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Abstract. In this paper we initiate the study of total restrained domination in graphs.
Let G = (V, E) be a graph. A total restrained dominating set is a set S ⊆ V where every
vertex in V −S is adjacent to a vertex in S as well as to another vertex in V −S, and every
vertex in S is adjacent to another vertex in S. The total restrained domination number
of G, denoted by γt

r(G), is the smallest cardinality of a total restrained dominating set
of G. First, some exact values and sharp bounds for γt

r(G) are given in Section 2. Then
the Nordhaus-Gaddum-type results for total restrained domination number are established
in Section 3. Finally, we show that the decision problem for γt

r(G) is NP-complete even for
bipartite and chordal graphs in Section 4.

Keywords: total restrained domination number, Nordhaus-Gaddum-type results, NP-
complete, level decomposition
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1. Introduction

Graph theory terminology not presented here can be found in [1]. Let G = (V,E)
be a graph with |V | = n. The degree, neighborhood and closed neighborhood of

a vertex v in the graph G are denoted by d(v), N(v) and N [v] = N(v) ∪ {v},
respectively. The minimum degree and maximum degree of the graph G are denoted

by δ(G) and ∆(G), respectively. The graph induced by S ⊆ V is denoted by G[S].
A set S is a dominating set if for every vertex u ∈ V −S there exists v ∈ S such that
uv ∈ E. The domination number of G, denoted by γ(G), is the minimum cardinality
of a dominating set of G.
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A set S ⊆ V is a restrained dominating set if every vertex in V − S is adjacent

to a vertex in S and to another vertex in V − S. Let γr(G) denote the size of
a smallest restrained dominating set. It has been studied by G. S. Domke [1] and
M.A. Henning [2].

In this paper we initiate the study of total restrained domination in graphs. The
total restrained domination is a particular case of the restrained domination. Let

G = (V,E) be a graph. A total restrained dominating set is a set S ⊆ V where
every vertex in V − S is adjacent to a vertex in S as well as to another vertex in

V −S and every vertex in S is adjacent to another vertex in S. The total restrained
domination number of G, denoted by γt

r(G), is the smallest cardinality of a total
restrained dominating set of G. Note that every graph without an isolated vertex
has a restrained dominating set, since S = V is such a set. We will call a set S a

γt
r-set if S is a total restrained dominating set of cardinality γ

t
r(G).

One possible application of the concept of total restrained domination is that of

prisoners and guards. Here each vertex not in the total restrained dominating set
corresponds to a position of a prisoner, and every vertex in the total restrained

dominating set corresponds to a position of a guard. Note that each prisoner’s
position is observed by a guard’s position (to effect security) while each prisoner’s

position is seen by at least one other prisoner’s position (to protect the rights of
prisoners) and each guard’s position is seen by at least one other guard’s position

(to protect each other). To be cost-effective, it is desirable to place as few guards as
possible (in the sense above).

In this paper we give the following results. First, some exact values and sharp
bounds for γt

r(G) are given in Section 2. Then Nordhaus-Gaddum-type results for
total restrained domination number are established in Section 3. Finally, we show
that the decision problem for γt

r(G) is NP-complete even for bipartite and chordal
graphs in Section 4.

2. Some exact values and sharp bounds for γt
r(G)

Let Kn, Cn and Pn denote, respectively, the complete graph, the cycle and the
path of order n. Also, let Kn1,n2,...,nt denote the complete multipartite graph with

vertex set S1 ∪ S2 ∪ . . . ∪ St where |Si| = ni for 1 6 i 6 t. We call K1,n−1 a star.
The following four theorems are immediate.

Theorem 1. If n > 2 is an integer, then

γt
r(Kn) =

{
n for n = 2, 3,

2 for n > 4.
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Theorem 2. If n > 2, then γt
r(K1,n−1) = n.

Theorem 3. If n1 and n2 are integers such that min{n1, n2} > 2, then

γt
r(Kn1,n2) = 2.

Theorem 4. If t > 3 is an integer, then

γt
r(Kn1,n2,...,nt) =

{
3 for t = 3 and n1 = n2 = n3 = 1,

2 otherwise.

Theorem 5. If n > 2 is an integer, then γt
r(Pn) = n− 2

⌊
n−2

4

⌋
.

���������
. Let S be a γt

r-set of Pn whose vertex set is V = {v1, v2, . . . , vn}. Note
that v1, v2, vn−1, vn ∈ S and any component of Pn[V − S] is of size exactly two.
Suppose there are m components in Pn[V − S]. Then 2m + 2(m + 1) 6 n, that is

m 6 n−2
4 . Thus |S| = n− 2m > n− 2

⌊
n−2

4

⌋
. Hence, γt

r(Pn) > n− 2
⌊

n−2
4

⌋
.

