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ON TORSION-FREE ABELIAN k-GROUPS
MANFRED DUGAS AND K. M. RANGASWAMY

ABSTRACT. It is shown that a knice subgroup with cardinality Ri, of a
torsion-free completely decomposable abelian group, is again completely de-
composable. Any torsion-free abelian k-group of cardinality R, has balanced
projective dimension < n.

Introduction. Recently, Hill and Megibben introduced the concept of a knice
subgroup in their study of abelian k-groups [6] and also while considering the local
Warfield groups in [5]. In this paper, we introduce a modified definition of a knice
subgroup of a torsion-free abelian group. This helps us to extend the results of Hill
and Megibben [6] and also simplify the proofs of their main theorems. Specifically
we show that a knice subgroup with cardinality < R, of a torsion-free completely
decomposable abelian group, is again completely decomposable. This enables us
to prove that any torsion-free abelian k-group (in particular, a separable group) of
cardinality < X,, has balanced projective dimension < n.

All the groups that we consider here are torsion-free and abelian. We generally
follow the notation and terminology of L. Fuchs [3]. Let P denote the set of all
primes. By a height sequence we mean a sequence s = (s,), p € P, where each
sp is a nonnegative integer or the symbol co. If G is a torsion-free group and
z € G, then |z| denotes the height sequence of z where, for each p € P, |z|,
denotes the height of z at the prime p. For any height sequence s = (s,), ps
is the height sequence (t,), where t, = s, + 1 and t; = sq for all ¢ # p. G(s)
denotes the subgroup {z € G: |z| > s}. G(s*) is the subgroup generated by the set
{z € G(s): X pep(lzlp — sp) is unbounded}. Two height sequences (sp) and (t,)
are said to be equivalent if > _p[sp — tp| is finite.

Following Hill and Megibben [6], we write G(s*,p) for G(s*) + G(ps). If a € G,
then (a). denotes the pure subgroup generated by a.

DEFINITION [6]. Let G be a torsion-free group.

(i) A subgroup H of G is said to be *-pure if H is pure and, for all height
sequences s and primes p, H N G(s*,p) = H(s*,p).

(ii) An element z of G is said to be premative if for all height sequences s equivalent
to |z| and for all primes p for which s, = |z|, # 00, ¢ ¢ G(s*,p). As pointed out in
[6], = is primitive if and only if nz is primitive for any nonzero integer n. A useful
remark is that if z is primitive and = € G(s*,p), then z € G(ps) or 3 p(|z[, — sp)
is unbounded.

As pointed out in [B], *-purity is transitive, inductive, and inherited by direct
summands.
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PROPOSITION 1. y € G s primitive if and only if the pure subgroup (y). gen-
erated by y 1s x-pure.

PROOF. Let y be primitive. In view of the preceding remarks, every nonzero
element of (y). = H is primitive. Thus if a € H N G(s*,p), then by the primitivity
of a, either a € HNG(ps) = H(ps) or Y _(la|, — sp) is unbounded. Hence a € H(ps)
or a € H(s*). Thus H is x-pure. Conversely, suppose H = (y). is *x-pure, where
we can choose |y| = s = the type of H. Clearly H(s*) = 0. Since y ¢ H(ps),
y ¢ H(s*,p) = HN G(s*,p) for all primes p for which H is not p-divisible. So y
must be primitive.

The following modification of a result of Hill and Megibben is crucial in later
discussions.

PROPOSITION 2. If G s separable, then any finite rank x-pure subgroup H 1s
a completely decomposable summand.

PROOF. The proof is by induction on the rank of H. Let H have rank one, say,
H = (y).. Since H is contained in a completely decomposable summand of G, we
may assume G = (21) *®--- @ (z,)* and y = 21 + - - + z,. Clearly |y| < |z,

1 =1,...,n. Since, by Proposition 1, y is primitive, at least one of the z;’s must
have the same type s as y (as y ¢ G(s*)). Rearranging the z;, if necessary, write
y =19 + 2z wherey =1, +---+zx with r1,..., 2% having the same type as y and

2z = ZTgy1 + -+ Tn. Then (y')., being pure, is a summand of the homogeneous
completely decomposable group (z1) * ®--- @ (zx)* and hence a summand of G,
say G = (y')» ® N with z € N. Then G = (y). ® N.

