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Abstract—Homogeneous manycore systems are emerging for
tera-scale computation and typically utilize Network-on-Chip
(NoC) as the communication scheme between embedded cores.
Effective defect tolerance techniques are essential to improve
the yield of such complex integrated circuits. We propose to
achieve fault tolerance by employing redundancy at the core-level
instead of at the microarchitecture level. When faulty cores exist
on-chip in this architecture, however, the physical topologies of
various manufactured chips can be significantly different. How to
reconfigure the system with the most effective NoC topology is a
relevant research problem. In this paper, we first show that this
problem is an instance of a well known NP-complete problem.
We then present novel solutions for the above problem, which not
only maximize the performance of the on-chip communication
scheme, but also provide a unified topology to Operating System
and application software running on the processor. Experimental
results show the effectiveness of the proposed techniques.

Index Terms—Defect tolerance, manycore system, network-on-
chip, core-level redundancy, topology reconfiguration.

I. INTRODUCTION

A
S TECHNOLOGY advances, industry has started to em-

ploy multiple cores on a single silicon die in order to im-

prove performance through parallel execution, which has the

benefits of power-efficiency and short time-to-market [1]. Sig-

nificant research has been undertaken on tera-scale computing
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that is able to integrate tens to hundreds of homogeneous pro-

cessing cores on a single chip to process massive amounts of in-

formation in parallel [2], [3]. For example, an 80-core teraflop

processor prototype was demonstrated at Intel Developer Forum

2006 [4]. Such processors containing a large number of cores are

called manycore processors (note the difference from multicore

processors that contain a small number of cores). In terms of

communication infrastructure, Network-on-Chip (NoC) is gen-

erally regarded as the most promising interconnect solution for

giga-scale Integrated Circuits (ICs) such as manycore proces-

sors [5], [49], in which the topology determines the ideal per-

formance of the on-chip network whereas the routing algorithm

and the flow control mechanism determine how much of this

potential is realized. As a result, Operating System (OS) should

understand the topology of NoC-based manycore systems to

dispatch and schedule tasks to multiple cores more effectively;

while programmers should also be aware of the topology to im-

prove the performance of parallel applications [16], [52].

There are many challenges for the architecture design of these

NoC-based manycore systems, in which fabrication yield is one

of the most serious concerns because an IC’s profitability de-

pends heavily on it [6], [7]. With the ever-increasing circuit den-

sity, obtaining high fabrication yield solely through improving

the manufacturing process is increasingly difficult and will be-

come unaffordable in the near future. For example, as stated

in [8], it would have been lucky to get yield in the range of

10–20 percent for the Cell processor if architectural help is not

provided. A more practical solution is therefore to provide de-

fect tolerance capabilities on-chip by incorporating redundant

circuits. For example, Memory Built-In-Self-Repair (MBISR)

techniques have been widely utilized in the industry and proved

to be very effective to keep the high fabrication yield of memory

circuits. Such techniques should be extended to other types of

VLSI circuits as well [9].

However, tolerating defects in the microprocessor is quite

different from tolerating defects in memory because the pro-

cessor’s internal structure is not as regular as memory cells, and

previous attempts in this domain mainly focused on introducing

microarchitecture-level redundancy (e.g., [10], [11]). This is ap-

propriate for multicore chips (e.g., a quad-core processor) in

order to keep the overhead small. When the number of on-chip

cores increases to a point that single core becomes inexpensive

when compared to the entire chip (e.g., a 64-core processor),

however, it is not necessary to tolerate defective cores at the mi-

croarchitecture level. Instead, it is more appropriate to employ

core-level redundancy in such case to reduce the complexity as-

sociated with microarchitecture-level redundancy.
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For NoC-based manycore systems with core-level redun-

dancy, faulty cores are replaced by spare ones placed on-chip.

Therefore, it is possible that the topology of the target design

is modified and different fabricated chips may have different

underlying topologies. This is a big burden for programmers

because an optimized program for one topology may not work

well for a different one and the programmers are facing various

topologies when optimizing their parallel programs.

To address the above problem, the concept of virtual topology

is reintroduced from prior network embedding problem in this

paper. A virtual topology is isomorphic with the topology of the

target design but is a degraded version. From the viewpoint of

OS and programmers, they always see a unified virtual topology

regardless of the various underlying physical topologies. This

eases the dispatching and scheduling tasks for OS and facil-

itates the optimization of parallel programs. The above issue

was briefly discussed in [12]. When compared to [12], in this

paper we re-define the problem by introducing two new met-

rics, namely Distance Factor (DF) and Congestion Factor (CF),

to evaluate the performance of different virtual topologies. We

also introduce new algorithms to tackle the problem, and con-

duct extensive simulation experiments to verify the effective-

ness of the proposed solution.

The rest of this paper is organized as follows. Section II

motivates our research work. In Section III, we formulate the

topology reconfiguration problem investigated in this paper.

Section IV reviews prior related work. Section V gives in-depth

analysis of the formulated problem, which is shown to be an

instance of a well-known NP-complete problem. The proposed

topology reconfiguration algorithm is then described in detail

in Section VI. Next, Section VII presents experimental results.

Finally, we conclude this paper in Section VIII.

II. MOTIVATION

A. Core-Level Redundancy in Homogeneous Manycore

Processors

As the internal structure is not as regular as memory cells,

previous research work on defect tolerance in microprocessors

mainly focused on introducing microarchitecture-level redun-

dancy. Redundancy improves yield while at the same time

may reduce the chip performance. Researchers thus evaluate

the effectiveness of various redundancy mechanisms using

performance averaged yield [10] or Yield-Adjusted

Throughput (YAT) [11]. Performance degradation is measured

by the relative Instructions Per Cycle (IPC), i.e., the ratio of the

reduced IPC to the maximum IPC of the perfect version.

For multicore and manycore processors, the chips them-

selves naturally have regularity and redundancy as they contain

a number of cores. As a result, core-level redundancy could

be employed besides microarchitecture-level redundancy. Mi-

croarchitecture- and core-level redundancy are named intra-

and inter-processor redundancy respectively in [10]. In the

former case, a core can be in any degraded states, but the

entire chip is considered bad once the available intra-processor

redundancy is exhausted in even one of its cores. In the latter

case, a core becomes useless if it contains any faults. However,

Fig. 1. Comparison between microarchitecture- and core-level redundancy.
(a) � comparison redrawn from [10] with the permission of the author.
(b) YAT comparison redrawn from [11] with the permission of the author.

as long as enough of the remaining cores are functional, the

chip is considered to be operational.

