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ON TORSION OF PRISMS WITH LONGITUDINAL HOLES*

BY
CHIH-BING LING
Aeronautical Research Laboratory, Taiwan, China

Abstract. This paper presents a method of solution, called the method of images, for
the torsion of prisms having one or more longitudinal holes. The method is applicable
to prisms of the following four, and only four, sections: a rectangle, an equilateral tri-
angle, an isosceles triangle and a 30°-60°-90° triangle. These four sections form a group
by themselves.

The solution is obtained by adding to the known solution of a corresponding solid
prism without holes a system of harmonic functions which vanish on the entire external
boundary of the given section, and besides possess a singularity at the centre of each
hole. Such a system of functions may be constructed from Weierstrass’ Sigma function
and its allied functions.

The solution is illustrated by applying it in detail to a rectangular prism having a
central longitudinal hole. Numerical results are shown for the special case of a square
prism.

Introduction. The torsion of a circular cylinder having longitudinal circular holes,
with or without a central hole, has been investigated by Kondo' and by the present
writer.” In the present paper, the investigation will be extended to a prism, which is
also pierced by such longitudinal holes.

Both problems in fact belong to the same general class of torsion problems dealing
with cylinders of multi-connected sections. Analytic solutions of such problems are
generally difficult except in some simple cases, and indeed very few solutions have ever
been found. It appears, however, that certain prisms of this nature can be solved by
adapting to them the method of images. There are altogether four such prisms, the cross
sections of which are as follows:

(1) a rectangle, including square as a special case,
(2) an equilateral triangle,

(3) an isosceles right triangle,

(4) a 30°-60°-90° triangle.

It is not difficult to show that by reflection about the edges each of the above four
sections forms a doubly infinite set of images. Furthermore, it can be shown conclu-
sively by theory of groups® that these four sections are the only ones which form such
images.

The images formed in each case are shown in Figs. 1-4 respectively. In each figure
the shaded area represents the fundamental region, or the given section of the prism:
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The regions marked by positive signs represent the images which are formed by an even
number of reflections, while the regions marked by negative signs represent those which
are formed by an odd number of reflections. Note that any two adjacent regions must
have alternate positive and negative signs. The set of points in each figure represents
the images due to a given point in the fundamental region.
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F1c. 2. Equilateral triangle.

It may be noted that in Fig. 1 the rectangles may be regarded as grouping them-
selves into identical rectangles each composed of four adjacent rectangles. Similarly, in
Figs. 2, 3 and 4 the triangles may be regarded as grouping themselves into identical
regular hexagons each composed of six adjacent triangles, into identical squares each
composed of eight adjacent triangles, and into identical regular hexagons each com-
posed of twelve adjacent triangles respectively. Such identical regions, which are indi-
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cated by heavy lines, form a doubly infinite set in each case. Obviously, such groupings
are not untgue, but they are immaterial in the present treatment.
Whereas the present solution is restricted to the four sections as mentioned above,
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F1a. 4. 30°-60°-90° triangle.

there is however no further restriction theoretically as to the manner of distribution of
the holes within the section. Naturally, the simplest is the case of a single circular hole,
especially when the hole is symmetrically located within the section. The next to the
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simplest is a group of similar circular holes. The latter implies that all the holes are of
equal radii and symmetrically located within the section so that the properties of all
the holes are alike, and consequently if the boundary conditions on any one of the holes
are satisfied, the boundary conditions on all the other holes will be automatically satisfied.
For convenience, the former will be referred to as the one-hole case and the latter as
the ¢nwvariant case. Various invariant cases are shown in Fig. 5. For the 30°-60°-90°
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Fic. 5. Invariant cases (of more than one hole).

triangle, it appears that no such invariant distribution (or more than one hole) is
possible,

Method of solution. In general the solution of the torsion problem requires a har-
monic function, say ¥, whose conjugate function is single-valued, such that the function
¥ defined by the relation

¥ =y - 3" +y) (1)
becomes a constant on each boundary of the given section; z and y being the rectangular
coordinates in the plane of the section. As no generality is lost, the particular constant

on the external boundary will henceforth be taken as zero.
Suppose that the function  is composed of two parts as follows:

v =19+ ¥ (2)
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where ¥, represents the solution of a corresponding solid section without holes. This
implies that ¢, is a harmonic function which possesses a single-valued conjugate function
and is equal to 3(x*® + %°) on the external boundary of the section. Consequently, the
function ¥, must possess the following properties:

(1) it is also a harmonic function,
(2) its conjugate function is also single-valued,
(3) it vanishes on the entire external boundary.

