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ON TORSION-FREE ABELIAN fc-GROUPS

MANFRED DUGAS AND K. M. RANGASWAMY

ABSTRACT. It is shown that a knice subgroup with cardinality Ni, of a

torsion-free completely decomposable abelian group, is again completely de-

composable. Any torsion-free abelian fc-group of cardinality H„ has balanced

projective dimension < n.

Introduction. Recently, Hill and Megibben introduced the concept of a knice

subgroup in their study of abelian fc-groups [6] and also while considering the local

Warfield groups in [5]. In this paper, we introduce a modified definition of a knice

subgroup of a torsion-free abelian group. This helps us to extend the results of Hill

and Megibben [6] and also simplify the proofs of their main theorems. Specifically

we show that a knice subgroup with cardinality < Ni, of a torsion-free completely

decomposable abelian group, is again completely decomposable. This enables us

to prove that any torsion-free abelian fc-group (in particular, a separable group) of

cardinality < Nn has balanced projective dimension < n.

All the groups that we consider here are torsion-free and abelian. We generally

follow the notation and terminology of L. Fuchs [3]. Let P denote the set of all

primes. By a height sequence we mean a sequence s = (sp), p G P, where each

5p is a nonnegative integer or the symbol oo. If G is a torsion-free group and

x G G, then |x| denotes the height sequence of x where, for each p G P, \x\p

denotes the height of x at the prime p. For any height sequence s = (sp), ps

is the height sequence (tp), where tp — sp + 1 and tq = sq for all q / p. G(s)

denotes the subgroup {x G G: \x\> s}. G(s*) is the subgroup generated by the set

{x G G(s): J2pepi\x\p ~ sp) 's unbounded}. Two height sequences (sp) and (tp)

are said to be equivalent if YlPep \sp ~ ¿p\ 18 finite.

Following Hill and Megibben [6], we write G(s*,p) for G(s*) + G(ps). If a G G,

then (o)* denotes the pure subgroup generated by a.

DEFINITION [6]. Let G be a torsion-free group.

(i) A subgroup H of G is said to be *-pure if H is pure and, for all height

sequences s and primes p, H O G(s*,p) — H(s*,p).

(ii) An element x of G is said to be primitive if for all height sequences s equivalent

to |x| and for all primes p for which sp = \x\p ^ oo, x ^ G(s*,p). As pointed out in

[6], x is primitive if and only if nx is primitive for any nonzero integer n. A useful

remark is that if x is primitive and x G G(s*,p), then x G G(ps) or YlPep(\x\p~sp)

is unbounded.

As pointed out in [6], *-purity is transitive, inductive, and inherited by direct

summands.
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PROPOSITION 1. y G G is primitive if and only if the pure subgroup (j/)« gen-

erated by y is *-pure.

PROOF. Let y be primitive. In view of the preceding remarks, every nonzero

element of (y)* = H is primitive. Thus if a G H C¡ G(s*,p), then by the primitivity

of a, either a G H(lG(ps) = H(ps) or 5Z(|a|p —sp) is unbounded. Hence a G H(ps)

or o G H (s*). Thus H is *-pure. Conversely, suppose H = (y)r is *-pure, where

we can choose \y\ = s = the type of H. Clearly H(s*) = 0. Since y <£ H(ps),

y ^ H(s*,p) — H n G(s*,p) for all primes p for which H is not p-divisible. So y

must be primitive.

The following modification of a result of Hill and Megibben is crucial in later

discussions.

PROPOSITION 2. If G is separable, then any finite rank *-pure subgroup H is

a completely decomposable summand.

PROOF. The proof is by induction on the rank of H. Let H have rank one, say,

H = (y)». Since H is contained in a completely decomposable summand of G, we

may assume G = (xi) *©•••© (xn)* and y = x\ -I-Y xn.  Clearly \y\ < |x¿|,

i — 1,... ,n. Since, by Proposition 1, y is primitive, at least one of the x¿'s must

have the same type s as y (as y ^ G(s*)). Rearranging the x¿, if necessary, write

y = y' + z, where y' = xi +-\-xk with x\,... ,xk having the same type as y and

z = Xfc+i + • • • + x„. Then (t/)*, being pure, is a summand of the homogeneous

completely decomposable group (xi) *©•••© (x*;)* and hence a summand of G,

say G = (y'). © N with z G N. Then G = (y), © N.