Various types of microarchitecture-level redundancies are

considered with core-level redundancy by using poisson yield

model in [10]. SPEC2000 and a speech recognition benchmark

are chosen to get the IPC reduction. The results are reproduced

and shown in Fig. 1(a). The x-axis shows the feature size and

the number of cores per chip at each technology. As can be seen

in the figure, although there are significant benefits by using

microarchitecture-level redundancy when compared to baseline

model, drops from 98% at 250 nm to 91.3% at 50 nm.

Core-level redundancy covers the entire area of the chip and

therefore increases uniformly from 85.4% to 98%. The

yield benefits offered by microarchitecture-level and core-level

redundancy crossover at 100 nm.

The authors in [11] proposed a novel defect tolerant mi-

croarchitecture (namely Rescue). Core-level redundancy (called

“core sparing” in their work), is used to compare with Rescue by

using HotSpot model and negative binomial yield model. IPC

reduction is evaluated by simulating 23 benchmark programs

from SPEC2000. It also assumes a 20%(a), 30%(b), 40%(c),

and 50%(d) growth of core complexity starting from one core

per chip at the 90 nm. The results are redrawn and shown in

Fig. 1(b). Similarly, we can observe, as technology advances,

YAT becomes increasingly lower without redundancy. At the

same time, microarchitecture-level redundancy brings YAT im-

provement, but at a smaller scale when compared to core-level

redundancy in newer technology generation. Microarchitec-

ture-level redundancy shows greater improvement under larger

core complexity growth, because the chip has fewer cores and

each defective core disables a larger portion of the chip.

From the above analysis, we can conclude that, for manycore

chips, because the number of on-chip cores is large and they are

fabricated in latest technology, the probability of an embedded

core being defective is quite small. Each degraded chip contains

a majority of fully functional cores and a small number of defec-

tive ones. Therefor, it is not necessary to tolerate defective cores

at the microarchitecture-level. Instead, it is more appropriate to
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employ core-level redundancy in such case to reduce the com-

plexity associated with microarchitecture-level redundancy.

In fact, industry has started to employ core-level redundancy

in their products recently. For example, while the Cell processor

contains eight Synergistic Processing Elements (SPEs), Sony’s

PlayStation 3 video game console considers using only seven of

them to increase the manufacturing yield [8]. This approach is

also applied in Sun’s UltraSPARC T1 processor [13], [14] and

Azul’s Vega2 chip [15].

There are two schemes to design homogeneous multicore or

manycore chips with core-level redundancy, namely As Many

As Available (AMAA) and As Many As Demand (AMAD). The

AMAA scheme, adopted in the T1 processor, degrades a chip by

disabling faulty cores only. For example, a fabricated quad-core

processor can be a full version with 4 functional cores; or it can

be degraded to a tri-core, dual-core or single-core processor de-

pending on the number of faulty cores. In AMAD scheme, also

denoted as “ ” mechanism in this paper, adopted in the

Cell processor , an -core processor is pro-

vided with redundant cores and we always provide customers

with operational cores. That is, it is possible that there are

fault-free cores left unused in AMAD.

It is preferred to employ the AMAA scheme in multicore to

keep the overhead small. However, as the number of on-chip

cores increases, the overhead of leaving a few redundant cores

on-chip unused is acceptable because a single core is inexpen-

sive compared to the entire chip as discussed above. In addi-

tion, with many cores implemented on-chip, we may get var-

ious types of degraded chips (with different number of faulty

cores) after fabrication and the yield of the demanded -core

processor cannot be promised in AMAA scheme. Finally, from

a commercial point of view, it may cause some confusion in

marketing with many different degraded versions. Therefore,

for manycore processors, AMAD scheme is preferred and we

mainly focus on this scheme in this paper.

Manycore processors typically use NoC as the communica-

tion infrastructure, in which the topology determines the ideal

performance whereas the routing algorithm and the flow control

mechanism determine how much of this potential is realized.

However, in AMAD scheme, as the cores that are fabricated to

be defective are not known a priori, when they are replaced by

spare cores, the topology of the target design can be different.

For example, suppose we want to provide 9-core processors with

3 3 2D mesh topology to customers, as shown in Fig. 2(a).

Also, suppose 3 redundant cores (1 column) are provided to im-

prove the yield of these chips as shown in Fig. 2(b). If some

cores (no more than 3) are defective, we could still get 9-core

processors. However, as shown in Fig. 2(c), if faulty cores are

replaced by spare cores, not only the topologies that we get are

different from what we expect, but also the topologies of dif-

ferent chips can be distinct. These changed topologies become

irregular and would cause performance degradation for many-

core processors.

B. Topology Impacts on NoC-Based Manycore Systems

In NoC-based homogeneous manycore systems, the perfor-

mance of the on-chip communication significantly affects the

efficiency of parallel applications. As a result, to minimize the

Fig. 2. Faulty cores change the topology of target design. (a) What we expect.
(b) What we implement. (c) What we get.

communication overhead among threads or tasks, today’s OS

relies on explicit knowledge of the underlying topology [52].

For example in Microsoft Windows Server 2003, a so-called

Advanced Configuration and Power Interface (ACPI) circuit is

used to pass a description of the physical topology of the system

to OS [16]. The topology information is stored in Static Re-

source Affinity Table (SRAT), and is used by Windows when

dispatching and scheduling tasks. For example, a representative

scheme, namely Gang Scheduling [17], divides processors into

groups, in which processors of the same group have lower com-

munication overhead. Tasks that frequently communicate with

each other will be assigned to processors in the same group to

minimize communication overhead.

In addition, from the parallel programmers’ perspective, to

optimize the performance of the application software, currently

they need to know the underlying manycore’s organization [51].

For example, topology information is provided to programmers

through API functions in Windows Server 2003. This is the

communication-exposed programming for NoC platforms [49].