Case 1. If n− 2 ≡ 0 (mod 4), then let n− 2 = 4t for an integer t and

|S| > n− 2
⌊n− 2

4

⌋
= n− 2t = 2t+ 2.

On the other hand, {v4i+1, v4i+2 | i = 0, 1, . . . , t − 1} ∪ {v4t+1, v4t+2} is a total
restrained dominating set of G with cardinality n−2

⌊
n−2

4

⌋
and γt

r(Pn) 6 n−2
⌊

n−2
4

⌋
.

Hence γt
r(Pn) = n− 2

⌊
n−2

4

⌋
.

Case 2. If n− 2 ≡ 1 (mod 4), then let n− 2 = 4t+ 1 for an integer t and

|S| > n− 2
⌊n− 2

4

⌋
= n− 2t = 2t+ 3.

On the other hand, {v4i+1, v4i+2 | i = 0, 1, . . . , t− 1}∪ {v4t+1, v4t+2, v4t+3} is a total
restrained dominating set of G with cardinality n−2

⌊
n−2

4

⌋
and γt

r(Pn) 6 n−2
⌊

n−2
4

⌋
.

Hence γt
r(Pn) = n− 2

⌊
n−2

4

⌋
.

Case 3. If n− 2 ≡ 2 (mod 4), then let n− 2 = 4t+ 2 for an integer t and

|S| > n− 2
⌊n− 2

4

⌋
= n− 2t = 2t+ 4.

On the other hand, {v4i+1, v4i+2 | i = 0, 1, . . . , t − 1} ∪ {v4t+1, v4t+2, v4t+3, v4t+4} is
a total restrained dominating set of G with cardinality n − 2

⌊
n−2

4

⌋
and γt

r(Pn) 6
n− 2

⌊
n−2

4

⌋
. Hence γt

r(Pn) = n− 2
⌊

n−2
4

⌋
.
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Case 4. If n− 2 ≡ 3 (mod 4), then let n− 2 = 4t+ 3 for an integer t and

|S| > n− 2
⌊n− 2

4

⌋
= n− 2t = 2t+ 5.

On the other hand, {v4i+1, v4i+2 | i = 0, 1, . . . , t − 1} ∪ {v4t+1, v4t+2, v4t+3, v4t+4,

v4t+5} is a total restrained dominating set of G with cardinality n − 2
⌊

n−2
4

⌋
and

γt
r(Pn) 6 n− 2

⌊
n−2

4

⌋
. Hence γt

r(Pn) = n− 2
⌊

n−2
4

⌋
. �

We omit the proof of the following result as it is similar to that of Theorem 5.

Theorem 6. If n > 3, then γt
r(Cn) = n− 2

⌊
n
4

⌋
.

Now using the above theorems, we give a general upper bound for γt
r(G).

Theorem 7. For any graph of order n > 2 and with no isolated vertices we have
2 6 γt

r(G) 6 n and the bound is sharp.

We close this section by providing a lower bound for the total restrained domina-

tion number of a tree.

Theorem 8. Let T be a tree of order n > 2. Then γt
r(T ) > ∆(T ) + 1. Further-

more, γt
r(T ) = ∆(T ) + 1 if and only if T is a star.

���������
. Let T be a tree of order n > 2. Since T has at least ∆(T ) leaves and

any total restrained dominating set must contain all leaves and their neighbors, we
have γt

r(T ) > ∆(T ) + 1.
It is easy to verify that if T is a star, then γt

r(T ) = ∆(T ) + 1.
Conversely, let T be a tree of order n > 2 such that γt

r(T ) = ∆(T ) + 1. Let S be
a γt

r-set of T . Clearly, S must contain all leaves and their neighbors. Since T has at
least ∆(T ) leaves, T [S] is a star with the same leaves as T . Let t denote the center
of the star. If n > ∆(T ) + 1, then there exist two vertices u, v ∈ V (T )−S such that
uv ∈ E(T ). Since u and v must be dominated by S, both u and v are adjacent to t.
It follows that T has a cycle, which is a contradiction. So, n = ∆(T ) + 1 and T is a
star. �
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3. Nordhaus-Gaddum-type results for total restrained

domination number

Nordhaus and Gaddum provided the best possible bounds on the sum of the
chromatic numbers of a graph and its complement in [3]. The corresponding result
for the domination number was presented by Jaeger and Payan [4]: if G is a graph of

order n > 2, then γ(G)+γ(G) 6 n+1. A bound on the sum of restrained domination
numbers of a graph and its complement was given by G. S. Domke [1]: If G is a graph

of order n > 2 such that both G and G are not P3, then γr(G) + γr(G) 6 n+ 2.
Let diam(G) denote the diameter of G, and let u, v be two vertices of G such

that d(u, v) = diam(G). The familyW = {V0, V1, V2, . . . , Vdiam(G)} is called the level
decomposition of G with respect to u if Vi = {x : x ∈ V (G) and d(u, x) = i} for
i = 0, 1, 2, . . . , diam(G).
We now prove the best possible bound on the sum of total restrained domination

numbers of a graph and its complement.

