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1. Introduction. We call the double infinite series

T (r, s, t) =
∞∑

µ,ν=1

1
µrνs(µ+ ν)t

(r, s, t nonnegative integers)

a Tornheim series, after Tornheim who made a systematic and thorough
investigation of this interesting series in a paper [6] published in 1950. The
Tornheim series T (r, 0, t), when rewritten in the form

T (r, 0, t) =
∞∑
τ=1

1
(τ + 1)t

τ∑
µ=1

1
µr
,

arises in the study of the gamma function (see, for example, [3, p. 47]). The
series T (r, s, t) is finite if and only if

(1.1) r + t > 1, s+ t > 1, and r + s+ t > 2.

The basic properties of T (r, s, t) (assuming (1.1)) are the following

T (r, s, t) = T (s, r, t),(1.2)

T (r, s, 0) = ζ(r)ζ(s),(1.3)

T (r, 0, t) + T (t, 0, r) = ζ(r)ζ(t)− ζ(r + t), r ≥ 2,(1.4)

T (r, s− 1, t+ 1) + T (r − 1, s, t+ 1) = T (r, s, t), r ≥ 1, s ≥ 1,(1.5)

where ζ denotes the Riemann zeta function.
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Properties (1.3) and (1.4) give us a glimpse of the fascinating interplay
between Tornheim series and the Riemann zeta function which we explore in
this paper. The key to understanding this interplay is the recurrence relation
(1.5). For a fixed value N (≥ 3) of r + s + t, we place the (finite) T (r, s, t)
in a hexagonal array TN of N rows by arranging those T (r, s, t) with t = k
in the (N − k)th row in order of increasing s. For example, the array T5 is

T (1, 0, 4) T (0, 1, 4)
T (2, 0, 3) T (1, 1, 3) T (0, 2, 3)

T (3, 0, 2) T (2, 1, 2) T (1, 2, 2) T (0, 3, 2)
T (3, 1, 1) T (2, 2, 1) T (1, 3, 1)

T (3, 2, 0) T (2, 3, 0)

The Tornheim hexagon TN is symmetric about its vertical axis in view
of (1.2). The recurrence relation (1.5) shows that each entry with r 6= 0 and
s 6= 0 is the sum of the two entries immediately above it, as in Pascal’s
triangle. Applying this relation successively, we see that every entry can be
expressed as a linear combination of those entries with r = 0 or s = 0,
and thus (in view of the symmetry) just in terms of those with s = 0. For
example, in T5,

T (2, 2, 1) = T (2, 1, 2) + T (1, 2, 2)

= T (2, 0, 3) + 2T (1, 1, 3) + T (0, 2, 3)

= T (2, 0, 3) + 2T (1, 0, 4) + 2T (0, 1, 4) + T (0, 2, 3)

= 4T (1, 0, 4) + 2T (2, 0, 3).

In general, if r and s are integers satisfying

0 ≤ r ≤ N − 2, 0 ≤ s ≤ N − 2, 1 ≤ r + s ≤ N,
then

(1.6) T (r, s,N − r − s)

=
r∑

i=1

(
r + s− i− 1

r − i
)
Ti +

s∑

i=1

(
r + s− i− 1

s− i
)
Ti,

where

Ti = T (i, 0, N − i), i = 1, 2, . . . , N − 2,

which is easily established by induction. We note that TN−1 is not finite.
From (1.4) we see that

(1.7) Ti + TN−i = ζ(i)ζ(N − i)− ζ(N), i = 2, . . . , N − 2.
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When r + s = N the left side of (1.6) is given by (1.3), and we obtain the
following system of [N/2]− 1 linear equations for the Ti:

(1.8)
r∑

i=1

(
N − i− 1
r − i

)
Ti +

N−r∑

i=1

(
N − i− 1
N − r − i

)
Ti = ζ(r)ζ(N − r),

r = 2, 3, . . . , [N/2].