Such tailored programs may be not portable to other proces-

sors due to different system architectures, such as the number

of on-chip cores and their topology.

C. Physical Topology and Virtual Topology

As shown in Fig. 2, faulty cores change the target topology

and different chips may have distinct underlying topologies. It

would be rather cumbersome for OS and programmers to face

various different topologies and optimize them differently. To

address this problem, we propose to provide a unified virtual

topology regardless of the underlying one. Before introducing

the details, we first define Reference Topology as the topology

of the target design that we expect. For example, the 3 3 2D

mesh topology in Fig. 2(a) is the expected reference topology.

For the illustrative “ ” manycore processor shown in

Fig. 2(b), suppose the 7th, 10th and 11th cores are defective

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 20, 2009 at 20:22 from IEEE Xplore.  Restrictions apply. 



1176 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 9, SEPTEMBER 2009

Fig. 3. Physical topology and virtual topology. (a) A chip with faulty cores.
(b) The physical topology. (c) A virtual topology.

after fabrication as shown in Fig. 3(a), these cores are consid-

ered to be removed out of the chip. The remaining fault-free

cores and their interconnections construct a Physical Topology

as shown in Fig. 3(b). It should be emphasized that once a many-

core processor is taped out, its physical topology is determined

and cannot be changed during its lifetime. This is fundamen-

tally different from board-level multiprocessor systems, which

are much easier to be repaired since the target topology can be

maintained by simply replacing the faulty processor with a good

one.

Based on our AMAD scheme, a 9-core processor can still

be provided but with different topology when compared to

the reference topology. That is, we can construct a Virtual

Topology of the chip based on the given physical topology,

which is isomorphic with the reference topology. An example

is shown in Fig. 3(c), in which we construct a virtual 3 3 2D

mesh topology.

With the above configuration, the 3rd, the 5th, the 6th and

the 8th cores are four virtual neighbors of the 2nd core. The 3rd

core is considered to be below the 2nd core virtually, although it

locates at the 2nd core’s right-hand side physically. In addition,

while the 5th core is more than one hop away from the 2nd core,

they are considered to be adjacent in the above virtual topology.

By using virtual topology, OS and programmers always see a

unified topology that is isomorphic with the reference topology,

no matter how the underlying cores are connected physically.

This greatly simplifies task dispatching and scheduling duties

for OS and also facilitates the optimization of parallel programs.

In addition, a unified topology that isolates various physical

topologies for different chips also significantly eases marketing

process.

A similar idea has been applied in Cray T3E network [18].

If some processors fail during the operation of the system, one

or more of them may not be physically contiguous. To continue

providing applications with a contiguous range of virtual pro-

cessor numbers, the routing table along with the logical “who

am I” registers allows the nodes to be logically renamed, i.e.,

mapping from physical to virtual number. This kind of “hot

swapping” is totally transparent to users. As mentioned above,

the failure of nodes and the change of topologies in systems

such as Cray T3E are temporary and can be easily recovered

because a faulty processor is removed from the system and re-

placed while OS and user jobs are kept running on the healthy

nodes. However, for manycore processors, defects are perma-

nent and physical topologies cannot be recovered.

It should be also noted that, depending on the architecture

design of manycore processors, there are many ways to imple-

ment the mapping from various physical topologies to their cor-

responding virtual topology. For example, one possible solu-

tion is to add a firmware layer below OS to record mapping

information which is obtained after fabrication test. This is sim-

ilar to the CORE AVAILABLE REG used in UltraSPARC T1

processor [13], [14]. OS and programmers always work on the

reference topology while the firmware is responsible for trans-

formation.

III. PROBLEM FORMULATION

On-chip faulty cores change the topology of the target design

and cause performance degradation for parallel applications. To

tackle this problem, we use virtual topology to provide a unified

interface to OS and programmers, no matter how the underlying

cores are connected physically. At the same time, however, as

there can be many virtual topologies for a particular physical

topology and they may affect applications differently, we should

choose the one that results in the best performance.

Since there are a wide range of applications with different

characteristics running on the NoC-based manycore systems

and they may have different requirements on the construction

of virtual topologies, it is difficult to evaluate the impact of vir-

tual topologies on various applications at the chip architecture

design stage. As a result, we evaluate the performance of virtual

topologies themselves and mainly consider the average latency

and throughput of different virtual topologies.

In order to do so, from the viewpoint of the NoC, two eval-

uation metrics are introduced in this section to model the per-

formance degradation of different virtual topologies when com-

pared to the reference topology, namely Distance Factor (DF)

and Congestion Factor (CF). For the sake of simplicity, we as-

sume the communication infrastructure to be fault-free in this

research work. This assumption can be justified since the routers

and links use much less hardware resources when compared to

the cores and are thus less vulnerable to defects [32]. Also, it

would not cause significant overhead to include fault-tolerant

features such as Triple Modular Redundancy (TMR) to protect

them.

Distance Factor: The zero-load latency of a topology can

be expressed as [48]: . It is composed

of three terms. The router delay is for a network with

an average hop count of and a delay of through a single

router. The time of flight is for a network with an average

distance of and a propagation velocity of . The last one is

the serialization latency which is the time for a packet of length

to cross a channel with bandwidth .

For a particular physical topology, virtual topologies differ

from each other only in the average hop count . When com-

pared to reference topology, it is obvious that the average hop

count of an irregular virtual topology becomes larger and thus

the zero-load latency becomes longer. The distance factor is

used to evaluate such degradation, in which between two

nodes and is defined as the physical hops between them
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Fig. 4. CF comparison between two virtual topologies with the same DF
��� � �� for a given physical topology. (a) Virtual topology I. (b) Virtual
topology II.

and the distance factor of node

is defined as the average distance factor between node and all

its virtual neighbors

(1)

Finally, the distance factor of a virtual topology (DF) is de-

fined as the average of all nodes

(2)

(There are in total N nodes in the virtual topology.)

The reference topology has the minimum DF as usually vir-

tual neighbors are located next to each other physically. For ex-

ample, DF is 1 in mesh and torus topologies, which means that

each pair of virtual neighbors is exactly one hop away from each

other. Larger value of DF means longer communication delay

among virtual neighbors.

