{\prime}=G \cup\left\{x_{1} x_{p}\right\}$, then $d_{G^{\prime}}\left(x_{1}\right)=$ $d\left(x_{1}\right)+1$ and $d_{G^{\prime}}\left(x_{2}\right)=d\left(x_{2}\right)+1$. By the definition of $\prod_{1, c}(G)$, we have $\prod_{1, c}\left(G^{\prime}\right)>\prod_{1, c}(G)$, a contradiction to the choice of G. Thus, $p \leq 2$ and Claim 1 is true.

We first deal with the case when $k=0$.
Claim 2. Any three cycles have no common vertex if $k=0$.

Proof. On the contrary, let C_{1}, C_{2}, C_{3} be the cycles of G such that $\cap_{i=1}^{3} V\left(C_{i}\right)=\left\{v_{0}\right\}$, and $N\left(v_{0}\right) \cap V\left(C_{i}\right)=\left\{v_{i 1}, v_{i 2}\right\}$ for $i \in[1,3]$. Choose v of degree 2 such that v is in an end block C_{t} of G and $N(v) \cap V\left(C_{t}\right)=\left\{v_{t 1}, v_{t 2}\right\}$. Set $G^{\prime \prime}=\left(G-\left\{v_{21} v_{0}, v_{22} v_{0}\right\}\right) \cup\left\{v_{21} v, v_{22} v\right\}$, then $d_{G^{\prime \prime}}\left(v_{0}\right)=d\left(v_{0}\right)-2$ and $d_{G^{\prime \prime}}(v)=d(v)+2$. Since $d\left(v_{0}\right)-2 \geq 4>d(v)$, By the definitions of $\prod_{1, c}(G)$, we have

$$
\frac{\prod_{1, c}(G)}{\prod_{1, c}\left(G^{\prime \prime}\right)}=\frac{d\left(v_{0}\right)^{c} d(v)^{c}}{\left[d\left(v_{0}\right)-2\right]^{c}[d(v)+2]^{c}}=\frac{\left[\frac{d(v)^{c}}{\left[d(v)^{c}\right]}\right]}{\left[\frac{\left[d\left(v_{0}\right)-2\right]^{c}}{d\left(v_{0}\right)^{c}}\right]}<1
$$

that is, $\prod_{1, c}\left(G^{\prime \prime}\right)>\prod_{1}(G)$, a contradiction to the choice of G.

Claim 3. Every vertex of G has the degree 2, 3 or 4 if $k=0$.

Proof. We will prove it by the contradiction. If there is a vertex w_{1} with $d\left(w_{1}\right) \geq 5$, by Claim 2, we can assume that there are two cycles $C_{4}, C_{4^{\prime}}$ and a path P_{2} such that $V\left(C_{4}\right) \cap V\left(C_{4^{\prime}}\right) \cap$ $V\left(P_{2}\right)=\left\{w_{1}\right\}$, since $k=0$ and G is a cactus, there exists a vertex w_{0} of an end block such that $d\left(w_{0}\right)=2$, that is, $d\left(w_{0}\right)<d\left(w_{1}\right)-2$. Without loss of generality, assume that w_{0} is closer to $C_{4^{\prime}}$, let $N\left(w_{1}\right) \cap V\left(C_{4}\right)=\left\{w_{2}, w_{3}\right\}$ and $G^{\prime \prime \prime}=\left(G-\left\{w_{1} w_{2}, w_{1} w_{3}\right\}\right) \cup\left\{w_{0} w_{2}, w_{0} w_{3}\right\}$, by the definition of $\prod_{1, c}(G)$, we have

$$
\frac{\prod_{1, c}(G)}{\prod_{1, c}\left(G^{\prime \prime \prime}\right)}=\frac{d\left(w_{1}\right)^{c} d\left(w_{0}\right)^{c}}{\left[d\left(w_{1}\right)-2\right]^{c}\left[d\left(w_{0}\right)+2\right]^{c}}=\frac{\left[\frac{d\left(w_{0}\right)^{c}}{\left[d\left(w_{0}\right)+2\right]^{c}}\right]}{\left[\frac{\left[d\left(w_{1}\right)-2\right]^{c}}{d\left(w_{1}\right)^{c}}\right]}<1,
$$

that is, $\prod_{1, c}\left(G^{\prime \prime \prime}\right)>\prod_{1, c}(G)$, a contradiction to the choice of G. Thus, Claim 3 is true.
Claim 4. There do not exist two paths of length 1 such that every path connects with only two cycles if $k=0$.

Proof. On the contrary, assume that there are two such paths $P_{5}=z_{1} z_{2}, P_{6}=y_{1} y_{2}$ with $z_{1} \in C_{6}, z_{2} \in C_{7}, y_{1} \in C_{8}, y_{2} \in C_{9}$ such that $N\left(y_{1}\right) \cap V\left(C_{8}\right)=\left\{y_{11}, y_{12}\right\}$ and $d\left(z_{1}\right)=d\left(z_{2}\right)=$ $d\left(y_{1}\right)=d\left(y_{2}\right)=3$. Let $G^{*}=\left(G-\left\{y_{1} y_{2}, y_{1} y_{11}, y_{1} y_{12}\right\}\right) \cup\left\{y_{2} y_{11}, y_{2} y_{12}, z_{1} y_{1}, z_{2} y_{1}\right\}$. Since $d_{G^{*}}\left(z_{1}\right)=d_{G^{*}}\left(z_{2}\right)=d_{G^{*}}\left(y_{2}\right)=4, d_{G^{*}}\left(y_{1}\right)=2$. By the definition of $\prod_{1, c}(G)$, we have

$$
\frac{\prod_{1, c}(G)}{\prod_{1, c}\left(G^{*}\right)}=\frac{d\left(z_{1}\right)^{c} d\left(z_{2}\right)^{c} d\left(y_{1}\right)^{c} d\left(y_{2}\right)^{c}}{\left[d\left(z_{1}\right)+1\right]^{c}\left[d\left(z_{2}\right)+1\right]^{c}\left[d\left(y_{1}\right)-1\right]^{c}\left[d\left(y_{2}\right)+1\right]^{c}}=\frac{3^{c} 3^{c} 3^{c} 3^{c}}{4^{c} 4^{c} 2^{c} 4^{c}}<1,
$$

that is, $\prod_{1, c}\left(G^{*}\right)>\prod_{1, c}(G)$, a contradiction to the choice of G and Claim 4 is true.
Claim 5 G can not have both a cycle of length 4 and a path of length 1 connecting only with two cycles if $k=0$.

Proof. On the contrary, let C_{10}, C_{11}, C_{12} be the cycles and $P=w_{1} w_{2}$ be a path such that $V\left(C_{10}\right) \cap V(P)=\left\{w_{1}\right\}, V\left(C_{11}\right) \cap V(P)=\left\{w_{2}\right\}$. If $\left|C_{10}\right|=\left|C_{11}\right|=3$ and $\left|C_{12}\right|=4$, then there exists a vertex $w_{3} \in V\left(C_{12}\right)$ such that $d\left(w_{3}\right)=3$ or 4 . Let $C_{12}=w_{3} x_{2} x_{3} x_{4} w_{3}$ and $G^{* *}=\left(G-\left\{w_{1} w_{2}, x_{2} x_{3}\right\}\right) \cup\left\{w_{2} w_{3}, w_{2} x_{2}, w_{3} x_{3}\right\}$, then $d_{G^{* *}}\left(w_{1}\right)=d\left(w_{1}\right)-1=2, d_{G^{* *}}\left(w_{2}\right)=$ $d\left(w_{2}\right)+1=4, d_{G^{* *}}\left(w_{3}\right)=d\left(w_{3}\right)+2=5$ or 6 and $G^{* *}$ has no pendent vetices. By the
definitions of $\prod_{1, c}(G)$, we have

$$
\frac{\prod_{1, c}(G)}{\prod_{1, c}\left(G^{* *}\right)}=\frac{d\left(w_{1}\right)^{c} d\left(w_{2}\right)^{c} d\left(w_{3}\right)^{c}}{\left[d\left(w_{1}\right)-1\right]^{c}\left[d\left(w_{2}\right)+1\right]^{c}\left[d\left(w_{3}\right)+2\right]^{c}}=\frac{3^{c} 3^{c} 3^{c}}{2^{c} 4^{c} 5^{c}} \text { or } \frac{3^{c} 3^{c} 4^{c}}{2^{c} 4^{c} 6^{c}}<1
$$

that is, $\prod_{1, c}\left(G^{* *}\right)>\prod_{1, c}(G)$, a contradiction with the choice of G.

$$
\text { If }\left|C_{10}\right|=\left|w_{1} w_{12} w_{13} w_{14} w_{1}\right|=4 \text { and }\left|C_{11}\right|=\left|w_{2} w_{22} w_{23} w_{2}\right|=3, \text { then } d\left(w_{1}\right)=d\left(w_{2}\right)=
$$ $3, d\left(w_{14}\right)=2$ or 4 . Let $G^{* * *}=\left(G-\left\{w_{1} w_{12}\right\}\right) \cup\left\{w_{12} w_{14}, w_{2} w_{14}\right\}$, we have $G^{* * *} \in \mathcal{C}_{n}^{k}$, $d_{G^{* * *}}\left(w_{1}\right)=d\left(w_{1}\right)-1, d_{G^{* * *}}\left(w_{14}\right)=d\left(w_{14}\right)+2, d_{G^{* * *}}\left(w_{2}\right)=d\left(w_{2}\right)+1$. By the definitions of $\prod_{1, c}(G)$, we have

$$
\frac{\prod_{1, c}(G)}{\prod_{1, c}\left(G^{* * *}\right)}=\frac{d\left(w_{1}\right)^{c} d\left(w_{14}\right)^{c} d\left(w_{2}\right)^{c}}{\left[d\left(w_{1}\right)-1\right]^{c}\left[d\left(w_{14}\right)+2\right]^{c}\left[d\left(w_{2}\right)+1\right]^{c}}=\frac{3^{c} 2^{c} 3^{c}}{2^{c} 4^{c} 4^{c}} \text { or } \frac{3^{c} 4^{c} 3^{c}}{2^{c} 6^{c} 4^{c}}<1 .
$$

that is, $\prod_{1, c}\left(G^{* * *}\right)>\prod_{1, c}(G)$, a contradiction with the choice of G and Claim 5 is true.

Thus, for $k=0$ and $n=5$, by the choice of G and Lemma 2.2.9, there exist two cycles of length 3 , that is, its degree sequence is $4,2,2,2,2$; For $n=6, G$ can be G_{l} or G_{s} such that G_{l} contains two cycles of length 3 or G_{s} contains one cycle of length 3 and one cycle of length 4 , that is, the degree sequences are $3,3,2,2,2,2$ and $4,2,2,2,2,2$. Since $\prod_{1, c}\left(G_{l}\right)>\prod_{1, c}\left(G_{s}\right)$, then $\prod_{1, c}\left(G_{l}\right)$ attains the maximal value; Similarly, for $n \geq 7$, if $n=2 t+5$ with $t \geq 1$, then G^{a} contains only the cycles of length 3 and its degree sequence is $\underbrace{4,4, . .4}_{t+1}, \underbrace{2,2, . ., 2}_{t+4}$; If $n=2(t+3)$, then G^{b} contains some cycles of length 3 and one path of length 1 that connects only two cycles, that is, its degree sequence is $\underbrace{4,4, . .4}_{t}, 3,3, \underbrace{2,2, . ., 2}_{t+4}$.

Now we consider the case when $k \neq 0$ and define the following algorithm, say Pro : Step 1. Build $G_{T_{0}}$ by deleting all the dense paths such that $G_{T_{0}}$ satisfies the case of $k=0$, that is, $G_{T_{0}}$ is either G^{a} or G^{b}; Step 2. Build $G_{T_{i}}$ by adding a deleted path to $G_{T_{i-1}}$ such that it is adjacent to a non-pendant vertex of smallest degree in $G_{T_{i-1}}, i \geq 1$; Step 3. Stop, if there is no remaining deleted paths; Go to Step 2, if otherwise.

By the choice of G and Lemma 2.2.10, all of the dense paths of G have length 1 except for at most one of them with length 2 . If all of the dense paths of G have length 1 , by Arithmetic-Mean and Geometric-Mean inequality, we can directly use Pro to get a new graph G_{T} of maximal $\prod_{1, c}$-value. Thus, for $k<4+t, G_{T}$ contains no cycles of length greater than 3 , no dense paths of length greater than 1 , no paths of length greater 0 that connects only two cycles except for at most one of them with length 1 and $d_{G_{T}}\left(w_{a}\right) \in\{2,3,4\}$, where w_{a} is any nonpendant vertex of G_{T}; For $k \geq 4+t$, we have $\left|d_{G_{T}}\left(w_{b}\right)-d_{G_{T}}\left(w_{c}\right)\right| \leq 1$, where w_{b}, w_{c} are any nonpendant vertices of G_{T}, that is, the statement (i) or $(i i)$ is true. If there is one of the dense paths of G with length 2 , then set $P_{1}=u_{1} u_{2} u_{31}, P_{2}=u_{1} u_{2} u_{32}, \ldots, P_{r-1}=u_{1} u_{2} u_{3(r-1)}$ with $d\left(u_{3 i}\right)=1, i \in[1, r-1]$. By Arithmetic-Mean and Geometric-Mean inequality, we can use Pro to get a new graph G_{T} such that $\prod_{1, c}\left(G_{T}\right) \geq \prod_{1, c}(G)$.

By the proof of the case for $k=0$, if G_{T} contains a path $P_{T}=w_{T 1} w_{T 2}$ connecting only two cycles, say $C_{T 1}, C_{T 2}$, such that $V\left(C_{T 1}\right) \cap V\left(P_{T}\right)=\left\{w_{T 1}\right\}, V\left(C_{T 2}\right) \cap V\left(P_{T}\right)=\left\{w_{T 2}\right\}$, then set $G_{1}=\left(G_{T}-\left\{u_{2} u_{i}, i \in[1, r-1]\right\}\right) \cup\left\{u_{31} w_{T 1}, u_{31} w_{T 2}, u_{31} u_{j}, i \in[2, r-1]\right\}$. Since $G_{1} \in \mathcal{C}_{n}^{k}, d_{G_{1}}\left(w_{T 1}\right)=d\left(w_{T 1}\right)+1, d_{G_{1}}\left(w_{T 2}\right)=d\left(w_{T 2}\right)+1, d\left(u_{2}\right)=r, d_{G_{1}}\left(u_{2}\right)=1, d\left(u_{31}\right)=1$ and $d_{G_{1}}\left(u_{31}\right)=r$, by the definition of $\prod_{1, c}(G)$, we have

$$
\frac{\prod_{1, c}(G)}{\prod_{1, c}\left(G_{1}\right)}=\frac{d\left(w_{T 1}\right)^{c} d\left(w_{T 2}\right)^{c} d\left(u_{31}\right)^{c} d\left(u_{2}\right)}{\left[d\left(w_{T 1}\right)+1\right]^{c}\left[d\left(w_{T 2}\right)+1\right]^{c} d\left(u_{31}\right)^{c} d_{1}\left(u_{2}\right)}<1,
$$

