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ON TORSION IN GROUPS WHOSE 

AUTOMORPHISM GROUPS HAVE FINITE RANK 

SILVANA FRANCIOSI, FRANCESCO DE GIOVANNI 

AND DEREK J.S. ROBINSON 

1. Introduction. Our object is to study the effect on the elements 
of finite order in a group of imposing finiteness conditions on the 
automorphism group. That some effect is to be expected is suggested 
by results already in the literature. Almost thirty years ago Baer [1] 
showed that a torsion group whose automorphism group is finite is 
itself finite. This result was sharpened by Nagrebeckii [9] who proved 
that if the automorphism group Aut G of a group G is finite, then 
the elements of finite order form a finite subgroup of G. Subsequently 
it was observed that certain apparently weaker finiteness properties 
are in fact equivalent to the finiteness of Aut G. Thus Robinson [14] 
showed that if Aut G is a Cernikov group, then it is finite. Recently 
Zimmerman [17] has proved that Aut G will also be finite if it is a 
countable torsion FC-group with no elements of order 2 or 3. 

Here we shall consider properties of the automorphism group which 
are usually weaker than finiteness but which are strong enough to force 
Sylow subgroups of the group to be small. The most general property 
that we consider is that of having finite abelian subgroup rank; this 
property requires that every abelian subgroup A have finite torsion-
free rank TQ{A) and finite p-rank rp(A) for all primes p. Somewhat 
stronger is the requirement of finite abelian total rank; for this the 
total rank 

r0(A) + J2rP(A) 
V 

of each abelian subgroup A must be finite. Stronger still are the 
maximal and minimal conditions on abelian subgroups, max — ab and 
min — ab. 

Of course Nagrebeckii's Theorem is really about abelian-by-finite 
groups. We shall prove our results for soluble-by-finite groups. 
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THEOREM 1: Let G be a soluble-by-finite group. 
(a) If Aut G has finite abelian subgroup rank, then each Sylow subgroup 

of G is a Cernikov group. 
(b) / / Aut G satisfies the maximal condition on abelian subgroups, 

then the Sylow subgroups of G are finite. 
(c) / / Aut G satisfies the minimal condition on abelian subgroups, 

then Aut G is finite and the elements of finite order form a finite 
subgroup of G. 

There are stronger results for soluble-by-finite groups which have the 
additional property of being torsion-by-nilpotent. 

THEOREM 2: Let G be a soluble-by-finite group which is also torsion-
by-nilpotent. 

(a) / / Aut G has finite abelian subgroup rank, then the Sylow sub
groups of G are finite. 

(b) If Aut G has finite abelian total rank, then the elements of finite 
order form a finite subgroup of G. 

These theorems are proved in §2 and §3, where it is also indicated 
how the hypotheses on G may be weakened from "soluble-by-finite" 
to uradical-by-finite". It seems difficult to decide what happens in the 
absence of such a condition. 

In §4 we construct three central extensions which show clearly the 
limitations to results like Theorems 1 and 2. 

T H E O R E M 3. 

(i) There is a soluble minimax group G\ with an infinite Sylow 
subgroup such that Aut G\ is a soluble minimax group. 

(ii) There is a soluble group Gì with finite Prüfer rank such that 
Aut Gì is polycyclic and abelian-by-finite, but G<i contains an infinite 
abelian torsion subgroup. 

(iii) There is a nilpotent group Gz of class 2 with finite Prüfer rank 
whose automorphism group has finite Prüfer rank and is abelian-by-
finite, but Gz has an infinite abelian torsion subgroup. 

(Recall that a minimax group is a group with a series of finite length 
whose factors satisfy the maximal or minimal condition). 

The first example shows that in the situation of Theorem 1(a) one 
cannot expect the Sylow subgroups to be finite. The second and third 
examples demonstrate that under the hypotheses of Theorems 1(b) or 
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2(a) there may occur infinite torsion subgroups. Furthermore Theorem 
1(b) does not hold if max — ab is replaced by "finite abelian total rank". 

We shall make frequent use of information about the structure of the 
automorphism group of a group extension; as general references for this 
theory we cite [15] and [16]. 

NOTATION. 
Gab • the derived factor group G/G'. 

