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Abstract. In this paper we investigate the traces of generalized solutions of a semi-
linear elliptic equation. In particular, we obtain a sufficient condition for a solution

belonging to W2 to have an LP-trace on the boundary.

In the theory of partial differential equations the problem of the
behaviour of the given solution near the boundary arises in a natural way.
One such problem is always that of determining if the given solution has
a trace on the boundary. Several function spaces arise as the spaces of
traces of solutions of partial differential equations. The purpose of this
paper is to obtain conditions giving LP-traces on the boundary of solutions
of a semi-linear elliptic equation. The main result is Theorem 6.

The plan of the paper is as follows. Section 1 is devoted to preliminaries.
Section 2 deals with the problem of traces for solutions in Wi2,p > 1.
In Section 3 we discuss traces of the first derivatives of solutions. Section
4 extends these results to the solutions of weakly coupled elliptic systems

The arguments which we give here are based partially on the references
[6] and [7].

1. Consider the semi-linear elliptic equation of the form

(1) D) Dj(a;(@)D,v) —b(z, u, Du) =0

1,j=1

in a bounded domain @ c R, with the boundary é@ of the class C?, Du
= (Dyuy ..., D,u), D;u = oulox,.
We make the following assumptions:

AMS (MOS) Subject classification (1970); primary 35 D 10; Secondary 35 J 25.
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(A) There is a positive constant y such that

n

yIEES D) ay(0) £ <y 18P

Hi=1
for all £e R, and x€Q.
(B) The coefficients a;; belong to C'(Q).
(C) The function b&(x,u,s) is defined for (z,w,s)e@Q xR, .,
8 = (84, ...y 8,), and satisfies the Carathéodory conditions; that is,
(i) for a.e. x €@, b(z, -, ") is a continuous function on R, ,,
(ii) for every fixed (u,s)e R,,,, b(-, #, 8,) is a measurable function

on @.

Moreover, we assume that

b(@, u, $)] < f(@)+ L(lu| + Is1),

for all (z, u,s) @ xR, ,, where L is & positive constant and f is a non-
negative measurable function of z € ¢ such that

[f@yr@)ds< o,
Q

l<p< oo, p<O<2p—1, r(x) = dist(x,0Q).
Remark 1. Under assumption (C), b(m, u(x), s(m)) is a measurable
function of z € ¢, where (u(a:), s(a:)) is a measurable function and

b(m, i) '): 'L%OO(Q)”A.]. _>Llloc(Q)
is continuous (see [5]).

In the sequel we use the notion of a generalized solution involving
the Sobolev spaces W2(Q) and W"?(Q).

We denote by W*?(Q) the Sobolev space of real functions % such
that « and its distributional derivatives up to order % belong to L7(Q).

This space is provided with the standard norm

ke = D' ID°ulZs,

lal<k

where a = (a,, ..., a,), the a; are positive integers,

%y

al = a eer Ja and D"t =——v_ -,
lal 1+ Ty ‘ ox31 ... dxln

The space of functions f such that fe W%?(Q’) for every domain

Q' satisfying @' = @ is denoted by W¥2(Q). For related material on So-
bolev spaces see [3].
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A function u(z) is said to be a weak solution of equation (1) in @ if
we Wi2(Q) and u satisfies

(2) f{ j ay;(z) D;uD;v+b(x, u, Du)'v} dr =0
Q 17,j=1

for every v e W"*'(Q) with compact support in @, where 1/p-+1/p’ = 1.

We now discuss a number of preliminary rcsults that will be needed
in the following sections.

We say that « belongs to A(Q) provided that there is a meagurable
function # on @ such that « = @ a.e. on @ and for almost every line =
parallel to any coordinate axis #;, ¢4 =1, ..., n, % is absolutely continuous
on each compact subinterval tn@Q.

When % € A(Q) we identify « with & so that D,u exists a.e. on Q.

The following characterization of W'?(Q) is due to Gagliardo, Morrey
and Calkin.

LEMMA 1. Let 1 < p<< oo. A function w defined on Q is in W ?(Q)
if and only if u e A(Q) and

(i) Duel®@),:=1,...,n,

(i) » e L™(Q).

Moreover, D;u coincides a.e. in @ with the corresponding distributional
derivative.

If @ is a bounded domain satisfying the cone property, then condition
(ii) is superfluous. This result is essentially contained in Sections 1 and 2
of Gagliardo [1].

From Lemma 1 it follows that « e Wi:2(Q) if and only if e A(Q)
and D,u € L,,(Q) for i =1, ..., n.

We will also need the following well-known change of wvariables.
theorem which is an immediate consequence of the previous result.

LeEMMA 2. Let g: H — G be a one-to-one mapping of the domain H = R,,
to the domain G < R, such that g and g~ are locally Lipschitz. Let v(y)
= u[g(y)]; then v e WiB(H) if and only if uw e W:2(G). In this case

Dv(y) = Dulg(y)1Dg(y).

Here D,u[g(y})D;g;(y) is interpreted as zero whenever D;g.(y) = 0, where
g =191+, 95)-

Another result we use frequently is the following.

LeMMA 3. Let (X, x, u) be a measure space, f e L'([a, b] X X) and
for u a.e. v € X let f be absolutely continuous on [a, b]. If 9|85 € L' ([a, b] x

x X), then there is an absolutely continuous function F(48) on [a, b] such.
that

F(8) = [f(8, v)dp(a),
X
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and

o3,
7o) = [ T2 g0
X

for a.e. de[a,b].
This result is used in Gagliardo [1].
If follows from the regularity of the boundary J¢@ that there is

a number J, > 0 such that for é € (0, J,] the domain @, = @ n{z; min |z —vy]

yedQ
> &}, with the boundary 9Q,, possesses the following property: to each

&, € 0 there is a unique point x;(x,) = 2, — dv(x,), where »(x,) is the
outward normal to 9Q at x,. The inverse mapping z, — x;(x,) i3 given
by the formula x, = x, 4 ov;(w;), where »;(x;) is the outward normal to
2Q, at x,.