Congestion Factor: For a given physical topology, it is likely

that there are several virtual topologies with the same DF values,

as shown in Fig. 4. We therefore use congestion factor to fur-

ther evaluate the performance of virtual topologies. A virtual

topology not only changes the average hop count among cores

but also affects the distribution of channel load. Traffic may be-

come unbalanced among different links. As the more balanced

the channel load, the closer the throughput of the network is to

the ideal case [48], a virtual topology that could balance traffic

more evenly across all NoC links is preferred.

According to the previous discussion, traffic distribution in

NoC-based manycore systems has the property of spatial lo-

cality, i.e., communication is more likely to happen between ad-

jacent cores rather than distant ones. We thus only consider the

case where a node only communicate with its virtual neighbors.

We define the congestion factor of a physical link (denoted as

) as follows: for any nodes and , if they are virtual neigh-

bors, and is on one of the routing paths between them according

to the NoC’s routing mechanism (e.g., XY-routing [49]), we

add by 1. For the two virtual topologies in Fig. 4, the

values are shown above each physical links. It is clear that traffic

in topology I is much balanced than the one in topology II. In

topology II, some links are much congested while

some others are barely used .

Fig. 5. System organization for manycore platform with “� ��” scheme.

Based on the above observation, we define the congestion

factor of a virtual topology (CF) as the standard deviation of

of all links to indicate the traffic distribution

(3)

(There are in total links in the physical topology.)

CF of the reference topology is 0, which means that traffic can

be more balanced across the network1. Greater CF means less

even flow distribution. Please note that even though advanced

routing algorithms can be introduced to balance channel load,

CF can be an auxiliary performance metric to evaluate the raw

flow distribution which reflects the quality of a virtual topology.

With the above two metrics, the quality of different virtual

topologies can be evaluated and compared. DF and CF might be

conflicted with each other during optimization, hence we unify

them together. The Unified Metric (UM) is defined as

(4)

in which and are the optimization weights designated

by users .

Reconfiguration from physical to virtual topology is very

complex and it depends heavily on the system organizations,

such as the reference topology, the on-chip redundancy distri-

bution, etc. In this paper, we mainly focus on mesh and torus

topologies, which are the most widely used ones in NoC-based

manycore systems. We adopt a representative scalable many-

core architecture proposed by Intel as our platform model,

which integrates an array of tens to hundreds of streamlined

processing cores and accelerators connected by a scalable

NoC infrastructure [4], as shown in Fig. 5. We formulate the

topology reconfiguration problem for 2D mesh/torus topology

investigated in this paper as follows:

[Topology Reconfiguration Problem (TRP)]: For an

homogeneous manycore processor with redundant cores, sup-

pose cores are faulty, construct coordinates

as follows:

1Please note, congested links are usually revealed around the middle of net-
work even for uniform traffic pattern in practice, CF metric is mainly for com-
parison purpose and 0 is its ideal upper bound.
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Fig. 6. Topology reconfiguration.

Distribute these coordinates to fault-free

cores to construct a virtual topology , in which nodes

with coordinates and are

four virtual neighbors of node , and nodes without being

assigned coordinates are left unused, satisfying

Two example virtual topologies for a given physical topology

are shown in Fig. 6. The values of DF and CF for these two

virtual topologies are also shown in the figure. Clearly, new

topology reconfiguration algorithm needs to be developed to se-

lect the best candidate topology. Before introducing our pro-

posed algorithms, we firstly review prior related work in this

area and then give some in-depth analysis of the above TRP

problem in the following two sections.

IV. RELATED PRIOR WORK

In this section, we briefly review related prior research work,

including the defect tolerance for memory chips and VLSI array

processors and the network embedding problems. We show the

similarities and differences between the topology reconfigura-

tion problem studied in this paper with previous work.

A. Defect Tolerance in Memory and VLSI Array Processors

Using redundant components to achieve yield improvement

has been widely applied in memory chips and VLSI array pro-

cessors for a long time.

To avoid yield loss in memory chips, spare elements, i.e.,

redundant columns, rows, words or small blocks are added to

repair faulty storage cells for almost all memories with rela-

tively high capacity [50]. In MBISR, failure bitmap informa-

tion obtained through test is stored on-chip for repair purpose.

The repair efficiency is determined by spare structure, redun-

dancy analysis and repair strategy. 2D redundancy is the most

widely used spare structure nowadays, in which both spare rows

and spare columns are employed. The objective of redundancy

analysis is to choose the minimum number of spare rows and

columns that cover all the faulty cells. The complexity of 2D re-

dundancy analysis problem has been proved to be NP-complete

[19]. Finally, the time required to determine the repair solution

is also a crucial factor. Lots of research work has been dedicated

to the above areas [20]–[24].

A VLSI array processor integrates a large number of simple

Processing Elements (PE) on a single chip or silicon wafer.

To improve its yield, redundant PEs are often provided and

fabrication-time reconfiguration techniques are applied to

repair faulty PEs with spare ones [25]. There are generally

two approaches to reconfigure VLSI array processors, namely

the redundancy approach and the degradation approach. In

redundancy approach, some PEs are dedicated as spare parts,

and if these PEs cannot replace all the faulty ones, the chip has

to be discarded. Various reconfiguration algorithms have been

proposed in [26]–[29]. In the degradation approach, all PEs

are treated in a uniform manner to derive a fault-free subarray,

whose size is flexible. Two metrics, harvest and degradation

are commonly used to evaluate the efficiency of reconfiguration

algorithms in the degradation approach [30]–[32]. The harvest

represents how effective the fault-free PEs are utilized to con-

struct a subarray and the degradation measures the performance

loss due to a smaller fault-free subarray than the original array.

For memory chips and VLSI array processors, their physical

topologies have to be maintained the same before and after re-

configuration. The regularity of physical structures is required

by the usages of such chips. The above reconfiguration prob-

lems differ significantly from the one for homogeneous many-

core processors. This is because, every core in manycore pro-

cessors is an autonomous system and is able to communicate

with other cores through on-chip interconnection network. The

physical topology is therefore not necessary to be kept the same

after reconfiguration. Only a unified virtual topology should be

maintained as described before.

