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Summary. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATwo kinds of transient sliding motion under a case of idealized 
dry friction are studied. One concerns uni-directional slip at constant propa- 
gation velocity along a strip of constant length in the propagation direction. 
The other regards extensional slip along a strip expanding symmetrically 
with constant velocity. The former kind involves one leading and one trailing 
edge, whereas the latter involves two leading edges. At a leading edge there 
must be a region of tearing, where sliding is initiated, and at a trailing edge a 
region of healing, where sliding ceases. The finiteness of these regions follows 
from the requirement of bounded strains. In the linearized treatment chosen, 
the edge processes are described by a modulus of tearing and a modulus of 
healing, both being characteristics of the material. Relations between the 
applied remote stress, the extension of the sliding region, the amount of slip, 
the slip propagation velocity and the rate of energy dissipation are given. 

1. Introduction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As is well known, forces above a certain level must be applied to initiate a sliding motion 
between two bodies in contact. However, sliding cannot start at once over the whole inter- 
face. It ought to be initiated in some small region and then propagate in a wave manner 
along the two mating surfaces. Such a motion is here referred to as a transient sliding 

motion, as opposed to sliding at constant velocity of the two bodies. 
Two different kinds of transient sliding motion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill be studied. The first one refers to a 

fvred grip situation. It is schematically illustrated by the model shown in Fig. 1. The two 
bodies are assumed to be of equal length in the unloaded state. The left ends are displaced 
a distance 2Au from each other. This displacement has been accompanied by a slip along 
the interface, from the left end to a point P, where some obstacle to sliding motion is 
assumed. Thus, to the right of P no slip has occurred. The obstacle P is  now removed. Then 
a wave pulse of sliding motion propagates from P to the right ends of the bodies. It is 
assumed that the bodies are long enough so that a steady wave pulse develops. This kind of 
sliding motion will be referred to as unidirectional slip propagation. However, in the study 
the two bodies are taken to be semi-infinite. 

The other kind of transient sliding motion to be studied is schematically illustrated by 
the model shown in Fig. 2. The two bodies are loaded by tangential loads, uniformly 
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?PI- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-------- 

Figure 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAModel illustrating schematically unidirectional slip propagation. When the obstacle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP is 
removed a slip 2Au propagates to the right. 

Figure 2. Model illustrating schematically extensional slip propagation. Slip is assumed to start at a 
central portion and spread symmetrically towards the ends. 

distributed except towards the ends, where the loads are small. It is assumed that the ‘static 
friction’ in a small central portion is lower than the otherwise constant ‘static friction’, but 
larger than the dynamic friction, which is assumed to be constant over the whole contact 
area. Then, as the magnitude of the loads is increased, a sliding motion will eventually start 
at some point in the central portion and spread in both directions towards the ends. It is 
assumed that this motion is antisymmetric with respect to a point in the region of initiation. 
Further it is assumed that a constant propagation velocity is approached after an initial 
acceleration period. This kind of sliding motion will be referred to as extensional slip 

propagation. In the study the two bodies are taken to be semi-infinite. 
The two cases differ in the rekpect that the first one concerns one leading edge where 

tearing occurs and one trailing edge where healing takes place, whereas the second case 
concerns two leading edges. Another difference consists in the amount of slip that can be 
transmitted. In the first case it is limited to a fEed quantity, given by the constraints. In 
the second case it increases indefinitely with time. 

The conditions of the mating surfaces influence the physical mechanism of sliding. The 
interface is seldom clean - often a layer of contamination or of abraded particles is present. 
The implications of different conditions of the mating surfaces on the mechanism of sliding 
can be very substantial. The present study is restricted to an idealized case of dry friction. 

2 Some aspects of friction 

In a motion where one body is sliding over another one, part of the force required to 
produce motion is due to the resistance to sliding. The tangential stress .at the interface, 
corresponding to this force (the friction force), can be written zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r = d WfdS  (1) 

where S is the relative tangential displacement between the two mating surfaces and W is 
the energy per unit of area that is irrecoverably lost in the sense that it does not contribute 
to the potential energy or to the kinetic energy of the system as a whole. Most part of W 

is eventually dissipated as heat (although a small part goes to other forms of energy, for 
instance elastic strain energy due to residual stresses near the sliding surfaces). Some part of 
W ,  in almost all cases completely negligible, consists of kinetic energy in the region of sliding 
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(due to translation and rotation of particles between the bodies). This kinetic energy goes 
eventually to other forms of energy and is mainly dissipated as heat. 