Let z, denote an arbitrary point of 2Q,. For fixed 6 € (0, §,] let

A, = 0Q;n{x; l[x—z51 < e}, B, ={x; & =T;+ on,(&;), & € A,},
and
das; |4,

ag, (o) =1 g

where |A| denotes the » —1 dimensional Hausdorff measure of a set A.
Mihailov [7] proved that there is a positive number y, such that

ds,
3) i< <A
0 dSD 0
and
. dS;
4 1 =1
(4) ;E; as, (@)

uniformly with respect to x; € 0Q,.

According to Lemma 1 in [2], p. 382, the distance r(x) belongs to
C*(Q — —@,,) if &, is sufficiently small. Denote by g¢(v) the extension of
the functlon r(x) into @ satisfying the following propertles e(x) = r(x)
for 2€Q—Q,, 0€C*(@), o(#)=38/4 in Q,, »7'r(x)< o(@) < nir(®)
in @ for some positive constant y,, 0Q, = {z; ¢(x) = &} for 8 €(0, J,]
and finally 0Q = {z; e(z) = 0}.

We will use the surface int:grals M,(d) = .!g' |uiz, (2))|PdS, and

?

M(8) = df |u(2)[?d8,, where ue Wi5(Q) and the values of u(w,(x))

on 0Q and u(z) on 9@, are understood in the sense of traces (see [3], chapter
6). The following lemma shows that M,(4) and M (4d) are absolutely con-
tinuous on [d,, 6,] for every 0 < ;<< d,.
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LEMMA 4. Let @: R — R be locally absolutely continuous, u € Wi;i(Q)
and | DD (u)| € I,,(Q); then f D(u [y(x)])*dS, is absolutely continuous

on [8y, 6,] for every 0< 6, < 3, and ®D(u) e Wik(Q).

Here D;®(u) = @' (u)D,u, where the right-hand side is mterpreted
as zero whenever D,u =0,

Proof. The second part is immediate from Lemma 1 and Theorem
4.3 of [4]. The first part now follows from Lemmas 2 and 3, and Theorem
4 3 of [4], as follows. It suffices to ncte that @*(u[z,(x)]) and

— ¢2(u[m,,(a:)]) are in I'([d,, 6,1 x 0Q) and @*(ulx,(x)]) is absolutely

contmuous on [4,, 8,] for A8, a.e. z e 0Q.
An essential tool used in this paper is the following well-known
generalization of the classical Green’s formula:

[ gD:fdw = — [ gfD;edS,— [fD,gdx
Q aQ Q

for any fe W"?(Q) and ge W"?'(Q), 1/p-+1/p’ =1, 1 < p<< oo. Here
the values of f and ¢ on 0@ are understood in the sense of traces. This
formula follows immediately from the formula with f, g € C*(@) and The-
orem 6.4.1 of [3].

2. Our first objective in the study of the tracces of solutions of (1)
is the derivation of a criterion for the continuity of M,(d) and M(9)
on [0, §,] which plays an essential part in the ensuing treatment of these
traces. To obtain this eriterion we need the following two lemmas.

For v € L},.(Q) we may define the surface integral

M(d) = flfv(.av)lth'E for almost every 6 e (0, ,]-
Qs

LEMMA 5. Suppose that M (8) ¢8 a bounded function on (0, 8,1. Then

Jor every 0 < a << 1 there is a positive constant C such that

o ()] . k)
Q[(Q_(@TE)T dz < C  for every 66(07 2]-

Proof. For 6 € (0, §,/2],
|v(2)] |v(z)
Qf le@—o ° f (o—9 +Qa_£ (e—or

I

5—a+1 _
( )fw @)+ 2— sup 2(3).

— Q@ p<dcdy

4 — Annales Polonici Mathematicl XLII



&0 J. Chabrowski, B. Thompson
LEMMA 6. Let &: R — R be locally. absolutely continuous and u € Wi;(Q)
satisfy.
[1D®(u)r(z)do < oo;
K _
then for every a € (0, 1) there is a positive constant C such that

u)Z . -‘ i .
f (e(w) de < C  for every d€(0, §,/2].

Proof. Let d € (0, d,/2]. By assumption D;P(u) € L3.(Q) and thus
@(u) € Wi (@), by Lemma 1. Now

D(u)? i — J‘ D(u)? do+ D(u)?

(e—oF J T BT ) =
s % ]
and
2 a
f P(u) — dr < (-4—) fdi(u)?dw.
@3, (e—9) LN @3,
‘Moreover,

f (g a ﬁf (1— f ("[m‘m“])zds a8,

\yﬁf fdi(u[m(mo 1) d8,.

As [ ®(ulx,(x)])’d8, is absolutely continuous on [8, d,], integrating
o0
by parts

@D (u)? & °
f —ﬂ)— de < }'31—_—a- f(D(u[w,,o (a:)])zdSo+

Q5Qq, (Q—‘s)a
T f (t—0)—"ds f |8 [, (2,)])| | DB [ ()] I—w, 20)| @8,
5 2
<A [opasth—— [ GwrDOWI(e—d) " ds
—a l-a, 4
0050 4%
4 sl—a 4
l—a an l—a Qa—ng (9_6)a
298 65 °
+-0% _ [ Dow)t(e—d)dw,
B(l—a) Qfo
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where we have used Young’s inequality in the final step. Now choosing
293 8/(1 —a) = 1 the result follows.

Remark 2. Under the assumptions of Lemma 6, for all 0<< 24
<< 62

2
(¢—9)° 1—
Qs—Qy, 2,
. 16}’8 1—a
+Tl‘—__ ffm (w)[*(e — 0)da.

THEOBEM 1. Let u be a solution of (1) belonging to WiE(Q) for fived
P =2; then the following conditions are equivalent:

(I) M(6) 48 a bounded function on (0, 8y);
(T) [ [Du(®)]?|u(®)P~>r(z)ds < oo;
Q
(ITT) M,(9d) 8 continuous on [0, &,].
Proof. We show that

(I) > (II)=(I) and (II)= (III) = (I).
Let

_ fuluP*(e—9) for weq,,
Fla) = {O for z€Q —Q,.