Now, the functions ¥, for a solid prism of the four particular sections mentioned
above are well known.* In particular, a solution has been given in a unified manner by
Hay.® His method of solution is also described as a method of images, but is essentially
based on a different consideration.

The present problem is thus reduced to find a function ¥, which possesses these
properties, or more precisely, to find a complete system of such functions for ¢, so that
the group of parametric coefficients attached to them can be further adjusted to satisfy
the remaining boundary conditions at the internal boundaries of the given section. In
addition, since the function ¥, for a solid section possesses no singularity inside the
boundary, therefore the function ¥, must be of a different system such that it possesses
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singularities inside the external boundary. Such singularities will eventually be excluded
from the material of the section by the internal boundaries or holes. Thus, if the holes
are circular, they are preferably placed at the centres of the holes. Naturally, the system
of functions will be considerably simplified whenever the single hole or the group of
holes are symmetrically located within the given section.

It appears that the system of functions for the four sections mentioned above may
be constructed from Weierstrass’ Sigma function and its allied functions. However, as
the sections are so different in nature, it seems that no general expression can be put
forward for all the four sections as a whole. In the following, the case of a rectangular
prism having a central longitudinal circular hole will be chosen as anillustration. The system

#3t. Venant, Mém. des Savants étrangers 14, 233-560 (1856), for rectangle and equilateral triangle.

B. G. Galerkin, Bull. de ’Acad. des Sci. de Russie 13, 111-118 (1919) for isosceles right triangle.

G. Kolossoff, Comptes Rendus 178, 2057-2060 (1924), for isosceles right triangle.

B. R. Seth, Q. J. of Math. 5, 161-171 (1934), for equilateral triangle, isosceles right triangle and
30°-60°-90° triangle.

5G. E. Hay, Proc. of London Math. Soc. 45, 382-397 (1939).
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of functions will first be constructed. Subsequently, formulas for shear stresses and
torsional modulus will be derived. Methods will also be given for evaluating the co-
efficients or funections involved in the solution. Finally, numerical results will be shown
for the special case of a square prism.

Rectangular prism having a central longitudinal hole. A class of doubly periodic
functions. Consider in the z-plane an identical rectangle composed of four adjacent
rectangles, including the fundamental rectangle, as shown previously in Fig. 1. Let the
dimensions of each rectangle be equal to 2a X 2b and the origin of the coordinates be
at the centre of the fundamental rectangle as shown in Fig. 6. Now consider the doubly
infinite set of image points due to a point at the origin. Since the identical rectangle is
of double periods 4a and 44b, the affixes of the set of image points in the positive regions,
including the given point in the fundamental rectangle, are given by

P,. = 4ma + 4nidb
and 3)
Qrn = 2(2m 4 Da 4 2(2n + 1)ib = P,,, + 2a + 2ib,

where m and n are extended to all positive and negative integers including zero. Again,
the affixes of the set of image points in the negative regions are given by

P*, = 22m + a 4 4nib = P,,, + 2a
and 4
Q% = 4ma + 2(2n + 1)ib = P,,, + 2ib,

where m and n are extended to the same range of values as before.
A function with a logarithmic singularity at each such point will be defined by

_ o 1(2)0'2(2)
Wo(z) - lOg 0'”;(2)0’35(2) ) (5)
where o, , . and ¢%, ¢% are functions of z defined by the following doubly infinite
products:

“\

o z 2 2
UI(Z) = ml;[—co <1 B Pmn exp <an + 2Pim)’

)
0a(e) = H (1 - Qin) exp (QM
)

A= I (1- P,

( (6)

3@ = I (1 - 5 )exp(
in each of which the double multiplication is extended to all positive and negative
integers of m and n including zero, except that in the first the pair of simultaneous zeros
is omitted. This omission is distinguished by adding to the product sign an accent as
indicated. It may be noted that the function ¢, is Weierstrass’ Sigma function while
the remaining three functions® are closely allied to ¢, . Thus, we have

$Cf. E. T. Copson, Functions of a complex variable, Oxford University Press, 1935, p. 378.
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© 2
Woz) = —logz — Z=' log (1 - Pz ) +Pz +21232 }

m,n=—o

- % {os(i- )+ =+

w0 2
b % gt - 2) 5 + i)