The irrecoverable energy W is produced by different types of mechanisms, mainly: 

plastic deformation, 
viscous flow, 
hysteresis, 
crack formation, and (generally negligible) 
inertia. 

Since most part of W turns into heat, the temperature near the sliding surfaces is in- 
creased. The temperature increase depends on the amount of heat produced per unit of time 
and on how fast heat is conducted away from the region of sliding. Therefore, the 
temperature generally increases with the sliding velocity. 

The temperature, in turn, influences zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW. Thus plastic deformation and viscous flow is 
generally associated with less energy dissipation at higher temperatures. Also changes of the 
mechanisms of energy production may occur, for instance,due to melting and to acceleration 
of chemical processes, such as oxidation. 

The relative importance of different types of mechanisms producing the energy W 
depends naturally on the conditions in the sliding region. Two extreme cases can be 
distinguished, idealized dry friction and idealized hydrodynamic lubrication. 

The dependence of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT on the compressive stress zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu (the normal stress), by which the bodies 
are pressed together, and on the relative sliding velocity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAicy is fundamentally different in the 
two extreme cases. 

At  idealized dry fiction r is proportional to u and independent on 1. This case should be 
realized when two metallic bodies, with rate- and temperature-independent perfectly plastic 
properties, are in direct contact. The usual physical explanation is the following one: when 
the two bodies are pressed together adhesion ('welding') occurs at the regions of real 
contact, forming junctions which are sheared off when sliding takes place. At sufficiently 
small compressive stress u the area of real contact is substantially smaller than the total 
area. Then the area of real contact should be proportional to u (because of the assumption 
of perfect plasticity) and the force required to shear the junctions should be proportional 
to this area (again because of the assumption of perfect plasticity). Thus the stress r should 
be proportional to u. The assumption of rate- and temperature-independence of the 
perfectly plastic properties implies that T should be independent of t i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(An obvious 
relaxation of the demand of perfect plasticity can be made without changing this result.) 

At idealized hydrodynamic lubrication r is independent of u and proportional to 1. This 
case is realized when a layer of a Newtonian fluid with pressure- and temperature- 
independent viscosity is separating the two bodies. The explanation is immediately obvious, 
since Hagen-Poiseuille flow should occur in the layer. 

The two cases discussed were, rather arbitrarily, called extreme. This does not imply 
that the dependence of r on u and ti in real cases should necessarily be something between 
the dependencies found for the idealized cases. In fact, cases exist where r decreases when 
ti is increased or increases faster than in proportion to u or ic. Irregular dependence of r 
on u and li sometimes found in different ranges and also the time elapsed after initiation of 
the sliding motion may influence T ( U ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa). 

Real cases where one body (not necessarily metallic) is sliding over another one, without 
any layer intentionally placed in between (for instance, as a lubricant or an abrasive) or 
produced during the sliding motion as abraded particles, show approximate independence of 
r on u and approximate proportionality between r and u. The deviations from the idealized zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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case of dry friction can go in different directions and depend on different factors, such as 
presence of oxide fims, hardness variations with the depth from the surface, elastic 
(Hertzian-type) contact forces instead of plastic ones, large surface roughnesses (causing 
'ploughing' and associated hysteresis losses), etc. Of special interest are effects caused by the 
increase of temperature with the sliding velocity. This increase often contributes to a 
decrease of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ,  because of local softening and even melting, implying decrease of the stresses 
required to shear off junctions between the bodies. 

Real cases where a thick layer of a viscous fluid is separating the bodies show approxi- 
mate independence of T on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu and approximate proportionality between T and u. By a 'thick' 
layer is meant one that completely separates the two bodies from contact with each other. 
The deviations from the idealized case of hydrodynamic lubrication are caused by the 
pressure- and temperaturedependence of the viscosity. The viscosity generally increases 
somewhat with the pressure. (Water, with practically seen pressure-independent viscosity, is 
an exception.) Increases of the viscosity with the pressure implies some increase of T with u. 
An increase of the temperature lowers the viscosity, implying somewhat slower increase of 
T than in proportion to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu. A decrease of the thickness of the layer of viscous fluid implies 
an increase of T (because of the properties of Hagen-Poiseuille flow). If the thickness is 
decreased until the solids are no longer completely separated from direct contact with each 
other, T can increase considerably. (In some applications, such as oillubricated bearings, the 
layer thickness itself depends upon both velocity and normal force.) 