Suppose H has finite rank n >> 1 and that the result holds for *-pure subgroups
of smaller rank. Let y € H be an element of maximal type s. We claim that y
is primitive. Since this happens if ny is primitive, we may assume without loss of
generality that |y| = s. Then H(s*) = 0 and for each prime p for which s, = |y|p, #
00,y ¢ H(ps) = H(s*,p) = HNG(s*,p). Thus y is primitive in G. Then we can
write G = (y) * @K and h = (y) * ®L, where L = HN K is *-pure of rank n — 1
and hence a completely decomposable summand of G contained in K. This proves
the result.

As a corollary we obtain a simple ‘natural’ proof of the classical theorem of Fuchs
on summands of separable groups.

COROLLARY 3. If G 1is separable and G = A ® B, then A 1is separable.

PROOF. Let pa: G — A,pp: G — B be coordinate projections. Let X be a
finite subset of A. Then X C Gy, a finite rank completely decomposable summand
of G. Now there is a finite rank completely decomposable summand G of G such
that

G1 C pa(Gi1) +pB(G1) C Ga.

Proceeding like this we get an increasing chain of subgroups
G1 Cpa(Gy) +pB(G1) € G2 Cpa(G2) +pB(G2) S -+ .
If

G'= | Gu A= |J palGn), and B"= |J p5(Gn),

n=1,2,... n=1,2,... n=1,2,...
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then G* = A* @ B*. Since G* is *-pure completely decomposable, so is A*. Let
X C D, a finite rank summand of A*. Then D is *-pure in G. By the separability
of G and Proposition 2, D is a summand of G. This proves that A is separable.

We now give a modified definition of a knice subgroup of a torsion-free group.

DEFINITION. (i) A subgroup N of a torsion-free group G is said to be knice if for
each finite subset X of G, there is a finite rank completely decomposable subgroup
H suchthat N+ H=N@H is »-pureand X C N & H.

(ii) A group G is called a k-group, if {0} is knice.

It is clear that a knice subgroup is always balanced. Conversely, as pointed out
in [6], a balanced subgroup B is knice in G if and only if G/B is a k-group.

REMARK. OQur definition of knice is slightly different from that of Hill and
Megibben [5, 6]. For torsion-free groups it is readily seen that “knice” is our sense
is the same as “pure knice” in the sence of Hill and Megibben [6].

We begin with a simple characterization of K-groups.

PROPOSITION 4. (i) G is a k-group if and only if G = C/B, where C is com-
pletely decomposable and B s knice in C.

(il) G 1s a k-group if and only if every countable subset of G can be embedded in
a x-pure completely decomposable subgroup of G.

PROOF. (i) Let G be a K-group. As with any torsion-free group we can write
G = C/B, where C is completely decomposable and B balanced (3, p. 117, Exer-
cise 16]. The rest follows from Theorem 4.3 in [6].

(ii) follows since the union of an increasing chain of finite rank *-pure completely
decomposable subgroups is, by Proposition 2, again completely decomposable and
*-pure.

COROLLARY 5. A countable knice subgroup of a completely decomposable group
s a summand.

Using our modified definition of knice subgroups we give below a much simpler
and direct proof of Theorem 4.8 of Hill and Megibben [6].

THEOREM 6 [6]. If G is a K-group and H 1s knice in G, then H 1is a k-group.

PROOF. Let X be a finite subset of H. Since G is a k-group, there is a finite
rank *-pure completely decomposable subgroup A; of G containing X. Since H is
knice, A; C H&® M;, where M is finite rank completely decomposable and H & M;
is *-pure. Actually Ay C H; @ M;, where H; = f(A4;), f being the coordinate
projection H & M; — H. Since H; & M; has finite rank and G is a k-group,
H,® M, C A,, a finite rank x-pure completely decomposable subgroup of G. Since
H is knice,

Ay CH ® M2 C H® My,
where H ® M, is *-pure, Ho = f(As2), f: H ® M2 — H being the projection map
and M, is finite rank completely decomposable. Here M5 can be chosen to contain
M;: Indeed, if

L:H@M1QH®M2,
then L = H & (L N M3) by modular law. Since L is *-pure in G, so is L N M2 and
Proposition 2 implies that L N M is a summand of Ms, say, My = (LN My) @ M.
Then

HoM;=H&(LNM)® M, =Ho M &M,
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Hence we can replace My by M; & M| and assume that M; C M. Then H; =
f(A2) D f(A1) = H;. Proceeding like this, we get the following increasing chains
of subgroups of G:

AlCH &M CA CH @M C -+,
M, CM;C---, and Hy CH,C---.