Suppose H has finite rank n > 1 and that the result holds for *-pure subgroups

of smaller rank. Let y G H be an element of maximal type s. We claim that y

is primitive. Since this happens if ny is primitive, we may assume without loss of

generality that \y\ = s. Then H(s*) =0 and for each prime p for which sp = \y\p ^

oo, y ^ H(ps) = H(s* ,p) = H n G(s* ,p). Thus y is primitive in G. Then we can

write G = (y) * ©if and h = (y) * ffiL, where L = H n K is *-pure of rank n — 1

and hence a completely decomposable summand of G contained in K. This proves

the result.

As a corollary we obtain a simple 'natural' proof of the classical theorem of Fuchs

on summands of separable groups.

COROLLARY 3.   If G is separable and G = A® B, then A is separable.

PROOF. Let pa'- G —> A,pb'- G —> ß be coordinate projections. Let X be a

finite subset of A. Then X Ç Gi, a finite rank completely decomposable summand

of G. Now there is a finite rank completely decomposable summand G2 of G such

that

G1çPA(Gl)+pB(G1)çG2.

Proceeding like this we get an increasing chain of subgroups

Gi c PA(Gi) + pB(G1) CG2c Pa(G2) + pB(G2) Ç • -...

If

G*=     (J    G„,    A*=     (J    PA(Gn),    and    ß* =     (J    PB(Gn),
n=l,2,... n=l,2,... n=l,2....
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then G* = A* ©ß*. Since G* is *-pure completely decomposable, so is A*. Let

X Ç D, a finite rank summand of A*. Then D is *-pure in G. By the separability

of G and Proposition 2, D is a summand of G. This proves that A is separable.

We now give a modified definition of a knice subgroup of a torsion-free group.

DEFINITION, (i) A subgroup N of a torsion-free group G is said to be knice if for

each finite subset X of G, there is a finite rank completely decomposable subgroup

H such that N + H = N © H is *-pure and X Ç N © #.

(ii) A group G is called a k-group, if {0} is knice.

It is clear that a knice subgroup is always balanced. Conversely, as pointed out

in [6], a balanced subgroup ß is knice in G if and only if G/B is a fc-group.

REMARK. Our definition of knice is slightly different from that of Hill and

Megibben [5, 6]. For torsion-free groups it is readily seen that "knice" is our sense

is the same as "pure knice" in the sence of Hill and Megibben [6].

We begin with a simple characterization of K-groups.

PROPOSITION 4. (i) G is a k-group if and only if G = C/B, where C is com-
pletely decomposable and B is knice in C.

(ii) G is a k-group if and only if every countable subset of G can be embedded in

a *-pure completely decomposable subgroup of G.

PROOF, (i) Let G be a K-group. As with any torsion-free group we can write

G = C/B, where G is completely decomposable and B balanced [3, p. 117, Exer-

cise 16]. The rest follows from Theorem 4.3 in [6].

(ii) follows since the union of an increasing chain of finite rank *-pure completely

decomposable subgroups is, by Proposition 2, again completely decomposable and

*-pure.

COROLLARY 5. A countable knice subgroup of a completely decomposable group

is a summand.

Using our modified definition of knice subgroups we give below a much simpler

and direct proof of Theorem 4.8 of Hill and Megibben [6].

THEOREM 6 [6].   If G is a K-group and H is knice in G, then H is a k-group.

PROOF. Let X be a finite subset of H. Since G is a fc-group, there is a finite

rank *-pure completely decomposable subgroup A\ of G containing X. Since H is

knice, Ai Ç H®Mi, where Mi is finite rank completely decomposable and ß©Mx

is *-pure. Actually Ai Ç Hi © Mi, where ßi = f(A\), f being the coordinate

projection H © Mi —► H. Since ßi © Mi has finite rank and G is a fc-group,

Hi®Mi Cj42,a finite rank *-pure completely decomposable subgroup of G. Since

H is knice,

A2 Ç H2 © M2 C H © M2,

where H © M2 is *-pure, H2 — f(A2), f: H © M2 —» H being the projection map

and M2 is finite rank completely decomposable. Here M2 can be chosen to contain

Mi: Indeed, if
L = ß©Mi Cß©M2,

then L = H © (L n M2) by modular law. Since L is *-pure in G, so is L n M2 and

Proposition 2 implies that L n M2 is a summand of M2, say, M2 = (L n M2) © M2.