When a layer of a solid material (a homogeneous solid or a powder) or of a mixture of a 
solid material and a liquid is separating two bodies, the sliding properties depend on the 
nature of the layer (plastic or viscoelastic, thick or thin, adherent to the surfaces of the 
sliding bodies or not, soft or hard, high or low melting point, etc.) as well as on the nature 
of the body materials (soft or hard, ductile or brittle, strong or weak hysteresis, good or 
poor heat conductivity, high or low melting point, etc.). The structure of the function 
T ( U ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAti) varies considerably between different cases. 

Time also plays a role in the friction behaviour. Thus, for instance, experiments with 
steel-balls, spinning on a metal surface and decelerated by friction, show different 
deceleration at the same rotational velocity if the initial rotational velocity has been 
different. Such phenomena can be explained by differences in temperature and by different 
amounts of accumulated plastic and viscous work, abrasion, cracking, etc. Another cause of 
time (or rather displacement) dependence of the friction force can be misalignment between 
the sliding surfaces. 

Size effects may also influence the mechanism of sliding. In an earthquake fault a sizable 
layer of gouge material is believed to separate two blocks from direct contact. While in 
engineering applications of sliding motion layer thicknesses are typically of the order of 
104m, the layer thickness in an earthquake fault is larger by a couple of orders of magni- 
tude. This difference implies different temperature characteristics. Thus heat is, practically 
seen, not conducted away from the sliding region of an earthquake fault during a motion 
that lasts less than a few tens of seconds. The temperature rise depends essentially on the 
time (or, rather, the displacement). Another implication of the comparatively large thickness 
of the region of sliding in an earthquake fault is that inertia effects cannot u priori be 
neglected. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 Unidirectional slip propagation 

3.1 L I N E A R  T H E O R Y  O F  I D E A L I Z E D  D R Y  FRICTION 

Consider two semi-infinite, isotropic, homogeneous and linearly elastic solids in contact 
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=, 

- - f - - c - - - c - - - - - c - -  

Y 

U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
UPPER SIDE 

LOWER SIDE 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA x - v t  

I LOWER SIDE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

40 1 

Figure 3. The displacement zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu at the interface y = 0 shown in the xy plane (upper figure) and in the xu 
plane (lower figure). Empty arrowheads indicate original, fdled ones current positions of material points 
at the interface. It can be seen from the upper figure that a misfit occurs at x = - b .  This can be avoided 
by taking the Lagrangian length of the sliding region to be 2 b  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAu at the lower side of the interface. 
Since the analysis is performed for one half-plane, only, this would be perfectly possible. However, this 
complication is not sensible, since the analysis requires that Au 4 2b. 

along the plane y = 0. The remote stress is T.,, = T, > 0. A slip of total magnitude 2Au is 
propagated as a wave of sliding in a region 

see Fig. 3. It is assumed that a shear stress 

T , , , = T ~ ( X -  Vt),  - b < x -  V t < b  

acts on the mating surfaces in the region of sliding. 
The following notations are introduced: 

G = modulus of rigidity 
c = propagation velocity of irrotational waves 
kc = propagation velocity of equivoluminal waves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV/c 
a: = 1 - p 2 , u 1 > o  

f@)= 2(1 -k2)a2(l -af)[4a1a2-(1 + a f > 2 , - l  

uf = 1 - p2/k2, u2 > 0 

u = displacement in positive x direction 
u = displacement in positive y direction. 

(3) 
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Then, for y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 one obtains (see Appendix 1) with a change in notation, so that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx - V f  +x, 
for brevity: 

ax L O  f o r I x l>b  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
uX = 4( 1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkZ) cau lax  

under the condition of stress continuity, 

C on the integral sign denotes the Cauchy principal value. 
The case of idealized zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdry friction will now be studied. To this end it is assumed that 

r0(x) equals a constant, the dynamic friction stress T D ;  except near the ends of the sliding 
region. Thus, 

T o ( X ) = T D  f O r - b + d H < X < b - d T  (10) 

where dT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe b is the length o f  the region where idealized dry friction sliding is initiated and 
dH 4 b is the length of the region where idealized dry friction sliding ceases. These regions 
will be called the tearing region and the healing region, respectively: see Fig. 4. 