M(G) : the Schur multiplicator of G. 

cD(G) : the set of prime divisors of the orders of elements of G. 

Ap : the p-component of the abelian group A. 

2. Proof of Theorem 1. We begin with a formal characterization 
of groups whose automorphism group has finite abelian subgroup rank, 
max — ab or min — ab. This will not be used in the proofs of the main 
theorems. 

LEMMA 1. Let G be a group with centre C and central quotient 
group Q. Denote the cohomology class of the extension C >—> G -+• 
Q by A. Then Aut G has finite abelian subgroup rank (respectively 
max — aò,min — ab) if and only ifUom(Qab,C) and CAnt C x A u t g ( ^ ) 
have finite abelian subgroup rank (respectively max —aft, min — ab). 

PROOF. By [12], Corollary 2.3, there is an exact sequence 

Hom(Qûo, C) ~ Aut G -» C A u t CxAut g ( A ) 

and so the sufficiency of the condition follows immediately. 

On the other hand, if Aut G has finite abelian subgroup rank, since 
Hom(Qafc,C) is abelian, it follows by a result of Baer and Heineken 
[2] (see also [11]) that CAnt C x Aut Q ( ^ ) ^ ^ ^n^e abelian subgroup 
rank. 

The proofs for max — ab and min —ab are similar. 
The proof of Theorem 1 will be approached through a sequence of 

lemmas. We recall that a group has finite abelian section rank if all its 
abelian sections have finite torsion-free rank and finite p-rank for all 
primes p. For radical groups this property is the same as that of having 
finite abelian subgroup rank, by a theorem of Baer and Heineken [2] 
(see also [11]). 

LEMMA 2. Let Q be a soluble-by-finite group of finite abelian section 
rank. Then M(Q) has finite abelian section rank. 
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PROOF. There is a series 1 = Q0 < • • • < Qi = Q in which Qi+i/Qi 
is finite, infinite cyclic or an abelian torsion group with min— p for 
all p. We can assume that I > 0. Let N = Qt-i. Then M(Q/N) ~ 
(Q/N)®(Q/N) iiQ/N is abelian; otherwise it is finite. Hence M{Q/N) 
has finite abelian section rank, and so also does M(N) by induction 
on £. Therefore, by the Lyndon-Hochschild-Serre spectral sequence 
for homology, it suffices to prove that Hi(Q/N,Nat,) has finite abelian 
section rank. 

Write Q = Q/N and A = Nab. If Q is finite, the fact that H1 (Q, A) 
is isomorphic with Ker (A ®QIQ —• A), where IQ is the augmentation 
ideal, gives the result. If Q is infinite cyclic, Hi(Q, A) is isomorphic 
with a subgroup of A_ and all is clear. 

Assume now that Q is an abelian torsion group with finite p-rank for 
all p. By the long exact sequence for homology we may assume that 
A is either torsion-free of finite rank or a torsion group with finite p-
rank for all p. Since H\ (<2, A) is isomorphic with 0 p i / i (Q, AP), we can 
assume A to be a p-group in the latter case. Then Q/CQ(A) is finite in 

both situations by theorems of Schur and Cernikov (see [3; Theorems 
36.14] and [10; Part 1, Theorem 3.29.2]). The spectral sequence ( or 
five term homology sequence) allows us to assume that A is a trivial 
Q-module. Then Hi(Q,A) 2̂  Qab <g> A and the result follows. 

COROLLARY. / / G is a group such that G/Z(G) is soluble-by-finite 
with finite abelian section rank, then G' is soluble-by-finite with finite 
abelian section rank. 

This follows from Lemma 2 because G'f)Z(G) is an image of 
M{G/Z{G)). 

The next two lemmas are technical results designed to produce large 
abelian direct factors. 

LEMMA 3. Let A be an additive abelian group and let B be an infinite 
p-subgroup of A with finite exponent such that A/B has finite p-rank. 
Then A has an infinite direct summand contained in B. 