that is, $\prod_{1, c}\left(G_{1}\right)>\prod_{1, c}(G)$, a contradiction to the choice of G.
If G_{T} contains no such path P_{T} and $\left|d\left(u_{2}\right)-d\left(v_{T}\right)\right| \leq 1$ for any nonpendant vertices v_{T}, v_{T}^{\prime} of G_{T}, when $\left|d\left(v_{T}\right)-d\left(v_{T}^{\prime}\right)\right| \leq 1$, then the statement (i) is true; When there exist v_{T}, v_{T}^{\prime} such that $\left|d\left(v_{T}\right)-d\left(v_{T}^{\prime}\right)\right|>1$, by the construction of G_{T}, we have $d\left(v_{T}\right), d\left(v_{T}^{\prime}\right) \in\{2,3,4\}$ and G contains no dense paths of length greater than 1 except for at most one of them with length 2, that is, the statement (ii) is true. Otherwise, if there exists a vertex v_{T} such that $\left|d\left(u_{2}\right)-d\left(v_{T}\right)\right|>1$, then without loss of generality, choose $C_{T 3}$ and $C_{T 4}$ such that $V\left(C_{T 3}\right) \cap V\left(C_{T 4}\right)=\left\{v_{T}\right\}$ and let $N\left(v_{T}\right)=\left\{v_{c i}, i \geq 4\right\}$ such that $v_{c 1}, v_{c 2} \in V\left(C_{T 3}\right)$,
$v_{c 3}, v_{c 4} \in V\left(C_{T 3}\right)$. When $d\left(v_{T}\right)-d\left(u_{2}\right)>1$, set $G_{2}=\left(G_{T}-\left\{v_{T} v_{c 1}, v_{T} v_{c 2}, u_{2} u_{3 i}, i \geq 1\right\}\right) \cup$ $\left\{u_{31} v_{c 1}, u_{31} v_{c 2}, u_{31} v_{T}, u_{31} u_{3 i}, i \geq 2\right\}$, then $d_{G_{2}}\left(u_{2}\right)=1, d_{G_{2}}\left(u_{31}\right)=d\left(u_{2}\right)+1$ and $d_{G_{2}}\left(v_{T}\right)=$ $d\left(v_{T}\right)-1$. When $d\left(u_{2}\right)-d\left(v_{T}\right)>1$, that is, $d\left(u_{2}\right)>3$, set $G_{3}=\left(G_{T}-\left\{v_{T} v_{c 1}, v_{T} v_{c 2}, u_{2} u_{3 i}, i \geq\right.\right.$ 1\}) $\cup\left\{u_{31} v_{c 1}, u_{31} v_{c 2}, u_{31} v_{T}, u_{32} v_{T}, u_{33} v_{T}, u_{31} u_{3 i}, i \geq 4\right\}$, then $d_{G_{3}}\left(u_{2}\right)=1, d_{G_{3}}\left(u_{31}\right)=d\left(u_{2}\right)-1$ and $d_{G_{3}}\left(v_{T}\right)=d\left(v_{T}\right)+1$. Since $G_{2}, G_{3} \in \mathcal{C}_{n}^{k}$, by the definition of $\prod_{1, c}(G)$ and Fact 1 , we have

$$
\frac{\prod_{1, c}(G)}{\prod_{1, c}\left(G_{2}\right)}=\frac{d\left(u_{31}\right)^{c} d\left(u_{2}\right)^{c} d\left(v_{T}\right)^{c}}{\left.\left[d\left(u_{2}\right)+1\right]^{c}\right]^{c}\left[d_{2}\left(v_{T}\right)-1\right]^{c}}<1, \frac{\prod_{1, c}(G)}{\prod_{1, c}\left(G_{3}\right)}=\frac{d\left(u_{31}\right)^{c} d\left(u_{2}\right)^{c} d\left(v_{T}\right)^{c}}{\left[d\left(u_{2}\right)-1\right]^{c} 1^{c}\left[d\left(v_{T}\right)+1\right]^{c}}<1,
$$

that is, $\prod_{1, c}\left(G_{2}\right)>\prod_{1, c}(G), \prod_{1, c}\left(G_{3}\right)>\prod_{1, c}(G)$, a contradition to the choice of G. Therefore, Theorem 2.2.3 is true.

Proof of Theorem 2.2.4. Choose a graph G in \mathcal{C}_{n}^{k} such that $\Pi_{2}(G)$ achieves the minimal value. By Lemma 2.2.6, G is an unicyclic graph for $k \leq 1$. If $k=0$, then G is a cycle, that is, its degree sequence is $\underbrace{2,2, \ldots, 2}$; If $k=1$, then G has only one pendant path, that is, its degree sequence is $3, \underbrace{2,2, \ldots, 2}_{n-2}, 1$.

For $k \geq 2$, by Lemma 2.2.7, we only need to consider G as a tree. Since $\sum_{v \in V(G)} d(v)=$ $2(n-1)$, then the average degree of G except the pendant vertices is $\frac{\sum_{v \in V(G) d(v)-k}}{n-k}=$ $\frac{2(n-1)-k}{n-k}=2+\frac{k-2}{n-k}=2+\gamma$. By Lemma 2.2.8, if all of nonpendant vertices have degree $2+\lfloor\gamma\rfloor$ or $2+\lceil\gamma\rceil$, then $\prod_{2}(G)$ attains the minimal value. Set the number of the vertices with degree $2+\lfloor\gamma\rfloor$ to be y_{1}, the number of the vertices with degree $2+\lceil\gamma\rceil$ to be y_{2}, we have $y_{1}+y_{2}+k=n$ and $(2+\lfloor\gamma\rfloor) y_{1}+(2+\lceil\gamma\rceil) y_{2}+k=2(n-1)$. If $\lfloor\gamma\rfloor=\lceil\gamma\rceil$, then Theorem 2.2.4 is true; If $\lceil\gamma\rceil-\lfloor\gamma\rfloor=1$, by solving the above equations, we have $y_{1}=n-2 k+2+\lfloor\gamma\rfloor(n-k), y_{2}=k-2-\lfloor\gamma\rfloor(n-k)$, that is, its degree sequence is $\underbrace{2+\lceil\gamma\rceil, 2+\lceil\gamma\rceil, \ldots, 2+\lceil\gamma\rceil}_{k-2-\lfloor\gamma\rfloor(n-k)}, \underbrace{2+\lfloor\gamma\rfloor, 2+\lfloor\gamma\rfloor, \ldots, 2+\lfloor\gamma\rfloor}_{n-2 k+2+\lfloor\gamma\rfloor(n-k)}, \underbrace{1,1, \ldots, 1}_{k}$. Therefore, Theorem 2.2.4 is true.

Proof of Theorem 2.2.5. Choose G in \mathcal{C}_{n}^{k} such that $\prod_{2}(G)$ achieves the maximal value. By Lemma 2.2.9, the lengths of all cycles in G are 3 except for at most one of them with length 4; By Lemmas 2.2.10 and 2.2.14, every pendant path has length of 1 except for at most one of them with length 2. By Lemma 2.2.11, G can not have both a dense path of length 2 and a cycle of length 4; By Lemma 2.2.13, any three cycles have a common vertex v_{0}; By Lemma 2.2.15, any tree attachs to the same vertex u. Now we show that $u=v_{0}$. Otherwise, if $u \neq v_{0}$ and $d\left(v_{0}\right) \geq d(u)$, let C^{*} be the cycle that contains u and $G^{\prime}=\left(G-\left\{u y \mid y \in N(u)-V\left(C^{*}\right)\right\}\right) \cup\left\{v_{0} y \mid N(u)-V\left(C^{*}\right)\right\}$ with $\left|N(u)-V\left(C^{*}\right)\right|=t_{1}$, by $d_{G^{\prime}}(u)=d(u)-t_{1}, d_{G^{\prime}}\left(v_{0}\right)=d\left(v_{0}\right)+t_{1}$, we have

$$
\frac{\prod_{2}(G)}{\prod_{2}\left(G^{\prime}\right)}=\frac{d\left(v_{0}\right)^{d\left(v_{0}\right)} d(u)^{d(u)}}{\left[d\left(v_{0}\right)+t_{1}\right]^{d\left(v_{0}\right)+t_{1}}\left[d(u)-t_{1}\right]^{d(u)-t_{1}}}=\frac{\frac{d\left(v_{0}\right)^{d\left(v_{0}\right)}}{\left[d\left(v_{0}\right)+t_{1}\right]^{d\left(v_{0}\right)+t_{1}}}}{\frac{\left[d(u)-t_{1}\right]^{d(u)-t_{1}}}{d(u)^{d(u)}}}<1
$$

that is, $\prod_{2}\left(G^{\prime}\right)>\prod_{2}(G)$, a contradiction with the choice of G; If $d(u)>d\left(v_{0}\right)$, let $G^{\prime \prime}=$ $\left(G-\left\{v_{0} y \mid y \in N\left(v_{0}\right)-V\left(C^{*}\right)\right\}\right) \cup\left\{u y \mid y \in N\left(v_{0}\right)-V\left(C^{*}\right)\right\}$ with $\left|N(u)-V\left(C^{*}\right)\right|=t_{2}$, by $d_{G^{\prime \prime}}\left(v_{0}\right)=d\left(v_{0}\right)-t_{2}, d_{G^{\prime \prime}}(u)=d(u)+t_{2}$, we have

$$
\frac{\prod_{2}(G)}{\prod_{2}\left(G^{\prime \prime}\right)}=\frac{d(u)^{d(u)} d\left(v_{0}\right)^{d\left(v_{0}\right)}}{\left[d(u)+t_{2}\right]^{d(u)+t_{2}}\left[d\left(v_{0}\right)-t_{2}\right]^{d\left(v_{0}\right)-t_{2}}}=\frac{\frac{d(u)^{d(u)}}{\left[d(u)+t_{2}\right]^{d(u)+t_{2}}}}{\frac{\left[d\left(v_{0}\right)-t_{2}\right]^{d\left(v_{0}\right)-t_{2}}}{d\left(v_{0}\right)^{d\left(v_{0}\right)}}}<1
$$

that is, $\prod_{2}\left(G^{\prime \prime}\right)>\prod_{2}(G)$, a contradiction with the choice of G. Therefore, we can obtain the construction of G as follows: If $n-k \equiv 0(\bmod 2)$, then the degree sequence of G is $n-2, \underbrace{2,2, \ldots, 2}_{n-k-1}, \underbrace{1,1, \ldots, 1}_{k}$; if $n-k \equiv 1(\bmod 2)$, then the degree sequence of G is $n-$ $1, \underbrace{2,2, \ldots, 2}_{n-k-1}, \underbrace{1,1, \ldots, 1}_{k}$. Thus, Theorem 2.2.5 is true.

3 PADMAKAR-IVAN(PI) INDEX

In this chapter, we provide the extremal k -trees and cactus graphs regarding to an interesting topological index (Padmakar-Ivan index).

3.1 K-TREES

In this section, we will answer the question that whether or not a k-star or a k-path attains the maximal or minimal bound for $P I$-indices of k-trees. The related results are listed again: Theorems 3.1 .1 and 3.1 .2 give the exact $P I$-values of k-stars, k-paths and k-spirals.

Theorem 3.1.1 (Wang and Wei, [78]). For any k-star S_{n}^{k} and k-path P_{n}^{k} with $n=k p+s$ vertices, where $p \geq 0$ is an integer and $s \in[2, k+1]$,

$$
\begin{aligned}
& \text { (i) PI }\left(S_{n}^{k}\right)=k(n-k)(n-k-1), \\
& \text { (ii) } P I\left(P_{n}^{k}\right)=\frac{k(k+1)(p-1)(3 k p+6 s-2 k-4)}{6}+\frac{(s-1) s(3 k-s+2)}{3} .
\end{aligned}
$$

Theorem 3.1.2 (Wang and Wei, [78]). For any k-spiral $T_{n, c}^{k *}$ with $n \geq k$ vertices, where $c \in[1, k-1]$,

$$
P I\left(T_{n, c}^{k *}\right)=\left\{\begin{aligned}
\frac{(n-k)(n-k-1)(4 k-n+2)}{3} & \text { if } n \in[k, 2 k-c] \\
\frac{3 c(n-2 k+c-1)(n-2 k+c)+(k-c)\left(2 c^{2}+3 n c-4 k c+3 k n-4 k^{2}-6 k+3 n-2\right)}{3} & \text { if } n \geq 2 k-c+1
\end{aligned}\right.
$$

Theorem 3.1.3 proves that k-stars achieve the maximal values of $P I$-values for k-trees.

Theorem 3.1.3 (Wang and Wei, [78). For any k-tree T_{n}^{k} with $n \geq k \geq 1, P I\left(T_{n}^{k}\right) \leq P I\left(S_{n}^{k}\right)$.

Theorem 3.1.4 shows that k-paths do not attain the minimal values and certain PIvalues of k-spirals are less than that of the PI-values of k-paths.

Theorem 3.1.4 (Wang and Wei, [78]). For any k-spiral $T_{n, c}^{k *}$ with $n \geq k \geq 1$, then

$$
\begin{aligned}
& \text { (i) } \quad P I\left(P_{n}^{k}\right) \geq P I\left(T_{n, c}^{k *}\right) \text { if } c \in\left[1, \frac{k+1}{2}\right), \\
& \text { (ii) } P I\left(P_{n}^{k}\right) \leq P I\left(T_{n, c}^{k *}\right) \text { if } c \in\left[\frac{k+1}{2}, k-1\right] .
\end{aligned}
$$

In order to consider the $P I$-value of any k-tree G, let $G^{\prime}=G \cup\{u\}$ be a k-tree obtained by adding a new vertex u to G. For any $v_{1}, v_{2} \in V(G)$, let $d\left(v_{1}, v_{2}\right)$ be the distance between v_{1} and v_{2} in $G, d^{\prime}\left(v_{1}, v_{2}\right)$ be the distance between v_{1} and v_{2} in G^{\prime}. Now we define a function that measures the difference of $P I$-values of any edge relating a vertex from G to G^{\prime} as follows: $f:\left\{w \in V\left(G^{\prime}\right), x y \in E(G)\right\}$ to $\{1,0\}$ as follows:

$$
f(w, x y)=\left\{\begin{array}{lll}
0 & \text { if } w=u \text { and } d^{\prime}(x, w)=d^{\prime}(y, w) \\
0 & \text { if } w \in V(G) \text { and } d(x, w)-d^{\prime}(x, w)=d(y, w)-d^{\prime}(y, w) \\
1 & \text { if otherwise }
\end{array}\right.
$$

Using the construction of k-trees, we can derive the following lemmas.

Lemma 3.1.5. Let $x y$ be any edge of a k-tree G with at least $n \geq k+1$ vertices, then $P I(x y) \leq n-k-1$.

Proof. Since every vertex of any k-tree G with at least $k+1$ vertices must be in some $(k+1)$ cliques, that is, $|N(x) \cap N(y)| \geq k-1$ for any $x y \in E(G)$, then $P I(x y) \leq n-(k-1)-2=$ $n-k-1$.

Lemma 3.1.6. Let $x y$ be any edge of a k-tree G with n vertices and $G^{\prime}=G \cup\{u\}$ be a k-tree obtained by adding u to G, then $f(w, x y) \leq 1$. Furthermore, if $w \in V(G)$, then $f(w, x y)=0$.

Proof. By adding u to G, since G^{\prime} is a k-tree, we can get that the distance of any pair of vertices of G will increase at most 1 , then $f(w, x y) \leq 1$. If $w \in V(G)$, then there exists a shortest path $P_{x w}$ or $P_{y w}$ such that $u \notin V\left(P_{x w}\right)$ or $V\left(P_{y w}\right)$, that is, $f(w, x y)=0$.

Lemma 3.1.7. For any k-path G with n vertices, where $n \geq k+2$, let $S_{1}(G)=\left\{v_{1}, v_{n}\right\}$ and $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the simplicial elimination ordering of G. Then $d\left(v_{i}, v_{j}\right)=\left\lceil\frac{j-i}{k}\right\rceil$, for $i<j$ and $i, j \in[1, n]$. Furthermore, if $n=k p+s$ with $p \geq 1, s \in[2, k+1]$, then

$$
d\left(v, v_{k p+s}\right)= \begin{cases}p+1 & \text { if } v \in\left\{v_{1}, v_{2}, \ldots, v_{s-1}\right\} \\ p-i & \text { if } v \in\left\{v_{k i+s}, v_{k i+s+1}, \ldots, v_{k(i+1)+s-1}\right\}, i \in[0, p-1]\end{cases}
$$

Proof. If $j-i \leq k$, then v_{i}, v_{j} must be in the same $(k+1)$-clique of G, and we have $d\left(v_{i}, v_{j}\right)=1$; If $j-i \geq k+1$, then $P_{v_{i} v_{j}}=v_{i} v_{i+k} v_{i+2 k} \ldots v_{i+\left(\left\lfloor\frac{j-i}{k}\right\rfloor-1\right) k} v_{i+\left\lfloor\frac{j-i}{k}\right\rfloor k} v_{j}$ is one of the shortest paths between v_{i} and v_{j}. Thus, $d\left(v_{i}, v_{j}\right)=\left\lceil\frac{j-i}{k}\right\rceil$ and Lemma 3.1.7 is true.