It is convenient to introduce the notation 

71 (x) = T O  (x) - T D  , (1 1) 

T - H = ~ ( 2 6 ) ' / ~ ( 7 ,  -71)) (12) 

- b < x < b. 

Then one notices that equation (9) can be written: 

where (since d~ 4 b,  d~ .c b):  

T will be referred to as the modulus of fearing and H as the modulus of healing. Both T 
and H must be positive. Whereas it is quite obvious that T is positive, the sign of H needs 
some explanation. 
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I 

403 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 4. The shear stress zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT , , ~  at the interface. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANo slip occurs at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIx I > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb .  Idealized dry friction sliding is 
fully developed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin the region - b + dH < x < b - dT. The regions b > x > b - d~ (the tearing region) 
and - b + dH > x > - b (the healing region) are transition regions where idealized dry friction sliding 
(x stands for x - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVi) develops respectively recedes. 

By putting x = - b t d H  and making approximations motivated by the relations dT e b, 
d" < b ,  one obtains: 

Hence au/ax > 0 if H +  (dH/2f3b) T G 0. This would imply that &/ax = 0 somewhere in 
the interval - b t d H  < x < b - dT. But vanishing &/ax means no sliding, i.e. the basic 
assumptions are violated. Thus, in view of the approximations made, one has to take H > 0. 
Compare also equation (29) in the following. 

One observes the analogy with the theory of Barenblatt (1959) for equilibrium cracks. 
In fact, T and H are given by integrals of exactly the same structure as the modulus of 
cohesion, introduced by Barenblatt. With the same motivation as used by Barenblatt, Tand 
Hare assumed to be constants characteristic of the material as well as T D  . However, it should 
be noticed that they ought to depend on the propagation velocity V and - as is the case also 
with T D  - on the normal stress u,, and the temperature. (In the present treatment no con- 
sideration is taken of the temperature rise during the sliding motion.) Thus, in the present 
treatment the character of material properties of T and H is manifested by their 
independence on b and 7,. 

From equation (1 2) the length of the sliding region is found : 

The total amount of slip (oh one side) is 
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Thus, since dT e b, d n  e b, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Au zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ”) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( b T ( T + H ) .  

2(1 - k Z ) G  2 

Then, because of equation (14): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T~ - H~ .- fca) 

Au = 
4n(l - kZ)C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7, - T D  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

f@), T and H are functions of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. It seems reasonable to assume that (TZ - H z )  increases 
with the velocity, at least at higher velocities (cf. Broberg 1977). f@) increases mono- 
tonically from unity at p = O  to infinity at the Rayleigh wave velocity, see Fig. 5. The 
unknown propagation velocity of the wave of sliding is implicitly given by equation (16). 
By writing this equation in the form 

it is immediately seen that 0 increases with Au or with 7,. See also Fig. 6 .  

value 
From equation (17) (or Fig. 6) it follows that Au (at given 7,) must exceed a certain 

to be propagated indefinitely. If Au < AUO the slip (see Fig. 1) would extend only some 
distance beyond the obstacle (P in Fig. 1) and the sliding motion would come to a rest. 

The energy dissipation per unit of pulse propagation and per unit of width of the inter- 
face will now be calculated. At a propagation distance dS the energy 

10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
9 

8 

7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 

5 

L 

3 

2 

1 

0 
0 0.1 0.2 0.3 0.L 05  

Figure 5. The functionfu) for k ’= 1/3. The non-dimensional Rayleigh wive velocity is p = 0.5308. 
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On zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtransient sliding zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmotion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA405 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- P  

Bs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 6. Relation between amount of slip, A u ,  remote load zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT - .  and nondimensional slip propagation 
velocity p .  ps  is the nondimensional Rayleigh wave velocity. The function I ? ? @ )  depends both on the 
elastic properties of the material and on the moduli of tearing and healing. 