Then

H © M2 = H © (L n M2) © M2 = ß © Mi © M2.
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Hence we can replace M2 by Mi © M{ and assume that Mi Ç M2. Then ß2 =

f(A2) 2 f(Ai) = Hi. Proceeding like this, we get the following increasing chains

of subgroups of G:

Ai C Hi © Mi C A2 C H2 © M2 C ■ ■ ■ ,

M2 Ç M2 Ç • • • ,    and   Hi Ç ß2 ç • • • .

If

A*=     (J    An,    M*=     U     Mn,    and    ß* =     1J     ß„,
n=l,2,... n=l,2,... n=l,2,...

then A* = M* © ß*. Since, for each n, An is *-pure completely decomposable of

finite rank, An is a summand of An+i by Proposition 2 and so A* is *-pure com-

pletely decomposable. Hence its summand H* is a *-pure completely decomposable

subgroup of H containing X. Thus H is a fc-group.

A modification of the above proof readily shows that a knice subgroup of a sep-

arable group is again separable. A natural question is about knice subgroups of

completely decomposable groups. Should they necessarily be completely decom-

posable? Theorems 7 and 9 below consider this question.

THEOREM 7. A knice subgroup B of a completely decomposable group C is

Hi-separable.

PROOF. Let A = C/B. By Proposition 4(i), A is a fc-group. Let Y =

{yi,V2, • • •} be a countable subset of B. Write C = 0j€r Xi, where the X¿ are

rank one groups. Let yi G Ci a direct sum of finitely many AYs. Since C/B is a

fc-group, (Gi + B)/B C Ai/B, a *-pure finite rank completely decomposable sub-

group of C/B. Since ß is balanced, Ax = ß © Si, Si = A\/B. Let p: B © Si -> ß

be the coordinate projection. Then Gi Ç ßx © Si, where ßi = p(Gi). Let G2 be a

direct sum of finitely many AYs such that {y2} U (ßi ©Si) Ç C2. Again since C/B

is a fc-group, (G2 + B)/B C A2/B, a *-pure completely decomposable finite rank

subgroup of C/B. By Proposition 2, A2/B = (Ai/B) © S. Since, in addition, ß

is balanced, we can write A2 = B © S2 with S2 = A2/B and Si Ç S2. Proceeding

like this we get the following increasing chains:

Gi C ßi © Si ç C2 ç ß2 © S2 ç • • • ,

Si Ç S2 C ■ ■ • ,    and     ßi Ç ß2 Ç • • • .

If

C*=     (J     Cn,    B*=     (J     Bn,    and    S* =     \J    Sn,
n-1,2,... n=l,2,... n=l,2,...

then C* — ß* ©S*. Since G* is a summand of G, ß* is a completely decomposable

summand (of G and) of ß containing Y. Hence ß is Ni-separable.

PROPOSITION 8. Each k-group G of cardinality m > No îS the union of a

smooth chain of k-groups {Ka}, where each Ka has the cardinality less than m and

is *-pure in G.

PROOF. Let {xa : a < t} be a well-ordering of the elements of G. We construct

the Ka inductively. Let ß < a. Suppose Ka have been constructed for all a < ß,

so that x1 G K1+i for all 7 < a, each Ka is a fc-group, and is *-pure in G. If ß is a

limit ordinal, define Kß = Ua</3 K<*- Suppose ß = a + 1. Let Äq,i = (xa) + Y2 $'
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where S runs over all the *-pure finite rank completely decomposable subgroups

of K. Let Ka,2 = J2 ^j where S runs over all the *-pure finite rank completely

decomposable subgroups of G containing finite subsets of Äq,i, and so on. Define

Kß = Un=i 2 Ka,n- Clearly Kß is a fc-group of cardinality < m. It is readily

seen that Kß is *-pure in G.

Ou next theorem considers the knice subgroups of completely decomposable

groups and extends Theorem 5.4 of [6].

THEOREM 9. If G is completely decomposable, then any knice subgroup H of

cardinality < H\, is completely decomposable.

We first wish to review the notion of compatibility introduced by Hill [4] and a

terminology connected with Hill's third axiom of countability.

Two subgroups A and ß of G are said to be compatible, in symbols, A||ß, if

the following condition holds: If (a, b) G A x B and if s is a height sequence with

s < \a + 6|, then there exists an element b' G A fl ß such that s < \a + b'\. The

proof of Lemma 1 of Hill [4] implies that if H is a balanced subgroup of G and if

S is a subset of G, then there is a subgroup ß of G such that S C B, B\\H, and

|ß| = \S\ if S is infinite. We shall also use the following remark pointed out in [6].