B. Network Embedding Problems

The basic idea of constructing a virtual topology based on a

physical topology for a certain purpose has been widely applied

in many research areas. A famous application is the overlay net-

works [33], which create a structured virtual topology above the

basic transport protocol level to facilitate deterministic content

search. Virtual neighbor nodes in overlay networks are defined

by identifiers derived from the stored contents. In this subsec-

tion, we briefly review the network embedding research prob-

lems that are closely related to our topology reconfiguration

problem for manycore processors.

The network embedding problem, which has been studied

extensively, is widely used for simulations between networks

with different topologies. By embedding a (uest) network

topology into a (ost) topology, parallel programs could have

better portability. This is because one can automatically trans-

form any parallel algorithms developed for the multiprocessor

system with topology into an algorithm for the system

with topology . [34] focused on embedding of any arbitrary

network into its optimum complete binary trees. [39] proposed

a new approach to embed a given torus into another given torus.

[35] studied the embedding of rings and 2D mesh into a RP(k)

network.
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An application of network embedding in parallel computing

is the mapping from virtual process topology to physical pro-

cessor topology. The virtual process topology is the abstract

of communications among processes or tasks, in which each

vertex represents process, and an edge represents the commu-

nication between two processes. To execute a parallel program,

its process topology should be constructed effectively based

on the underlying processor topology. The virtual process

topology is also supported by MPI libraries [36], [37] discussed

the mapping problem in switch-based cluster systems with

irregular topology. Ref. [38] presented techniques to recon-

figure application topology in an octagonal 2D mesh machine

topology when faults occur.

The topology reconfiguration problem studied in this paper,

and the network embedding problem belong to the more general

problem of graph embedding, i.e., constructing a guest graph

based on a host graph. As the same class of problems, however,

they are applied at different levels and should be analyzed from

different perspectives.

Topology reconfiguration lies in the hardware level. From the

perspective of manycore processor architects, they reconfigure

a virtual topology to isolate various underlying physical topolo-

gies so that they can transparently provide OS and programmers

a unified interface to ease task dispatching scheduling and ap-

plication optimization. Network embedding, however, lies in the

application level. From the perspective of application program-

mers, they assume that the underlying system topology is fixed,

and then embed their application topology based on the given

physical topology to optimize the software performance. If chip

architects do not provide a unified (virtual) topology, application

programmers should have to handle various embedding prob-

lems from their application topology to different chip physical

topologies.

It should be noted that, network embedding problems use

dilation and congestion to evaluate the performance of vir-

tual topologies [39]. Dilation of a virtual edge in the guest

topology is the length of the corresponding physical path in the

host topology. Congestion of an edge in the host topology

is the number of virtual edges that include that edge. Dilation

and congestion consider the worst case scenario for the guest

topology. However, we use different evaluation metrics in

the topology reconfiguration problem in NoC-based manycore

systems, i.e., DF and CF. As discussed in Section III, there are a

wide range of applications running on the NoC-based manycore

systems, it is difficult to evaluate the effect of virtual topologies

on various applications at the chip architecture design stage.

As a result, we evaluate the performance of virtual topologies

themselves. The primary evaluation metric DF, i.e., the average

hop count determines the zero-load latency of a virtual topology

while the auxiliary metric CF reflects the distribution of traffic

load and thus could affect network latency and throughput.

V. PROBLEM ANALYSIS

The objective of TRP in essence is to find a map from virtual

locations to physical cores with optimized performance. Con-

sidering the configuration shown in Fig. 3, as depicted in Fig. 7,

the example virtual topology can be achieved according to the

mapping table. For example, virtual location is mapped to

Fig. 7. The essence of TRP is to find a map from virtual locations to physical
cores.

the 2nd physical core. In other words, the 2nd fault-free core

is placed in virtual location in the virtual topology. For the

given physical topology in Fig. 7, there are 9! possible virtual

topologies with different DF and CF values, because a fault-free

core can be placed in any virtual locations.

The topology reconfiguration problem can be broken into

two related subproblems, to minimize DF and to minimize CF,

which we call TRP-I and TRP-II, respectively. In this section,

we first recast these two problems from an optimization problem

to a decision problem, and then show both of them are essen-

tially instances of known NP-complete problems.

A. TRP-I: An Instance of Quadratic Assignment Problem

According to the above analysis, the decision form of TRP-I

can be formulated as follows:

[TRP-I] Virtual locations are numbered , while

physical cores are numbered . is the

distance (number of hops) between physical nodes and .

if or is defective. Is there a one-to-one func-

tion to construct a virtual

topology , such that: (bound .

To ease analysis, suppose the reference topology is torus.

Each virtual location has four neighbors in torus. Ac-

cording to (1), the distance factor of i can be expressed as

, in which indicates four virtual

neighbors of and represents the physical distance of

node and its virtual neighbors as mentioned above. The above

formulation can be similarly applied for mesh topology, except

that the coefficients for different nodes can be 1/2, 1/3, or 1/4,

as a virtual node in mesh may have 2, 3, or 4 neighbors based

on its position.

From the above, according to (2) the distance factor of the

virtual topology is

(5)

We now show that TRP-I is essentially an instance of

Quadratic Assignment Problem (QAP), which is a well-known

NP-complete problem [40]. QAP can be formulated as follows

[41].

[QAP] Non-negative integer cost: ;

and distance . Is there a one-to-one

function such that:

.
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A QAP instance can be expressed as

.

The famous “backboard wiring” problem [42] is a typical

application of QAP, which concerns how to place computer

components to minimize the total amount of wiring required

to connect them.

Considering a QAP instance , let and be

virtual locations in torus, and is the distance

between physical nodes and as defined in TRP-I. is de-

fined as follows:

Then the objective of this QAP becomes

(6)

in which are four virtual neighbors of . According to (5) and

(6), it is clear that the objective of the above QAP instance be-

comes to find a mapping function or in other words a virtual

topology with distance factor not exceeding . As a result,

TRP-I is an instance of the quadratic assignment problem.

B. TRP-II: An Instance of Vectorial Quadratic Assignment

Problem

Similarly, the decision form of TRP-II can be formulated as

follows.

[TRP-II] Virtual locations are numbered , while

physical cores are numbered , . Is there a

one-to-one function to con-

struct a virtual topology , such that: (bound

.