is dissipated per unit of width. (The factor 2 depends, of course, on the fact that there are 
two mating surfaces at the interface.) Thus, since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
au/as = - au/ax (20) 

equation (19) can be written 

Now, because 

dS 
= O ,  - b < . Y < b  S b  - b (b2 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS2)I/’(S - X )  

The double integrals are easily evaluated. Tlie last one can be written: 
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406 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK .  B. Broberg zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
and hence 

f(p) (T2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ H 2 ) .  
dh’ _ -  - ~ T D A u  -+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
dS 2n(l - k2)C 

The second term of the right member refers to energy dissipation due to tearing and 
healing, whereas the first term refers to energy dissipation due to sliding between the regions 
of tearing and healing. Actually some part of the energy dissipation given by the first term 
should be referred to the regions of tearing and healing, but because of the assumption of 
the smallness of these regions this part can be neglected. 

Use of equation (1  6) shows that the first term of the right member of equation (22) can 
be written 

Thus the ratio, K , between energy dissipation due to processes in the tearing and healing 
regions and energy dissipations due to sliding in the intermediate region is 

This expression shows that the energy dissipation due to tearing and healing is not 
necessarily small compared to the total energy dissipation. 

There is an obvious physical explanation why the modulus of tearing, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT,  is larger than the 
modulus of healing, H .  In the tearing process the compressive stress uy performs a negative 
work, whereas it performs a positive work in healing. This work is not explicitly accounted 
for in the mathematical analysis, because of the assumption of plane contact between mating 
surfaces and uniform material properties in the depth direction from these surfaces. It can 
be visualized by imagining a saw-tooth structure of the mating surfaces, but naturally other 
kinds of real surface properties should imply similar influence of the normal stress. 

The healing does not necessarily restore the grip between the solids to the same condition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
as before tearing. The difference between T and H ,  therefore, can be considerably enlarged 
if some long-time action, preceding the event of sliding, has strengthened the grip. 

Possible mechanisms are, for instance, chemical binding and mechanical consolidation due 
to creep. 

3.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT H E  M A S S  V E L O C I T I E S  I N  T H E  S O L I D S  

The mass velocities in the solids are 

p i a t  = - vau/ax 

h / a t  = - vau/ax 

where, as previously, x stands for x - Vr. Thus the mass velocities are obtained from &/ax 
and aulax. 

In Appendix 1 ,  equations (A1.37-38), the exact expressions for aulax and aulax are 
given. Since r0(x) = rD + T,(x), and T,(x) is assumed to vanish except near the ends of the 
region of sliding, one obtains, after omission of secondader  terms, the following 
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On transient sliding motion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA407 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
expressions, valid fory zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 0, (x t b)’ t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa;y2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB d & ,  (x - 6)’ + a;y2 > d $ :  

da -- au zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(a’ - b2)”2 

_ -  Ta2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(?y 1; [(a - b)uo(x + a )  + (a + b)uo(x - a)] 
ax n2GR@) b 

da 
-___ 

n2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGR @) (’)‘’’/; b 
[(a + b)uo(x + a) + (a - b)uo(x - a)] (a2 - b2)1/2 

Integration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof equations (24-25) gives 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/5
2
/3

/3
9
7
/7

1
9
4
4
6
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



408 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK.  B. Broberg 

Equations (26-27) are given in a form suitable for use when, in addition to Au and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(7, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ~ )  the non-dimensional velocity /3 and the tearing/healing parameter 4 (which 
depends only on the ratio zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT/H) are regarded as known quantities, rather than H and T. 
Consequently an expression for the length 2b of the region of sliding is given in the form: 

7,-77~ 2b 4(1 -kZ) 
___ - -  - 

G Au n4fW 

The expression is found by combining equations ( 1  4) and (1 5). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

G au 
7;- T, ax  

G av  
7;- t, ax  

Figure 7. Nondimensional displacement gradient at y / b  = 0, 1 ,  2, 3 , 4 ,  5 for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = 0.3, k Z =  1/3, q = 1.5. 
The zero-line belonging to each curve is offset the distance y / b  from the x/b axis. The gradients are shown 
at the same scale as the one for y /b .  For zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIx I = b, y = 0 the curvepeaks are rather arbitrarily drawn, since 
equations (26-27), from which the curves are determined, are not valid near these points. x stands for 
(x - Vt) .  