Using Holder’s inequality and Lemma 1 it is easy to prove that ¥ is
an admissible test function in (2). Substituting ¥ in (2), we obtain

©®  [{ Y layDub;(wmr=*)(o— 8)+ ay Duu [uP~* D; e} +

Qd i,j=1

+b(z, u, Du)u[ul”"(e-—a)}dm = 0.
Sinee a;|u|°D;o € W"'(@,), by the Green formula we have

' f Zn;aﬁDiuu lu]p‘szgdwl

Qs tj=1

=\i IZD a;; [ul? D; 0) dac—— IZD a;D; e lulf’dw’

Qs di= QJ 1,J=1
=|_ fZa,;jlulpD,-g.DdeSz—{—— szi(aﬁDje)lul”dw
p Qg 1,4=1 P Qy ti=l
da p
< m+C - da,
P ? g (e—9)
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where
B n 6—1
l T
¢ = max E D,(a;D,p) a=———1, d = diameter@.
Q lf:lj:l 11 j l’ p 1

Using Assumption (C) and Young’s inequality we have the estimates

-

I fb(w, u, Du)u[u]"‘2(g—6)dml
Q

< [ (@ Wi = 0)+ L([uP + | Dul [ulP~") (¢ —8)} do

< [{]wrie-o+spupteie -0+ wre—-)+
Qa

o= o+ o
) (e—oF

Thus combining (5), (6) and (7) we obtain

f|Du|2|u|P-2(g 8)dx < y fzaup uD,uluf~* (o — 8)dz

Qs timl
Iul” 14 » }
—4d)ydx
( _1 +f{( __a)a lf(m) (Q ) +
+— leuPluw (0~ 0)de,
»—
where
a 1+a
K = Ll(od 14Dt +Ld‘+“).
p_
Choosing s such that 2 sl = } we obtain
2
Dul? juP~* (o — 8)do<—"— M(8) + f(@)? (0 — 6)°dm+
b [ DU o — o da ) B f

+E f (emlp

Implication (I) = (II) now follows from Lemma 3, with v = [u[?,
and the Monotone Convergence Theorem.
To prove (II) = (I) note that Lemma 6 implies
[ul®
¢, (@—9)

dr<C, 0<ea<]1,
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for 4 e (0, 4,/2], where C is independent of 4. By Lemma 4 it suffices
to prove continuity of M (J) at 6 = 0. From the first part of the proof

f Zua,-jmlmev,edsx

OQo 4,j=1

- f{ D) [Di(ay;D;0) lul? —p (p —1) ay DuDyuul"~ (¢ — 8)] —

Qs  ii=1
—pb(z, 4, Du)u|ulP~* (o — 6)}dm.

n

Thuslim [ » a;l|u/PD;uD;udsS, exists by the Dominated and Monotone
40 3Qy 4,j=1
Convergence Theorems. Since

—_— <2ai]D OD

%,j=1

is continuous on @ it follows that 3 (§) is continuous at é = 0.
Implication (IT) = (III) follows by Lemma 6 and the relationship

M(8)— M, f ]u(a;,,(w))lp(— —1)d8’

since dS,/dS, — 1 uniformly as é — 0 and, by the previous part of the
proof, M(4) and hence I,(6) is continuous.

Finally (IOI) = (I) follows from the proof (II) = (III).

Remark 3. Under the assumptions of Theorem 1 condition (I)
can be replaced by

(I') lim M (4,) exists for some sequence §,>0 with lim §, = 0.

y—00 y—ro0

Indeed, setting @(u) = |[#|?* in Remark 2 we have

4 1—a

P .__Jj
K f( f]ul dx -+ M(p)+

4Kp* 7’077

—!-(1

f \Duft ul? (¢ — 8)da,

for 0 <28 <7< 6,/2. Choosing ¢ = (p —1)/3yL and then

12p2y0K 1/(a—1)
- [ (1—a)? ]
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we obtain from inequality (8)

3 5 6Kygn'~"

-3 — -
J Dttt o~y < s () + 1

Qs

3K 3y
+— | [uPdr+—— —6)’dx.
- Q{ o Q{ P(e—9)

Setting 6 = 8, << /2, the result follows from the Monotone Con-
vergence Theorem.

Remark 4. Theorem 1 is sharp in the semse that for 6 = 2p—1
we have the counter example of Mihailov [7].

Remark 5. A condition such as (I) is8 needed even for the Laplace
equation as i8 well known.

Remark 6. Condition (C) can be weakened by allowing

L L
[b(z, u, s)| <f(w)+F IuH—? ls],
where f, L and a are as above. The proof requires only minor modifi-
cations.

Under slightly stronger assumptions the conclusions of Theorem 1
hold for 1 < p < 2. The details of proof are similar and we only sketch
the proof.

THEEOREM 2. Let u € Wy;5(Q) be a solution of (1) for fized p, 1< p < 2;
then conditions (I), (II) and (III) are equivalent.

Proof. To prove (I) = (II) introduce a test function

o(@) — {u(m) [u(m)z_}_ﬂ(p—z)lz(e(w)_a) for z€Q,,

0 for x €Q —Q,,

for ¢ > 0 and 8> 0. Since u € Wy;2(Q) for ¢ and 6 positive

n
[ Y ayDyuDu(u+e)*2*(o—8)ds is finite.
Qd §,J=1

Substituting » into (2) we obtain

f{ 2 [ D;uDju(ud+ &)~ D2 [(p —1)u+e](o — 8) +

Qs =1

+ ay Dyw(u? 4 &) P2 uD; o] + b(w, u, Du)u(u? +e)P~2 (o — 5)} dv = 0.
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Using Assumption (C) and (p —1)u?+¢e>= (p —1)(u2+¢) we obtain