Using (1.7) to replace Ti by ζ(i)ζ(N − i)− ζ(N)− TN−i for i = [N/2] + 1,
. . . , N − 2, and using the value

(1.9) T1 =
1
2

(N − 1)ζ(N)− 1
2

N−2∑

j=2

ζ(j)ζ(N − j)

found by Tornheim [6, eq. (10)], we obtain from (1.8) a system (SN ) of
[N/2]− 1 linear equations for the [N/2]− 1 quantities T2, . . . , T[N/2].

In addition to (1.9), Tornheim has evaluated T (r, s, t) explicitly in certain
other cases. For example he has shown for N ≥ 3 that

(1.10) T (0, 0, N) = ζ(N − 1)− ζ(N),

(1.11) T (1, N − 2, 1) =
1
2

(N + 1)ζ(N)− 1
2

N−2∑

j=2

ζ(j)ζ(N − j),

T (1, 1, N − 2) = (N − 1)ζ(N)−
N−2∑

j=2

ζ(j)ζ(N − j).

Further, when N = r+ s+ t is odd, he proved that T (r, s, t) is a polynomial
in ζ(2), . . . , ζ(N) with rational coefficients but did not give the polynomial.

The purpose of this paper is to determine T (r, s, t) explicitly when N =
r + s+ t is odd. We show that T (r, s, t) is an integral linear combination of
the products ζ(2i)ζ(N −2i), i = 0, 1, . . . , (N −3)/2, except when r = s = 0.
We also indicate why our approach does not appear to work when r+ s+ t
is even. We use the identity

(−1)v

kv(k + r)u
=

v∑

j=1

(
u+ v − j − 1

v − j
)

(−1)j

ru+v−jkj
(1.12)

+
u∑

j=1

(
u+ v − j − 1

u− j
)

1
ru+v−j(k + r)j

,

where k and r are positive integers, and u and v are nonnegative integers
not both zero, which follows easily from [3, p. 48, eq. (9)]. When N is odd
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we use (1.12) in Section 3 to show that the system (SN ) uniquely determines
T2, . . . , T[N/2]. We prove

Theorem 1. Let N be an odd integer with N ≥ 3. Then, for i =
1, . . . , N − 2, we have

T (i, 0, N − i) = (− 1)i
[(N−i−1)/2]∑

j=0

(
N − 2j − 1

i− 1

)
ζ(2j)ζ(N − 2j)

+ (−1)i
[i/2]∑

j=0

(
N − 2j − 1
N − i− 1

)
ζ(2j)ζ(N − 2j) + ζ(0)ζ(N),

where we recall that ζ(0) = −1/2.

However, when N is even the system (SN ) is not in general sufficient to
find all of the Ti, for example when N = 8, 10, 12, 14, 16, 18.

The value of a general T (r, s, t) when r + s + t is odd is obtained in
Section 4 by using in (1.6) the values of the Ti given in Theorem 1 and
appealing to a combinatorial identity (Lemma 2.1) to evaluate the resulting
sums of binomial coefficients. We prove

Theorem 2. Let N be an odd integer with N ≥ 3. Let r and s be non-
negative integers satisfying 1 ≤ r + s ≤ N − 1, r ≤ N − 2, s ≤ N − 2.
Set

EN (r, s) = (−1)r
[(N−r−s−1)/2]∑

i=0

(
N − 2i− s− 1

r − 1

)
ζ(2i)ζ(N − 2i)(1.13)

+ (−1)r
[r/2]∑

i=0

(
N − 2i− s− 1
N − r − s− 1

)
ζ(2i)ζ(N − 2i).

Then

T (r, s,N − r − s) = EN (r, s) + EN (s, r).

Theorem 2 covers all nonnegative integers r, s, t for which T (r, s, t) is
finite and r + s + t = N is odd except for the case r = s = 0, which is
covered by (1.10), and the case t = 0, which is covered by (1.3). All of
Tornheim’s other evaluations [6] are special cases of the above theorem.
Furthermore, taking r = s = t = 2k + 1 (k ≥ 0) in Theorem 2, we deduce
the result

(1.14) T (2k + 1, 2k + 1, 2k + 1)