In Fig. 7 the displacement gradients au/ax and au/ax in the neighbourhood of the region 
of sliding are shown for /3 = 0 3 ,  assuming 4 = 1.5 and kZ = 1/3.  Fig. 8 shows the correspond- 
ing velocity field in an arrow diagram. Figs 9-10 show the influence of 4 and /3 on au/ax 
and &/ax for y = b .  In Fig. 1 1 the length of the region of sliding is shown as a function of 
the slip propagation velocity. 

A numerical example is shown by Fig. 12. The particle velocities at a fured point outside 
the interface are shown as functions of time for some slip propagation velocities. 

Fory = 0 equation (26) can be written: 

The expression is valid for (x t b)2 % d h ,  (x - b)’ % zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd%, Ix I < b .  It can, of course, also 
be found from the exact expression, equation (6),  by omission of second-order terms. 
Similarly a simple expression for au/ax (’y = 0) is easily obtained, either from equation (27) 
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On transient sliding motion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA409 

- x l b  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
F w e  8. The velocity field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin the neighbourhood of the region of sliding. Arrow tails indicate position, 
arrow lengths the magnitude of the velocity according to the scale zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshown. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp =  0.3, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk'= 1/3, q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1.5. 
x stands for (x - V t ) .  

I 
- 5  - L  - 3  -2  -1  1 2 3 L 5  

x/b 

1-5 - 5 1  

Figure 9. Nondimensional displacement gradients at y / b  = 1, for different values of q. k2  = 1/3, p = 0.3. 
x stands for (x - Vt) .  
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410 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK. B. Broberg zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa u  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

T , - T ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAax zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A 

2~ av 
T , - T ~  ax 

A 

x lb 

Figure 10. Nondimensional displacement gradients at y / b  = 1 ,  for different values of p .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk 2  = 1/3, q = 1.5. 
x stands for (x - Vt) .  

0 8  

0 6  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
O L  

0 2  

0 

- 0  2 1 
Figure 11. Nondimensional length of the sliding region as a function of nondimensional slip propaga- 
tion velocity P.k’= 1/3. 

or, with omission of second-order terms, from equations (A1.39) and (5). The last-mentioned 
equation then takes on the form: 

TX,,=7,tL n(2b)lj2 ([(xtb)”’-l] x - b T -  [ ( Z ) ” ’ l ] H ) .  

It is valid for y = 0, (x + b)’ > d&, (x - b)’ * d$, Ix I > b. 
After integration of equation (27) for y = 0 one obtains with use of equation (28): 

U ( X )  - U ( A b )  1 + UB - 2~1112 - - _  ( A  - (A’ - 1)”’ + 4 In [A - (A’ - l)”’] - [ t A @ ) ]  (31) 
Au nqaz(1 -a ; )  
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On transient sliding motion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
av zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
at 

c m l s  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA41 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
au 
at 

-200 -150 -100 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-50 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA50 100 150 200 S ~ C  

-2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 12. Particle velocity a point situated at 50 km distance from the fault as function of time. It is 
supposed that (7- - ~ D ) / G  = 2 X lo-’, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2Au = 3 m, c = 5.2 km/s, p = 0.3, k 2 =  1/3 and q = 1.5. Time 
t = 0 is (arbitrarily) chosen to the instant at which the centre of the region of sliding is most close. 

v l x l - v l h b l  
A u  

I b  

Figure 13. Nondimensional lateral displacement of the fault. The displacement at x = 5 6  is (arbitrarily) 
put equal to 2ero.x stands for (x - Vt) .  

where 

O for E 2 <  1 

- ( E 2  - 1)1’2 - 4 In [ I  E I - ( E 2  - 1)”2] for E 2  > I 

and t; = h is a reference point which can be arbitrarily chosen. Fig. 13 shows the lateral 
displacement with respect to this point for some slip propagation velocities, assuming 4 = 1.5 
and k2 = 113. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/5
2
/3

/3
9
7
/7

1
9
4
4
6
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



412 K. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB. Broberg 

For zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq' += m one obtains from equations (26-27): 

(33) 

Equations (32-33) illustrate the significance of the tearindhealing parameter 4. 
The exact expressions for rxr and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAau/ax, equations (5) and (6), show that rx,, is con- 

tinuous and non-singular at 1x1 = b and that au/ax +. 0 as 1x1 = b is approached. The latter 
property can be referred to as 'smooth closing'(cf. Barenblatt 1959). It should also be noted 
that lau/ax I possesses maxima at x = b - dT and x = b + dH or in the neighbourhood of 
these points. 