PROOF. Let P/B be the p-component of A/B; then P/B is a 
Öernikov group. Hence pkP + B = pk+xP + B for some k > 0 and 
pk+rp _ p/e+r+ip _ £ g a ^ fQr g o m e r > o, since B has finite exponent. 
Then L is a divisible p-group of finite rank. The group P/B+L is finite, 
so we have P = B* + L where B < B* and B* jB is finite; therefore 
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B* = B + X with X finite, and P = B + Y where Y = X + L has finite 
rank. Now B = B0 © B\ where B f] Y < B0 and B0 is finite. Then 
P = (B0 + Y)®Bi, and since P is a direct summand of A (see [5; Vol. 
2, Theorem 100.1]), B\ is an infinite direct summand of A contained 
in B. 

LEMMA 4. Let G be a group and let C be a central subgroup of G. 
Assume that G/C is soluble-by-finite with finite abelian section rank 
and C is an infinite p-group of finite exponent. Then G has an infinite 
direct factor contained in C. 

PROOF. By the Corollary to Lemma 2 it follows that G has finite 
abelian section rank, and so G f]C is finite. Therefore CG jG is 
infinite, and, applying Lemma 3 to the group Gab and its subgroup 
CG/G, we obtain G = Cod where C o f l ^ i = G,C0 < CG' and 
Co/G is infinite. Then C0 = (C0Ç\C)G and G = ( C 0 n C ) C i . Since 
Gp|C is finite, we can write Cof)C = C2XC3 where C2 is finite and 
GÇ\C < C2 . Finally, G = CXC2CZ = (CiC2) x C3 and C3 is infinite. 

The next lemma extends results of Hallett and Hirsch (see [5; Vol. 2, 
§166]). 

LEMMA 5. Let A and B be abelian groups and suppose that A is 
torsion-free. Let there be given a ring homomorphism EndA —• EndB, 
so that B becomes a module over EndA / / b is an element of B 
such that K = CAut A (b) is a torsion group, then K has finite 
exponent dividing 12 and every involution in K belongs to the centre. 
In particular K is locally finite. 

PROOF. It is shown in [14, Lemma 6] that K has finite exponent 
dividing 12. 

If a and ß are elements of K with a2 = 1, then <p = (l+a)/3(l—a) and 
tp = (1 — a)ß(l -h a) are endomorphisms of A such that <p2 = xp2 = 0. 
Therefore 1 + <p and 1 + V> are automorphisms of A, and it is easy to 
see that they belong to K. Hence (1 -f <p)n = 1 = (1 + ip)n for some 
n > 0, which leads to <p = 0 = i/>. Therefore 0 = <p - t/> = 2(a/3 - ßa) 
and aß = ßa. 

Finally, the group K/Z(K) has finite exponent dividing 6, so it is 
locally finite by M. Hall's positive solution of the Burnside Problem for 
exponent 6 (see [6]). 

We are now in a position to prove Theorem 1. 
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PROOF OF THEOREM 1(a). Let C = Z{G) and Q = G/C. Firstly 
we will prove that the divisible part of Cp has finite rank. Suppose 
that this is false. Then we can write C = P x R where P is a divisi-
ble p-group of infinite rank. Note that G' f]C has finite p-rank by the 
Corollary to Lemma 2. Hence G' f] C < P0 x R where P = P 0 x Px and 
P 0 has finite rank. Now PiG'/G1 is a direct factor of Gaj>, so G = XP\ 
and XÇ\P\ < G' for some X. But XÇ\P\ must be trivial, so Pi is a 
direct factor of G. This is impossible since abelian subgroups of Aut G 
are countable. 

The next step is to prove that Cp has finite rank. Suppose that this 
rank is in fact infinite. 

HC/CP is finite, then CP/(CP)P is finite and Cp is the direct product 
of a finite group and a divisible group. However this gives the contra-
diction that Cp has finite rank. Hence C/Cv is infinite. Then, because 
G' and Q have finite abelian section rank, the group G/G'CP must 
have an infinite elementary abelian p-group as a quotient. Since Aut G 
has no infinite elementary abelian p-subgroups and Hom(G/G'Gp ,Gp) 
is isomorphic with a subgroup of Aut G, it follows that {Cv)p = 1; thus 
Cp must have finite exponent. Hence C = Cv x E for some E <C. Ap-
plying Lemma 4 to the group G/E and its central subgroup CjE ~ Cp, 
we obtain G = GiG2 where Gx f]G2 = E,d < C and G1/E is an 
infinite group. Since E < G\ < Cp x E, we have G\ = D x E where 
D = Gi f]Cp. Finally G = GiG2 = DEG2 = DG2 = D x G2, a 
contradiction since Z> ^ G\jE is an infinite abelian group of finite ex-
ponent. 