If
A= |J 4, M= |J M, and H'= |J H,
n=1,2,... n=1,2,... n=1,2,...
then A* = M* & H*. Since, for each n, A, is *-pure completely decomposable of
finite rank, A, is a summand of A, by Proposition 2 and so A* is *-pure com-
pletely decomposable. Hence its summand H* is a *-pure completely decomposable
subgroup of H containing X. Thus H is a k-group.

A modification of the above proof readily shows that a knice subgroup of a sep-
arable group is again separable. A natural question is about knice subgroups of
completely decomposable groups. Should they necessarily be completely decom-
posable? Theorems 7 and 9 below consider this question.

THEOREM 7. A knice subgroup B of a completely decomposable group C 1s
N1 -separable.

PROOF. Let A = C/B. By Proposition 4(i), A is a k-group. Let Y =
{y1,92,...} be a countable subset of B. Write C = @,.; X;, where the X; are
rank one groups. Let y; € C; a direct sum of finitely many X;’s. Since C/B is a
k-group, (Cy + B)/B C A;/B, a x-pure finite rank completely decomposable sub-
group of C/B. Since B is balanced, A = B® S1, S1 = A;/B. Let p: B&S; — B
be the coordinate projection. Then C; C B; & Sy, where B; = p(C;). Let Cs be a
direct sum of finitely many X;’s such that {y,}U(B; @ S1) C C2. Again since C/B
is a k-group, (Cz + B)/B C A3/B, a *-pure completely decomposable finite rank
subgroup of C/B. By Proposition 2, A;/B = (A;/B) ® S. Since, in addition, B
is balanced, we can write A2 = B® Sz with So = A3/B and S; C S;. Proceeding
like this we get the following increasing chains:

Ci1CB ®S51CCoCBy®S5;C---,
S CS C--, and B;CByC---.
If
C* = U C,, B*= U B,, and S*= U s,
n—1,2,.. n=1,2,... n=1,2,...

then C* = B*® S*. Since C* is a summand of C, B* is a completely decomposable
summand (of C and) of B containing Y. Hence B is R;-separable.

PROPOSITION 8. FEach k-group G of cardinality m > R s the union of a
smooth chain of k-groups {K,}, where each K, has the cardinality less than m and
s x-pure in G.

PROOF. Let {z,: @ < 7} be a well-ordering of the elements of G. We construct
the K, inductively. Let 8 < a. Suppose K, have been constructed for all a < g3,
so that z., € K4, for all v < a, each K, is a k-group, and is x-purein G. If Bis a
limit ordinal, define Kg = |J 3 Ko Suppose 8 = a+ 1. Let Ko = (za) + ) S,
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where S runs over all the x-pure finite rank completely decomposable subgroups
of K. Let Ko2 = Y. S, where S runs over all the x-pure finite rank completely
decomposable subgroups of G containing finite subsets of K, 1, and so on. Define
Kg = U,—19,. Kan Clearly Kg is a k-group of cardinality < m. It is readily
seen that Kpg is *-pure in G.

Ou next theorem considers the knice subgroups of completely decomposable
groups and extends Theorem 5.4 of [6].

THEOREM 9. If G 1s completely decomposable, then any knice subgroup H of
cardinality < Wq, 15 completely decomposable.

We first wish to review the notion of compatibility introduced by Hill [4] and a
terminology connected with Hill’s third axiom of countability.