= −4
k∑

i=0

(
4k − 2i+ 1

2k

)
ζ(2i)ζ(6k − 2i+ 3).
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The problem of evaluating T (2k + 1, 2k + 1, 2k + 1) was posed in 1958 by
Mordell [2], who showed that T (2k, 2k, 2k) is a rational multiple of π6k for
k ≥ 1, but gave the multiple only for k = 1. In 1985 Subbarao and Sitara-
machandrarao [5] gave the explicit evaluation (with a misprint corrected)

T (2k, 2k, 2k) =
8k

3((2k)!)2

k∑

i=0

(
2k
2i

)
(2i)!(4k − 2i− 1)!ζ(2i)ζ(6k − 2i),

which can be rewritten in the simpler form

T (2k, 2k, 2k) =
4
3

k∑

i=0

(
4k − 2i− 1

2k − 1

)
ζ(2i)ζ(6k − 2i),

and then combined with (1.14) to give

Theorem 3. For r ≥ 1,

T (r, r, r) =
4

1 + 2(−1)r

[r/2]∑

i=0

(
2r − 2i− 1
r − 1

)
ζ(2i)ζ(3r − 2i).

2. A combinatorial identity. As usual the binomial coefficient
(
x
n

)
is

defined for any real number x and any integer n. We just note the properties

(2.1)
(−x
n

)
= (−1)n

(
x+ n− 1

n

)
,

and, for any integer m,

(2.2)
(
m

n

)
= 0 if and only if n < 0 or 0 ≤ m < n.

The following identity is used in the proof of Theorem 2.

Lemma 2.1. For nonnegative integers m, n, p and q with p ≥ q, we have
m∑

k=0

(−1)k
(

q

p− k
)(

m+ n− k
n

)
= (−1)m

(
q − n− 1
m+ q − p

)
.

P r o o f. We have
m∑

k=0

(−1)k
(

q

p− k
)(

m+ n− k
n

)

= (−1)m
m∑

k=0

(−1)k
(

q

p−m+ k

)(
n+ k

n

)

= (−1)m
m−p+q∑

k=0

(−1)k
(

q

p−m+ k

)(
n+ k

k

)
(by (2.2))
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= (−1)m
m−p+q∑

k=0

(
q

m− p+ q − k
)(−n− 1

k

)
(by (2.1))

= (−1)m
(
q − n− 1
m− p+ q

)
,

by the Vandermonde convolution (see [1, p. 22] or [4, p. 8]).

3. Evaluation of T (i, 0, N − i), N (odd) ≥ 3. We begin this section
with two recurrence relations involving the Tj . Each of these is obtained by
summing the identity (1.12) and making use of (1.7) and (1.8).

Proposition 3.1. Let N be an integer with N≥3, and let i=1, . . . , N−2.
Then

(a) (1− (−1)i)Ti +
i−1∑

j=1

(
N − j − 1
N − i− 1

)
Tj

= −
N−2∑

j=i+1

(
j − 1
i− 1

)
ζ(j)ζ(N − j)

−
i∑

j=2

(−1)j
(
N − j − 1
N − i− 1

)
ζ(j)ζ(N − j) +

(
N − 1
i

)
ζ(N).

(b) ((−1)N − (−1)i)Ti + (−1)N
i−1∑

j=1

(
N − j − 1
N − i− 1

)
Tj

=
N−2∑

j=i+1

(−1)j
(
j − 1
i− 1

)
ζ(j)ζ(N − j)

+ (−1)N
i∑

j=2

(
N − j − 1
N − i− 1

)
ζ(j)ζ(N − j)

+
(

(−1)i − (−1)N
(
N − 1
i− 1

))
ζ(N).

P r o o f. When i = 1, (a) holds by (1.9), and (b) follows from
N−2∑

j=2

(−1)jζ(j)ζ(N − j) =
N−2∑

j=2

(−1)jT (j,N − j, 0) (by (1.3))

=
N−2∑

j=2

(−1)j{T (j,N − j − 1, 1) + T (j − 1, N − j, 1)}

(by (1.5))
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= (−1)N−2T (N − 2, 1, 1) + T (1, N − 2, 1)

= (1 + (−1)N )T (1, N − 2, 1) (by (1.2))

= (1 + (−1)N ){T1 + ζ(N)} (by (1.9) and (1.11)).