©® [ iDupr e (o — 0)da
Qs

fZaUD uD,u(u? -+ &)@~ [(p — 1) u? +£](o — 6)dw

—1
(p ) =

II

a; Dyu(u+ )P~ yuD, o+
J 2
(- 1) { “
+b(z, u, Du)u(u+ )P (o — 5)} dzx

On the other hand by Green’s formula we have

Qy 4,j=1 Qy tj=
n

no
(10) f w(u? 4 6P~ uD, ods = f a, Dy (u? + €)P2 D, o
[ e wet [
1

f (u2 4 )P 2 a;D;oD,; pdx — % f(uz + )P D, [a; D, oldx.
) 0

00y ij=1
It follows from (9), (10) and Assumption (C) that

f | Dul? (u?+ &)@~ (g — 8) dr

0)!
2 /2 — 2 /2
< — ( ) fu + )P dS 4- 2 —1) f(u + )P dx -

S f [f+ L (1wl + [Dul)] jul (4 + )" (¢ — ) da,

with the same constant C as in the proof of Theorem 1. Using Young’s
inequality followed by Remark 2 with ®(u) = (u%+¢)?* and suitable
7,0 < 20 << < 6,/2, we obtain

[ 1Du(ue+ )22 (g — 8)dw < Of [ (w242 d8+
Qs Qs

+ f(uz+apl2dg+ f(uz-}—s)”/zdx-l— ffp(Q_ dw}
8Q,,

where the constant C does not depend on é and &. Lett_mg & — 0 the Mon-
otone and Dominated Convergence theorems give

{ 1DuP -2 (o —8)dw < C{ M (8)+ M () + [ uiPdw+ [ f? o’dar)
Qs 9 Q

and the result follows.
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To prove (II) = (I) note that using (10) and letting ¢ — 0 we arrive at

1 n
1) - [ Ya;DieDseds,

n p n
_ f{(p——l) Za,.,.p,.ul),.umlp—% _g " ' ZD D, )+
i=1

Qs 1,5=1

+ bu |u|P"2 (o — 6)}dm.

By condition (II), Lemma 6 and Y oung’s inequality the left- hand. side of
(11) is dominated by an L' function. Thus lim [ [u]pz D;eD;0d8,

80 Q4
exists and M (4) is continuous at é = 0. The rest of the proof follows

as in the proof of Theorem 1.

In order to establish « has a trace on 0@ in L?(0Q) that is, u(x,)
converges in L?(0Q) we first show that % (z,;) converges weakly in L”(4Q).
To do this we first need the following result.

THEOREM 3. Let w € W;2(Q) for fized p = 2 be a solution of (1). Assume
one of conditions (I), (II) or (IIL) holds. There is a sequence 6, — 0 as v — oo
and a function ¢ € L?(0Q) such that

lim fu[md Vg (x) fﬁP w)g(x)d

=00 aQ
for each g e L¥(0Q).

LEMMA 7. Lét w € WB(Q) be a solution of (1) for fized p > 2; then
condition (II) tmplies

f | Du|?r () dz << oo.
Q

Proof. By Theorem 1, condition (II) implies that M () =

f (#*+1)?*a8 is bounded. Repeating the proof of (I) = (II) of The-
Qg

orem 1 with

{u(u2+1)@—2>’2(9 —8) for zeQ,,
VD =
0 for z € Q —Q,,

as a test function we obtain f |Du|2(u?41)P~2rdp < oo and the result
follows.

THEOREM 4. Let w € Wi2(Q) be a solution of (1) for fized p = 2. If
one of conditions (I), (II) or (III) holds, then the fumction

G(8) = [ulmy(2)]¥(x)dS
0Q

18 con tinuous on [@, §,] for any ¥ in L?(0Q).
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Proof. By Lemma 4, G(4) is absolutely continuous on [4,, é,] for
any 61> 0 so it suffices to prove continuity at 6 = 0. Since P(x)

= 2 ay;(®) D, o(w) D; o(«) is uniformly eontinuous, 1/y < di(a:) v, M,(6)

t,j=1
is bounded, and the elements of C* (Q) restricted to 9Q are dense in L? (9Q),
it suffices to show that

n
G(o) = [u¥ Na,;DeD;0ds,
Qs fj=1

is continuous for each ¥ e 0*(Q). From (2), taking

v — {![’(g—é) for z €Q,,
- for x € Q —Q,,

as a test funetion, we have

f1 2“ DD, Plo—8)+ 3 ayDu¥D, o+ b¥(o—8)}do = 0.

Qs 4= 1,j=1
Thus
G(8) = f{ Z%D uD;¥(o—8)+b¥(0— 6 Z D;(ayD }dm.
Qs =1 ,)=1

The integrand on the right is dominated by
E{\Dul* o+ [u|”+f" 0" +1/e"}

which belongs to L*(@) by Lemmas 5 and 7 and condition (I), where K
6 —
is a positive constant independent of 4, and a = Z—i —1. The
result follows.
Remark 7. The result holds for 1 < p < 2 on noting thatforl < p < 2
the integrand on the right is dominated by

K {|Dul” lul"~* o+ |ul? +f* ¢"+1/¢°}
since
1Dulo < 3d|Dul® [wlP~* o+ 3 lul*?
and
2p — 2 —
p-r < 2220 O
P P
We now prove that under appropriate assumptions on the data.
the solution % of (1) assumes boundary data in the sense u(a:,,(a:)) con~
verges in LP(0Q, dS). We need the following lemmas.
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For d e (0, §,] we define the mapping 2°: @ — @,, by
() {m for z € Q,,

T = \ay+4(w—a,) for 2€Q—Q,.

Thus 2°(z) = z for each # € @, and 2°(x) = @, (x) for each z € Q. More-
over, o(«°) > 6/2. Also 2° is uniformly Lipschitz continuous and in particular

l2® (%) — a° ()| < K |& —y|

for some positive constant K. Note that if w e Wi2(Q), then u(a?)
e W'P(Q).

LEMMA 8. Let g € L'(Q), if [|g(@)|dS, is bounded on [0, &,], then
G,

1

) f lg(x)|dz < sup | |g(z)|dS,.
Q-e, 10001 54

Proof.