Therefore Cp has finite rank and the Sylow p-subgroups of G are 
Cernikov groups. 

PROOF OF THEOREM 1(b). As before, let C = Z(G) and Q = G/C. 
Write T for the torsion subgroup of C and A for the cohomology class 
of the extension C >—• G -» Q. As a soluble-by-finite group with 
max -a6 , Q is polycyclic-by-finite, by a theorem of Plotkin (see [10; 
Part 1, Theorem 3.31]); it suffices to prove that T cannot have a p°°-
subgroup. Suppose that P is such a subgroup and write C = P x R. 

By the Universal Coefläcients Theorem H2(Q,C) ~ Hom(M(Q),P) 
0 i / 2 (Q , f i ) . Now Hom(M(<2),P) is a torsion group since M(Q) is 
finitely generated. Write A = A0 + Ai where A0 € Hom(M(Q),P) 
and Ai G H2{Q,R). Then eA0 = 0 for some e > 0. For each p-
adic integer a = 0 (mod p), the map x »-• a:1+ea extends from P 
to an automorphism of G operating trivially on G/C sind C/P. If T 
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is the subgroup of Aut G generated by such automorphisms, then T 
acts trivially on G/C and C/P. Hence Tf acts trivially on G /P , and 
obviously also on P , so that T is metabelian. Therefore, since it satisfies 
max — ab, T is countable, a contradiction. 

PROOF OF THEOREM 1(C). We shall employ the notation of the 
preceding proof. The group Q is soluble-by-finite with min —ab and so 
it is Öernikov by a result of Plotkin (see [10; Part 1, Theorem 3.32]). 
Obviously Aut G is a torsion group and so, if Ti = GAUt G(Q)I the 
group Aut G/Ti is Öernikov, being a torsion group of automorphisms 
of Q. Each Cp is Öernikov by Theorem 1(a), and it is easy to see that 
if p & £J(Q), then Cp is a direct factor of G (see, e.g., [4]). If £j(T) were 
infinite, it would follow that Aut G contained an infinite elementary 
abelian 2-group, contradicting min —ab. Therefore OJ(T) is finite and T 
is Öernikov. I_fT2 = CTl (T), then r i / r 2 is finite. 

Now write G = C/Tjmd Gj= G/T, and let A denote the cohomology 
class of the extension G >—• G -» Q. Consider the short exact sequence 
of Q-modules T >—• G -» G; in the long exact cohomology sequence 

••• - H*(Q,T) - H2{Q,C)^H2{Q,C) - ••• 

the mappings are Aut G-homomorphisms by naturality, and Ae = A. 
Therefore CAut c(A) < GA u t c (Â) . 

Since Q is a Öernikov group, M(Q) is finite [13], and it follows via 
the Universal Coefficients Theorem that H2(Q,T) is finite. Therefore 
I^Aut c(A) : GAut c (A) | is finite and GAut c(A) has min— ab because 
GAut c(A) is isomorphic with a section of Aut G. 

Since T is a direct factor of G, the natural map <p : GAut c(A) —• 
GAut c(A) is surjective; moreover Ker<£> induces a finite group of 
automorphisms in T, so it is abelian-by-finite. Hence, by [10; Part 
1, p.88], the group T = GA u t ç (A) has min -ab. Now apply Lemma 5 
with A = G, £ = H2(Q,C),b = A; it follows that T is locally finite 
with finite exponent. Since V has min —ab, it is finite by a well-known 
theorem of Hall-Kulatilaka and Kargapolov (see [7] or [10]). 

If r 3 denotes Gr2(G), then r 2 / r 3 is isomorphic with a subgroup of 
T, so r 2 / r 3 is finite. Finally, T3 stabilizes the series 1<T<G<G; hence 
r 3 is nilpotent and in view of min — ab it must be a Öernikov group. 