Thus we may assume that 2 ≤ i ≤ N − 2.
(a) Collecting together the terms with j = 1 in (1.12) (with v = i,

u = N − i), we have

(−1)i

ki(k + r)N−i
=

i∑

j=2

(
N − j − 1
i− j

)
(−1)j

rN−jkj

+
N−i∑

j=2

(
N − j − 1
N − i− j

)
1

rN−j(k + r)j

+
(
N − 2
i− 1

)
1

rN−1

(
1

k + r
− 1
k

)
.

Summing over all positive integers k and r, we obtain

(−1)iTi =
i∑

j=2

(−1)j
(
N − j − 1
i− j

)
ζ(j)ζ(N − j) +

N−i∑

j=2

(
N − j − 1
N − i− j

)
TN−j

−
(
N − 2
i− 1

)
T (1, N − 2, 1).

Hence

(3.1) (−1)iTi =
N−i∑

j=2

(
N − j − 1
N − i− j

)
(ζ(j)ζ(N − j)− ζ(N)− Tj)

+
i∑

j=2

(−1)j
(
N − j − 1
N − i− 1

)
ζ(j)ζ(N − j)−

(
N − 2
i− 1

)
{T1 + ζ(N)},

by (1.7), (1.9) and (1.11). Appealing to (1.8), and noting that

N−i∑

j=2

(
N − j − 1
N − i− j

)
=
(
N − 2
i

)
,

we deduce that

(−1)iTi =
N−2∑

j=i

(
j − 1
i− 1

)
ζ(j)ζ(N − j)−

((
N − 2
i

)
+
(
N − 2
i− 1

))
ζ(N)

− ζ(i)ζ(N − i) +
i∑

j=1

(
N − j − 1
i− j

)
Tj
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+
i∑

j=2

(−1)j
(
N − j − 1
N − i− 1

)
ζ(j)ζ(N − j),

from which (a) follows.
(b) Replacing i by N − i in (3.1), multiplying by (−1)N , and appealing

to (1.7), we find that

(−1)iζ(i)ζ(N − i)− (−1)iζ(N)− (−1)iTi

= (−1)N
i∑

j=2

(
N − j − 1
N − i− 1

)
(ζ(j)ζ(N − j)− ζ(N)− Tj)

+ (−1)N
N−i∑

j=2

(−1)j
(
N − j − 1
i− 1

)
ζ(j)ζ(N − j)

− (−1)N
(

N − 2
N − i− 1

)
(T1 + ζ(N)).

Equation (b) now follows after rearranging, noting that
∑i
j=1

(
N−j−1
N−i−1

)
=(

N−1
i−1

)
, and changing j to N − j in the second summation.

P r o o f o f T h e o r e m 1. As N is odd, adding equations (a) and (b)
of Proposition 3.1 eliminates the term

∑i−1
j=1

(
N−j−1
i−j

)
Tj , and we obtain

−2(−1)iTi = − 2
N−2∑

j=i+1
j odd

(
j − 1
i− 1

)
ζ(j)ζ(N − j)

− 2
i∑

j=2
j even

(
N − j − 1
N − i− 1

)
ζ(j)ζ(N − j)

− 2
{(

N − 1
N − i− 1

)
+
(
N − 1
i− 1

)
+ (−1)i

}
ζ(0)ζ(N)

= − 2
[(N−i−1)/2]∑

k=0

(
N − 2k − 1

i− 1

)
ζ(2k)ζ(N − 2k)

− 2
[i/2]∑

k=0

(
N − 2k − 1
N − i− 1

)
ζ(2k)ζ(N − 2k)− 2(−1)iζ(0)ζ(N),

from which Theorem 1 follows.

When N is even, the left sides of (a) and (b) of Proposition 3.1 are the
same, and equating their right sides, we obtain the following result.
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Proposition 3.2. Let N be an even integer with N ≥ 4, and let i =
1, . . . , N/2. Then

(N−2)/2∑

j=[i/2]+1

(
2j − 1
i− 1

)
ζ(2j)ζ(N − 2j) +

[i/2]∑

j=1

(
N − 2j − 1
N − i− 1

)
ζ(2j)ζ(N − 2j)

=
1
2

{(
N

i

)
− (−1)i

}
ζ(N).