Lemma 3.1.8. For any k-spiral $T_{n, c}^{k *}$ with n vertices and $v_{i}, v_{j} \in V\left(T_{n, c}^{k *}\right)$ for $i<j$,

$$
d\left(v_{i}, v_{j}\right)= \begin{cases}1 & \text { if } \quad j-i \leq k-c, i, j \in[1, n-c] \\ 1 & \text { if } \quad \text { ior } j \in[n-c+1, n] \\ 2 & \text { if } \quad j-i \geq k-c+1, i, j \in[1, n-c]\end{cases}
$$

Proof. If $j-i \leq k-c$ with $i, j \in[1, n-c]$, by Definition 4 , we can get that v_{i}, v_{j} must be in the same $(k+1)$-clique of G and $d\left(v_{i}, v_{j}\right)=1$; If i or $j \in[n-c+1, n]$, without loss of generality, say v_{i} such that $i \in[n-c+1, n]$, then $N\left[v_{i}\right]=V\left(T_{n, c}^{k *}\right)$, that is, $d\left(v_{i}, v_{j}\right)=1$; If $j-i \geq k-c+1$ with $i, j \in[1, n-c]$, then $v_{i} \notin N\left(v_{j}\right)$ and $P_{v_{i} v_{j}}=v_{i} v_{n} v_{j}$ is one of the shortest paths between v_{i} and v_{j}, that is, $d\left(v_{i}, v_{j}\right)=2$. Thus, Lemma 3.1.8 is true.

We next give the proofs of the main results using induction. For any k-tree T_{n}^{k}, if $n=k$ or $k+1$, then T_{n}^{k} is a k or $(k+1)$-clique, that is, $P I\left(T_{n}^{k}\right)=0$. Thus, all of the theorems are true and we will only consider the case when $n \geq k+2$ below.

Proof of Theorem 2.1.1. For (i), let $V\left(S_{n}^{k}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}, G\left[\left\{u_{1}, \ldots, u_{k}\right\}\right]$ be a k-clique and $N\left(u_{l_{0}}\right)=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ for $l_{0} \geq k+1$. Just by the definition of k-stars, we can get that for $i, j \in[1, k], N\left[u_{i}\right]=N\left[u_{j}\right]=V\left(S_{n}^{k}\right)$, then $\operatorname{PI}\left(u_{i} u_{j}\right)=n_{u_{i} u_{j}}\left(u_{i}\right)+n_{u_{i} u_{j}}\left(u_{j}\right)=0$; For $i \in[1, k]$ and $l_{0} \in[k+1, n],\left|N\left[u_{i}\right]-N\left[u_{l_{0}}\right]\right|=n-k-1$, then $P I\left(u_{i} u_{l}\right)=n-k-1$. Thus, we can get $P I\left(S_{n}^{k}\right)=\sum_{i, j \in[1, k]} P I\left(u_{i} u_{j}\right)+\sum_{i \in[1, k], l_{0} \in[k+1, n]} P I\left(u_{i} u_{l_{0}}\right)=k(n-k)(n-k-1)$.

For (ii), we will proceed by induction on $\left|P_{n}^{k}\right|=n \geq k+2$. If $n=k+2$, let $\left\{v_{1}, v_{2}, \ldots, v_{k+2}\right\}$ be the simplicial elimination ordering of P_{k+2}^{k}. By Lemma 3.1.7, we can get that $P I\left(v_{1} v_{i}\right)=1, P I\left(v_{i} v_{i^{\prime}}\right)=0$ and $P I\left(v_{i} v_{k+2}\right)=1$ for $i, i^{\prime} \in[2, k+1]$. Thus, $P I\left(P_{k+2}^{k}\right)=$ $\sum_{i=2}^{k+1} P I\left(v_{1} v_{i}\right)+\sum_{i=2}^{k+1} P I\left(v_{i} v_{k+2}\right)=2 k$. Assume that Theorem 3.1.1 is true for a k-path with at most $k p+s-1$ vertices, where $p \geq 1,2 \leq s \leq k+1$. Let P_{n}^{k} be a k-path such that $\left|P_{n}^{k}\right|=k p+s, V\left(P_{n}^{k}\right)=\left\{v_{1}, v_{2}, \ldots, v_{k p+s}\right\}$ and $\left\{v_{1}, v_{2}, \ldots, v_{k p+s}\right\}$ be the simplicial elimination ordering of P_{n}^{k}. Set $P_{n-1}^{k}=P_{n}^{k}-\left\{v_{k p+s}\right\}$, then $\left\{v_{1}, v_{2}, \ldots, v_{k p+s-1}\right\}$ is the simplicial elimination ordering of P_{n-1}^{k} and for any edge $v_{i} v_{j} \in E\left(P_{n}^{k}\right), d\left(v_{i}, v_{j}\right)$ or $d^{\prime}\left(v_{i}, v_{j}\right)$ is the distance of v_{i} and v_{j} in P_{n-1}^{k} or P_{n}^{k}, respectively.

Let $\alpha=\left[\frac{k(k+1)(p-1)(3 k p+6 s-2 k-4)}{6}+\frac{(s-1) s(3 k-s+2)}{3}\right]-\left[\frac{k(k+1)(p-1)(3 k p+6 s-2 k-10)}{6}\right.$ $\left.+\frac{(s-2)(s-1)(3 k-s+3)}{3}\right]=p k^{2}+p k-k^{2}-3 k+2 k s-s^{2}+3 s-2$. If we can show that by adding $v_{k p+s}$ to $P_{n-1}^{k}, P I\left(P_{n}^{k}\right)=P I\left(P_{n-1}^{k}\right)+\alpha$, then Theorem 3.1.1 is true.

Set $w=v_{k p+s}, A_{1}=\left\{v_{1} v_{s}, v_{1} v_{s+1}, \ldots, v_{1} v_{k+1}\right\}, A_{2}=\left\{v_{2} v_{s}, \ldots, v_{2} v_{k+2}\right\}, \ldots, A_{s-1}=$ $\left\{v_{s-1} v_{s}, \ldots, v_{s-1} v_{k+s-1}\right\}$ and $B_{1}=\left\{v_{1} v_{2}, v_{1} v_{3}, \ldots, v_{1} v_{s-1}\right\}, B_{2}=\left\{v_{2} v_{3}, \ldots, v_{2} v_{s-1}\right\}, \ldots, B_{s-2}=$ $\left\{v_{s-2} v_{s-1}\right\}, B_{s-1}=\phi$. By the definition of k-paths and Lemma 3.1.7, we have $d^{\prime}\left(v_{1}, v_{k p+s}\right)=$ $p+1, d^{\prime}\left(v_{s}, v_{k p+s}\right)=p$ and $d^{\prime}\left(v_{1}, v_{k p+s}\right)=p+1, d^{\prime}\left(v_{2}, v_{k p+s}\right)=p+1$, that is, $d^{\prime}\left(v_{1}, v_{k p+s}\right) \neq$ $d^{\prime}\left(v_{s}, v_{k p+s}\right)$ and $d^{\prime}\left(v_{1}, v_{k p+s}\right)=d^{\prime}\left(v_{2}, v_{k p+s}\right)$. Thus, $f\left(w, v_{1} v_{s}\right)=1$ and $f\left(w, v_{1} v_{2}\right)=0$. Similarly, for any edge $v_{h_{1}} v_{h_{2}} \in \cup_{i=1}^{s-1} A_{i}$ with $h_{1}<h_{2}$, we have $d^{\prime}\left(v_{h_{1}}, v_{k p+s}\right) \neq d^{\prime}\left(v_{h_{2}}, v_{k p+s}\right)$, that is, $f\left(w, v_{h_{1}} v_{h_{2}}\right)=1$; For $v_{h_{1}} v_{h_{2}} \in \cup_{i=1}^{s-1} B_{i}$ with $h_{1}<h_{2}$, we have $d^{\prime}\left(v_{h_{1}}, v_{k p+s}\right)=d^{\prime}\left(v_{h_{2}}, v_{k p+s}\right)$,
that is, $f\left(w, v_{h_{1}} v_{h_{2}}\right)=0$. Thus, we can get that

$$
f\left(v_{k p+s}, x y\right)=\left\{\begin{array}{lll}
1 & \text { if } & x y \in \cup_{i=1}^{s-1} A_{i}, \\
0 & \text { if } & x y \in \cup_{i=1}^{s-1} B_{i} .
\end{array}\right.
$$

For $t \in[0, p-2]$, set $A_{k t+s}=\left\{v_{k t+s} v_{k(t+1)+s}\right\}, A_{k t+s+1}=\left\{v_{k t+s+1} v_{k(t+1)+s}\right.$, $\left.v_{k t+s+1} v_{k(t+1)+s+1}\right\}, \ldots, A_{k(t+1)+s-1}=\left\{v_{k(t+1)+s-1} v_{k(t+1)+s}, v_{k(t+1)+s-1} v_{k(t+1)+s+1}, \ldots\right.$, $\left.v_{k(t+1)+s-1} v_{k(t+2)+s-1}\right\}$, and $B_{k t+s}=\left\{v_{k t+s} v_{k t+s+1}, \ldots, v_{k t+s} v_{k(t+1)+s-1}\right\}, B_{k t+s+1}=$ $\left\{v_{k t+s+1} v_{k t+s+2}, \ldots, v_{k t+s+1} v_{k(t+1)+s-1}\right\}, \ldots, B_{k(t+1)+s-2}=\left\{v_{k(t+1)+s-2} v_{k(t+1)+s-1}\right\}, B_{k(t+1)+s-1}=$ ϕ. For $t=0$ and by Lemma 3.1.7, we have $d^{\prime}\left(v_{s}, v_{k p+s}\right)=p, d^{\prime}\left(v_{k+s}, v_{k p+s}\right)=p-1$ and $d^{\prime}\left(v_{s}, v_{k p+s}\right)=p, d^{\prime}\left(v_{s+1}, v_{k p+s}\right)=p$, that is, $d^{\prime}\left(v_{s}, v_{k p+s}\right) \neq d^{\prime}\left(v_{k+s}, v_{k p+s}\right)$ and $d^{\prime}\left(v_{s}, v_{k p+s}\right)=$ $d^{\prime}\left(v_{s+1}, v_{k p+s}\right)$. Thus, $f\left(w, v_{s} v_{k+s}\right)=1$ and $f\left(w, v_{s} v_{s+1}\right)=0$. Similarly, for any edge $v_{h_{1}} v_{h_{2}} \in$ $\cup_{i=k t+s}^{k(t+1)+s-1} A_{i}$ with $h_{1}<h_{2}$, we have $d^{\prime}\left(v_{h_{1}}, v_{k p+s}\right) \neq d^{\prime}\left(v_{h_{2}}, v_{k p+s}\right)$, that is, $f\left(w, v_{h_{1}} v_{h_{2}}\right)=1$; For $v_{h_{1}} v_{h_{2}} \in \cup_{i=k t+s}^{k(t+1)+s-1} B_{i}$ with $h_{1}<h_{2}$, we have $d^{\prime}\left(v_{h_{1}}, v_{k p+s}\right)=d^{\prime}\left(v_{h_{2}}, v_{k p+s}\right)$, that is, $f\left(w, v_{h_{1}} v_{h_{2}}\right)=0$. Thus, we can get that

$$
f\left(v_{k p+s}, x y\right)=\left\{\begin{array}{lll}
1 & \text { if } & x y \in \cup_{i=k t+s}^{k(t+1)+s-1} A_{i}, \\
0 & \text { if } & x y \in \cup_{i=k t+s}^{k(t+1)+s-1} B_{i} .
\end{array}\right.
$$

Next we only consider the edges in the $(k+1)$-clique $P_{n}^{k}\left[N\left[v_{k p+s}\right]\right.$. For any edge $v_{h_{1}} v_{h_{2}}$ with $h_{1}, h_{2} \in[k(p-1)+s, k p+s-1]$, we have $d^{\prime}\left(v_{h_{1}}, v_{k p+s}\right)=d^{\prime}\left(v_{h_{2}}, v_{k p+s}\right)=1$, that is, $f\left(w, v_{h_{1}} v_{h_{2}}\right)=0$. For any edge $v_{h} v_{k p+s}$ with $h \in[k(p-1)+s, k p]$, by Lemma 3.1.7, we can obtain that $d^{\prime}\left(v_{1}, v_{h}\right)=p, d^{\prime}\left(v_{1}, v_{k p+s}\right)=p+1, d^{\prime}\left(v_{h-k}, v_{h}\right)=1, d^{\prime}\left(v_{h-k}, v_{k p+s}\right)=2$ and when $h \neq k(p-1)+s, d^{\prime}\left(v_{k(p-1)+s}, v_{h}\right)=1, d^{\prime}\left(v_{k(p-1)+s}, v_{k p+s}\right)=1$, that is, $d^{\prime}\left(v_{1}, v_{h}\right) \neq d^{\prime}\left(v_{1}, v_{k p+s}\right)$, $d^{\prime}\left(v_{h-k}, v_{h}\right) \neq d^{\prime}\left(v_{h-k}, v_{k p+s}\right)$ and $d^{\prime}\left(v_{k(p-1)+s}, v_{h}\right)=d^{\prime}\left(v_{k(p-1)+s}, v_{k p+s}\right)$. Similarly, we get that for $j \in[1, p-1], j^{\prime} \in[1, p]$ and $l \neq h$,

$$
\left\{\begin{array}{lll}
d^{\prime}\left(v_{l}, v_{h}\right) \neq d^{\prime}\left(v_{l}, v_{k p+s}\right) & \text { if } & l \in[1, s-1] \cup[h-j k, k(p-j)+s-1], \\
d^{\prime}\left(v_{l}, v_{h}\right)=d^{\prime}\left(v_{l}, v_{k p+s}\right) & \text { if } & l \in\left[k\left(p-j^{\prime}\right)+s, h-j^{\prime} k+k-1\right] \cup[h+1, k p+s-1] .
\end{array}\right.
$$

Thus, if $v_{h}=v_{k(p-1)+s}$, then $d^{\prime}\left(v_{l}, v_{k(p-1)+s}\right) \neq d^{\prime}\left(v_{l}, v_{k p+s}\right)$ with $l \in[1, s-1] \cup\left\{\cup_{j=1}^{p-1}[k(p-\right.$ $1)+s-j k,(p-j) k+s-1]\}=[1,(p-1) k+s-1]$ and $d^{\prime}\left(v_{l}, v_{k(p-1)+s}\right)=d^{\prime}\left(v_{l}, v_{k p+s}\right)$ with $l \in[(p-1) k+s+1, k p+s]$, that is, $P I\left(v_{k(p-1)+s} v_{k p+s}\right)=(p-1) k+s-1$; Similarly, we can obtain that $P I\left(v_{k(p-1)+s+1} v_{k p+s}\right)=(p-1)(k-1)+s-1 ; P I\left(v_{k(p-1)+s+2} v_{k p+s}\right)=$ $(p-1)(k-2)+s-1 ; \ldots ; P I\left(v_{k p} v_{k p+s}\right)=(p-1) s+s-1$.