Therefore Aut G is Öernikov, and by Theorem A of [14] it is finite. 

3. Proof of Theorem 2. The proof of Theorem 2 is also 
accomplished through a chain of lemmas. 
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LEMMA 6. Let Q be a soluble-by-finite group and let p be a prime. 
Assume that the Sylow p-subgroup s ofQ are Öernikov and that Q has no 
p°° -quotients. Assume also that there is a normal torsion subgroup T 
with finite Sylow p-subgroups such that Q/T is nilpotent. Then M(Q) 
is an extension of a finitely generated subgroup by a p'-group. Thus 
M(Q) has no p°° -sections. 

PROOF. Let Q = Q/T. Since Q has no p°°-quotients, it has finite 
torsion-free rank. In addition it is easy to see that the Sylow p-subgroup 
of Q is Öernikov. From this it follows readily that Qab is finitely 
generated-by-p'. The latter property is preserved by tensor products, 
so it is possessed by every lower central factor of Q. Induction on the 
nilpotent class and use of the spectral sequence lead us to conclude that 
M(Q) is finitely generated-by-p'. 

Now form a Q-invariant series in T of finite length whose factors are 
either finite or else abelian torsion groups with finite p-components. 
Let N be the least non-trivial term of this series. Then M(Q/N) has 
the required structure by induction, as does M(N). It therefore suffices 
to consider the group Hi(Q*,N*) where Q* = Q/N and N* = Nab. 
Now H\{Q*,N*,) is a p'-group, so we need only consider H\{Q*, N*). 
Since P = N* is finite, we can further reduce to the situation where 
P is a trivial Q*-module. Finally, HX(Q*,P) ~ Q*ab <g> P , and this is 
certainly finitely generated-by-p'. 

LEMMA 7. Let Q be a torsion-by-nilpotent, soluble-by-finite group and 
let p be a prime. Assume that Q has finite Sylow p-subgroups, and let 
A be a Q-module which is a divisible abelian p-group of finite rank. If 
HQ(Q,A) = 0, then H2{Q,A) is a torsion group. 

PROOF. The group Q/CQ(A) is finite-by-nilpotent and by Theorem 
G of [8], the group H°{Q/CQ(A),A) is finite; thus H°(Q,A) is finite. 
Let T be the subgroup of all elements of finite order in Q and put 
C = CT{A)-, then Q = Q/C is finite-by-nilpotent and by Theorem H 
of [8] the group i / 2 (Q, A) is torsion. 

The locally finite group C is a finite extension of_a p'-group (see 
[7, Theorem 3.17]), so the groups H2{C,A) and H](Q,Hl(C,A)) are 
torsion. The spectral sequence for C >—• Q -» Q now shows that 
H2{Q,A) is torsion group. 

LEMMA 8. Let Q be a torsion-by-nilpotent, soluble-by-finite group and 
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let p be a prime. Assume that Q has no p°°-quotients and the Sylow 
p-subgroups of Q are finite. If A is a Q-module which is a divisible 
abelian p-group of finite rank, then H2(Q,A) is a torsion group. 

PROOF. Since A satisfies min, there is an r > 0 such that [A,rQ] = 
[A,r+iQ] is divisible. By appealing to the exact cohomology sequence 
we may reduce to two cases: 

(a) A is a trivial Q-module; 
(b)A = [A,Q). 
In case (a) H2(Q,A) ~ Hom(M(Q), A), which is a torsion group by 

Lemma 6. Henceforth we assume that A = [A, Q). 
Let C = CQ(A). Then Q = Q/C is finite-by-nilpotent and 

H0(Q,A) = 0. By Theorem H of [8], the groups Hn(Q,A) are tor-
sion for all n > 0. Now consider H1 (Q,Hom(C, A)). As in the proof of 
Lemma 6 we see that the group Cab is finitely generated-by-p'. Hence 
B = Hom(C, A) is a p-group of finite rank. Once again the exact 
cohomology sequence shows that we may suppose either B a trivial 
Q-module or HQ(Q, B) = 0. In the first case Hl(Q, B) is torsion since 
Q has no p°°-quotients; in the second case the same conclusion holds 
by Theorem H of [8]. Finally, H2(C,A) ~ Hom(M(C),j4), which js 
torsion, by Lemma 6 again. The spectral sequence for C ^+ Q -» Q 
shows that H2(Q,A) is a torsion group. 