In this subsection, we show that TRP-II is also an instance

of quadratic assignment problem, but with a different form. To

prove this, we first define a Vectorial Quadratic Assignment

Problem (V-QAP) as follows:

[V-QAP] Non-negative integer cost: -di-

mensional non-negative vector , and bound

. For two -dimensional vectors

and is defined as . Is there a

one-to-one function such

that: .

An instance of V-QAP can be expressed as

and are -di-

mensional non-negative vectors, .

It is easy to see that V-QAP is NP-complete because QAP is

in fact one-dimensional V-QAP. We now show that TRP-II is

an instance of V-QAP. Suppose the reference topology is 2D

mesh or torus with physical links, denoted as .

Definition 1: Path Vector is a -dimensional vector

. If is on one of the paths from

physical node to according to the NoC’s routing mechanism

(e.g., XY-routing), in is 1, otherwise is 0. A simple

example is shown in Fig. 8, in which XY-routing is used. For

example, because packets from 1st core to

4th core pass through links and .

Fig. 8. Path vector examples.

Definition 2: Congestion Increment Vector is defined as

. is the distance between physical

node and as defined in TRP-I. is the -dimensional unit

vector.

We now construct a V-QAP instance

, in

which and are virtual locations, and is defined as

According to the definition of V-QAP, we want to find a

one-to-one function such that

.

As is 0 if and are not virtual neighbors, the objective

then becomes , or in an-

other form

(7)

in which and are virtual neighbors.

Based on the above definitions of path vector and the

congestion factor of a link in Section III, it is not difficult to

derive:

and . Then,

we can conclude from (7) after substitution:

,

i.e., .

It is clear that the above constructed instance of V-QAP is

in fact to find a virtual topology with congestion factor not

exceeding . As a result, we have proved that TRP-II is an

instance of V-QAP.

To sum up, in this section we point out that TRP is an instance

of the quadratic assignment problem, one of the most complex

combinatorial optimization problems. We therefore do not hold

much hope for finding an exact polynomial time algorithm for

its solution. Efficient and effective heuristics are therefore intro-

duced to solve this problem, as shown in the following section.

VI. PROPOSED TOPOLOGY RECONFIGURATION ALGORITHM

In this section, an advanced Simulated Annealing (SA) al-

gorithm proposed for QAP is firstly adopted to tackle our TRP.

This algorithm, however, is quite time-consuming. We therefore

present a fast deterministic greedy algorithm, called Row Rip-

pling and Column Stealing (RRCS). Finally, a SA algorithm is

proposed, which outperforms both SA and RRCS algorithms in

terms of computing time and the quality of results.
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It should be noted that we mainly focus on the reconfiguration

algorithms for 2D mesh/torus topologies. Other topologies (e.g.,

butterfly or fat tree topology) may require different optimization

algorithms.

A. An Adopted Simulated Annealing Algorithm (SA)

Since we have proved that topology reconfiguration problem

is an instance of the quadratic assignment problem, we can adopt

previous heuristic approaches for QAP to tackle our TRP. One

such approach that has yielded promising results is simulated

annealing [43]–[46]. We adopt one of the most efficient simu-

lated annealing implementations proposed in [43] for QAP to

tackle TRP in this paper.

Various simulated annealing algorithms generally differ

with respect to neighborhood search, annealing schedule and

termination criterion. The adopted SA algorithm uses (4) as

the cost function and random virtual topologies as initial solu-

tions. The neighborhood function employed is the widely used

“2-exchange”. For example, if the current solution is

one of its neighbors by exchanging (1,1) and ‘unused’ is

The neighboring solutions are searched thoroughly in a fixed

order, not randomly. For the above solution,

trials are needed to explore all its neighborhood by the sequence

(1,0) ‘unused’, ‘unused’ , ‘un-

used’

The adopted SA algorithm uses the inhomogeneous an-

nealing with oscillation schedules, i.e., temperature is reduced

by a very small amount after every trial without any equilib-

rium test. In addition, temperature is decreased and increased

periodically, i.e., reannealing instead of the straightforward

annealing, which is the common practice of state-of-the-art

simulated annealing algorithms.

The SA algorithm in [43] uses an advanced formula to

calculate the initial and final temperatures for each iteration,

leaving two tuning control parameters, i.e., the initial and

the final temperature factors, which can be used to control

the cooling process effectively.

The algorithm terminates when the current iteration number

exceeds , or in other words after trials, in which

is the number of fault-free cores.

B. Row Rippling Column Stealing Algorithm (RRCS)

Simulated annealing is a kind of common technique that

can be adopted to all combinatorial optimization problems.

However, it does not consider any characteristics of the TRP

problem, such as reference topology, system architecture, etc.

Moreover, SA is quite time-consuming because it has to explore

many random solutions before achieving a satisfactory result.

As the configuration time has great impact on the chip cost, SA

is not acceptable for large scale manycore systems. As a result,

Fig. 9. An example of RRCS algorithm.

we proposed a fast deterministic greedy algorithm, called Row

Rippling and Column Stealing (RRCS) [12].

RRCS is based on the observation that the performance

degradation of a virtual topology is mainly caused by the

physical irregularity of the virtual topology compared to the

reference topology. Therefore, RRCS algorithm tries to main-

tain the physical regularity of the virtual topologies in row and

in column unit.

To ease illustration, suppose in mesh or torus topology, there

are one column of spare cores. If a row contains only one faulty

core, i.e., faulty cores are no more than the spare ones in this

row, Row Rippling is employed to reconfigure the row, in which

a faulty core is replaced by its neighbor and the virtual position

of the core used to replace the faulty one is transferred to the next

neighboring core. This process continues until the spare one is

used to replace the last element in the row. When a row con-

tains more than one faulty cores, i.e., faulty cores are more than

the spare ones in this row, the rightmost faulty core is replaced

using rippling. The other faulty elements within the row, how-

ever, are replaced with the elements immediately beneath them.

In other words, we “steal” a fault-free core from another row

within the same column. This stolen core should be considered

faulty when the row containing it is reconfigured. An example

of using RRCS in a “ ” processor with 4 4 mesh refer-

ence topology and one column redundancy is depicted in Fig. 9.