[
1 1
5 [ @<~ [ a f|g<w)|dsz<sup l9(@)]ds,

9=0s 6 [0:%1 o4
LEMMA 9. Let f be a non- negatwe function in L' (Qy, —Q,); then
{12) [ f@@)de<2y) [ fla)do.
Q-Q; Qs12— Qs
Ifodr f(x)dS, is bounded on [0, 8,], then
:
&w@) . s
(13) f o <, éf fla)as,

Jor 0<a<<.,
Proof. By change of variables we obtain

[l 4 [ L9 e

a (20—98)
0<a, © () z"(O—Od)( o—29)

é
at [ LDt [T (s,
Q,,,z—od( e—9) o (2t —9) 8Q,

_ Betting @ = 0 we obtain (12). If | f(#)dS, is bounded on [0, §,], then
aQ‘

f f(2’ ()

-]
dt
=l aw < [ s [fl@)ds,
020, @ (@) oy (2t—0) 19001 53,

a8 required.
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LEMMA 10. Let h e I'(Q); then
lim f bz’ (@) de = 0.
80 Q—Qp
Proof. This is a consequence of Lemma 9 and the well-known prop-
erty

lim hdxz =0.

90 Qgr~Qs

LemMa 11. Let ge L*(Q), o¢*feL’ and suppose that [ |g(z)*dS,
28 bounded on [0, 6,]; then Qs

lim ff x))g(x)dz = 0.

d—rOQ —Qs

Proof. Set J, = [ fla’(@))g(«)dx, then
Q-Q;5

lg(@)| V2
i< [ ) ene @) L2 4
Q—Jo‘a ]/
since o(2’(x)) > 6/2, thus by Holder’s inequality

[ i@y dewa [ 2 .

Q-Qy Q-Q
Setting k(x) = f(x)2o(2) the result follows from Lemmas 8 and 10.
Lemma 12. If o*feL*(Q), 0<a<1l, geL*Q) and f g(x)2ds,

is bounded on [0, 8y], then hm j g(m (@))f(@)dz = 0.
Proof. Setting

I, = [ g @)f@)de

Q-Qy
we have by Holder’s inequality and Lemma 9
J 2
gl@” (x) a
< _((w’—(w)))‘_‘ f o(®)°f (z)* da
Q-Qy ¢ Q-0Qs
<t [ LV a [ owrfera

a
Qa2 Qs Q(m) 0-a,

and the result follows from Lemma 5.
LEMMA 13. If o'*f and o' g belong to L*(Q), then

hm f fla’ (@) g(#) g (@)dz = 0.
~0Q-q,
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Proof. Let K, = f f(a;"(sv))g(zv)g(:v)dx; then since o2’ (2)) > o(x)

f f(fc Vole’ @) de [ g(a)2e(x)da

Q —-Qs Q-0,
and the result follows by the previous lemmas.
Let I} = I*(0Q, dS,) with inner product (norm) denoted by (-, -,
(I-1) and let L; = I*(2Q, P (2)dS,) with inner product (norm) denoted
by {5 D2 (l-lle), where

n
= D a;D
ii=1

First we prove u(z;) converges for the special case p = 2 and then,
using this result we obtain the result in the case p > 2.

THEOREM B. Let u € Wi2(Q) be a solution of (1) such that one of con-
ditions (I), (II), (IXI) holds for p = 2. Then there is ¢ e I*(8Q) such that
wu(x,) converges to [ im L} as & converges to 0; that is, limu(x,) = ¢
in Li. 80

Proof. As |-|, and ||-], are equivalent it suffices to show there is
¢t eI? and lim u(xz,) = ¢ in L. By Theorem 4 there is { ¢ I} such that

30
lim %(x) = { weakly in L:. Since L is uniformly convex, it suffices to
=0

show that lim |ju(x,)l, = [i]l.. For ¥ e W-*(Q) set
Jd—0

F(¥P (@) = Z a; D;uD;Po+b¥Po — 2 D;(ayD; 0¥)u.

%, fm=1 %,j=1

As in the proof of Theorem 1 we find that
@, Py = [F(¥(@)do
Q

for all ¥ e (C'(@Q) and hence for all ¥ e W2(Q). As u(2®) e W-2(Q) we
have

&y u f Fluls’@)))de = [ Fluls’(@)))dz+ [ Flu(@))ds,
Q-0Qs Q3
gince #°(z) = « for every z €Q,. We show that
lim f F(u[s’ (2)])de =0

d—>0 Qo— —Qs

and that
lim [ Flu(x))de = hm s 21,

=20 Qs
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so that
¢l = }sim o u(@®)yy, as &°(@) = zs(2) on 2Q,
—0
= lim |lu (") (£, as required.

40

Setting
__Ju(@)(e—9d) for zeQ,,
v (@) _{0 for x €eQ —Q,,

in equation (2), we have

f{ Z [ayD;uD;u(e — 8)+ ay;D;uD, e]+bu(e—6)}dw = 0.
Qs ti=l

Hence

lim f Fu

40 Qa

= lim f[ 2 ay;D;uD;u(o—0)+bu(g—9 2 D;(ayD, gu)u]da;

60 Qs =1 f,j=1

HhmfZD a;Djout)de = lim [ w2 dds,

40 Qs i,j=1 d—0 Qg4
= lim fu(w,,) ®dS, +lim fu(w,s)2 [D(x;) — D)dS,
S—0 3Q 6—0 30 )

= Hm [ () PdS, = Lim |lu(z,)|3.
§—0

30 aQ

NOW
|B(u (2’ (2))] < C{|Du () || Dufa’ (2))] e (=) +u ()] ju(z* (2))] +
+ | Do (2 (@))] [ ()] + | Dus (@) [[ufa’ (2))| + S (@)|ula’ (=) e}

for some positive constant ¢ independent of 8. Noting ¢¥*~(gf), ¢* | Dul
e L*(Q), 0 < 360 —1< }and M(J) is bounded on [0, J,], by earlier lemmas

lim f (u(w ))da; =0.

§—0 Q—Qs
For the convergence of u(x;) in L?(9Q) in the case p > 2 we need the
following results.