™

2

b 3 foe(t- )+ &+ ghat

*
m,n=—0o mn mn mn,

where the accent on the summation sign indicates likewise the omission of the pair of
simultaneous zeros of m and n from the double summation. By expanding the logarithmic
terms in the neighborhood of the origin, this leads to

1
Wio) = —logz — 3 & 0", ®

k=3

where, for k W 3,

L)

1 - 1 1 1
%= 2 ot X <p— + g T —> ©
It is readily shown by symmetry that the coefficient Q, vanishes identically when k is
odd, and is real when % is even.

A class of analytic functions with poles of integral orders at the foregoing sets of
image points will be defined by

(_1)‘ da
(s — D!gy

W) = W), (10)

where s is the order of poles of the function. When s > 2, the class of functions are doubly
periodic or elliptic functions.

The form of the functions thus derived is different according as s is odd or even.
The results are as follows. The initial function W, is also rewritten for the sake of
uniformity.

n=2
1_ = 2n 2n
WZ(Z) - z2 - Z a2 B}
n=1
and > 11)
WZa(z) = z-:'zl—a hand Z 2"012,22", (S 2 2)
n=0

1 = 2n n
W2,+1(2) = Set1 + Z i +la26+lz2 H} (8 > O)

V4 n=0
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where ,, (n + s - 1)
a, = n Qn+l

and in particular (12)
n 1
Qy = ;L 9,, 3 lal = 0

Note that here the coefficient °a, is not defined. It will be reserved for later usage.
Now split these functions into real and imaginary parts as follows: For s > 0,

W.(2) = Sa(x) y) - iTa(x; y)- (13)
Also, define a pair of polar coordinates (r, 6) by
z =2z 4+ iy = re'’. (14)

We then have, since "o, is real,

So = —logr — D ™ cos 2n8,

n=2

To = 4§ + E 2”a07‘2" Sin 2n0,
n=2

S, = cos220 _ 2r?™ cos 2n6,
r n=1

S,, = g)_s;?io - s> cos 2n0, (s=>2 ' (15)
r n=0

T, = 30201 S i s, (5> 1)
7 n=1

Soesr = cos (Zs + 1)6 + 2 e cos (2n + 1)6, >0

2a+1
r n=0

Toes1 = w - Z 2”“012”17'2"“ sin (2n + 1) g, (s > O)

28+1
r

n=0 J

The preceding expressions give the expansions of the harmonic functions S, and T,
in the neighborhood of the origin. Note that S,, is even in both z and y, T, is odd in
both z and y, 8S.,+, is odd in z but even in y, and T,,,, is even in z but odd in y.

It can be shown from Cauchy-Riemann differential equations that the following
relations exist.

88 _ _ 9Ty _ _ o _ 38 _ _

ox 9y S ox oy T -
16

38, T, _ 8T, _ 88, _

Pyl ——ay = —sS8,.1, or 3y = —sT,41 -
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Furthermore, it can be shown that for s > 1:

(1) when z = 0, +2a, +4a, -,
T2¢ = O) SZ.H-I = 0;
(2) when z = =a, +3a, +5a, -,

S, = const., S, = 0, Tsees = 0;
17)
(8 wheny =0, +2b, +4b, «-+ ,

T2x = O’ T2a+1 = 0;
(4) wheny = &b, +3b, +5bh, .-+,

S, = const., S, = 0, 8ees1 = 0.

The two real constants for S, are in fact identical and will be denoted by %a, . It
is found that
= 20(2a¢ + 2b7), (18)

where p(z) is Weisrstrass’ elliptic function of double periods 4a and 4b:. It is seen that
the functions 8,, all vanish on the external boundary of the given rectangle, i.e., at
= <4a and y = &b, except S, which becomes a constant. Therefore, the system of
functions is useful in constructing the function ¢, .
The solution. For a solid rectangular prism of cross section 2a X 2b, the function
¥o is known as’

b=V 436 =)
(19

22V s _(=1)" cosh(2n + Drz/2b  (2n 4+ Dy
4b ( ) ;0 (2n + 1)° cosh (2n 4 1)wa/2b cos 2b !

the origin being at the centre of the rectangular section. With the aid of the expansion