For any edge $v_{h} v_{k p+s}$ with $h \in[k p+1, k p+s-1]$, by Lemma 3.1.7, we can obtain that $d^{\prime}\left(v_{h-k}, v_{h}\right)=1, d^{\prime}\left(v_{h-k}, v_{k p+s}\right)=2$ and $d^{\prime}\left(v_{k(p-1)+s}, v_{h}\right)=1, d^{\prime}\left(v_{k(p-1)+s}, v_{k p+s}\right)=1$, that is, $d^{\prime}\left(v_{h-k}, v_{h}\right) \neq d^{\prime}\left(v_{h-k}, v_{k p+s}\right)$ and $d^{\prime}\left(v_{k(p-1)+s}, v_{h}\right)=d^{\prime}\left(v_{k(p-1)+s}, v_{k p+s}\right)$. Similarly, we get that for $j^{\prime \prime} \in[1, p]$ and $l \neq h$,

$$
\left\{\begin{array}{lll}
d^{\prime}\left(v_{l}, v_{h}\right) \neq d^{\prime}\left(v_{l}, v_{k p+s}\right) & \text { if } & l \in\left[h-j^{\prime \prime} k, k\left(p-j^{\prime \prime}\right)+s-1\right] \\
d^{\prime}\left(v_{l}, v_{h}\right)=d^{\prime}\left(v_{l}, v_{k p+s}\right) & \text { if } & l \in\left[k\left(p-j^{\prime \prime}\right)+s, h-j^{\prime \prime} k+k-1\right] \cup[h+1, k p+s-1] .
\end{array}\right.
$$

Thus, if $v_{h}=v_{k p+1}$, then $d^{\prime}\left(v_{l}, v_{k p+1}\right) \neq d^{\prime}\left(v_{l}, v_{k p+s}\right)$ for $l \in \cup_{j^{\prime \prime}=1}^{p}\left[k p+1-j^{\prime \prime} k, k\left(p-j^{\prime \prime}\right)+\right.$ $s-1]$ and $d^{\prime}\left(v_{l}, v_{k p+1}\right)=d^{\prime}\left(v_{l}, v_{k p+s}\right)$ with $l \in\left\{\cup_{j^{\prime \prime}=1}^{p}\left[k\left(p-j^{\prime \prime}\right)+s, k\left(p+1-j^{\prime \prime}\right)\right]\right\} \cup[h+$ $1, k p+s-1]$, that is, $P I\left(v_{k p+1} v_{k p+s}\right)=(s-1) p$; Similarly, we have $P I\left(v_{k p+1} v_{k p+s}\right)=$ $(s-2) p ; \ldots ; P I\left(v_{k p+s-2} v_{k p+s}\right)=2 p ; P I\left(v_{k p+s-1} v_{k p+s}\right)=p$.

Set $w \in V\left(P_{n-1}^{k}\right)$, if $x y \in E\left(P_{n}^{k}\right)$ with x or $y \neq v_{k p+s}$, by Lemma 3.1.6, we have $f(w, x y)=0$. Thus,

$$
\begin{aligned}
P I\left(P_{n}^{k}\right)-P I\left(P_{n-1}^{k}\right)= & \sum_{x y \in \cup_{i=1}^{k(p-1)+s-1}\left(A_{i} \cup B_{i}\right)} f(w, x y)+P I\left(v_{k(p-1)+s} v_{k p+s}\right) \\
& +P I\left(v_{k(p-1)+s+1} v_{k p+s}\right)+\ldots+P I\left(v_{k p+s-1} v_{k p+s}\right) \\
= & {[(k+2-s)+(k+3-s)+\ldots+k]+(1+2+\ldots+k)(p-1) } \\
& +[k(p-1)+s-1]+[(k-1)(p-1)+s-1]+[(k-2)(p-1)+s \\
& -1]+\ldots+[s(p-1)+s-1]+[(s-1) p+(s-2) p+\ldots+2 p+p] \\
= & p k^{2}+p k-k^{2}-3 k+2 k s-s^{2}+3 s-2 \\
= & \alpha .
\end{aligned}
$$

Thus, $P I\left(P_{n}^{k}\right)=\frac{k(k+1)(p-1)(3 k p+6 s-2 k-4)}{6}+\frac{(s-1) s(3 k-s+2)}{3}$, for $\left|P_{n}^{k}\right|=k p+s$ and Theorem 3.1.1 is true.

Proof of Theorem 3.1.2. We will proceed by induction on $n \geq k+2$. If $n=k+2$, by the definition of the spiral, we have $T_{n, c}^{k *}$ is also a k-path, that is, $P I\left(T_{n, c}^{k *}\right)=2 k$. If $n \geq k+3$, assume that Theorem 3.1.2 is true for the k-spiral with at most $n-1$ vertices, we will consider $T_{n, c}^{k *}$ with n vertices. Let $T_{n, c}^{k *}$ be a k-spiral with $V\left(T_{n, c}^{k *}\right)=V\left(T_{n-1, c}^{k *}\right) \cup\{v\}$ and $E\left(T_{n, c}^{k *}\right)=E\left(T_{n-1, c}^{k *}\right) \cup\left\{v v_{n-1}, v v_{n-2}, \ldots, v v_{n-k}\right\}$ such that $v_{1}, v_{2}, \ldots, v_{n-c-1}$ is the simplicial ordering of P_{n-c-1}^{k-c}, where $T_{n-1, c}^{k *}=P_{n-c-1}^{k-c}+K_{c}$ with $V\left(T_{n-1, c}^{k *}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$ and $E\left(T_{n-1, c}^{k *}\right)=E\left(P_{n-c-1}^{k-c}\right) \cup E\left(K_{c}\right) \cup\left\{v_{1} v_{l}, v_{2} v_{l}, \ldots, v_{n-c-1} v_{l}\right\}$ for $l \in[n-c, n-1]$. For any edge $v_{i} v_{j} \in E\left(T_{n, c}^{k *}\right), d\left(v_{i}, v_{j}\right)$ or $d^{\prime}\left(v_{i}, v_{j}\right)$ is the distance of v_{i} and v_{j} in $T_{n-1, c}^{k *}$ or $T_{n, c}^{k *}$, respectively.

For $k+2 \leq n \leq 2 k-c$, let $\gamma=\frac{(n-k)(n-k-1)(4 k-n+2)}{3}-\frac{(n-k-1)(n-k-2)(4 k-n+3)}{3}=$ $(n-k-1)(3 k-n+2)$. If we can show that by adding v to $T_{n-1, c}^{k *}, P I\left(T_{n, c}^{k *}\right)=P I\left(T_{n-1, c}^{k *}\right)+\gamma$, then Theorem 3.1.2 is true.

Set $w=v$ and let $l \in[n-c, n-1]$, by Lemma 3.1.8, we have $d^{\prime}\left(v_{l}, v\right)=1$ and $d^{\prime}\left(v_{i}, v\right)=2$ for $i \in[1, n-k-1]$, that is, $f\left(w, v_{l} v_{i}\right)=1 ; d^{\prime}\left(v_{l}, v\right)=d^{\prime}\left(v_{i}, v\right)=1$ for $i \in[n-k, n-1]$, that is, $f\left(w, v_{l} v_{i}\right)=0$. Set $C_{1}=\left\{v_{1} v_{2}, v_{1} v_{3}, \ldots, v_{1} v_{n-k-1}\right\}, C_{2}=$ $\left\{v_{2} v_{3}, v_{2} v_{4}, \ldots, v_{2} v_{n-k-1}\right\}, \ldots, C_{n-k-2}=\left\{v_{n-k-2} v_{n-k-1}\right\}, C_{n-k-1}=\phi, D_{1}=\left\{v_{1} v_{n-k}, v_{1} v_{n-k+1}\right.$, $\left.\ldots, v_{1} v_{k-c+1}\right\}, D_{2}=\left\{v_{2} v_{n-k}, v_{2} v_{n-k+1}, \ldots, v_{2} v_{k-c+2}\right\}, \ldots, D_{n-k-1}=\left\{v_{n-k-1} v_{n-k}, v_{n-k-1} v_{n-k+1}\right.$, $\left.\ldots, v_{n-k-1} v_{n-c-1}\right\}$. By Lemma 3.1.8, we have $d^{\prime}\left(v_{1}, v\right)=d^{\prime}\left(v_{2}, v\right)=2$ and $d^{\prime}\left(v_{n-k}, v\right)=1$, that is, $f\left(w, v_{1} v_{2}\right)=0$ and $f\left(w, v_{1} v_{n-k}\right)=1$. Similarly, for $v_{h_{1}} v_{h_{2}} \in \cup_{i=1}^{n-k-1} C_{i}$ with $h_{1}<h_{2}$, we have $d^{\prime}\left(v_{h_{1}}, v\right)=d^{\prime}\left(v_{h_{2}}, v\right)=2$, that is, $f\left(w, v_{h_{1}} v_{h_{2}}\right)=0$; For $v_{h_{1}} v_{h_{2}} \in \cup_{i=1}^{n-k-1} D_{i}$ with $h_{1}<h_{2}$, we have $d^{\prime}\left(v_{h_{1}}, v\right)=2$ and $d^{\prime}\left(v_{h_{2}}, v\right)=1$, that is, $f\left(w, v_{h_{1}} v_{h_{2}}\right)=1$. Set $C_{n-k}=\left\{v_{n-k} v_{n-k+1}, v_{n-k} v_{n-k+2}, \ldots, v_{n-k} v_{n-c-1}\right\}, C_{n-k+1}=\left\{v_{n-k+1} v_{n-k+2}, v_{n-k+1} v_{n-k+3}, \ldots\right.$, $\left.v_{n-k+1} v_{n-c-1}\right\}, \ldots, C_{n-c-2}=\left\{v_{n-c-2} v_{n-c-1}\right\}$. By Lemma 3.1.8, we have $d^{\prime}\left(v_{n-k}, v\right)=$ $d^{\prime}\left(v_{n-k-1}, v\right)=1$, that is, $f\left(w, v_{n-k} v_{n-k-1}\right)=0$. Similarly, for $v_{h_{1}} v_{h_{2}} \in \cup_{i=n-k}^{n-c-2} C_{i}$ with $h_{1}<h_{2}$, we have $d^{\prime}\left(v_{h_{1}}, v\right)=d^{\prime}\left(v_{h_{2}}, v\right)=1$, that is, $f\left(w, v_{h_{1}} v_{h_{2}}\right)=0$.

Set $E_{1}=\left\{v v_{i}, i \in[n-k, n-c-1]\right\}$, by Lemma 3.1.8, we have $d^{\prime}\left(v_{i}, v\right)=2, d^{\prime}\left(v_{i}, v_{n-k}\right)=$ 1 for $i \in[1, n-k-1]$ and $d^{\prime}\left(v_{j}, v\right)=d^{\prime}\left(v_{j}, v_{n-k}\right)=1$ for $i \in[n-k+1, n]$. Thus, $P I\left(v_{n-k} v\right)=n-k-1$. Similarly, $P I\left(v_{n-k+1} v\right)=P I\left(v_{n-k+2} v\right)=\ldots=P I\left(v_{k-c+1} v\right)=$ $n-k-1$. Also, by Lemma 3.1.8, we have $d^{\prime}\left(v_{i}, v\right)=2, d^{\prime}\left(v_{i}, v_{k-c+2}\right)=1$ for $i \in[2, n-k-1]$, $d^{\prime}\left(v_{1}, v\right)=d^{\prime}\left(v_{1}, v_{k-c+2}\right)=2$ and $d^{\prime}\left(v_{j}, v\right)=d\left(v_{j}, v_{k-c+2}\right)=1$ for $j \in[n-k, n]$. Thus, $P I\left(v_{k-c+2} v\right)=n-k-2$. Similarly, we have $P I\left(v_{k-c+3} v\right)=n-k-3, P I\left(v_{k-c+4} v\right)=$ $n-k-4, \ldots, P I\left(v_{n-c-1} v\right)=1$. Set $E_{2}=\left\{v v_{l}, l \in[n-c, n-1]\right\}$, since $N\left[v_{l}\right]-N[v]=n-k-1$, then $P I\left(v v_{l}\right)=n-k-1$. Set $E_{3}=\left\{v_{i} v_{l}, i \in[1, n-c-1], l \in[n-c, n-1]\right\}$, by Lemma 4, we have $d^{\prime}\left(v_{i}, v\right)=2$ for $i \in[1, n-k-1], d^{\prime}\left(v_{i}, v\right)=1$ for $i \in[n-k, n-c-1], d^{\prime}\left(v_{l}, v\right)=1$ for $l \in[n-c, n-1]$. Thus, $f\left(w, v_{i} v_{l}\right)=1$ for $i \in[1, n-k-1]$ and $f\left(w, v_{i} v_{l}\right)=0$ for $i \in[n-k, n-c-1]$.

Set $w \in V\left(T_{n}^{k *}\right)-\{v\}$, if $x y \in E\left(T_{n, c}^{k *}\right)$ with x or $y \neq v$, by Lemma 3.1.6, we have $f(w, x y)=0$. Thus,

$$
\begin{aligned}
\operatorname{PI}\left(T_{n}^{k *}\right)-P I\left(T_{n-1}^{k *}\right)= & \sum_{x y \in \cup_{i=1}^{n-c-2} C_{i}} f(w, x y)+\sum_{x y \in_{i=1}^{n-k-1} D_{i}} f(w, x y) \\
& +\sum_{x y \in E_{1} \cup E_{2}} P I(x y)+\sum_{x y \in E_{3}} f(w, x y) \\
= & 0+[(2 k-n-c+2)+(2 k-n-c+3)+\ldots+(k-c)] \\
& +[1+2+\ldots+(n-k-2)+(n-k-1)(2 k-n-c+2)] \\
& +c(n-k-1)+c(n-k-1) \\
= & (n-k-1)(3 k-n+2) \\
= & \gamma,
\end{aligned}
$$

Theorem 3.1.2 is true.
For $n \geq 2 k-c+1$, let $\sigma=\frac{3 c(n-2 k+c-1)(n-2 k+c)+(k-c)\left(2 c^{2}+3 n c-4 k c+3 k n-4 k^{2}-6 k+3 n-2\right)}{3}-$ $\frac{3 c(n-2 k+c-2)(n-1-2 k+c)+(k-c)\left(2 c^{2}+3(n-1) c-4 k c+3 k(n-1)-4 k^{2}-6 k+3 n-2\right)}{3}=k^{2}-4 k c+c^{2}+2 n c-3 c+k$. If we can show that by adding v to $T_{n-1, c}^{k *}, P I\left(T_{n, c}^{k *}\right)=P I\left(T_{n-1, c}^{k *}\right)+\sigma$, then Theorem 3.1.2 is true.

Set $w=v$, by Lemma 3.1.8, we have $d^{\prime}\left(v_{l}, v\right)=1$ for $l \in[n-c, n-1], d^{\prime}\left(v_{i}, v\right)=2$ for $i \in[1, n-k-1]$ and $d^{\prime}\left(v_{j}, v\right)=1$ for $j \in[n-k, n-c-1]$. Thus, $f\left(w, v_{l} v_{i}\right)=1$ and $f\left(w, v_{l} v_{j}\right)=$ 0. Set $C_{1}=\left\{v_{1} v_{2}, v_{1} v_{3}, \ldots, v_{1} v_{k-c+1}\right\}, C_{2}=\left\{v_{2} v_{3}, v_{2} v_{4}, \ldots, v_{2} v_{k-c+2}\right\}, \ldots, C_{n-2 k+c-1}=$ $\left\{v_{n-2 k+c-1} v_{n-2 k+c}, v_{n-2 k+c-1} v_{n-2 k+c+1}, \ldots, v_{n-2 k+c-1} v_{n-k-1}\right\}, C_{n-2 k+c}=\left\{v_{n-2 k+c} v_{n-2 k+s+1}\right.$, $\left.v_{n-2 k+c} v_{n-2 k+s+2}, \ldots, v_{n-2 k+c} v_{n-k-1}\right\}, C_{n-2 k+c+1}=\left\{v_{n-2 k+c+1} v_{n-2 k+c+2}, v_{n-2 k+c+1} v_{n-2 k+c+3}\right.$, $\left.\ldots, v_{n-2 k+c+1} v_{n-k-1}\right\}, \ldots, C_{n-k-1}=\phi, D_{n-2 k+c}=\left\{v_{n-2 k+c} v_{n-k}\right\}, D_{n-2 k+c+1}=\left\{v_{n-2 k+c+1} v_{n-k}\right.$, $\left.v_{n-2 k+c+1} v_{n-k+1}\right\}, \ldots, D_{n-k-1}=\left\{v_{n-k-1} v_{n-k}, v_{n-k-1} v_{n-k+1}, \ldots, v_{n-k-1} v_{n-c-1}\right\}$.