LeEMMA 14. Let u € Wi2(Q) be a solution of (1) satisfying ome of con-
ditions (I), (II) or (III) for fixzed p > 2; then u(x.) converges to § in L4(0Q)
Jor each q,0< g< p.
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Proof. First we note that (x,) converges weakly to { in L*(éQ).
We show that u(x,;) converges to ¢ in L*(8Q). Let

0 for p < 0< Jp,
(6—1—p)jp for p<O<2p—1,
and g(0) =20/p—a(0). For p<<2p—-1, 2< <3 and

ffz Qﬁdw < ( ffP Qﬂdw)Wp( f g—pal(p—z) dw)(zl—2)l_p < oo
Q Q o

a(0) =:

by (C), a8 pa/(p—2)<1.
By Theorem 5, %(x;) converges to £ in I?(9Q) so F = ¢ a.e. For measur-
able sets A — 6@ and s satisfying 1/s+¢/p =1 we have

f | (zs) - £17dS, < lAls( f [ (a,) — | dSz)q/p
4 4
< iar{( [uras)®+( [ ieras) )
aQ 50
< IAIS{Ml(a)-]-( f|ClpdS:)Up}q_
Q

Thus % (x)—{ is equi-absolutely integrable and bounded in L%(9Q) and
hence compact for 0 < 6 < 8,. Now for any sequence ¢, —> 0 there is
a subsequence & — 0 with #(%5)) —{ —> 0 a.e. and the result follows.

THEOREM ON NEMYTSKY OPERATORS (see [8], p. 135). If f(=, w),
defined on Q X R, satisfies Carathéodory conditions (conditions (i) and
(ii) of Assumption (C)) and

If(@, )] < g(z) + K |uf*",

where g € LHQ), 1< s, I < oo and K i3 a positive constant, then f generates
a continuous operator from L°(Q) into L'(Q) given by the formula

h: u(s) = f(+, u(*).

(This operator is called the Nemyisky operator.)

We now establish the following LP-convergence theorem.

THEOREM 6. Let u € Wi2(Q) be a solution of (1) salisfying one of con-
ditions (X), (IX) or (IIT) for fized p > 2; then u(z®) converges to ¢ in L¥ (9Q).

Proof. We begin with the following remark: if w(s°) is bounded
in L?(8Q) and w(s®) - in L%8Q) for g<p, then wu(a’)lu(2”)?®
— £|£}*~* weakly in L?'(0Q). This follows by observing

flz, u(a®)) = w(2®) lu(z®)P~?

is continuous from L7(8Q) to L¥P~Y(8Q) by the Theorem on Nemytsky

Operators. Hence u(a°) [u (2°)|?~* — £ |Z|P~% in LY¥P-(5Q) as 6 — 0, where
we take g/(p—1)>1.
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Also %(2”) [u(2”)[P~? is bounded in L* (9Q) and so is weakly compact
and the result follows.

The rest of the proof is similar to that of Theorem 5. For every
¥ e W2 (Q) we have

[weoas, = | { j ayD;uD;¥o+b¥Fo—u 27:‘ D,(a; ¥D; 9)}da:
Q@ ¢ 1,j=1 tyf=1

since u(xz’) — ¢ as & — 0 weakly in L?(5Q).
Set ¥ = u(2®) |w(4?)|?* in the above and noting that u(a2’) = u(w)
on Q,, we obtain

flClpd}dS =lim [ u(a’) ju(2) P2 @dS,
=0 aQ

=1im [{ 3 a;D;uD;(ulul"~) o+ buuP~2g—

— 2 uD‘(a,-juluP“sz g)}dw—l—

1,j=1

+lim f {Ea Dy uD{u(a’) ju(2®)1P~) o+

+bu (@’ |“e—2u1)( u (@) lu(a*)|P~* D; ) dw

i,j=1

Setting
_ fu(@) [u(@)P*e(x) —8) for x eQ,,
°@) = {O for x €Q —Q,,
in (2) we obtain

[ lur®as, = f{ 5’ a;; D;uDy(u |u|P~*) o+

Qs Qs =1
n
+huur2g— Y uD,-(aiju|u]1"2.D,g)}do:+E,,

i,j=1
where

E, = f{bu %P2 64 2“? a; DyuDy(u lu]p‘z)é}do:.

Qs i,j=1

It is clear that lim E; = 0. As in the case p = 2 it suffices to show

8=

lim | {2%1) uD,(u(a®) [u(a®)|P~%) o+

0009 0, ijml

+ bu (2} |u(2®) P2 o — an uD (a;u(2’)|w(a’)|”~* D, g)}dw = 0.
ii=1
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It is easily seen that the integrand can be estimated by

Flu(@) P~ o+ K {lul lu(2") [P~} 4 | Dul lu(a’) P~ o +
+ | Dul |(Du) (2°)] [u(2”)[*~2 o + [ul |(Du) ()] |u () P~2},
where K is a suitable constant. Estimation of the integrals of the first

three terms is similar to previous calculations (see the proof of Thecrem 5).
Now

abe? % < const(a® + b2 Pt - cP).

Set b = |(Du)(2?)| and ¢ = |u(z’)|. The integrals of the fourth and
fifth terms can be estimated by earlier lemmas setting ¢ = [Du] and
a = |u| respectively.

3. In this section we show that analogues of the theorems of Section
2 hold with D, replacing » provided we suitably strengthen our assump-
tions. In particular we assume that (A), (B) and (C) hold, where in (C)

(14) b(w, u, 8)| < f(2)+L(lul+ ls]),
with f e L*(Q).

Define the surface integrals

N(d) = [|Duiras, and Ny(8) = [|Du(m,(a))}ds,.
9Qy Q

We have the following regularity result.

THEOREM 7. Let u € Wii2(Q) be a solution of (1); then ue WHi(Q).

Proof. This follows immediately from [2] Theorem 8.8, where the
f(x) of Theorem 8.8 is given by

f(x) = b(x,u, Du).

We now obtain the analogue of Theorem 1. As details of the proof
are similar to those in Theorem 1 we only sketch the proof.