3.3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAINSPECTION O F  THE VALIDITY O F  THE LINEAR THEORY 

The derivation of equations (14) and (16) was made under the assumption of elastic 
behaviour of the semi-infinite solids. Thus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall energy dissipation should be due to processes 
in the interface. The validity of this assumption will now be inspected. To this end the 
stress ux near the mating surfaces will be studied. 

From equations (8) and (6) one obtains for x = b - dT,  the position of maximum I ox I: 

Thus, 

I ax I > - f @ )  TdT-l" 

Similarly 

4 
I ax I > - f @ )  Hd$' 

4 
for x FJ b - dT.  

n 

for x TJ b - dH. 
n 

Due to the autonomous character of the tearing and healing regions, ox does not depend 
on Au or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI-, near these regions. If lux 1 exceeds a certain value, say uo, plastic flow or 
cracking will take place. Thus, if the conditions 

4 
- f @ )  Td;'l2 < uo 
n 

are not fulfilled, the treatment leading to equations (14) and (16) may seem to be invalid. 
However, if calculated stresses I ox I exceed uo but are confined to a close neighbourhood 
of the tearing and healing regions, no principle deviation from the linear theory has 
occurred. It should be borne in mind that the mathematical formulation of the problem is 
idealized in the respect that energy dissipation is assumed to be due only to processes in the 
interface, notably the action of ryx.  In reality energy dissipation is initiated in a layer of 
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On transient sliding motion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA413 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
finite thickness. It is immaterial whether this initiation is caused by the action of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, or of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ryx as long as the layer thickness is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsmall compared to the length (2b) of the sliding region. 
In the mathematical treatment it is introduced as a dissipation due to the stress r,,, at the 
interface. This is possible by using appropriate values of T and H ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcf: equation (22). Thus, 
supposing the energy dissipation per unit of slip propagation and per unit of width, due to 
tearing to be ( d w / d S ) ~ ,  one takes the modulus of tearing to be 

It is essential to note that T and H are functions of 0 but not of Au and 7,. 

The physical appearance of the surface of the solid y < 0 after passage of the pulse of 
sliding may be influenced by large values of a,. Thus cracking may occur near the surface. 
Since in addition to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAax also the stress ro(x) > 0 acts, the direction of cracks should be in- 
clined forwards. 

The situation becomes different if calculated stresses la, I exceeding uo are present at the 
mating surfaces along a major part of the region of sliding. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThis situation prevails if (see 
equation (8)): 

Naturally, if the energy dissipation due to the stress a, occurs mainly in a layer which is 
thin compared to the length (2b) of the sliding region, a linearized treatment is still possible 
if T D  is appropriately adjusted. However, this adjustment depends on Au and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7, and hence 
the adjusted T D  is not a material property. (The variation along the sliding region is 
neglected in the discussion for simplicity.) Thus, for each fured T,, one can make a change 

T D  + T U ( A U ;  7,) (3 7) 

Au [I-, - r u ( A u ;  r,)] = m u ) .  (3 8) 

where ru increases with Au if Au > Aul .  But then equation (17) reads 

The left member should possess a maximum at some value of Au, say A u = A u , .  This 
maximum corresponds to a maximum attainable (non-dimensional) velocity 0'. A rough 
estimate of this velocity can be found by using condition (35) together with equations (14) 
and (16): 

where the value lo, I average = uo has been assumed. 

cracking, may occur to rather large depths from the sliding surfaces. 
If la, I exceeds uo over a major portion of the sliding region, non-linear effects, especially 

3.4 T H E  SIGNIFICANCE O F  T H E  'STATIC FRICTION'  

In the preceding theory the 'static friction', i.e. the stress rs at which sliding is usually 
presumed to start, does not enter into the expressions found. Thus, for instance, equations 
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414 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK .  B. Broberg 

(14) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand (16) are formally valid even for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7,. This seemingly inconsistent result is 
explained by the assumption made that the sliding motion (with prescribed total slip Au 
on each side) by some mechanism is nucleated at x = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00 and propagated towards x = +- 
from this site. Such a mechanism could, for instance, be due to a local pile up of stresses of 
the kind schematically shown in Fig. 1 .  However, if completely uniform conditions are 
assumed the remote stress 7, could be increased to 7,. But, as soon as it reaches T,, sliding 
would be nucleated at many sites along y = 0. The model therefore simply breaks down 
when r ,  2 7,. 