By Lemma 3.1.8, we can get that $d^{\prime}\left(v_{1}, v\right)=d^{\prime}\left(v_{2}, v\right)=2$ and $d^{\prime}\left(v_{n-k}, v\right)=1$, that is, $f\left(w, v_{1} v_{2}\right)=0$ and $f\left(w, v_{1} v_{n-k}\right)=1$. Similarly, for $v_{h_{1}} v_{h_{2}} \in \cup_{i=1}^{n-k-1} C_{i}$ with $h_{1}<h_{2}$, we have $d^{\prime}\left(v_{h_{1}}, v\right)=d^{\prime}\left(v_{h_{2}}, v\right)=2$, that is, $f\left(w, v_{h_{1}} v_{h_{2}}\right)=0$; For $v_{h_{1}} v_{h_{2}} \in \cup_{i=n-2 k+c}^{n-k-1} D_{i}$ with $h_{1}<h_{2}$, we have $d^{\prime}\left(v_{h_{1}}, v\right)=2$ and $d^{\prime}\left(v_{h_{2}}, v\right)=1$, that is, $f\left(w, v_{h_{1}} v_{h_{2}}\right)=1$. Set $C_{n-k}=\left\{v_{n-k} v_{n-k+1}, v_{n-k} v_{n-k+2}, \ldots, v_{n-k} v_{n-c-1}\right\}, C_{n-k+1}=\left\{v_{n-k+1} v_{n-k+2}, v_{n-k+1} v_{n-k+3}, \ldots\right.$, $\left.v_{n-k+1} v_{n-c-1}\right\}, \ldots, C_{n-c+2}=\left\{v_{n-c-2} v_{n-c-1}\right\}$. By Lemma 3.1.8, we can get that $d^{\prime}\left(v_{n-k}, v\right)=$ $d^{\prime}\left(v_{n-k+1}, v\right)=1$, that is, $f\left(w, v_{n-k} v_{n-k+1}\right)=0$. Similarly, for $v_{h_{1}} v_{h_{2}} \in \cup_{i=n-k}^{n-c-2} C_{i}$ with $h_{1}<h_{2}$, we have $d^{\prime}\left(v_{h_{1}}, v\right)=d^{\prime}\left(v_{h_{2}}, v\right)=1$, that is, $f\left(w, v_{h_{1}} v_{h_{2}}\right)=0$.

Set $E_{1}=\left\{v v_{i}, i \in[n-k, n-c-1]\right\}$, by Lemma 3.1.8, we have $d^{\prime}\left(v, v_{n-k-1}\right)=$ $2, d^{\prime}\left(v_{n-c-1}, v_{n-k-1}\right)=1, d^{\prime}\left(v, v_{i}\right)=d^{\prime}\left(v_{n-c-1}, v_{i}\right)=1$ for $i \in[n-k, n-c-2] \cup[n-c, n-1]$ and $d^{\prime}\left(v, v_{j}\right)=d\left(v_{n-c-1}, v_{j}\right)=2$ for $j \in[1, n-k-2]$. Thus, $P I\left(v v_{n-c-1}\right)=1$. Similarly, we have $P I\left(v v_{n-c-2}\right)=2, P I\left(v v_{n-c-3}\right)=3, \ldots, P I\left(v v_{n-k}\right)=k-c$. Set $E_{2}=\left\{v v_{l}, l \in[n-c, n-1]\right\}$, since $N\left[v_{l}\right]-N[v]=n-k-1$, then $P I\left(v v_{l}\right)=n-k-1$. Set $E_{3}=\left\{v_{i} v_{l}, i \in[1, n-c-1], l \in\right.$ $[n-c, n-1]\}$, by Lemma 3.1.8, we have $d^{\prime}\left(v, v_{i}\right)=2, d^{\prime}\left(v, v_{l}\right)=1$ for $i \in[1, n-k-1]$ and $d^{\prime}\left(v, v_{i}\right)=d^{\prime}\left(v, v_{l}\right)=1$ for $i \in[n-k, n-c-1]$. Thus, $f\left(w, v_{i} v_{l}\right)=1$ for $i \in[1, n-k-1]$ and $f\left(w, v_{i} v_{l}\right)=0$ for $i \in[n-k, n-c-1]$.

Set $w \in V\left(T_{n}^{k *}\right)-\{v\}$, if $x y \in E\left(T_{n, c}^{k *}\right)$ with x or $y \neq v$, by Lemma 3.1.6, we have $f(w, x y)=0$. Thus,

$$
\begin{aligned}
\operatorname{PI}\left(T_{n}^{k *}\right)-P I\left(T_{n-1}^{k *}\right)= & \sum_{x y \in \cup_{i=1}^{n-c-2} C_{i}} f(w, x y)+\sum_{x y \in_{i=n-2 k+c}^{n-k-1} D_{i}} f(w, x y)+\sum_{x y \in E_{1} \cup E_{2}} P I(x y) \\
& +\sum_{x y \in E_{3}} f(w, x y) \\
= & 0+[1+2+3+\ldots+(k-c)]+[1+2+3+\ldots+(k-c)] \\
& +c(n-k-1)+c(n-k-1) \\
= & k^{2}-4 k c+c^{2}+2 n c-3 c+k \\
= & \sigma .
\end{aligned}
$$

Thus, Theorem 3.1.2 is true.

Proof of Theorem 3.1.3. For $n \geq k+2$, we will proceed by introduction on $\left|T_{n}^{k}\right|=n$. If $n=k+2, T_{n}^{k}$ is also a k-path, that is, $P I\left(T_{n}^{k}\right)=2 k$. If $n \geq k+3$, assume that Theorem 3.1.3 is true for the k-tree with at most $n-1$ vertices, let $v \in S_{1}\left(T_{n}^{k}\right)$ and $T_{n-1}^{k}=T_{n}^{k}-v$, by the induction of hypothesis, we have $P I\left(T_{n-1}^{k}\right) \leq P I\left(S_{n-1}^{k}\right)=k(n-k-1)(n-k-2)$. By adding back v, let $N(v)=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ and $w=v$. Since $T_{n}^{k}\left[v, x_{1}, x_{2}, \ldots, x_{k}\right]$ is a $(k+1)$-clique, then $f\left(w, x_{i} x_{j}\right)=0$ for $i, j \in[1, k]$. By Lemma 3.1.5 and Lemma 3.1.6, we can obtain that $P I\left(v x_{i}\right) \leq n-k-1$ with $i \in[1, k]$ and $f(w, x y) \leq 1$ for any edge $x y \in$ $E\left(T_{n}^{k}\right)-E\left(T_{n}^{k}\left[v, x_{1}, x_{2}, \ldots, x_{k}\right]\right)$. Next, set $w \in V\left(T_{n}^{k}\right)-\{v\}$, by Lemma 3.1.6, if $x y \in E\left(T_{n}^{k}\right)$ with x or $y \neq v$, we have $f(w, x y)=0$. Since $\left|E\left(T_{n}^{k}\right)-E\left(T_{n}^{k}\left[v, x_{1}, x_{2}, \ldots, x_{k}\right]\right)\right|=k(n-k-1)$, we have

$$
\begin{aligned}
\operatorname{PI}\left(T_{n}^{k}\right) & =P I\left(T_{n-1}^{k}\right)+\sum_{x y \in E\left(T_{n}^{k}-\left\{v x_{i}, i \in[1, k]\right\}\right)} f(w, x y)+\sum_{i=1}^{k} P I\left(v x_{i}\right) \\
& \leq P I\left(S_{n-k}^{k}\right)+k(n-k-1)+k(n-k-1) \\
& =k(n-k-1)(n-k-2)+k(n-k-1)+k(n-k-1) \\
& =k(n-k)(n-k-1) \\
& =P I\left(S_{n}^{k}\right) .
\end{aligned}
$$

Thus, Theorem 3.1.3 is true.

Proof of Theorem 3.1.4. For $k=1$, every tree with the same number of vertices has the same $P I$-value. So Theorem 3.1.4 is obvious in this case; For $k \geq 2$, if $k+2 \leq n \leq 2 k-c$, let $n=k p+s$ with $p=1$ and $s=n-k$, by Theorem 3.1.1, we have $\operatorname{PI}\left(P_{n}^{k}\right)-\operatorname{PI}\left(T_{n, c}^{k *}\right)=$ $\frac{(s-1) s(3 k-s+2)}{3}-\frac{(n-k)(n-k-1)(4 k-n+2)}{3}=\frac{(n-k-1)(n-k)[3 k-(n-k)+2]}{3}-\frac{(n-k)(n-k-1)(4 k-n+2)}{3}=0$, and Theorem 3.1.4 is true. If $n \geq 2 k-c+1, p=\frac{n-s}{k}$ and by Theorem 3.1.1 and 3.1.2, define the new functions as follows: For $z \geq 2 k-c+1,1 \leq c \leq k-1$ and $2 \leq s \leq k+1$,

$$
\begin{aligned}
g(z) & =\frac{(k+1)(z-s-k)(3 z+3 s-2 k-4)}{6}+\frac{s(s-1)(3 k-s+2)}{3}, \\
h(z, c) & =c(z-2 k+c-1)(z-2 k+c)+\frac{(k-c)\left(2 c^{2}+3 z c-4 k c+3 k z-4 k^{2}-6 k+3 z-2\right)}{3}, \\
l(z, c) & =g(z)-h(z, c) \\
& =\left(\frac{k}{2}+\frac{1}{2}-c\right) z^{2}+\left(-c^{2}+2 c+4 k c-\frac{11 k^{2}}{6}-\frac{5 k}{2}-\frac{2}{3}\right) z \\
& +\frac{k s^{2}}{2}-\frac{k^{2} s}{6}-\frac{k s}{2}+\frac{5 k^{3}}{3}+\frac{5 k^{2}}{3}+\frac{s^{2}}{2}+\frac{4 k}{3}-\frac{s^{3}}{3}-6 k^{2} c+3 k c^{2}-\frac{c^{3}}{3}-4 k c+c^{2}-\frac{2 c}{3}, \\
l_{z}(z) & =l_{z}(z, c) \\
& =(k+1-2 c) z-c^{2}+2 c+4 k c-\frac{11 k^{2}}{6}-\frac{5 k}{2}-\frac{2}{3} .
\end{aligned}
$$

Then, it is enough to determine that whether or not $l(z, c) \geq 0$ is true. By some caculations, we can obtain the following fact.

Note 1. $z_{1}=2 k-c+1, z_{2}=2 k-c+2$ are the two roots of $l(z, c)=0$ with $c \neq \frac{k+1}{2}$. Proof: For any $c \in[1, k-1]$, let $z_{1}=2 k-c+1, z_{2}=2 k-c+2$, we have $l(2 k-c+1, c)=$ $0, l(2 k-c+2, c)=0$. If $c \neq \frac{k+1}{2}$, then Note 1 is true.

For fixed $c \in\left[1, \frac{k+1}{2}\right)$, that is, $\frac{k}{2}+\frac{1}{2}-c>0$, then the function of $l(z, c)$ about z is open up. Since z is an integer and by Fact 2 , then $l(z, c) \geq 0$ for $z \geq 2 k-c+1$ and Theorem 8 is true; If $c=\frac{k+1}{2}$ and $k \geq 1$, we have $l_{z}(z)=\frac{1-k^{2}}{12} \leq 0$, that is, $l\left(z, \frac{k+1}{2}\right)$ is decreasing about z. By the proof of Note 2, we have $l(2 k-c+1, c)=0$. For $z \geq 2 k-c+1$, we can get that $l\left(z, \frac{k+1}{2}\right) \leq l\left(2 k-c+1, \frac{k+1}{2}\right)=0$ and Theorem 8 is true; For fixed $c \in\left(\frac{k+1}{2}, k-1\right]$, that is, $\frac{k}{2}+\frac{1}{2}-c<0$, then the function of $l(z, c)$ about z is open down. Since z is an integer and by Note 1 , we can obtain that $l(z, c) \leq 0$ for $z \geq 2 k-c+1$ and Theorem 3.1.4 is true.

Remark. The k-stars attain the maximal values of $P I$-values for k-trees, but the k-paths do not attain the minimal values and not all $P I$-values of k-spirals are less than the values of other type of k-trees. This fact indicates two interesting problems that what is the minimum $P I$-value for k-trees and which type of k-trees will achieve the minimum $P I$-value?

3.2 CACTUS GRAPHS

The next figure gives some examples of the extremal graphs in the main results of this section. Here are the two main results and their proofs.

Fig. 1

Fig. 2

Figure 3.2.1: The cacti with extremal PI indices

Theorem 3.2.1 (Wang, Wang and Wei [80]). Let $G \in \mathcal{C}_{n, k}-\left\{C_{3}, C_{3} \cup e, C_{4}, C_{5}\right\}$ with $n \geq k \geq 0$, then $P I(G) \leq\left(n-1+\left\lfloor\frac{n-k-1}{3}\right\rfloor\right)(n-2)$, where the equality holds if and only if G is a tree for $n \leq k+3$ and otherwise, one of the following statements holds(See Fig. 1):
(i) All cycles have length 4 and there are at most $k+2$ cut edges.
(ii) All cycles have length 4 except one of length 6 and there are exact k pendent edges.

Theorem 3.2.2 (Wang, Wang and Wei [80]). Let $G \in \mathcal{C}_{n, k}-\left\{C_{3}, C_{3} \cup e, C_{4}\right\}$ with $n \geq k \geq 0$, then $\operatorname{PI}(G) \geq(n-1)(n-2)-2\left\lfloor\frac{n-k-1}{2}\right\rfloor$, where the equality holds if and only if G is a tree for $n \leq k+2$ and otherwise, all cycles have length 3 and there are at most $k+1$ cut edges (See Fig. 2).

Next we provide some lemmas which are important in the proof of our main results.

Lemma 3.2.3. Let $G \in \mathcal{C}_{n, k}$ and $e \in E(G)$. Then
(i) $P I(e) \leq n-2$, the equality holds if e is a cut edge or an edge of an even cycle.
(ii) If e is an edge of an odd cycle C_{o}, then $P I(e) \leq n-3$. Furthermore, if $G=C_{o}$, then $P I(e)=n-3$.
(iii) For each odd cycle C of $G, P I(C)=(n-2)(|C|-1)-2$.

Proof. Assume that $e=u v \in E(G)$. Since $P I(e)$ counts at most $n-2$ vertices, then $P I(e) \leq n-2$. If e is a cut edge, then $G-e$ contains two components G_{1} and G_{2}. Thus, all vertices of G_{1} are closer to one of $\{u, v\}$, say u, and all vertices of G_{2} are closer to v. Thus, $P I(e)=n_{e}(u)+n_{e}(v)=n-2$ if e is a cut edge. Let $C=v_{1} v_{2} \ldots v_{a} v_{1}$ be a cycle of G and $v_{l} v_{l}^{\prime} \in E(C)$. Since G is a cactus, then $G-E(C)$ contains a components $B_{1}, B_{2}, \ldots, B_{a}$ such that $v_{i} \in V\left(B_{i}\right)$. If a is even, then $d\left(v_{l}, v_{i}\right) \neq d\left(v_{l}^{\prime}, v_{i}\right)$ for $1 \leq i \leq a$, and $d\left(v_{l}, u_{i}\right) \neq d\left(v_{l}^{\prime}, u_{i}\right)$ with $u_{i} \in V\left(B_{i}\right)$. We obtain that $P I(e)=n-2$ if C is even. Thus, (i) is true.