Theorem 9. Let G be a graph with no isolated vertices and ∆(G) < n − 1. If
the diameter of G or G is more than 2, then γt

r(G) + γt
r(G) 6 n+ 4.

���������
. Since G is a graph with no isolated vertices and ∆(G) < n− 1, G is a

graph with no isolated vertices and ∆(G) < n− 1.
If G is disconnected, then γt

r(G) = 2. Since γt
r(G) 6 n, the theorem holds. Hence,

without loss of generality, we assume both G and G are connected. We discuss the
following cases.
Case 1. diam(G) > 5; then it is clear that γt

r(G) = 2 and the theorem holds.
Case 2. diam(G) = 4; then let u, v be two vertices of G such that d(u, v) = 4, and

let the family W = {V0, V1, V2, V3, V4} be the level decomposition of G with respect
to u. It is obvious that {u} = V0 and v ∈ V4.
Case 2.1. There exists two vertices u and v with d(u, v) = 4 such that the level

decomposition of G with respect to either u or v, say u, satisfies |V4| > 2. Then
{u, v} is a total restrained dominating set of G. So γt

r(G) = 2 and the theorem
holds.
Case 2.2. For arbitrary two vertices u and v with d(u, v) = 4, the level decompo-

sition of G with respect to either u or v, say u, has |V4| = 1. That is to say V0 = {u}
and V4 = {v}. Let V21 = {w ∈ V2 | there exists at least one vertex in V1 ∪ V2 ∪ V3,

say z, such that wz /∈ E(G)} and let V22 = V2 − V21. Then V0 ∪ V22 ∪ V4 is a total
restrained dominating set of G. So γt

r(G) 6 |V0|+ |V22|+ |V4| = |V22|+ 2. Hence, if
|V22| 6 2, then γt

r(G) 6 4 and the theorem holds. If |V22| > 3, then let t ∈ V22 and
let V0 ∪ V1 ∪ V21 ∪ V3 ∪ V4 ∪ {t} be a total restrained dominating set of G. Hence,

γt
r(G) 6 |V0|+ |V1|+ |V21|+ |V3|+ |V4|+ 1 = n− |V22|+ 1.

169



It follows that

γt
r(G) + γt

r(G) 6 n− |V22|+ 1 + |V22|+ 2 6 n+ 3.

Case 3. diam(G) = 3; then let u, v be two vertices of G such that d(u, v) = 3,
and let the family W = {V0, V1, V2, V3} be the level decomposition of G with respect
to u. It is obvious that {u} = V0 and v ∈ V3.
Case 3.1. There exists two vertices u and v with d(u, v) = 3 such that the level

decomposition of G with respect to either u or v, say u, satisfies |V3| > 2. Then let
t ∈ V3, V21 = {w ∈ V2 | there exists at least one vertex in V1 ∪ V2 ∪ V3 \ {t}, say z,
such that wz /∈ E(G)} and let V22 = V2−V21. Then V0∪V22∪{t} is a total restrained
dominating set of G. So γt

r(G) 6 |V0|+ |V22|+1 = |V22|+2. Hence, if |V22| 6 2, then
γt

r(G) 6 4 and the theorem holds. If |V22| > 3, then assume s ∈ V2 and st ∈ E(G).
If s ∈ V22, then V0 ∪ V1 ∪ V21 ∪ V3 ∪ {s} is a total restrained dominating set of G.
Hence,

γt
r(G) 6 |V0|+ |V1|+ |V21|+ |V3|+ 1 = n− |V22|+ 1.

It follows that

γt
r(G) + γt

r(G) 6 n− |V22|+ 1 + |V22|+ 2 6 n+ 3.

If s /∈ V22, then let w ∈ V22. Hence, V0 ∪V1 ∪V21 ∪V3 ∪{s, w} is a total restrained
dominating set of G. Consequently,

γt
r(G) 6 |V0|+ |V1|+ |V21|+ |V3|+ 2 = n− |V22|+ 2.

It follows that

γt
r(G) + γt

r(G) 6 n− |V22|+ 2 + |V22|+ 2 6 n+ 4.

Case 3.2. For arbitrary two vertices u and v with d(u, v) = 3, the level decompo-
sition of G with respect to either u or v, say u, has |V3| = 1. That is to say V0 = {u}
and V3 = {v}. Let V11 = {w ∈ V1 | there exists at least one vertex in V1 ∪ V2, say z,
such that wz /∈ E(G)} and let V12 = V1 − V11.