We remark that when i = 1 Proposition 3.2 is a well-known identity (see
for example [6, p. 308]).

We now discuss briefly the case when N (≥ 4) is even. Recall that (SN )
is a system of [N/2] − 1 linear equations in the [N/2] − 1 quantities Ti
(i = 2, . . . , [N/2]). When N is even, (1.7) gives

TN/2 = 1
2ζ(N/2)2 − 1

2ζ(N).

Using this in (SN ), we obtain a new system (S′N ) of N/2−1 linear equations
in the N/2− 2 quantities Ti (i = 2, . . . , N/2− 1). The system (S′4) is trivial.
When N = 6, 8, . . . , 18 the rank of the system (S′N ) is [N/3]− 1. Thus (S′N )
does not determine all of the Ti when N = 8, 10, . . . , 18, but does when
N = 6. It would be of interest to know if the rank is given by [N/3]− 1 for
N ≥ 20.

When N = 4, Proposition 3.2 gives the relation 2ζ(2)2 = 5ζ(4), which
we use to obtain T (1, 0, 3) = 1

4ζ(4) and T (2, 0, 2) = 3
4ζ(4). When N = 6,

the same proposition gives 4ζ(2)ζ(4) = 7ζ(6), and hence

T (1, 0, 5) = − 1
2ζ(3)2 + 3

4ζ(6), T (2, 0, 4) = ζ(3)2 − 4
3ζ(6),

T (3, 0, 3) = 1
2ζ(3)2 − 1

2ζ(6), T (4, 0, 2) = −ζ(3)2 + 25
12ζ(6).

When N = 8, after a little algebra, we have 3ζ(2)ζ(6) = 5ζ(8), and 6ζ(4)2 =
7ζ(8). The system (S′8) reduces to the single equation

5T (2, 0, 6) + 2T (3, 0, 5) = 10ζ(3)ζ(5)− 119
8 ζ(8),

so we are unable to determine the values of T (2, 0, 6) and T (3, 0, 5). When
N = 10, the system (S′10) determines only the quantities 7T (2, 0, 8) +
2T (3, 0, 7) and T (3, 0, 7) + T (4, 0, 6).

4. Evaluation of T (r, s,N − r − s) for N (odd) ≥ 3: Proof of
Theorem 2. Let N be an odd integer with N ≥ 3, and let r and s be
nonnegative integers satisfying 1 ≤ r + s ≤ N − 1, r ≤ N − 2, s ≤ N − 2.
When r = 0 or s = 0 Theorem 2 follows from Theorem 1 and (1.2). Thus
we have only to prove Theorem 2 when r and s are positive integers. From
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(1.6) we may write

T (r, s,N − r − s) = UN (r, s) + UN (s, r),

where

UN (r, s) =
r∑

i=1

(
r + s− i− 1

s− 1

)
Ti.

In (1.6) the range of summation of each of the two sums may be extended
up to j = (N − 3)/2 provided that the term ζ(i)ζ(N − i) is appended when
i is odd and at least 3, since in this case there is a contribution from the
term with j = (N − i)/2. We therefore obtain

UN (r, s) = S1(r, s) + S2(r, s) + S3(r, s) + S4(r, s),

where

S1(r, s) =
(N−3)/2∑

j=0

ζ(2j)ζ(N − 2j)
r∑

i=1

(−1)i
(
r + s− i− 1

s− 1

)(
N − 2j − 1

i− 1

)
,

S2(r, s) =
(N−3)/2∑

j=0

ζ(2j)ζ(N − 2j)
r∑

i=1

(−1)i
(
r + s− i− 1

s− 1

)(
N − 2j − 1
N − i− 1

)
,

S3(r, s) =
r∑

i=1

(
r + s− i− 1

s− 1

)
ζ(0)ζ(N) =

(
r + s− 1

s

)
ζ(0)ζ(N),

S4(r, s) =
r∑

i=3
i odd

(
r + s− i− 1

s− 1

)
ζ(i)ζ(N − i).