We can now prove Theorem 2. 

PROOF OF THEOREM 2(a). By Theorem 1(a), the Sylow subgroups 
of G are Öernikov. The first step is to show that Sylow subgroups of 
Z(G) are actually finite. In order to obtain a contradiction, suppose 
that B is a p°°-subgroup of Z(G). If G has a p°°-quotient G/N, then 
B £ N, otherwise the additive group of p-adic integers would occur as a 
subgroup of Aut G. Therefore G = BN and Bx = B f] N is finite. The 
group r = CAut B{B\) has finite index in Aut B, so it is an uncountable 
abelian group. However each 7 in T extends to an automorphism 7 of 
G such that \bx)^ = Wx, (b G B,x G N). Thus T is isomorphic with an 
uncountable abelian subgroup of Aut G, which is impossible. Therefore 
G has no p°°-quotients if Z(G) has p°°-subgroups. 

Let T be the maximal normal torsion subgroup of G; then G/T 
is torsion-free and nilpotent. Also by [7, Corollary 3.18], there is a 
characteristic divisible abelian subgroup A of T such that T/A has 
finite Sylow subgroups. The p-component P of A is non-trivial since 



440 S. FRANCIOSI, F. DE GIOVANNI AND D.J.S. ROBINSON 

B < A. Let Q = G/P. Then Q has finite Sylow p-subgroups. We see 
from Lemma 8 that H2(Q, P) is a torsion group. 

Let A be the cohomology class of the extension P >—• G -» Q. Then 
eA = 0 for some e > 0, and so, for each p-adic integer a satisfying 
a = 0 (mod p), the map x K+ x 1 + e a is a Q-automorphism of P 
which extends to an automorphism of G acting trivially on Q. The 
subgroup A generated by all such automorphisms is metabelian, and 
hence countable; but this is impossible because A is uncountable. Thus 
far it has been shown that the Sylow subgroups of Z(G) are finite. 

Denoting again by A, the divisible abelian subgroup of T such that 
the Sylow subgroups of T/A are finite, we suppose in order to obtain a 
contradiction that A ^ 1. Let p be a prime such that P = Ap is non-
trivial. If Q = G/P, then H°(Q,P) = Pf)Z{G), so that H°{Q,P) 
is finite. If C = CQ(P), the group Q/C is finite-by-nilpotent, and 
since H°(Q/C,P) = H°(Q,P) is finite, by [8, Theorem G], it follows 
that H0{Q,P) = H0{Q/C,P) = 0. Therefore, by Lemma 7, the group 
H2(Q,P) is torsion and we reach a contradiction as before. 

PROOF OF THEOREM 2(b). By Theorem 2(a) the Sylow subgroups 
of G are finite. Let C = Z(G),Q = G/C and let T denote the torsion 
subgroup of G. Then T = TC/C is a Cernikov group since Q has finite 
total rank. Hence T is finite. Since G/TC is nilpotent, Q is finite-by-
nilpotent, so that by the well-known theorem of P. Hall (see [10; Part 
1, Theorem 4.25]) we have \Q : Zn(Q)\ < oo for some n > 0, which 
implies that \G : Z n + i (G) | < oo. By a theorem of Baer (see [10; Part 
1., p. 113]), G is finite-by-nilpotent. 

Let TV be a finite normal subgroup of G such that G/N is nilpotent, 
and let T* be the torsion subgroup of C. For each prime p in <D(T*) 
such that (|iV|,p) = 1, the group G cannot be p-radicable; for G/N is 
nilpotent and has finite Sylow p-subgroup. Therefore G has a quotient 
G/Kp of order p. For every such p let Sp be a subgroup of T* of order 
p; let 7Ti be the set of primes p such that Sp < Kp and 7T2 the set of 
primes p such that Sp £ Kp. For each p G 7TI, we have Sp < Kp f] S 
where S = Dr p € 7 r i 5 p , and so S < Kp because Sq < Kp for all q ^ p. 
Thus we have Sp - Uom{G/KPiSp) ~ Hom(G/5,S) ^ Aut G for 
each p E 7Ti. It follows that 7TI is finite since Hom(G/5, S) has finite 
total rank. Finally, if p G 7r2, then G = Kp x 5P and Drp€7r2 Aut 5P is 
isomorphic with an abelian subgroup of Aut G, which shows that -K*I 
is finite. Therefore ü(T*) is finite, and consequently T* is finite. The 
result is now clear. 
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REMARK. Theorems 1 and 2 still hold if the group G is radical-by-
finite. The proof is essentially the same; we merely replace Lemma 2 
by the following easily established generalization. 