THEOREM 8. Let u € W2(Q) be a solution of (1). The following con-
ditions are equivalent:

(LV) N (6) 8 bounded on (0, 6,];
V) [ D IDyul?r(z)de < oo;

Q ij=1

(VI) N,(8) 18 a continuous function on (0, d,].

Proof. By Theorem 7, u € Wi:2(Q) so N (4) and N,(6) are continuous
on (0, 8,], by Lemma 4. Clearly N (4) is bounded on (0, 8,] if N,(4) is
bounded on (0, d,] and the equivalence of (IV) and (VI) follows from the
behaviour as 6 — 0 of the expression

N(8)=Nu(0) = [ [Dufa(a)? (i —1)«150
0

i



Traces of solutions 85

To prove (IV)= (V) let » € W>*(Q) have compact support in Q.
Thus

n

J‘Z a,D;uD;(Dyv)dz = — fb(a: u, Du)D,vdx
Q ij=1

and integrating by parts

(15) f 2 [(Dy @) D;uD;v + ay Dy(Dyu) Dyvlde = [ b(e, v, Du) Dyvde.
‘o]"l Q
Now, by continuity, (15) holds for all v ¢ W-*(Q) having compact support.
Setting
e B
0 for x ¢ Q,,
we obtain

(16) fZ [Dya,; D;uDy.u(e — 8) + D, a, D;uD,uD, o+
Qs tj=1
+ a3 Dy( Dy ) Dy(Dyu) (@ — )+ @y Dy (Dyw) Dy uD; o] dz

= f{b(m, %, Du) Dy, u(o —8)+b(x, w, Du) D, uD;p}dr.
0

Note that

Qs t,j=1

= —} f D u2dd8, —} [ 2 D;(a, D) \Dyul*da.
Qs hj=1
Using this and Young’s mequa.hty we aITive at the inequality

[ID(Dw)2(e—d)dz < O f Z‘a,,p (Dku)p,(pku)(g 8)dw

Qs Qy %=1

< 30N (8)+3 f DD, w)l2(0 — 8)da+
+K f{wulz+f2+u2}dw,_
Qs

for suitable cohstants € and K. Since w € Wi;2(Q) and N (4) is bounded
|Du| € L*(Q) and u € L*(Q) by Lemma 6. The result now follows by the
Monotone Convergence Theorem.

In order to prove (V) = (IV) note that by (V) and repeated use
of Lemma 6, |Du| € L*(Q) and « e L*(Q). From (16) and (17) and Young’s

5 — Annales Polonicl Mathematici XLII
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inequality

N@) <y [IDupdas,<c [{ 3 1D;uiz(e—6)+1Dul* + s+
Q Qa 1,7

<Cf{ 2 |.D, u]zg—!—]Du]Z—{—uz-i—fz}dw
1,j=1
a8 required.
We now show that the analogue of Theorem 5 ‘holds. As in Sectlon
2 we need the following preliminary results.
"Let H,(3) = {(D;u(;), g, for g € I*(2Q).
THEOREM 9. Let w € W2(Q) be a solution of (1). Assume one of con-

ditions (IV), (V), (VI) holds. There is a sequence 6, — 0 as ¥ — oo and functions
1, € L*(9Q) such that

lim H,(4,) = {x;; 901,

for each g e L*(8Q) and i =1,...,m

THEOREM 10. Under the assumptions of Theorem 9, H,;(d),i =1, ..., n,
are continuous on [0, d,) for each g € L*(8Q).

Proof. By Lemma 4, H,(J) is absolutely continuous on [d;, 6,]

for any &, > 0 so it suffices to prove continuity at 6 = 0. As in the proof
of Theorem 4 it suffices to show

H,(0) = [D,ugdds,
Qs
is continuous for each g e C1(Q).
Setting

__J9(@)(e—0) for xe@Q,,
v(@) = {0 for z €Q —0Q,,

in (15) we obtain, applying Green’s 'formula,

H,(3) = f{ Z [DkuDi(aingj 0) —ayD;(Dyu) D;g{e —6)—
Qs  Hi=1
—Dya;D;uDy{g(e— )| +b(z, u, Du)Dylg(e — 6))}da:

The continuity of H,(d) now follows from the Dominated Convergence
Theorem applied to the right-hand side.

‘THEOREM 11. Under the assumptions of Theorem 9 there is y; € I3 (4Q)
and Dy u(x;) converges to y, in Lj.

Proof. It suffices to show D, u(x;) converges to y, in I;. By Theorem
9, D,u(x,) converges weakly to x, in L and it suffices to show that
lim D w(@s)ll: = |2z

80
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From (15), taking v = go with g € C*(@), we obtain

s P2 = f{ 2 [ —ayDyuDyge + DyuD;(ay; gD, 0) —
¢ =1

—Dya,D;uDy(ge)1+b(w, %, Du) Dy(ge)}do = [ Rlg(@))dw.
Q

The last equality remains true for all g € W?(Q). As (D, uj(m‘ (aﬁ)) e W (Q)
we have

Gy (Dpu)(@)e = [ R(Dyu)(@”))do+ [ R((Dyw)(a))da.
Qs Q-0
Note that

(18) [ R((Dyu)(a))dz = [ R((Dyu)(x))de
Qs Qs

= - f{ 2 [ —ay Dy uDy,ue + Dy wDy(a; DyuD; o) —
Qs Gj=1 ' :

— Dy, D;uD;(Dyu0)1+b(@, 4, Du) D, (Dyug)}da.