Let V21 = {w ∈ V2 | there exists at least one vertex in V1 ∪ V2, say z, such that
wz /∈ E(G)} and let V22 = V2 − V21. Then V0 ∪ V12 ∪ V22 ∪ V3 is a total restrained

dominating set of G. So γt
r(G) 6 |V0|+ |V12|+ |V22|+ |V3| = |V12|+ |V22|+2. Hence,

if |V12|+ |V22| 6 2, then γt
r(G) 6 4 and the theorem holds. If |V12|+ |V22| > 3, then

assume s ∈ V2 and sv ∈ E(G). If s ∈ V22, then V0 ∪ V11 ∪ V21 ∪ V3 ∪ {s} is a total
restrained dominating set of G. Hence,

γt
r(G) 6 |V0|+ |V11|+ |V21|+ |V3|+ 1 = n− |V12| − |V22|+ 1.
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It follows that

γt
r(G) + γt

r(G) 6 n− |V12| − |V22|+ 1 + |V12|+ |V22|+ 2 6 n+ 3.

If s /∈ V22, then let w ∈ V22. Hence, V0 ∪ V11 ∪ V21 ∪ V3 ∪ {s, w} is a total restrained
dominating set of G. Consequently,

γt
r(G) 6 |V0|+ |V11|+ |V21|+ |V3|+ 2 = n− |V12| − |V22|+ 2.

It follows that

γt
r(G) + γt

r(G) 6 n− |V12| − |V22|+ 2 + |V12|+ |V22|+ 2 6 n+ 4.

�

4. Complexity issue for γt
r

To show that the decision problem for arbitrary graphs is NP-complete, we need

to use a well known NP-completeness result, called Exact Three Cover(X3C), which
is defined as follows.

Exact cover by 3-sets (X3C).

Instance. A finite set X with |X | = 3q and a collection ψ of 3-element subsets
of X .

Question. Does ψ contain an exact cover for X , that is, a subcollection ψ′ ⊆ ψ

such that every element of X occurs in exactly one member of ψ′? Note that if

ψ′ exists, then its cardinality is precisely q.

Lemma 1 ([5]). X3C is NP-complete.

Total restrained dominating set (TRDS).

Instance. A graph G = (V,E) and a positive integer k 6 |V |.
Question. Is there a total restrained dominating set of cardinality at most k?
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Theorem 10. TRDS is NP-complete, even for bipartite graphs.
���������

. It is clear that TRDS is in NP.
To show that TRDS is an NP-complete problem, we will establish a polynomial

transformation from X3C. Let X = {x1, x2 . . . , x3q} and ψ = {C1, C2 . . . , Cm} be an
arbitrary instance of X3C.

We will construct a bipartite graph G and a positive integer k such that this
instance of X3C will have an exact three cover if and only if G has a total restrained

dominating set of cardinality at most k.
We now describe the construction of G. With each xi ∈ X associate with a path P4

with vertices xi, yi, zi, ti. With each Cj associate with a path P3 with vertices cj ,
dj , sj . The construction of the bipartite graph G is completed by joining xi and cj
if and only if xi ∈ Cj . Finally, set k = 2m+ 7q.
Suppose ψ has an exact 3-cover, say ψ′. Then

⋃
16i63q

{zi, ti}∪
⋃

16j6m

{dj , sj}∪{cj |

Cj ∈ ψ′} is a total restrained dominating set of cardinality 2m+7q. This construction
can clearly be accomplished in polynomial time.

Suppose, conversely, that D is a total restrained dominating set of cardinality at
most 2m+7q. Then the vertices in the set L, defined by

⋃
16i63q

{zi, ti}∪
⋃

16j6m

{dj , sj},

are all end vertices and their neighbors and have to be in D. Hence, |D| − |L| 6
(2m + 7q) − (2m + 6q) = q. Let I = {i ∈ {1, 2, . . . , 3q} | xi ∈ D or yi ∈ D} and
let J = {j ∈ {1, 2, . . . ,m} | cj ∈ D}. Then, since D is a dominating set of G,⋃
i∈I

{xi, yi} ∪
⋃

j∈J

N [cj ] ⊇ {x1, x2, . . . , x3q}. We conclude that |I | + 3|J | > 3q. Also,

|I |+ |J | 6 |D| − |L| 6 q. Hence, |3I |+ 3|J | 6 |I |+ 3|J |, so that I = ∅. We conclude
that xi, yi /∈ D for i = 1, 2, . . . , 3q. Since xi, i = 1, 2, . . . , 3q, is dominated by D, we
conclude that |J | = q and that ψ′ = {Cj | j ∈ J} is an exact cover for X . �

Theorem 11. TRDS is NP-complete, even for chordal graphs.
���������

. The proof is similar to the proof of Theorem 10, except that edges are
added so that c1, c2 . . . , cm form a clique. �
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