To configure the uppermost row, which contains 3 faulty cores,

we steal the 12th and the 13th fault-free cores for the left two

fault cores; while the rightmost one is rippling to the 20th core.

Only Row Rippling is used to configure the lowermost row as it

contains one faulty core. The achieved virtual topology is shown

above the physical topology.

In the above discussion, we provide a column of redundant

cores as an example. In practice, the number of redundant cores,

i.e., , for an -core processor should be carefully determined

by the designers in advance (e.g., using the analysis framework

in [47]), and may be different from the column size. This how-

ever does not affect the working mechanism of the proposed

RRCS algorithm as it only needs to compare the number of

faulty cores and spare cores on each row. We are able to

generate an effective virtual topology as long as the number of

faulty cores is less than . In the worst case, i.e., all available

cores in both the same row and the same column are exhausted,

we simply choose a nearest core to replace the faulty one.
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Fig. 10. Comparison between RRCS and �SA. (a) Physical topology. (b) Vir-
tual topology achieved by RRCS ��� � ������ 	� � ��
��. (c) Virtual
topology achieved by �SA ��� � ������	� � �����.

C. RRCS-Guided Simulated Annealing Algorithm (gSA)

RRCS is very fast when compared to SA algorithm, but it

does not directly consider DF or CF metrics during the optimiza-

tion process. Moreover, RRCS may cause serious chain column

stealing operations for certain physical topologies and result in

undesirable virtual topologies.

For example, consider a physical topology with 6 6 2D

mesh reference topology and 5 spare cores located on the right-

hand side and 5 faulty cores, as shown in Fig. 10(a). The vir-

tual topology achieved by RRCS is shown in Fig. 10(b), in

which the coordinates indicates the virtual locations for the cor-

responding cores. Reconfiguration begins from row R3, causing

two stealing operations, i.e., the two CS1 from row R4. R4 then

does not have enough available cores and has to steal another

two cores, i.e., CS2 from row R5. The process continues until

the last row R0 is configured. Note that CS3 borrows relatively

distant cores to configure faulty cores in row R5. These chain

Fig. 11. �SA improvement over RRCS for different network size. (a) DF im-
provement. (b) CF improvement.

column stealing operations will generate an undesirable virtual

topology.

At the same time, RRCS is very efficient, and it can arrange

most part of the virtual topology in a good shape. We find that

by applying several 2-exchange operations on top of the topolo-

gies achieved by RRCS, the quality of the results can be greatly

improved. As a result, we propose to combine the algorithms

of RRCS and SA together. We use RRCS to quickly generate

a good initial solution point, and then apply the adopted SA al-

gorithm on top of it to explore its 2-exchange neighboring solu-

tions. We call this strategy RRCS-guided Simulated Annealing

technique (gSA).

We use gSA and RRCS working on

100 random physical topologies in 6 6 2D mesh with 5 spare

and 5 randomly distributed faulty cores and 8 8 2D mesh with

8 spare and 8 random faulty cores respectively. The DF and CF

improvement of gSA over RRCS are reordered from small to

large and are shown in Fig. 11. For the DF metric in 6 6 array,

RRCS generates the same results as gSA for the first 28 physical

topologies, i.e., no improvement, while for the other 72 cases,

gSA has different levels of improvement. When the network size

increases to 8 8, SA achieves greater improvement than in

6 6 for 80% cases. CF metric is similar. We can conclude that

RRCS is efficient since for around 20%–35% cases, it generates

results as good as gSA. However, for many circumstances due

to chain column stealing operations, RRCS has very poor per-

formance, and gSA can improve over RRCS greatly, especially

for larger network size.

We then use SA algorithm with different parameters

working on the above 100 physical topologies in 6 6 and

8 8 mesh. The initial and final temperature factors

and are tuned and set to be 0.5 and 0.05 respectively.

We choose 50 and 100 random solutions, i.e., SA-50 and

SA-100 with different iteration numbers, i.e., and

and are set to be 0.9 and 0.1 respectively.

The averaged results are shown in Table I. It can be seen that,

SA outperforms SA in all cases with very little computa-

tional time. With more random solutions and more iteration

numbers, SA improves a little but with great computing

time overhead. This is because the quality of random initial

solutions used by SA are much worse than RRCS, which is

able to focus on a good solution point very fast.
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TABLE I
�SA IMPROVEMENT OVER SA FOR DIFFERENT NETWORK SIZE

VII. EXPERIMENTAL RESULTS

A. Experimental Setup

We have implemented a manycore NoC simulation platform

composed of classic pipelined virtual channel routers and

cores which generate synthetic workload. The router pipeline

has four stages, i.e., routing computation, virtual-channel

allocation, switch allocation and switch traversal, in which

each stage takes one clock cycle. Since we want to evaluate

the performance of virtual topologies, other parameters should

remain unchanged. In our experiments, each physical link has

8 virtual channels, and each virtual channel has 8 flit buffers.

Credit-based flow control is used for buffer management. To

reveal the performance of topologies themselves, the simple

dimension-order routing is used which has the minimum impact

on traffic distributions.

As execution-driven workload makes it difficult to isolate bot-

tlenecks in the network design [48] and we concern more about

the network performance, we use synthetic workload instead

of execution-driven workload. Each core in our manycore NoC

simulation platform is actually a traffic generator. As virtual

topologies are constructed based on the spatial locality of com-

munication, we adopt the neighboring traffic pattern in our ex-

periments, in which a core only exchanges information with its

neighbors. It is important to point out that the traffic patterns are

applied to virtual topologies, not to physical topologies. That is,

1-hop communication between virtual neighbors may involve

multiple physical hops.

Virtual topologies generated by reconfiguration algorithms

are in XML format to be read by the simulation platform. Each

core will then be assigned a name “ ”, in

which and are its virtual and physical co-

ordinates. Each time a core sends a packet, it reads its virtual

location, looks up the mapping table stored in the simulator to

find the physical locations of its virtual neighbors and then en-

capsulates in the packets as the destination address.