For $C=C_{o}, a$ is odd. Then there exists a unique vertex $v_{t} \in V(C)$ such that $d\left(v_{l}, v_{t}\right)=d\left(v_{l}^{\prime}, v_{t}\right)$, that is, $P I(e) \leq n-3$. When $G=C_{o}$, we see $P I(e)=n-3$. Thus, (ii) is true.

For (iii), a is odd and $\sum_{i=1}^{a}\left|B_{i}\right|=n$. Note that if $d\left(v_{l}, v_{t}\right)=d\left(v_{l}^{\prime}, v_{t}\right)$ with $v_{t} \in V(C)$, then $d\left(v_{l}, u_{t}\right)=d\left(v_{l}^{\prime}, u_{t}\right)$ with $u_{t} \in V\left(B_{t}\right)$. Similarly, if $d\left(v_{l}, v_{t}\right) \neq d\left(v_{l}^{\prime}, v_{t}^{\prime}\right)$ with $v_{t}^{\prime} \in V(C)$, then $d\left(v_{l}, u_{t}^{\prime}\right) \neq d\left(v_{l}^{\prime}, u_{t}^{\prime}\right)$ with $u_{t}^{\prime} \in V\left(B_{t}\right)$. Thus, $P I\left(v_{l} v_{l}^{\prime}\right)=n-2-\left|B_{t}\right|$ with $t \neq l, l^{\prime}$. It induces that

$$
\begin{aligned}
P I(C) & =\sum_{e \in E(C)} P I(e)=\sum_{i=1}^{a}\left(n-2-\left|B_{i}\right|\right) \\
& =a(n-2)-\sum_{i=1}^{a}\left|B_{i}\right| \\
& =|C|(n-2)-n \\
& =(|C|-1)(n-2)-2
\end{aligned}
$$

and Lemma 3.2.3 is true.

Lemma 3.2.4. Let C be a cycle of G. Define Transformation 1: $G_{1}=G-x y$ with $x y \in$ $E(G)-E(C)$ and Transformation 2: $G_{2}=G+x^{\prime} y^{\prime}$, where at least one of $\left\{x^{\prime}, y^{\prime}\right\}$ are in $V(G)-V(C)$. If $G_{1}, G_{2} \in \mathcal{C}_{n, k}$ and $e \in E(C)$, then $P I(e)=P I_{G_{1}}(e)=P I_{G_{2}}(e)$.

Proof. Let $C=v_{1} v_{2} \ldots v_{a} v_{1}, v_{l} v_{l}^{\prime} \in E(C)$. Then $G-E(C)$ contains a components $B_{1}, B_{2}, \ldots, B_{a}$ such that $v_{i} \in V\left(B_{i}\right)$. Since G is a cactus, then for $v_{i} \in V(C)$, if $d\left(v_{l}, v_{i}\right)=d\left(v_{l}^{\prime}, v_{i}\right)$, we obtain $d\left(v_{l}, u_{i}\right)=d\left(v_{l}^{\prime}, u_{i}\right)$ with $u_{i} \in V\left(B_{i}\right)$. Similarly, if $d\left(v_{l}, v_{i}\right) \neq d\left(v_{l}^{\prime}, v_{i}\right)$, we obtain $d\left(v_{l}, u_{i}\right) \neq d\left(v_{l}^{\prime}, u_{i}\right)$ with $u_{i} \in V\left(B_{i}\right)$. Note that G_{1} and G_{2} contain the same cycle C as G, and the components B_{j}^{i} of $G_{i}-C$ with $v_{j} \in V\left(B_{j}^{i}\right)$ has the property that $V\left(B_{j}^{i}\right)=V\left(B_{j}^{i^{\prime}}\right)$. Then for $v_{i} \in V(C)$, if $d\left(v_{l}, v_{i}\right)=d\left(v_{l}^{\prime}, v_{i}\right)$, then $d_{G_{1}}\left(v_{l}, v_{i}\right)=d_{G_{1}}\left(v_{l}^{\prime}, v_{i}\right)$ and $d_{G_{2}}\left(v_{l}, v_{i}\right)=d_{G_{2}}\left(v_{l}^{\prime}, v_{i}\right)$, $d_{G_{1}}\left(v_{l}, u_{i}\right)=d_{G_{1}}\left(v_{l}^{\prime}, u_{i}\right)$ with $u_{i} \in V_{G_{1}}\left(B_{i}\right)$ and $d_{G_{2}}\left(v_{l}, u_{i}\right)=d_{G_{2}}\left(v_{l}^{\prime}, u_{i}\right)$ with $u_{i} \in V_{G_{1}}\left(B_{i}\right)$. Similarly, if $d\left(v_{l}, v_{i}\right) \neq d\left(v_{l}^{\prime}, v_{i}\right)$, then $d_{G_{1}}\left(v_{l}, v_{i}\right) \neq d_{G_{1}}\left(v_{l}^{\prime}, v_{i}\right)$ and $d_{G_{2}}\left(v_{l}, v_{i}\right) \neq d_{G_{2}}\left(v_{l}^{\prime}, v_{i}\right)$, $d_{G_{1}}\left(v_{l}, u_{i}\right) \neq d_{G_{1}}\left(v_{l}^{\prime}, u_{i}\right)$ with $u_{i} \in V_{G_{1}}\left(B_{i}\right)$ and $d_{G_{2}}\left(v_{l}, u_{i}\right) \neq d_{G_{2}}\left(v_{l}^{\prime}, u_{i}\right)$ with $u_{i} \in V_{G_{2}}\left(B_{i}\right)$. Thus, $P I(e)=P I_{G_{1}}(e)=P I_{G_{2}}(e)$ and Lemma 3.2.4 is true.

Lemma 3.2.5. If $G \in \mathcal{C}_{n, k}$ contains t_{1} cycles of lengths $\left\{l_{1}, l_{2}, \ldots, l_{t_{1}}\right\}$ and $t_{2} \geq k$ cut edges, then $\operatorname{PI}(G)$ is unique and these cycles can be shared a common vertex $u_{0}, k-1$ pendent edges can be adjacent to u_{0} and a path of length $t_{2}-k+1$ can be adjacent to u_{0}. (See Fig. 2)

Proof. By Lemma 3.2.3(i) and (iii), PI values with cycles of fixed lengths and fixd number of cut edges are determined. Then

$$
P I(G)=\sum_{C \text { is a cycle of } \mathrm{G}} \sum_{e \in E(C)} P I(e)+\sum_{e \text { is an cut edge of } \mathrm{G}} P I(e)
$$

is unique. By recombining these cycles and cut edges, t_{1} cycles can have a common vertex $u_{0}, k-1$ pendent edges can be adjacent to u_{0} and a path of length $t_{2}-k+1$ can be adjacent to u_{0}. Thus, Lemma 3.2.5 is true.

Lemma 3.2.6. Let $G \in \mathcal{C}_{n, k}-\left\{C_{3}, C_{3} \cup e, C_{5}\right\}$, if $P I(G)$ attains the maximal value, then the length of each cycle, if any, is even.

Proof. If G has a cycle, then $n \geq 3$. Assume that there is an odd cycle $C_{2 t+1}=u_{1} u_{2} \ldots u_{2 t} u_{2 t+1} u_{1}$ with $t \geq 1$. If all vertices of $C_{2 t+1}$ have degree 2 , then $G=C_{2 t+1}$. Since $G \neq C_{3}, C_{5}$, then
$n \geq 7$. By Lemma 3.2.3(ii), $P I(e)=n-3$ for $e \in E\left(C_{2 t+1}\right)$ and $P I\left(C_{2 t+1}\right)=n(n-3)$. By Lemma 1(iii), PI(G)=(n-2)(2t)-2.We build a new graph $G^{\prime}=\left(G-\left\{u_{1} u_{2 t+1}\right\}\right) \cup$ $\left\{u_{1} u_{2 t-2}, u_{2 t+1}\right\}$. Then G^{\prime} contains a cycle $C_{1}^{\prime}=u_{2 t-2} u_{2 t-1} u_{2 t} u_{2 t+1} u_{2 t-2}$ of length 4 and a cycle $C_{2}^{\prime}=u_{1} u_{2} \ldots u_{2 t-2} u_{1}$ of length $2 t-2$. By Lemma 3.2.3(i), PI(G') $=P I\left(C_{1}^{\prime}\right)+P I\left(C_{2}^{\prime}\right)=$ $(n-2)(2 t+2)$. Thus, $P I\left(G^{\prime}\right)>P I(G)$, contradicted that $P I(G)$ is maximal.

Thus, there is a vertex of degree at least 3 in $C_{2 t+1}$. If the vertex of degree 3 is unique, say u_{1}, then there exists a pendent path $u_{1} v_{1} v_{2} \ldots$. Set $G_{0}=\left(G-\left\{u_{1} u_{2}\right\}\right) \cup\left\{u_{2} v_{1}\right\}$, then $G_{0} \in$ $\mathcal{C}_{n, k}-\left\{C_{3}, C_{3} \cup e, C_{5}\right\}$. By Lemma 3.2.3, we obtain $P I\left(G_{1}\right)>P I(G)$, a contradiction. If at least two vertices of $\left\{u_{1}, u_{2}, u_{3}\right\}$ has degree at least two, say u_{1}, u_{2}. Set $G_{1}=G-\left\{u_{1} u_{2}\right\}$, then $G_{1} \in \mathcal{C}_{n, k}-\left\{C_{3}, C_{3} \cup e, C_{5}\right\}$. By Lemma 3.2.3, we obtain $P I(G)=P I(C)+k(k+1)=k(k+3)$ and $P I\left(G_{1}\right)=(k+1)(k+3)>P I(G)$, a contradiction. If $t \geq 2$, we construct a new graph G_{2} such that $G_{2}=G-\left\{u_{1} u_{2 t+1}\right\} \cup\left\{u_{1} u_{2 t}\right\}$ with $d_{G}\left(u_{2 t+1}\right) \geq 3$. Then $G_{2} \in \mathcal{C}_{n, k}, C_{2 t}$ is an even cycle and $u_{2 t} u_{2 t+1}$ is a cut edge. By Lemmas 3.2.3 and 3.2.4,

$$
\begin{aligned}
P I\left(G_{2}\right)-P I(G) & =\left(P I\left(u_{2 t} u_{2 t+1}\right)+P I\left(C_{2 t}\right)\right)-P I\left(C_{2 t+1}\right) \\
& =(n-2)(2 t+1)-[(n-2)(2 t)-2] \\
& >0,
\end{aligned}
$$

contradicted that $\operatorname{PI}(G)$ is maximal. Therefore, each cycle, if any, is even and Lemma 3.2.6 is true.

Lemma 3.2.7. Let $G \in \mathcal{C}_{n, k}-\left\{C_{3}, C_{3} \cup e, C_{5}\right\}$ with $n \geq k+4$, if $P I(G)$ attains the maximal value, then all cycles are length 4 except at most one of them is 6 .

Proof. By Lemma 3.2.6, all cycles are even. If there exists an cycle $C=u_{1} u_{2} \ldots u_{2 t} u_{1}$ with $t \geq 4$. Set $G_{1}=\left(G-\left\{u_{1} u_{2 t}\right\}\right) \cup\left\{u_{1} u_{4}, u_{4} u_{2 t}\right\}$. Then $G_{1} \in \mathcal{C}_{n, k}-\left\{C_{3}, C_{3} \cup e\right\}$ and $\left|E\left(G_{1}\right)\right|=|E(G)|+1$. Since each edge of G_{1} is either a cut edge or an edge of an even cycle, then $P I\left(G_{1}\right)>P I(G)$ by Lemma 3.2.3(i), that is, the length of cycles are at most 6. Now suppose that there are two cycles of length 6. By Lemma 3.2.5, we can assume these two cycles share a common vertex u_{1}, say $C_{1}=u_{1} u_{2} \ldots u_{6} u_{1}$ and $C_{2}=u_{1} v_{2} \ldots v_{6} u_{1}$. Set
$G_{2}=G-\left\{u_{1} u_{2}, u_{3} u_{4}, u_{1} v_{2}\right\} \cup\left\{u_{1} u_{4}, u_{2} v_{2}, u_{3} v_{3}, u_{1} v_{3}\right\}$. Then $G_{2} \in \mathcal{C}_{n, k}-\left\{C_{3}, C_{3} \cup e\right\}$ and $\left|E\left(G_{2}\right)\right|=|E(G)|+1$. Since each edge of G_{2} is either a cut edge or an edge of an even cycle, then $\operatorname{PI}\left(G_{1}\right)>\operatorname{PI}(G)$, that is, there are at most one cycle of length 6 and Lemma 3.2.7 is true.

Lemma 3.2.8. Let $G \in \mathcal{C}_{n, k}-\left\{C_{4}\right\}$, if $P I(G)$ attains the minimal value, then the length of each cycle, if any, is odd.

Proof. Suppose G has an even cycle $C_{2 t}=u_{1} u_{2} \ldots u_{2 t} u_{1}$, then $n \geq k+4$ and $t \geq 2$. If all vertices of G have degree 2, then $G=C_{2 t}$ and $n=2 t$. By Lemma 3.2.3(i), $P I(G)=n(n-$ $2)=2 t(2 t-2)$. Since $G \neq C_{4}$ and $t \geq 3$, set $G_{1}=\left(G-\left\{u_{1} u_{2}\right\}\right) \cup\left\{u_{1} u_{4}, u_{2} u_{4}\right\}$. Then $G_{1} \in$ $\mathcal{C}_{n, k}-\left\{C_{4}\right\}, C_{1,3}=u_{2} u_{3} u_{4} u_{2}$ is an odd cycle and $C_{1,2 t-2}=u_{1} u_{4} u_{5} \ldots u_{2 t} u_{1}$ is an even cycle. By Lemma 3.2.3(i) and (iiii), PI(G1)=PI(C$\left.C_{1,3}\right)+P I\left(C_{1,2 t-2}\right)=(n-2) 2-2+(n-2)(2 t-2)=$ $2 t(2 t-2)-2<P I(G)$, contradicted that $P I(G)$ is minimal. If there exists a vertex u_{2} with $d\left(u_{2}\right) \geq 3$, then we construct a new graph $G_{2}=\left(G-\left\{u_{1} u_{2}\right\}\right) \cup\left\{u_{1} u_{3}\right\}$. Then $G_{2} \in \mathcal{C}_{n, k}$, $u_{2} u_{3}$ is a cut edge and $C^{\prime}=u_{1} u_{3} u_{4} \ldots u_{2 t} u_{1}$ is an odd cycle. By Lemma 3.2.3 and 3.2.5,

$$
\begin{aligned}
P I\left(G_{2}\right)-P I(G) & =\left(P I_{G_{2}}\left(u_{2} u_{3}\right)+P I_{G_{2}}\left(C^{\prime}\right)\right)-P I\left(C_{2 t}\right) \\
& =[(n-2)+(n-2)(2 t-2)-2]-2 t(n-2) \\
& =-n<0 .
\end{aligned}
$$

Thus, $\operatorname{PI}\left(G_{2}\right)<\operatorname{PI}(G)$, contradicted that $\operatorname{PI}(G)$ is minimal. Therefore, each cycle, if any, is odd and Lemma 3.2.8 is true.

Lemma 3.2.9. Let $G \in \mathcal{C}_{n, k}-\left\{C_{4}\right\}$ with $n \geq k+3$, if $\operatorname{PI}(G)$ attains the minimal value, then all cycles have length 3.