— - 1 2m

cosh px cos py = .,.2;0 @ml (pr)*™ cos 2mo (20)

the above function may be expressed in polar coordinates as follows:
Yo = fo+ 25 for™ cos 2n6 (21)

n=1
where, for n > 0,
- 1 @m 4 1)«}"’"‘3 (2m + ra

f2n - b 50,7» + 2 61,7» b(2n)' m}:-o ( 1) { Ch 2b (22)

in which émn = 1 or 0, according as m = n, or m # n.
Now, we construct

7A. E. H. Love, Mathematical theory of elasticity, 4th ed., Dover Publications, 1944, 317-318. Note
that the constant is modified so that ¥, = (22 + #?) on the boundary.
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Y = Z A5,8:,(x, y) — ‘s A, ’ (23)

a=1

where 4,, are arbitrary constants to be determined. The initial function S, is rejected
on the ground that its conjugate function is not single-valued. The function ¥, thus
constructed evidently meets all the requirements as outlined previously.

To adjust the remaining condition on the internal boundary or the central hole, we
have in terms of polar coordinates,

= - L@+t

©

- %7'2 + fo— E oa2aAzs (24)

8=1

I

©

+ 2 <f2nrz,. + Ay — 2"a28A2,) cos 2né.

ne=1 s=1

Hence the boundary condition on the rim of the circular hole, where r = A say, is satisfied
provided that forn > 1,

Feuh™ A X7 — N D, Ty, As, = 0

a=1

or

©

‘4271 = _f2")\4" + )\473 2na23A23 . (25)

s=1

The value of ¥ on the rim of hole then becomes a constant, say ¥, , as follows:

@

1
Vo=—3 N o — 2 s, A, . (26)

s=1

The system of linear equations in (25) may be solved by successive approximations
as follows. Write

Ap = D AP 27
p=0
where
Az) = — fouk®™
and, by iteration,
D= N Y Py A2, (28)

a=1

Naturally, the validity of the solution depends upon the convergence of the series
(27). From physical considerations alone, it seems likely that there will be convergence
as long as the rim of hole does not touch the external boundary, i.e., when

A < min (a, b). (29)
Torsional modulus. The torsional modulus® of the prism is given by

H=2ff\1'dxdy+21r7\"’\llo, (30)

8R. V. Southwell, Theory of elasticity, 2nd ed., Oxford University Press, 1941, p. 323.
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where the double integration is extended over the entire rectangular section, excluding
the hole.
There is no difficulty in evaluating the following integrals:

ff ¢odxdy=4j:f:nl/odxdy-—2f:fo' Yor d8 dr

@1
2 2 2 2 1 S = 1 2 1
= 2 ab(a +5b)—1r>\fo—§<_%)b DI Tk anh(”*z‘b)"“,
b pa A pr
ff(x2+y2)dxdy=4f0['(x2+y2)dxdy—2‘/;j; r* do dr
(32)
4 2 2 4
=3 b(a +b)——1r)\

But in evaluating the integral [f ¢, dz dy the foregoing method fails owing to the fact
that ¥, possesses a singularity at the origin. However, it may be evaluated by means

Y ¢
A1 «

>-

Fie. 7..

of contour integration based upon a corollary from Green’s theorem. Suppose that F
is a function of z regular in a domain S which is enclosed by a contour C. Then we find

f —dS f F &, 33)

where z is the conjugate of z; the contour being taken in a counter-clockwise direction;:
Now, put F = W,(z) where s > 1. Then

[[w@as=-5[weoe. (34

Thus by referring to the contour C in Fig. 7, for s > 2,
[[ 8udzay=rP. [[ a9 s = - 51—
28 L. s 23 2(28 s 1)

4
T (2 — 1D(2s — 2)

R.P. f Woaur2) d2

(o]
, (35)
T23—2(a7 b) + TQZ.J\Z
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In particular, for s = 1,

f f S, dx dy = — %R.P. fc iWi@) d& = —4To(a, b). 36)
Consequently, we have

f bodzdy = — A {4To(a, b) + (4ab — mN)as)

37
- ; A2s{(2s _ 1)(23 — 2) T23—2(a) b) - 7923)\ .
Hence the torsional modulus is equal to
_16 .5 1 4_(%)54‘” 1 2n 4 Dra
H = 3 ab 21r)\ - b ';)(zn_’_l)stanh oh
(38)

— 24,{4T(a, B) + (dab — ™Yas) — 8 3 2$(T1+15 Ay oTosla, B).