B. Experiment I

In this experiment, we show how predictive of DF and CF

metrics to real performance measurements. DF is the average

hop count between virtual neighbors and thus should reflect the

average delay and throughput of the network. While CF indi-

cates traffic distribution across all the physical channels. We

use SA-1 (1 random initial solution), RRCS and SA

to work on 100 different physical topologies

in 8 8 2D mesh with 8 spare cores and 8 randomly distributed

Fig. 12. Comparison between SA-1, RRCS and �SA. (a) DF comparison.
(b) CF comparison.

faulty cores on-chip. We use SA-1 to keep the computational

time comparable to SA. We choose the physical topology on

which SA achieves the greatest improvement over SA-1 and

RRCS in this experiment. The obtained DF and CF values are

shown in Fig. 12.

Next, we import virtual topologies generated by these three

algorithms into our manycore NoC platform to get the simula-

tion performance measurements, i.e., average delay, throughput

and average occupied time of all channels as shown in Fig. 13.

Average delay is the time required for a packet to traverse

the network from source to destination. It can be observed from

Fig. 13(a), the latency of virtual topologies achieved by SA-1,

RRCSand SA arealmost the same under light traffic load. When

the network saturates, it is clear that the delayof SA is better than

RRCS, and RRCS is better than SA-1. Network throughput is the

packets delivering rate for a particular traffic pattern. Fig. 13(b)

shows the throughput of saturation of the three algorithms. It

is clear that the throughput of SA is higher than RRCS, while

RRCS is higher than SA-1. Compared with Fig. 12(a), we show

the effectiveness for DF as performance metrics.

Fig. 13(c) shows the percentage of occupied time of all

physical channels. More occupied time implies that more traffic

passing through that channel. We reorder these values from

small to large for easy comparison. It can be observed that the

curve for SA has the smallest slope, which means the differ-

ences between all channels are small, i.e., the traffic is more

evenly distributed. RRCS is more steep than SA, and SA-1 is

more steep than RRCS. Compared with Fig. 12(b), we show

that the CF metric reflects real performance measurement.

From the above we can conclude that, SA has better per-

formance than RRCS and SA-1, not only in terms of DF and

CF metrics but also in real performance measurements, i.e., la-

tency, throughput and traffic distribution. In addition, the effec-

tiveness of DF and CF as evaluation metrics is proved with this

experiment.

C. Experiment II

In this experiment, we evaluate the effectiveness of the pro-

posed SA algorithm with the scale of network size. We use

the 8 8 2D mesh topology with 8 spare cores and 8 randomly

distributed faulty cores. We choose another larger configuration

with 10 10 2D mesh reference topology, 12 spare cores and 12

random faulty cores for proportional scaling. We work on 100

random physical topologies in 8 8 and 10 10 respectively.

The average improvement of SA over RRCS for DF metric is

6.828% in 8 8 while 9.737% in 10 10 configurations. Re-

garding the CF metric, the improvement is 18.935% in 8 8
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Fig. 13. Simulation measurements comparison between SA-1, RRCS and �SA. (a) Average delay. (b) Throughput. (c) Traffic distribution.

Fig. 14. Comparison between RRCS and �SA for different network size. (a) Average delay. (b) Throughput. (c) Traffic distribution.

Fig. 15. The impact of different number of faulty cores and spare cores on �SA algorithm.

and 20.983% in 10 10 respectively. That means when network

becomes larger, SA achieves much better improvement over

RRCS.

The average delay, throughput and traffic distribution are

shown in Fig. 14. It is clear that SA improves over RRCS for

both network sizes. For smaller network size, i.e., 8 8, the

averaged delay, throughput and traffic distribution of virtual

topologies achieved by RRCS are much closer to that of SA.

For larger network size, i.e., 10 10, SA achieves much

better improvement in all measurements. Thus we can conclude

that, firstly, when network size scales, SA achieves better

improvement; secondly, we further validate the effectiveness

of DF and CF because the level of improvement for these two

metrics and real performance measurements are similar.

D. Experiment III

In this experiment, we evaluate the impact of different

number of faulty cores and spare cores on SA algorithm.

Firstly, we use 8 8 2D mesh with one column spare cores.

We vary the number of faulty cores from 2 to 8 (i.e., D2, D4,

D6 and D8). Faulty cores are randomly distributed, leading to

various physical topologies. Results are averaged and shown in

the first two figures in Fig. 15.

It is clear that when the number of defective cores increases,

the performance of virtual topologies achieved by SA slightly

becomes worse in terms of both DF and CF. This is expected

because the increase of faulty cores limits the solution space of

the proposed algorithm.

Next, we assume there are always 2 randomly distributed

faulty cores in 8 8 2D mesh and we vary the number of spare

cores from 2 to 10 (i.e., S2, S4, S6, S8 and S10). As expected,

the increase of spare cores also increases the solution space of

the SA algorithm, and both DF and CF slightly becomes better.

However, when the number of spare cores is increased from 8

to 10, we find that DF almost remains the same while CF be-

comes much worse as in Fig. 15. This is because there are many

cores and channels left unused on-chip, traffic distribution be-

comes much uneven. Therefore, we can conclude employing

more-than-necessary number of spare cores does not facilitate

to boost the NoC-based manycore systems’ performance much

after reconfiguration.

VIII. CONCLUSION AND FUTURE WORK

Effective defect tolerance techniques are essential to improve

the yield of homogeneous manycore processors. In this paper, we

propose to employ core-level redundancy with AMAD scheme
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to address this issue. As defective cores change the topology

of the target design, programmers may face various different

topologies when optimizing their parallel programs. This is a big

burden and may also cause confusion in marketing. We propose

to address the above problem by providing a unified topology

that is isomorphic with the target reference topology regardless

of the various possible underlying physical topologies. We

borrow the concept of virtual topology from network embedding

problem and we propose two metrics to evaluate the performance

of different virtual topologies. An effective heuristic, namely

Row Rippling Column Stealing-guided Simulated Annealing

algorithm is then presented to solve the topology reconfigura-

tion problem. The proposed algorithm is evaluated on various

topologies in a NoC-based manycore simulation platform.

Experimental results not only show the effectiveness of the

proposed SA algorithm, but also show the effectiveness of the

two evaluation metrics used in our algorithms, i.e., DF and CF.

In our future work, we plan to investigate the topology re-

configuration problems for topologies other than mesh and torus

(e.g., butterfly topology).
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