(in the proof of Theorem 5.4): If H is balanced in G and A is a pure subgroup of G

with A||ß, then A n H is a balanced subgroup of A. In order to prove Theorem 9,

we need the following important lemma:

LEMMA 10. Suppose G is completely decomposable of regular cardinality k, H is

a knice subgroup of G, G — Ua<K Got, and G/H = \Ja<li Da are smooth filtrations,

where Ga are summands of G with \Ga\ < k and Da are k-groups of \Da\ < k.

Then there is a closed and unbounded subset C of k such that H — [JaeC Ha, where

Ha = H fl Ga is knice in H for each a GC, and (GQ + H)/H = Da.

PROOF. Now Ua<K-Dc. = G/H = \Ja<K(Ga + H)/H are two fc-filtrations of

G/H, so by a standard argument (cf. [2, p. 26]), C = {a < k|Dq = (GQ + H)/H}

is a closed and unbounded set. Let Ha = ß D GQ for all a G G. We claim

that D = {a G G|GQ||ß} is also closed and unbounded. Since the union of an

increasing chain of subgroups S each compatible to H is again compatible to H,

D is closed. We wish to show that D is unbounded in G. Let a G C so that

(Ga + H)/H — Da. Since H is balanced, by Lemma 1 of Hill [4], Ga Ç Ai, where

Ai||ß and |Ai| = |GQ|. Since {Ga} is a /c-filtration of G, there is a < à% G G such

that Ai Ç GQl. By Lemma 1 of Hill [4], there exists A2||ß with Gai Ç A2 and
IA2I = |GQl|. Proceeding like this we get an increasing chain

GQ Ç Ai ç GQl ç A2 C Ga2 ç ■ • • ,    where at G C.

Then \Jn<u Gan — \Jn<UJ An = Gß, where ß = lima„, is compatible to ß and

ß G C, since G is closed. Hence ß G D and clearly a < ß. Thus D is unbounded.

Now for a G D, Ga/Ha Si Da is a fc-group, H is balanced and GQ||ß. This implies

that Ha is balanced in Ga, Ga/Ha is a fc-group, and so Ha is knice in GQ and

hence in G by the transitivity of kniceness (Proposition 4.10(i), [6]). Since ß is

knice in G, Ha is a knice subgroup of H, by Proposition 4.10(iv) of [6].

PROOF OF THEOREM 9. Since G is completely decomposable we can assume

|G| < Ni. As in Lemma 10, choose a smooth filtration {Ga} for G and {Da} for

G/H with stated properties. Proposition 8 guarantees the existence of the filtration
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{Da}. As before let Ha = Hf)Ga. Since |G/ß| < Ni, each Da will be a countable

fc-group and hence completely decomposable. Now Ha+i/Ha is countable, and

Ha knice in ßQ+i implies Ha+i/Ha is a countable fc-group and hence completely

decomposable so that ßQ+i — Ha © Ka. Then H = \JHa = 0Ä"Q is completely

decomposable.

COROLLARY 11.   A k-group of cardinality Ni has balanced projective dimension

< 1.

THEOREM  12.   Any k-group (in particular, a separable group) G of cardinality

< Nn has balanced projective dimension < n.

PROOF. By Corollary 11, the theorem holds if n = 1. Suppose the theorem

is true if 1 < n < m. Let |G| = Nm. By Proposition 4(i), G = C/H, where

G completely decomposable and H a knice subgroup of C. By Lemma 8, G =

UQ<N Da is a smooth filtration of *-pure fc-groups Da with |DQ| < NTO_i. By

Lemma 10, this induces a smooth filtration H — (Jaec ^a °^ knice subgroups Ha

of H, where C is a cub of NTO. Then for each a, Ha+i/Ha is a fc-group of cardinality

< Nm_i and so has balanced projective dimension < m — 1.

Note that each Ha is in particular balanced in H. Then, by Auslander's Theorem

[1], H has balanced projective dimension < m— 1. This implies that G has balanced

projective dimension < m.

We would like to thank D. Arnold, W. Wickless, and the referee for their helpful

comments, and, in particular, for pointing out the incorrect argument in the proof

of Lemma 10.
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