The resulting twisting couple is given by
T = wH (39)
where u is the modulus of rigidity of the material and r is the angle of twist per unit
length of the prism.

Stress components. The non-vanishing stress components of the prism are two shear
stress components given in terms of rectangular coordinates by

av v
Z, = ;l.fgy— s Z, = BT (40)
or in terms of polar coordinates by
d a¥
Zr = &;’._—0_ ) ZO = TuT 5 (41)

It is now a straightforward matter to calculate the stress at any point in the prism.
In particular the shear stresses on the external and internal boundaries are as follows:

= _ 8 < cosh (2n + )wx/2b = )
[Zz]y-b = _2#'7'{1) 7I"2 s (2’”, + 1)2 cosh (2n + 1)7ra/2b -+ ‘Z-l sA,z,Tst(x, b)}

2#7{81) i (=1 oop @t Dea o @n + Dry

[2.)e-0 = = @2n + 1) 2b 2b

( (42)
+ E s45,8:.41(a, ?/)}

a=]1

n2An1 cos 2n0)
x n+

[Zo]rar = #7(7\ + 4 ;
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The maximum shear stress occurs on the boundary at those points which are nearest
to the next boundary. Due to the presence of the holes, the greatest shear stress does
not necessarily occur on the external boundary.

Evaluation of coefficients. Numerical results will be given for the case of a square
prism of cross section 2a X 2a¢ (i.e., a = b) having a central hole of two different radii
A = a/2 and a/3 respectively.

When a = b, it can be further shown that for & > 1,

Q2 = 0,
Q= 1 (1 - 2(_1)k)0' “
4k (2 a)4k g2k k)
where
=, 1
Oy = . (44)

m n=—o (m + m')""

There exists an algebraic relation between the coefficients® ¢, . For &k > 2,
1
§ (2]0 - 3)(4]0 + 1)C4k = CyCi-s + CsClps + C1oCusmy2 + -+ + 047:—404 (45)

where, for & > 1,
Cu, = (4k - 1)0’4); (46)
The values of o4 have been computed by the present writer some time ago.'® They

TaBLE I. COEFFICIENTS FOR A SQUARE PRisM

Azn a Az,. a
n Oun Q4,(2a)* fonG2n—2 prer forx = 2 | om forx = 3
0 — —_ 8.93704 X 1072 — —_
1 3.151212 4.726818 0 0 0
2 4.255773 3.723801 —90.11851 X 1072 3.56902 X 10~4| 1.38992 X 10-5
3 3.938849 4.061938 0 0 0
4 4,015695 3.984322 1.92418 X 1073 [—2.84698 X 1078 |—4.46471 X 101
5 3.996097 4.003902 0 0 0
6 4.000977 3.999023 —1.20581 X 10| 7.77531 X 10712 4.28303 X 10~
7 3.999756 4.000244 0 0 0
8 4.000061 3.999939 1.1841 X 107%]|—2.4495 X 10735 —6.3624 X 102
9 3.999985 4.000015 0 0 0
10 4.000004 3.999996 —1.4543 X 1078} 1.4594 X 1078 1.2010 X 10~%
11 3.999999 4.000001 0 0 0
12 4,000000 4.000000 2,0472 X 1077(—6.7229 X 10~2|—2.5589 X 10~®

are reproduced in Table I where values of Q4 and f,, are also tabulated. It is noted that
by symmetry, for n > 0,

f4n+2 = O; A4n+2 = 0. (47)

9Cf. E. T. Copson, loc. cit., p. 360.
wDoctoral thesis by C. B. Ling presented to London University, England (1937).
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Values of *"a,, are shown in Table II. With these values, the coefficients A, can

now be computed from (27) by successive approximations. The results for two different

radii A = a/2 and a/3 are shown together in Table 1.