Using Lemma 2.1 (with m = r − 1, n = s− 1, p = q = N − 2j − 1), we
obtain

S1(r, s) =
(N−3)/2∑

j=0

ζ(2j)ζ(N − 2j)
r−1∑

i=0

(−1)i+1
(
r + s− i− 2

s− 1

)(
N − 2j − 1

i

)

= (−1)r
(N−3)/2∑

j=0

(
N − 2j − s− 1

r − 1

)
ζ(2j)ζ(N − 2j)

= (−1)r
( [(N−r−s)/2]∑

j=0

+
(N−3)/2∑

j=[(N−s+1)/2]

)(N − 2j − s− 1
r − 1

)

× ζ(2j)ζ(N − 2j).
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Again using Lemma 2.1 (with m = r, n = s−1, p = N −1, q = N −2j−1),
we obtain

S2(r, s) =
(N−3)/2∑

j=0

ζ(2j)ζ(N − 2j)
r∑

i=0

(−1)i
(
r + s− i− 1

s− 1

)(
N − 2j − 1
N − i− 1

)

−
(N−3)/2∑

j=0

ζ(2j)ζ(N − 2j)
(
r + s− 1
s− 1

)(
N − 2j − 1
N − 1

)

= (−1)r
[r/2]∑

j=0

(
N − 2j − s− 1

r − 2j

)
ζ(2j)ζ(N − 2j)−

(
r + s− 1
s− 1

)
ζ(0)ζ(N).

Next, using (2.1) we have

S4(r, s) =
(N−3)/2∑

j=[(N−r+1)/2]

(
r + s−N + 2j − 1

s− 1

)
ζ(2j)ζ(N − 2j)

= (−1)s−1
(N−3)/2∑

j=[(N−r+1)/2]

(
N − 2j − r − 1

s− 1

)
ζ(2j)ζ(N − 2j).

Clearly

S2(r, s) + S3(s, r) = (−1)r
[r/2]∑

j=0

(
N − 2j − s− 1

r − 2j

)
ζ(2j)ζ(N − 2j).

Also,

S1(r, s) + S4(s, r) = (−1)r
[(N−r−s)/2]∑

j=0

(
N − 2j − s− 1

r − 1

)
ζ(2j)ζ(N − 2j)

= (−1)r
[(N−r−s−1)/2]∑

j=0

(
N − 2j − s− 1

r − 1

)
ζ(2j)ζ(N − 2j)

+
1
2
{(−1)r − (−1)s}ζ(N − r − s)ζ(r + s),

where the last term occurs since [(N − r − s)/2] = [(N − r − s − 1)/2] + 1
when r + s is odd. Now by (1.13) we have

EN (r, s) = S1(r, s) + S4(s, r) + S2(r, s) + S3(s, r)

− 1
2
{(−1)r − (−1)s}ζ(N − r − s)ζ(r + s).
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Hence

EN (s, r) = S1(s, r) + S4(r, s) + S2(s, r) + S3(r, s)

− 1
2
{(−1)s − (−1)r}ζ(N − r − s)ζ(r + s)

so that

EN (r, s) + EN (s, r) = UN (r, s) + UN (s, r) = T (r, s,N − r − s).

5. Conclusion. It appears to be a difficult open problem to determine
an explicit formula for T (r, s, t) when r+ s+ t = N is even. Such a formula
is known for a general even N in the following cases (where we have taken
r ≥ s in view of (1.2)):

r s t Reference

0 0 N [6, Theorem 5]

r N − r 0 [6, eq. (6)]

1 1 N − 2 [6, eq. (8)]

1 0 N − 1 [6, eq. (10)]

r N − r − 1 1 [6, Theorem 3]

N/2 0 N/2 [6, Theorem 6]

N/3 N/3 N/3 [5, p. 254]

N/3 N/3− 1 N/3 + 1 (by preceding result and (1.5))

In each of these cases except the first (see (1.10)) the formula for T (r, s, t) can
be given as a linear combination of ζ(N) and ζ(i)ζ(N− i), i = 2, 3, . . . , N/2.
It would be interesting to know if this is the case in general.
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