Two subgroups A and B of G are said to be compatible, in symbols, A||B, if
the following condition holds: If (a,b) € A X B and if s is a height sequence with
s < |a + b|, then there exists an element ¥ € AN B such that s < |a + b'|. The
proof of Lemma 1 of Hill [4] implies that if H is a balanced subgroup of G and if
S is a subset of G, then there is a subgroup B of G such that S C B, B||H, and
|B| = |S] if S is infinite. We shall also use the following remark pointed out in [6].
(in the proof of Theorem 5.4): If H is balanced in G and A is a pure subgroup of G
with A||H, then AN H is a balanced subgroup of A. In order to prove Theorem 9,
we need the following important lemma:

LEMMA 10. Suppose G is completely decomposable of reqular cardinality k, H 1s
a knice subgroup of G, G = U, <\ Ga, and G/H =, ., D& are smooth filtrations,
where G, are summands of G with |G,| < k and D, are k-groups of |Ds| < k.
Then there is a closed and unbounded subset C of k such that H = |J,cc Ho, where
H, = HN G4 13 knice in H for each a € C, and (G, + H)/H = D,.

PROOF. Now U, Do = G/H = U, (Ga + H)/H are two k-filtrations of
G/H, so by a standard argument (cf. 2, p. 26]), C = {a < k|Dq = (Go + H)/H}
is a closed and unbounded set. Let H, = HN G, for all a € C. We claim
that D = {a € C|G4||H} is also closed and unbounded. Since the union of an
increasing chain of subgroups S each compatible to H is again compatible to H,
D is closed. We wish to show that D is unbounded in C. Let o € C so that
(Go+ H)/H = D,,. Since H is balanced, by Lemma 1 of Hill (4], G, C A;, where
Aq||H and |Ay| = |Gql. Since {Go} is a k-filtration of G, there is a < a; € C such
that A; C G,,. By Lemma 1 of Hill [4], there exists Az||H with G4, C A2 and
|A2| = |Gq,|. Proceeding like this we get an increasing chain

GQQAIQGQI QAgQGa2§-~-, where o; € C.

Then U, <., Gan = Upco, An = G, where 8 = lim ay, is compatible to H and
B € C, since C is closed. Hence 8 € D and clearly a < 8. Thus D is unbounded.
Now for a € D, Go/H, = D, is a k-group, H is balanced and G, || H. This implies
that H, is balanced in G,, Go/H, is a k-group, and so H, is knice in G, and
hence in G by the transitivity of kniceness (Proposition 4.10(i), [6]). Since H is
knice in G, H, is a knice subgroup of H, by Proposition 4.10(iv) of [6].

PROOF OF THEOREM 9. Since G is completely decomposable we can assume
|G| < R;. As in Lemma 10, choose a smooth filtration {G,} for G and {D,} for
G/ H with stated properties. Proposition 8 guarantees the existence of the filtration
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{Ds}. As before let H, = HNG,. Since |G/H| < Ry, each D, will be a countable
k-group and hence completely decomposable. Now H,11/H, is countable, and
H,, knice in H,; implies H,1/H, is a countable k-group and hence completely
decomposable so that H,11 = Hy ® Ko. Then H = |J Hy, = @ K, is completely
decomposable.

COROLLARY 11. A k-group of cardinality Ry has balanced projective dimension
<1.

THEOREM 12. Any k-group (in particular, a separable group) G of cardinality
< X, has balanced projective dimension < n.

PROOF. By Corollary 11, the theorem holds if n = 1. Suppose the theorem
is true if 1 < n < m. Let |G| = N,,. By Proposition 4(i), G = C/H, where
C completely decomposable and H a knice subgroup of C. By Lemma 8, G =
Ua <«x, Do is a smooth filtration of *-pure k-groups D, with |Dy| < Rp—1. By
Lemma 10, this induces a smooth filtration H = J,cc Ha of knice subgroups H,
of H, where C is a cub of R,,,. Then for each a, H,1/H, is a k-group of cardinality
< X,,_1 and so has balanced projective dimension < m — 1.

Note that each H,, is in particular balanced in H. Then, by Auslander’s Theorem
(1], H has balanced projective dimension < m—1. This implies that G has balanced
projective dimension < m.

We would like to thank D. Arnold, W. Wickless, and the referee for their helpful
comments, and, in particular, for pointing out the incorrect argument in the proof
of Lemma 10.
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