TaBLE II. #qa%+ FOR A SQUARE PrIsM

4s

n =4

4n = 8

4n

12

4in = 16

4n = 20

4n = 24

12
16
20
24

5.09114 X 10!
3.27256 X 101
8.29864 X 1072
1.48002 X 1072
2.11068 X 103
2.61531 X 10~¢

1.63628 X 1071
3.91222 X 1071
2.88604 X 107!
1.16871 X 107
3.30837 X 1072
7.34684 X 1073

2.76622 X 1072
1.92402 X 107!
3.22282 X 107
2.59056 X 107!
1.31427 X 107?
4.85717 X 1072

3.70005 X 1073
5.84357 X 102
1.94292 X 107!
2.79896 X 107t
2.36320 X 107!
1.37193 X 107!

4.22136 X 10~
1.32335 X 1072
7.88560 X 1072
1.89056 X 107!
2.50741 X 107!
2.18408 X 107!

4.35886 X 107
2.44895 X 1073
2.42858 X 1072
9.14617 X 1072
1.82006 X 10t
2.20133 X 107!

To proceed further in computing the torsional modulus and shear stresses on the
boundaries, values of °a; , Ts,..(a, @) and T,,.,(z, @) are required.
1t is readily shown that when a = b,

0
a2=0.

(53)
Now, define similarly a class of analytic functions W*(2) whose initial function is
3 = —log {0.(2)02(2)}, (54)

where ¢, and ¢, are defined before in (6). The expansion of W*(2) in the neighborhood
of the origin, for s > 1, is

(=D’ &

1 o
* = = £3 —_ = — 2 n_ g n
Wa(z) (S _ 1)! dzs O(Z) Z' + ( 1) nzao el ] (55)
where, for a = .b,
-1 2
"o = (—1 (n+a)/4<n +s )____,2,_ . 56
[24 ( ) n (2/2a)n+s ( )

0us, I8 defined in (44), which vanishes unless the suffix (n 4 s) is an integral multiple
of 4. An algebraic relation between the functions is as follows: For s > 5,

56— 36— 2B, = BB, + BBy + BBus+ -+ + BBy (57)
where, for s > 2,
B, = (s — DWi) = (s — D{8%(z, y) — iT%(z, y)} (58)
When ¢ = b, it can be further shown that for s > 1,
Wi (e + a)) = 0,
Wi(a + ai) = Sk(a, a), (59)

Wi_(a + ai) = —iT% s(a, @) = —3iT,._.(a, a).
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The two initial functions may be found from
. i(150,)""*
*a + i) = — LEZ‘;— ,
(60)
- 50’4
* = — .
(o 4 az) 394"

With the aid of (57) for successive functions, values of T',,..(a, @) can then be found
without difficulty.
To evaluate T,,.,(x, a), it is noted that for a = b,

Tion(z, @) = 2T% . \(z, @) = R.P.{2UWE . (x + 1a)} (61)
In general, the three initial functions of W*(z) may be found from
Wh(z) — iW%(y)}?
* = —_ * E3
(62)
w3 = | o) + g |
3\%) = 2(& 6da* 7 ® 2) ’
Wi = (W5 + oo -
¢ * 64a*

With also the aid of (55) and (57), values of T.,..(z, @) can then be computed for any
particular value of z.
The results are tabulated in Tables III, IV and V.

TasLE III. T4s(a, a) and Ty, (z, a) FOR A SQUARE Prism

Tiss1(z, a)
8 T4,_2((l, a)
=0 z = 0.2a z = 0.4a z = 0.6a z = 0.8a r=a
1 1.71880 | 1.93656 0.46903 | —0.25063 | —0.43000 | —0.25138 0
2 —0.50778 2.00239 —0.16957 | —0.48920 0.04270 0.10612 0
3 0.12501

TaBLE IV. Cross SEcTIONAL AREA A AND TorstoNaL MopuLus H oF A SQUARE Prism

Na Ala? H/at % reduction of A % reduction of H
z 3.2146 2.1502 19.63 4.40
3 3.6509 2.2298 8.73 0.86

Solid 4.0000 2.2492 0 0
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TABLE V. SHEAR STRESSES ON BOUNDARIES OF A SQUARE PRIisM

[Vol. IX, No. 3

Z:/uraony = a Zg/uraonr
z/a A= 4a A= 1}a Solid 6° AN=1}a A=1a
0 —1.353 —1.351 —1.351 0 0.524 0.360
0.2 —1.316 —1.315 —1.315 5 0.523 0.359
0.4 —-1.210 —-1.211 ~1.211 10 0.518 0.354
0.6 —1.014 —1.014 —1.014 20 0.504 0.338
0.8 —0.683 —0.684 —0.684 30 0.488 0.320
1 0 0 0 45 0.476 0.306
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