LEMMA 2*. LetQ be a radical-by-finite group of finite abelian section 
rank. Then M(Q) has finite abelian section rank. 

4. Counterexamples . 

P R O O F OF T H E O R E M 3. 

(i) There exists a soluble minimax group G\ with an infinite Sylow 
2-subgroup such that Aut G\ is a soluble minimax group. 

Construction. We begin by producing a soluble minimax group Q 
with the following properties: 

(1) Q has no 2°°-quotients; 
(2) Z{Q) = 1; 
(3) Aut Q is a soluble minimax-group. 
Let 02 denote the ring of rational numbers whose denominators are 

powers of 2. Consider the two elements of SL(2,#2)* 

[o i 
1-1 0 

and t = 0 2j 
-2 _ 1 Ol 

Then s2 = t2 = u, where u = - 1 2 . If H = < s, t >, then Z(H) = < u >, 
which has order 2, and H/Z(H) is infinite dihedral. Thus H is poly-
cyclic. Direct matrix calculations reveal that C S L ( 2 , Q 2 ) ( ^ ) = < U > -

There is an obvious exact sequence 

Hùm(H/Z(H),Z{H)) >-> Aut H — Aut Z(H) x Aut (H/Z{H))). 

But Hom(H/Z(H),Z{H)) is finite, Aut Z(H) = 1 and Aut {H/Z{H)) 
is infinite dihedral; hence Aut H is poly cyclic, and it follows that 
^SL(2,ç2)(#) is polycyclic. 

Let A = Qi © Q2 be the natural module over H and write Q for the 
semidirect product H K A. Obviously Q is a soluble minimax group. 
Also A = 2A = [A,it], so A < Q' and Qab is finite. 
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Since A is a characteristic self-centralizing subgroup of Q, there is a 
natural exact sequence 

Der(H,A) ~ Aut Q - NGL{2M(H), 

(see [15,4.4]). Now Hl(H,A) = 0 since IP((u),A) = 0,z = 0,1, and 
the 5-term cohomology sequence may be applied. Thus Der(H, A) = 
Inn(/f, A) is minimax. Since NQII^2^Q2){H) is polycyclic, Aut Q is a 
soluble minimax group. 

Let A = S © D , where JB ~ Q2 is generated by 6j, i = 0,1,2 • • • , with 
ö?+i = fti; let di be corresponding generators of D ~ Q2- Let G be a 
group of type 2°° with generators 1 = co,ci,C2, • • • and c?+1 = c .̂ We 
can define a central extension 

G ~ Gi -» Q 

by Gì = (e*;, 6i, dj, 5, £|i,y, A: = 0,1,2, • • • ) subject to the Ck being cen-
tral and relations [bi,dj] = Ct+j, together with other relations of Q. 
Then Z ( d ) = G since Z(Q) = 1. 

Every automorphism of Gi which acts trivially on Q acts trivially on 
G, too, and thus GAut GAQ) — Hom(Qa&,G), which is finite. There-
fore Aut Gi is soluble minimax. 

(ii) There exists a soluble group G2 with finite Prüfer rank such 
that Aut G2 is polycyclic and abelian-by-finite, but Gi has an infinite 
abelian torsion subgroup. 

Construction. Let A = (a) x (6), a free abelian group of rank 2, and 
let x be the automorphism of A which acts via the matrix 

To - 1 ] 
1 1 * 

Then a:6 = 1 and the semidirect product Q = (x) K A is abelian-by-
finite. 