On the other hand we have by (16)

n
(19) [ Dyu D) Dy(ayD,uD;e)dw

Qs 1,j=1

= f 2 [D;(ay; D; 0) 1D, ul?+ ay D; oD;(Dyw) Dyu]dw
Qd 8, =1

= f{ 2 |D;(a;;D; ¢) |1 Dy ul2 — ayy Dy uDy 1 (o — ) —

Qs i,5=1
— D0, D;uD,(Dytu(o — 8))] +b(x, u, Du) DD, u(o— 6))}da:.
It follows from (16) and (17)

kg

(200 [ IDupods, = [{ 3 [DiayDyo)IDyul —
Qs

Qs i=1
'—ZD,‘ a/U.D,"u.DJ(Dku(Q —_ 6)) —2a.,-jD,-ku.Djku(‘Q — 5)] +
+2b(w, u, Du)D,,(Dku(g—é))}dw.
Comparing (18), (19) and (20) we obtain

lim f R(Dyu(z))do = :lel (D) ()2 . P

30 Ql’
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Since
Sty (D) (@2 = [ 13Dy u) (@) S,
9Q

hence
lim {ypy (Dpu)(@®)>e = lxgllz -
00

To complete the proof it suffices to prove that
lim [ R((Du)(a")dr = 0.
30 Q-Q,

The proof now is similar to that in Theorem 5.

4. The results of the previous sections remain valid for the diagonal
system of the elliptic type

(21) S‘ D,(ak; («) D;u*) —b*(x, u, Du¥) = 0,

i,j=1

k=1,..., N. We only show how to extend some results of Section 2 to
the solution of (21).
‘We assume

(A') There is a positive constant y such that

y RS ) d@) & <ylEP, k=1,..,N,
i,j=1
for all €@ and £eR,.
(B’) The coefficients af; are of the class C'(@).
(C’) The functions b*(x,%,s), ¥ =1,...,N, defined for (z,u,8)
€eQXR,,,, 8 =(8,...,8,) satisfy inequalities
b* (2, u, 8)| < f*(a)+ L([u]+1s]),

where L is a positive constant and f* are measurable non-negative
functions such that

f ¥ (z)?Pr(z)de < oo.
Q

Here we assume that b* satisfy the Carathéodory conditions (see
conditions (i) and (ii) of Assumption (C) in Section 1). 1< p < o0, p< 0
< 2p —1. Additionally we suppose that for every index % the inequalities
w<w (j #k) imply
(22) b (x, u, 8) < V*(x, ut, ..., ub", ok, ubt L u, g)

for all €@ and seR,.
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As in Section 1 we introduce the concept of a weak solution of system
(21). The system of the functions {w*}, ¥ =1,..., N, is called a weak
solution of (21) if the «* belong to Wi:2(Q) and for any system of functions
(v}, k =1,...,N, with the ¢* in W"?(Q) having compact supports
in @,1/p+1/p’ =1, we have

(23) f{ E af; () D, D;v* + b (w, u, Du’“)v"}dx =0, k=1,...,N.
Q

=1
Define the surface integrals
M, (u) = f|u’i(m)|pd8x, Mi(u) = f]u’_f_(md(a:))lpde,
2Qy 3Q
k =1,..., N, where u% (#) = max (0, w*(x)).
THEOREM 11. Let {v*}, k = 1,..., N, be a weak solution (21) belonging
to W2 (Q) for fized 2 < p < oo. Then the following conditions are equivalent:
Iy M, (8) (k=1,...,N) are bounded on (0, d,];
(XX) [ DUl (@) (uf (@) ~*r (@) de < oo;
Q
(OT') M3 (8), k=1,...,N, are continuous functions on [0, &,].
Proof. Set
(@) — {u’j_ (@) (2))P*(e(2) —8) for e Q,,
0 for 2 €Q —Q,.

By standard properties of distributional derivatives we verify that
o* are admissible test functions in (23). As in the proof of Theorem 1 we
obtain

(24) [ IDuf Pt )P (e — d)dw
Qs
<C( M (0)+ [{(uE)(e—8)+Wh)+b(w, u, D) (uk)? (o — 8)} da),
ds

k=1,...,N, where O is independent of 6. We estimate the last integral
as follows.

Setting u* = max (—u#%,0),i =1,..., N, it follows from Assumption |
(C') that

(28) [ b*(@, u, DuF)(uk Y~ (o — S)da
47}
< fb"(a:, wtul, o, wFT R k) o ke
Qs

+u¥, Dbk P (o — e < [{FH (k) (o — 0)+
Qs

N
+I D) (w5 (o — 8) + LIDu | (uh) 7 (o — 8)} d.

im=1
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Note that
Y 1
(26) Slatwrrie B[ e+ ]
ik ik
and
. 1
(27) CDuk (k)P e lDu'ilz(u’i)”‘z—l—: (uk)P.

Summing inequalities (24) over k from 1 to N and using (25), (26) and (27)
we obtain

J D IDUL Py (o — 8)dw

Qs k=1
<0 ZMk(a + f{z P(g—8)+ 2 (k)P +

k=l f=1
+ Z(f")”(e 8’ + 2(u+)1’(9 8)~-Dio— 1)+1}d$)
k=l Fm1

where C is independent of 6. The proof of the equivalence of conditions
(I'}, (II') and (IIOX') is similar to that of Theorem 1, therefore we omit
the details.

Finally we state without proof two theorems on traces of solutions.

TEEOREM 12. Let {v*}, k =1, ..., N, be a weak solution of (21) for
Jized 2 < p < oo. Assume that one of conditions (I'), (IT") or (IIT') holds.
Then there is a sequence 6, —0 as v — oo and functions ¢* € L*(0Q) such
that ’

lim [ (2, (2))g(@)dS, = [ ¢'(2)g(x)dS,,
'—PNBQ aQ

i =1,..., N, for each function g € L*(Q).

Remark 8. If (A’), (B’) and (C’') hold with p = 2, then u*(z;) - ¢*,
k=1,...,N, in L?(6Q). The proof is similar to that of Theorem 5.

THEOREM 13. Let {u*}, k =1, ..., N, be a solution of (21) satisfying
one of conditions (I'), (II') or (IIL') for fiwed p, 2 < p < oo; then w*(x,)
converges to ¢, in LP(0Q).

Remark 9. If in condition (C’) we omit (22), then the analogues of
results of the Sections 2 and 3 hold under the modified Assumptions (A'),
(B') and (C ); for example, Theorems 11, 12 and 13 hold where we replace
u" by «* in the appropriate conditions.
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