Proof. By Lemma 3.2.8, we only consider all cycles of G are odd. Suppose that there is an odd cycle of length greater than 3 , say $C_{2 t+1}=u_{1} u_{2} \ldots u_{2 t+1} u_{1}$ with $t \geq 2$. Set a new graph $G_{1}=\left(G-\left\{u_{2 t-1} u_{2 t}\right\}\right) \cup\left\{u_{1} u_{2 t-1}, u_{1} u_{2 t}\right\}$. Then $G_{1} \in \mathcal{C}_{n, k}$ and we will show that $\operatorname{PI}\left(G_{1}\right)<\operatorname{PI}(G)$. Let $C_{1}=u_{1} u_{2} \ldots u_{2 t-1} u_{1}$ and $C_{2}=u_{1} u_{2 t} u_{2 t+1} u_{1}$. By Lemma $1(i i i)$,
$P I(C)=(n-2)(|C|-2)-2=2 t(n-2)-2$ and $P I\left(C_{1}\right)+P I\left(C_{2}\right)=\left[(n-2)\left(\left|C_{1}\right|-2\right)-\right.$ $2]+\left[(n-2)\left(\left|C_{2}\right|-2\right)-2\right]=2 t(n-2)-4$. Thus, $P I\left(C_{1}\right)+P I\left(C_{2}\right)<P I(C)$. By Lemma 3.2.4, $P I\left(G_{1}\right)-P I(G)=P I\left(C_{1}\right)+P I\left(C_{2}\right)-P I(C)<0$ and Lemma 3.2.9 is true.

Now, we prove the main results of this section.

Proof of Theorem 3.2.1. All length of cycles, if any, are even by Lemma 3.2.6. Since $e \in$ $E(G)$ is either a cut edge or an edge of an even cycle, then $P I(e)=n-2$ by Lemma $1(i)$. Thus, $P I(G)=|E(G)|(n-2)$ and it needs to maximize $|E(G)|$. For $n \leq k+3,\left\lfloor\frac{n-k-1}{3}\right\rfloor=0$ and $\operatorname{PI}(G)=(n-1)(n-2)$. Thus, Theorem 3.2.1 is true. For $n \geq k+4$, all length of cycles are 4 except at most one of them is 6 by Lemma 3.2.7. By Lemma 3.2.5, all cycles of G have a common vertex $u_{0}, k-1$ pendent edges are adjacent to u_{0} and a path of length $t_{2}-k+1$ is adjacent to u_{0}.

Assume that there exists a cycle $C_{6}=u_{0} u_{1} u_{2} u_{3} u_{4} u_{5} u_{0}$ and G contains more than $k+1$ cut edges. Then G has a path $u_{0} v_{1} v_{2} \ldots$ of length more than 2 . Set $G_{1}=\left(G-\left\{u_{2} u_{3}\right\}\right) \cup$ $\left\{u_{2} v_{1}, u_{0} u_{3}\right\}$, then $G_{2} \in \mathcal{C}_{n, k}$ and $\left|E\left(G_{2}\right)\right|=|E(G)|+1$. Since $e \in E\left(G_{1}\right)$ is either an cut edge or an edge of an even cycle, then $P I(e)=n-2$ and $P I\left(G_{1}\right)=(n-2)\left|E\left(G_{1}\right)\right|>$ $P I(G)=(n-2)|E(G)|$, contradicting to the fact that $P I(G)$ is maximal. Thus, G contains exact k pendent edges. Next we will show that if all length of cycles are 4 , then G contains at most $k+2$ cut edges. Otherwise, there exist a path $u_{0} v_{1} v_{2} \ldots$ of length at least 4 by Lemma 3.2.5. Set $G_{2}=G \cup\left\{u_{0} v_{3}\right\}$, then $G_{2} \in \mathcal{C}_{n, k}$ and $\left|E\left(G_{2}\right)\right|=|E(G)|+1$. Since $e \in E\left(G_{1}\right)$ is either an cut edge or an edge of an even cycle, then $P I(e)=n-2$ and $P I\left(G_{2}\right)=(n-2)\left|E\left(G_{2}\right)\right|>P I(G)=(n-2)|E(G)|$, contradicted that $P I(G)$ is maximal. Note that for $n \geq k+4$, the number of cycles of G is $\left\lfloor\frac{n-k-1}{3}\right\rfloor$ and the number of edges of G is $n-1+\left\lfloor\frac{n-k-1}{3}\right\rfloor$. Thus, $P I(G)=\left(n-1+\left\lfloor\frac{n-k-1}{3}\right\rfloor\right)(n-2)$ and Theorem 3.2.1 is true.

Proof of Theorem 3.2.2. For $n \leq k+2,\left\lfloor\frac{n-k-1}{2}\right\rfloor=0$ and $\operatorname{PI}(G)=(n-1)(n-2)$ by Lemma 3.2.3. Thus, Theorem 3.2.2 is true. For $n \geq k+3$, the length of each edge of G is 3 by Lemma 3.2.9. Next we will show that G contains at most $k+1$ cut edges.

Assume that G contains at least $k+2$ cut edges. By Lemma 3.2.5, all cycles of G have a common vertex $u_{0}, k-1$ pendent edges are adjacent to u_{0} and a path of length at least $(k+2)-k+1=3$ is adjacent to u_{0}. Denote the path as $u_{0} v_{1} v_{2} v_{3} \ldots$, set $G_{1}=G \cup\left\{u_{0} v_{2}\right\}$. By Lemma 3.2.3(iii) and 3.2.4, PI $\left(G_{1}\right)-P I(G)=P I_{G_{1}}\left(v_{0} u_{1} u_{2} v_{0}\right)-P I\left(u_{0} v_{1}\right)-P I\left(v_{1} v_{2}\right)=$ $[(n-2)(3-1)-2]-(n-2)-(n-2)=-2<0$. Thus, $P I\left(G_{1}\right)<P I(G)$, contradicted that $\operatorname{PI}(G)$ is minimal. Note that for $n \geq k+3$, the number of cycles of length 3 is $\left\lfloor\frac{n-k-1}{2}\right\rfloor$ and the number of cut edges is $n-1-2\left\lfloor\frac{n-k-1}{2}\right\rfloor$. Thus,

$$
\begin{aligned}
\operatorname{PI}(G) & =2(n-3)\left(\left\lfloor\frac{n-k-1}{2}\right\rfloor\right)+\left(n-1-2\left\lfloor\frac{n-k-1}{2}\right\rfloor\right)(n-2) \\
& =(n-1)(n-2)-2\left\lfloor\frac{n-k-1}{2}\right\rfloor,
\end{aligned}
$$

and Theorem 3.2.2 is true.

Remarks. The maximal and minimal values of vertex PI vertices of cacti are uniqe, but the cacti achieved the maximal and minimal vertex PI index are not unique. All cacti satisfying the statements in Theorem 3.2.1 and Theorem 3.2.2 are arrived at the corresoponding sharp values. Fig 1 and Fig 2 are special examples achieved the sharp bounds.

4 THE RATIO OF DOMINATION AND INDEPENDENT DOMINATION

In this chapter, we study the ratio of the independent domination number and the domination number for bipartite graphs. We also provide further results on such ratio for any graphs.

4.1 THE RATIO

The main theorem of the ratio between domination number and independent domination number, and the proof are as follows.

Theorem 4.1.1 (Wang and Wei [67]). Let G be a bipartite graph with $\Delta(G) \geq 2$. Then

$$
\frac{i(G)}{\gamma(G)} \leq \frac{\Delta(G)}{2}
$$

Proof of Theorem 4.1.1. Let A, B be the two partitions of G and D be a minimum dominating set. Thus, A, B are independent sets and $\gamma(G)=|D|$. Set I_{0} to be the set of isolated vertices in $G[D]$.

If $\left|I_{0}\right|=|D|$, then D is an independent dominating set, that is, $i(G) / \gamma(G)=1 \leq$ $\Delta(G) / 2$. Otherwise, if $\left|I_{0}\right|<|D|$, then there are some edges in $G[D]$. By setting $A_{1}=$ $\left(D-I_{0}\right) \cap A$ and $B_{1}=\left(D-I_{0}\right) \cap B$, we have $\left|A_{1}\right|+\left|B_{1}\right|=|D|-\left|I_{0}\right|$. Without loss of generality, we can assume that $\left|A_{1}\right| \geq\left|B_{1}\right|$.

Define a new vertex set $I=I_{0} \cup A_{1} \cup\left(N_{G}\left(B_{1}\right)-A_{1}-N_{G}\left(I_{0} \cap B\right)\right)$. We first show that I is an independent dominating set. Since D is a dominating set and I_{0} is the set of
isolated vertices of $G[D]$, then $N_{G}\left(I_{0} \cap B\right) \cap A_{1}=\phi$ and

$$
\begin{array}{ll}
\quad= & \left(I_{0} \cap B\right) \cup\left(I_{0} \cap A\right) \cup A_{1} \cup\left(N_{G}\left(B_{1} \cup\left(I_{0} \cap B\right)\right)-A_{1}-N_{G}\left(I_{0} \cap B\right)\right) \\
& \stackrel{B}{B} \cup\left(I_{0} \cap B\right)=D \cap B \\
= & \left(I_{0} \cap B\right) \cup\left(\left(I_{0} \cap A\right) \cup A_{1}\right) \cup\left(N_{G}(D \cap B)-A_{1}-N_{G}\left(I_{0} \cap B\right)\right) \\
& N_{G}(D \cap B)=A \tag{4.1.1}\\
= & \left(I_{0} \cap B\right) \cup A_{1} \cup\left(A-A_{1}-N_{G}\left(I_{0} \cap B\right)\right) \\
& \left(I_{0} \cap B\right) \cup\left(A-N_{G}\left(I_{0} \cap B\right)\right) .
\end{array}
$$

Thus, I is independent. By the equation (1), $N_{G}\left(I_{0} \cap B\right) \subseteq N_{G}(I)$. Since $I_{0} \cap B$ is a set of isolated vertices in $G[D]$, then $A \cap D \subseteq I$ and $B-\left(I_{0} \cap B\right) \subseteq N_{G}(I)$.Thus, I is a dominating set of G as well.

By the definition of I and $\left|N_{G}\left(B_{1}\right)-A_{1}-N_{G}\left(I_{0} \cap B\right)\right| \leq\left|B_{1}\right|(\Delta(G)-1)$, we have $|I| \leq\left|I_{0}\right|+\left|A_{1}\right|+\left|B_{1}\right|(\Delta(G)-1)$. Note that $\left|A_{1}\right|+\left|B_{1}\right|=|D|-\left|I_{0}\right|,\left|A_{1}\right| \geq\left|B_{1}\right| \geq 0$ and $\Delta(G)-1 \geq 1$. If $\left|A_{1}\right|+\left|B_{1}\right|(\Delta(G)-1)$ attains the maximal value, then B_{1} is as big as possible. Also, $\left|B_{1}\right| \leq\left|A_{1}\right|$ and $\left|A_{1}\right|+\left|B_{1}\right|=|D|-\left|I_{0}\right|$ yield that $\left|B_{1}\right| \leq \frac{|D|-\left|I_{0}\right|}{2}$. Thus, $|I|$ achieves the maximal value if $\left|A_{1}\right|=\left|B_{1}\right|=\frac{|D|-\left|I_{0}\right|}{2}$, that is,

$$
\begin{aligned}
|I| & \leq\left|I_{0}\right|+\frac{|D|-\left|I_{0}\right|}{2}+\frac{|D|-\left|I_{0}\right|}{2}(\Delta(G)-1) \\
& =\left|I_{0}\right|+\frac{|D|-\left|I_{0}\right|}{2} \Delta(G)
\end{aligned}
$$

As $\frac{\Delta(G)}{2} \geq 1$ and $\gamma(G)=|D|$, then

$$
i(G) \leq|I| \leq\left|I_{0}\right| \frac{\Delta(G)}{2}+\frac{|D|-\left|I_{0}\right|}{2} \Delta(G)=|D| \frac{\Delta(G)}{2}=\gamma(G) \frac{\Delta(G)}{2}
$$

Thus,

$$
\frac{i(G)}{\gamma(G)} \leq \frac{|I|}{\gamma(G)} \leq \frac{\Delta(G)}{2}
$$

Remark. We see that the Conjecture holds for the bipartite graph G. For the examples, a balanced double star and a complete balanced bipartite graph attain the upper bound.

4.2 EXTENDED RESULTS

Due to the main result, we can obtain the special theorem. If G has no cycles, the following proposition is obvious.

Theorem 4.2.1 ([67]). Let G be a tree with $\Delta(G) \geq 2$, then $\frac{i(G)}{\gamma(G)} \leq \frac{\Delta(G)}{2}$ and the equality holds if G is a balanced double star, where a balanced double star is a tree with exactly two vertices of same degree greater than 1 .

We now provide graphs containing some odd cycles, for which Conjecture 1.6.4 does not hold. For any large n, the graph G^{\prime} consists of an odd cycle $C_{2 k+1}$ and $(2 k+1) s$ vertices of degree 1 such that each vertex on $C_{2 k+1}$ is adjacent to exactly s degree- 1 vertices, for $k, s \geq 1$. Then $\Delta\left(G^{\prime}\right)=s+2, \gamma\left(G^{\prime}\right)=2 k+1$ and $i\left(G^{\prime}\right)=k+(k+1) s$. By caculations, $i\left(G^{\prime}\right) / \gamma\left(G^{\prime}\right)>\Delta\left(G^{\prime}\right) / 2$ if $s>2 k+2$.

Furthermore, as suggested by Dr. Hehui Wu, we provide a series of examples for $\delta \geq 2$, which disprove the Conjeture for any $\delta(G)$. The method of buiding the counterexamples is: Starting with a complete graph, several independent sets of the same size, we add the vertices between the complete graph and any independent set. In paticular, The counterexample Figure 4.2 .1 to the Conjecture with $\delta=2$ is as follows:

Figure 4.2.1: One of the counterexamples for $\delta=2$

5 FUTURE RESEARCH

In this chaper, we propose some further research problems on the topological indices, domination numbers and the long cycles of chordal graphs.

5.1 TOPOLOGICAL INDICES

In my current study of topological indices, I found sharp bounds on the multiplicative Zagreb indices of k-trees in Theorems 3.4 and 3.5. For a cactus graph with given number of pendent vertices, sharp bounds on the multiplicative Zagreb indices are provided in Theorems 3.10-3.14. I will continue to explore the multiplicative Zagreb indices of k-trees with a given number of vertices of degree k. I will apply the analytic tools of Lemmas 2.0.1 and 2.0.2 to deal with the following problem.

Problem 5.1 What are the sharp bounds of multiplicative Zagreb indices of k-trees with fixed number of vertices of degree k ?

5.2 DOMINATION NUMBERS

In my study on domination numbers, all known counterexamples to Conjecture 4.2 contain a large number of vertices with all $\delta \geq 1$ are proposed. In 2012, Goddard et al. [37] proved that $i(G) / \gamma(G) \leq 3 / 2$ if G is a cubic graph. In 2013, Southey and Henning [25] improved the previous bound to $i(G) / \gamma(G) \leq 4 / 3$ for a connected cubic graph G other than $K_{3,3}$, which is better than $3 / 2$. Since $i\left(K_{4,4}\right) / \gamma\left(K_{4,4}\right)=2$, we consider the following problem proposed by Goddard et al. [37].

Problem 5.2 If $G \neq K_{4,4}$ is a connected 4-regular graph, then is it true that $i(G) / \gamma(G) \leq$ $3 / 2$?

5.3 LONG CYCLE

Every two maximum length paths in a connected graph have a common vertex. Gallai in [30] asked whether all maximum length paths share a common vertex of the graph. This perfect "Helly property" on maximum paths is not true in general. The first counter-example was constructed by H . Walther, and the smallest known counter-example is due to Zamfirescu [88]. These and many further examples in Skupien [70] all contain induced cycles longer than three with no chord. In other words, the known counter-examples are not chordal graphs. We have not been able to determine whether the maximum paths of every chordal graph have the Helly property envisioned by Gallai. However, Klavizar and Petkovisek in [53] observed that this is true in a connected split graph (split graphs are chordal graphs whose complement is also chordal). In addition we shall prove that Gallai's question has an affirmative answer for a subfamily of chordal graphs.