Define T = ®p>3(£p) where tp has order p, and put T* = Crp>3(£p), 
the cartesian sum. For each p > 3,z > 0 consider the element xPii 
of T* defined by (xp,i)p = 0 and (xp,i)Q = htq if Q i1 P, and let 
G = (T,xp,i|p)3,z > 0 >. Then T < C < T*,xPiQ = 2 ,̂0 (mod T), 
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for each p, ç, and C/T is isomorphic with the additive group Q& of 
rational numbers with denominators prime to 6. Let u be the element 
of T* defined by uv = tp for all p; then xp,0 = u (mod T) and hence 
t i e C . 

Now we can define a central extension 

where G2 = (C, a, 6, x) subject to [G2iC] = 1 and relations x6 = 1, ax = 
b~\bx = 06, [a, 6] = tz. Thus Z(G2) = C, since Z(Q) = 1. 

Let 7 be an automorphism of G2 which acts trivially on Q; then 7 
acts trivially on G'2 and so 1x7 = u. Since tz £ T, it is clear that 7 acts 
trivially on C/T. 

For any prime p we have xP) 1(7-1) = a(p) € T and also pxp,i = u—tp, 
so that (u — £p)(7 — 1) = pa(p). Since 1*7 = u, it follows that 
£p(7 — 1) = -pa(p), which shows that the element tp(^f — 1) must be 0. 
Therefore 7 operates trivially on T. 

Since C/T is divisible by primes greater than 3 and \Qab\ = 6, we have 
Hom(C/T,T) = Hom(Qab,C) = 0, showing that 7 = 1 . Consequently 
the natural homomorphism Aut G2 —• Aut Q is injective. 

Finally Aut Q is polycyclic and abelian-by-finite. For it is easy 
to see that N Q J , 2 Z\((X)) is a dihedral group of order 12. Also, 
i /1((x),A) = 0. By the exact sequence for Aut Q in (i) we deduce 
that Aut G2 has the structure claimed. 

REMARK. It may be worthwhile noting that if G is soluble-by-finite 
and Aut G has max— ab, and if there is an infinite torsion sub-
group of G, then Qab must be finite and M(Q) infinite (here as usual 
Q = G/Z{G)). 

Of course it is clear that Qab is finite. If also M(Q) were finite, 
H2{Q,Z(G)) would have finite exponent, which implies that Z(G)P is 
a direct factor of G for infinitely many p, obviously impossible. 

(iii) There exists a nilpotent group G3 of class 2 with finite Prüfer 
rank such that Aut G3 is abelian-by-finite and soluble with finite Prüfer 
rank, but G$ has an infinite abelian torsion subgroup. 

Construction. Let Qu ® Qv be a rational vector space of dimension 
2, and let Q be the additive subgroup generated by all elements of the 
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form 
u v u + v .. . . 

^i = - 7 , Vj = —-, wk = —jT—, ( M , f c > 0 ) , 

where p, g, r are three distinct fixed primes. Obviously Q is a minimax 
group and it well-known that |Aut Q\ = 2. 

Define T = Dra9éP>Qjr(£s) where £s has prime order 5, and put 
T* = Cr3^Piqtr{ta). For each prime s ^ p,q,r and i > 0, we define an 
element x9ii of T* by (xs,t)s = 0 and (x9ii)k = jr** if k ^ s. Consider 
the group C generated by T and all xs^jpxq3rk where i,j,k > 0 and 
s Ì P> Q)r- The element c of T* defined by c5 = ts for all 5 belongs to 
C. 

Now we can define a central extension 

C ~ G3 - Q, 

where G3 = (C, u»,^-, Wfc|i,j>, A: > 0) with C central in G3 and 
relations [tu, vy] = c1 /^^, [tî , ti;*] = c 1 ^ '* , [v ,̂ ti;*] = c"-1/^"'3, üf+1 = 
Wi, v*+1 = ^ , w£+1 = w*, w0 = ^o^o. 

If 7 is an automorphism of G3 which acts trivially on Q, we argue, 
as in (ii), that it must operate trivially on C, and so CAut G3{Q) — 
Hom(Q, C); this last is isomorphic with a subgroup of C(&C. Therefore 
CAut G3 (Q) is a n abelian group with finite Prüfer rank. It follows that 
Aut G3 is abelian-by-finite cyclic with finite Prüfer rank. 
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