A graph is a chordal graph if and only if it is an intersection graph of subgraphs of a host tree. we will try to solve the following problem, which shows that the conjecture is true for the chordal graph with a host tree as a subdivision of double star.

Problem 5.3 Given a chordal graph with a host tree as a subdivision of double star, there is a common vertex for all maximum cycles.

6 CONCLUSION

6.1 SUMMARY AND CONCLUSIONS

In this dissertation, we study k-trees and cactus graphs. We provide the sharp upper and lower bounds of the degree-based topological indices(Multiplicative Zagreb indices) for these graphs. For a distance-based topological index (PI index), the extremal cacti of upper and lower bounds are given. Furthermore, we provide the extremal graphs with the corresponding topological indices.

We also establish and verify a proposed conjecture for the relationship between domination number and independent domination number. The corresponding counterexamples and the graphs achieving the extremal bounds are given as well.

BIBLIOGRAPHY

Bibliography

[1] R.B. Allan, R. Laskar, On domination and independent domination numbers of a graph, Discrete Math. 23 (1978) 73-76.
[2] T. Al-Fozan, P. Manuel, I. Rajasingh, R.S. Rajan, Computing Szeged index of certain nanosheets using partition technique, MATCH Commun. Math. Comput. Chem. 72 (2014) 339-353.
[3] L. K. Arnold, Introduction to Plastics. Iowa State University Press (1968).
[4] A.R. Ashrafi, A. Loghman, PI index of zig-zag polyhex nanotubes, MATCH Commun. Math. Comput. Chem. 55 (2) (2006) 447-452.
[5] A.R. Ashrafi, A. Loghman, Padmakar-Ivan index of TUC4C8(S) nanotubes, J. Comput. Theor. Nanosci. 3 (3) (2006) 378-381.
[6] A.R. Ashrafi, A. Loghman, PI index of armchair polyhex nanotubes, Ars Combin. 80 (2006) 193-199.
[7] A.R. Ashrafi, B. Manoochehrian, H. Yousefi-Azari, PI polynomial of a graph, Utilitas Math. 71 (2006) 97-108.
[8] A.R. Ashrafi, F. Rezaei, PI index of polyhex nanotori, MATCH Commun. Math. Comput. Chem. 57 (2007) 243-250.
[9] L. W. Beineke, R. E. Pippert, The number labeled k-dimentional trees, J. Combin. Theory 6 (1969), 200-205.
[10] J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, New York, 2008.
[11] L. Berrocal, A. Olivieri, J. Rada, Extremal values of vertex-degree-based topological indices over hexagonal systems with fixed number of vertices, Appl. Math. Comput. 243 (2014) 176-183.
[12] S. Chen, Cacti with the smallest, second smallest, and third smallest Gutman index, J. Comb. Optim. 31 (2016) 327-332.
[13] H. Chen, R. Wu, H. Deng, The extremal values of some topological indices in bipartite graphs with a given matching number, Appl. Math. Comput. 280 (2016) 103-109.
[14] K. C. Das, Maximizing the sum of the squares of the degrees of a graph, Discrete Math. 285 (2004) 57-66.
[15] E. Deutsch, S. Klav̆zar, Computing the Hosoya Polynomial of Graphs from Primary Subgraphs, MATCH Commun. Math. Comput. Chem. 70 (2013) 627-644.
[16] E. Deutsch, S. Klav̆zar, M-polynomial and degree-based topological indices, Iranian J. Math. Chem. 6 (2015) 93-102.
[17] H. Deng, G. Huang, X. Jiang, A unified linear programming modeling of some topological indices, J. Comb. Optim. 30(3) (2015) 826-837.
[18] G. Cornuacuteejols and W. Pulleyblank, Perfect triangle-free 2-matchings, Combinatorial optimization, II (Proc. Conf., Univ. East Anglia, Norwich, 1979). Math. Programming Stud. 13 (1980) 1-7.
[19] D. de Cacn D, An upper bound on the sum of squares of degrees in a graph, Discrete Math. 185 (1998) 245-248.
[20] A.A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees theory and applications, Acta Appl. Math. 66 (2001) 211-249.
[21] A.A. Dobrynin, I. Gutman, S. Klavzar, P. Zigert, Wiener index of hexagonal systems, Acta Appl. Math. 72 (2002) 247-294.
[22] K.C. Das, I. Gutman, Bound for vertex PI index in terms of simple graph parameters, Filomat. 27 (2013) 1583-1587.
[23] J. Estes, B. Wei, Sharp bounds of the Zagreb indices of k-trees, J Comb Optim. 27 (2014) 271-291.
[24] M. Eliasi, A. Iranmanesh, I. Gutman, Multiplicative version of first Zagreb index, MATCH Commun. Math. Comput. Chem. 68 (2012) 217-230.
[25] M. Furuya, K. Ozeki, A. Sasaki, On the ratio of the domination number and the indenpendent domination number in graphs, Discrete Appl. Math. 178(2014) 157-159.
[26] L. Feng, G. Yu, On the hyper-Wiener index of cacti, Util. Math. 93 (2014) 57-64.
[27] M.R. Farahani, First and Second Zagreb polynomials of $V C_{5} C_{7}[p, q]$ and $H C_{5} C_{7}[p, q]$ nanotubes, Int. Letters of Chemistry, Physics and Astronomy 12 (2014) 56-62.
[28] M.R. Farahani, Zagreb Indices and Zagreb Polynomials of Pent-Heptagon Nanotube $V A C_{5} C_{7}(S)$, Chemical Physics Research Journal 6(1) (2013) 35-40.
[29] M.R. Farahani, Zagreb Indices and Zagreb Polynomials of Polycyclic Aromatic Hydrocarbons PAHs, Journal of Chemica Acta. 2 (2013) 70-72.
[30] Gallai, T. (1968) Problem 4. In Theory of Graphs: Proceedings of the Colloquium held at Tihany, Hungary, September, 1966 (P. Erdos and G. Katona, eds), Academic Press, New York London.
[31] I. Gutman, Molecular graphs with minimal and maximal Randić indices, Croatica Chem. Acta. 75 (2002) 357-369.
[32] I. Gutman, R. Cruz, J. Rada, Wiener index of Eulerian graphs, Discrete Appl. Math. 162 (2014) 247-250.
[33] I. Gutman, B. Rus̆čcić, N. Trinajstić, C.F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399-3405.
[34] I. Gutman, B. Furtula, Z.K. Vukicevic, G. Popivoda, On Zagreb Indices and Coindices, MATCH Commun. Math. Comput. Chem. 74 (1) (2015) 5-16.
[35] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.
[36] W. Goddard, M.A. Henning, Independent domination in graphs a survey and recent results, Discrete Math. 313 (2013) 839-854.
[37] W. Goddard, M.A. Henning, J. Lyle, J. Southey, On the indeppendent domination number of regular graphs, Ann. Comb. 16 (2012) 719-732.
[38] I. Gutman, Multiplicative Zagreb indices of trees, Bull. Soc. Math. Banja Luka. 18 (2011) 17-23.
[39] I. Gutman, S. Klavzar, B. Mohar, Fiftieth Anniversary of the Wiener Index, Discrete Appl. Math. 80 (1) (1997) 1-113.
[40] S. Hayat, M. Imran, Computation of topological indices of certain networks, Appl. Math. Comput. 240 (2014) 213-228.
[41] F. Harary, E. M. Plamer, On acyclic simplicial complexes, Mathematika. 15 (1968) 115-122.
[42] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker. Inc, New York, 1998.
[43] S.T. Hedetniemi, S. Mitchell, Independent dominations in trees, Proc. Eighth S.E. Conf. on Combinatorics, Graph Theory and Computing, Baton Rouge, LA(1977).
[44] M. Hoji, Z. Luo, E. Vumar, Wiener and vertex PI indices of Kronecker products of graphs, Discrete Appl. Math. 158 (2010) 1848-1855.
[45] A. Hou, S. Li, l. Song, B. Wei, Sharp bounds for Zagreb indices of maximal outerplanar graphs, J. Comb. Optim. 22 (2011) 252-269.
[46] A. Iliacutec, N. Milosavljeviacutec, The weighted vertex PI index, Mathematical and Computer Modelling, 57 (2013) 623-631.
[47] S. Klavbrevezar, I. Gutman, The Szeged and the Wiener Index of Graphs, Appl. Math. Lett. 9 (1996) 45-49.
[48] R. Kazemi, Note on the multiplicative Zagreb indices, Discrete Appl. Math. 198 (2016) 147-154.
[49] P. V. Khadikar, On a Novel Structural Descriptor PI, Nat. Acad. Sci. Lett. 23 (2000) 113-118.
[50] P.V. Khadikar, P.P. Kale, N.V. Deshpande, S. Karmarkar, V.K. Agrawal, Novel PI indices of hexagonal chains, J. Math. Chem. 29 (2001) 143-150.
[51] P.V. Khadikar, S. Karmarkar, R.G. Varma, The estimation of PI index of polyacenes, Acta Chim. Slov. 49 (2002) 755-771.
[52] M.H. Khalifeh, H. Yousefi-Azari, A.R. Ashrafi, Vertex and edge PI indices of Cartesian product graphs, Discrete Appl. Math. 156 (2008) 1780-1789.
[53] S. Klavjzar, M. Petkovjsek, Graphs with nonempty intersection of longest paths, Ars Combin. 29(1990) 43-52.
[54] J. B. Liu, X. F. Pan, Asymptotic incidence energy of lattices, Physica A. 422 (2015) 193-202.
[55] J. B. Liu, X. F. Pan, F. T. Hu, F. F. Hu, Asymptotic Laplacian-energy-like invariant of lattices, Appl. Math. Comput. 253 (2015) 205-214.
[56] J. B. Liu, X.F. Pan, L. Yu, D. Li, Complete characterization of bicyclic graphs with minimal Kirchhoff index, Discrete Appl. Math. 200 (2016) 95-107.
[57] J. B. Liu, W.R. Wang, X.F. Pan, Y.M. Zhang, On degree resistance distance of cacti, Discrete Appl. Math. 203 (2016) 217-225.
[58] H. Liu, M. Lu, F. Tian, On the Randić Index, J. Math. Chem. 44 (2008) 301-310.
[59] S. Li, Q. Zhao, Sharp upper bounds on Zagreb indices of bicyclic graphs with a given matching number, Math. and Comp. Model. 54 (2011) 2869-2879.
[60] S. Li, H. Yang, Q. Zhao, Sharp bounds on Zagreb indices of cacti with k pendant vertices, Filomat. 26 (2012) 1189-1200.
[61] A.H. Lin, R. Luo, X.Y. Zha, A sharp lower bound of the Randiacutec index of cacti with r pendants, Discrete Appl. Math. 156 (10) (2008) 1725-1735.
[62] H.Q. L iu, M. Lu, A unified approach to extremal cacti for different indices, MATCH Commun. Math. Comput. Chem. 58 (1) (2007) 183-194.
[63] H. Narumi, M. Katayama, Simple topological index. A newly devised index characterizing the topological nature of structural isomers of saturated hydrocarbons, Mem. Fac. Engin. Hokkaido Univ. 16 (1984) 209-214.
[64] S. Nikolić, G. Kovac̆ević, A. Milicčević, N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta 76 (2003) 113-124.
[65] H. Narumi, M. Hatayama, Simple topological index. A newly devised index charaterizing the topological nature of structural isomers of saturated hydrocarbons, Mem. Fac. Engin. Hokkaido Univ. 16 (1984) 209-214.
[66] K. Pattabiraman, P. Paulraja, Wiener and vertex PI indices of the strong product of graphs, Discuss. Math. Graph Theory. 32 (2012) 749-769.
[67] N.J. Rad, L. Volkmann, A note on the independent domination number in graphs, Discrete Appl. Math. 161(2013) 3087-3089.
[68] B. Rajan, A. William, C. Grigorious, S. Stephen, On Certain Topological Indices of Silicate, Honeycomb and Hexagonal Networks, J. Comp. Math. Sci. 3 (2012) 530-535.
[69] Y. Shi, Note on two generalizations of the Randic index, Appl. Math. Comput. 265 (2015) 1019-1025.
[70] Z. Skupien, Smallest sets of longest paths with empty intersection, Combin. Probab. Comput. 5 (1996) 429-436.
[71] M. K. Siddiquia, M. Imranb, A. Ahmadc, On Zagreb indices, Zagreb polynomials of some nanostar dendrimers, Appl. Math. Comput. 280 (2016) 132-139.
[72] L. Song, W. Staton, B. Wei, Independence polynomials of k-tree related graphs, Discrete Appl Math 158(2010), 943-950. bibiteme6 J. Southey, M.A. Henning, Domination versus independent domination in cubic graphs, Discrete Math. 313 (2013) 1212-1220.
[73] R. M. Tache, On degree-based topological indices for bicyclic graphs, MATCH Commun. Math. Comput. Chem. 76 (2016) 99-116.
[74] R. Todeschini, V. Consoni, New local vertex invariants and molecular descriptors based on functions of the vertex degrees, MATCH Commun. Math. Comput. Chem. 64 (2010) 359-372.
[75] R. Todeschini, D. Ballabio, V. Consonni, Novel molecular descriptors based on functions of new vertex degrees, In Novel molecular structure descriptors - Theory and applications I. (I. Gutman, B. Furtula, eds.), Univ. Kragujevac (2010), pp. 73-100.
[76] S. Wang, B. Wei, Multiplicative Zagreb indices of k-trees, Discrete Applied Mathematics. 180 (2015) 168-175.
[77] S. Wang, B. Wei, Multiplicative Zagreb indices of cacti, Discrete Math. Algorithm. Appl. DOI: 10.1142/S1793830916500403.
[78] S. Wang and B. Wei, Padmakar - Ivan indices of k-trees, (submitted).
[79] S. Wang and B. Wei, A note on the independent domination number versus the domination number in bipartite graphs, Czechoslovak Mathematical Journal, accepted (2016).
[80] C. Wang, S. Wang and B. Wei, Cacti with Extremal PI Index, Transactions on Combinatorics 5 (2016) 1-8.
[81] H. Wang, L. Kang, Further properties on the degree distance of graphs, J. Comb. Optim. 31 (2016) 427-446.
[82] H. Wang, L. Kang, On the Harary index of cacti, Util. Math. 96 (2015) 149-163.
[83] D. Wang, S. Tan, The maximum hyper-Wiener index of cacti, J. Appl. Math. Comput. 47 (2015) 91-102.
[84] H. Wiener, Structural Determination of Paraffin Boiling Points, J. Am. Chem. Soc. 69 (1947) 17-20.
[85] K. Xu, H. Hua, A unified approach to extremal multiplicative Zagreb indices for trees, unicyclic and bicyclic graphs, MATCH Commun. Math. Comput. Chem. 68 (2012) 241256.
[86] Q. Zhao, S. Li, On the maximum Zagreb index of graphs with k cut vertices, Acta Appl. Math. 111 (2010) 93-106.
[87] B. Zhou, N. Trinajstić, On general sum-connectivity index, J. Math. Chem. 47 (2010) 210-218.
[88] T. Zamfirescu, On longest paths and circuits in graphs, Math. Scand. 38 (1976) 211-239

VITA

Shaohui Wang was born in Ezhou, Hubei, P.R. China to Xiliang Wang and Yinquan Yang. He was valedictorian of his class at Ezhou High School in 2005. Shaohui received a Bachelor's of Mathematics and Applied Mathematics at Hubei University of Education in 2009, the first M.S. degree with a major of Operations Research and Cybernetics at Central China Normal University in 2012, the second M.S. degree with a major of Mathematics with a minor in Statistics at the University of Mississippi in 2014. He is currently a Ph.D. candidate in Mathematics at The University of Mississippi. His research focuses on Graph Theory, Probabilistic Combinatorics and Topological Indices related to Networks and Chemistry.