It would be tempting to assume that (for 7, < 7,) the shear stress at x = b equals r,, 
i.e. T D  + r l ( b ) = r , .  However, the stress at which sliding starts at the leading edge could be 
considerably larger than 7, if rate effects are present. At each position alongy= 0 the shear 
stress r,,,(x) does not deviate very much from 7, until the leading edge comes rather close. 
The shear stress could then rise from approximately T~ to a maximum value in a very short 
time. 

It seems reasonable to assume that a rate sensitivity, if it exists, would be of the same 
character as the one of delayed yielding. This would mean that practically no ‘damage’ 
takes place as long as T,,,(x) < 7, and that the stress at which tearing starts is fairly in- 
sensitive to changes of the time duration by a factor of the order of 10. Then the postulate 
that T (as well zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas H) is a material property would still be reasonable, except for r,-rm < 
r, - r ~ ,  since then T,,,(x) may exceed 7, at a very large distance ahead of the region of 
sliding. 

It should also be noted that the actual shear stress at the tearing region is not necessarily 
identical to the stress ~ ~ ( x )  used in the mathematical formulation. r l ( x )  is a stress which 
does not need to be specified closer than by the value it imposes on the integrals in equation 
(13). The actual shear stress in the symmetry plane, if used in the place of rl(x), may impose 
other values than T and H on these integrals. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 Extensional slip propagation 

Consider two semi-infinite, homogeneous, isotropic and linearly elastic solids in contact 
along the plane z = 0. The remote stress is rXz = 7, > 0. A sliding motion starts at x = 0 
and extends symmetrically with constant velocity V = p c ,  where c, as in Section 3, is the 
propagation velocity of irrotational waves. It is assumed that a shear stress 

7, = ro(72/x2), Ix I < pr (40) 

where ~ = c f ,  f being the time, acts on the mating surfaces in the region of sliding, see 
Figs 14-1 5. 

For z = 0 the displacement u, in the positive x direction and the shear stress T,, (711x1) 
are given by the expressions (see Appendix 2 ) :  

( r o ( r 2 / x 2 )  for r > Ix I/D 
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On transient sliding motion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

415 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I T -  

,,r 0 

- X  

P I  

.++-x x = - p ~ = - a  UPPER x = p r = a  SIDE 

LOWER SIDE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 14. The displacement ux at the interface y = 0 shown in the xz plane (upper figure) and in the 
xux plane flower figure). Empty arrowheads indicate original, filled ones current positions of material 
points at the interface. 

i“ 

where U is the unit step function and 

S1’2(S - l/p2)1’2L(S)Tb(S)dS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I @ )  =jl;P2 s - u  

M(u) = [L (u)] -1 (1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/ p Z  - u)-”2I(u) 

L(u) = (u - l/k2)”2 [u(u - 1 ) y U  - l/k2)”2 - (1/2k2 - tl)2] -l. 

The condition of stress continuity reads: 

(43) 

Figure 15. The shear stress T~~ at the interface. No slip zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoccurs at 1 x 1 > p ~ .  Idealized dry friction sliding 
is fully developed in the region Ix I < (1 - E ) @ T .  The regions (1 - E)@T < Ix I < PT (the tearing regions) 
are transition regions where idealized dry friction sliding is developed. 
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416 K. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB. Broberg zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The case of idealized dry zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfriction will now be studied. To zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis end it is assumed that 

T,,(T’/x’) equals a constant, the dynamic friction stress T D ,  except near the ends of the 
region of sliding. Thus: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T ~ ( T ’ / x ’ )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= T D  for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIX I /T  < B( 1 - E )  = 6 (47) 

where €07 < ) ( j ~  is the length of the regions where idealized dry friction sliding is initiated, 
i.e. the tearing regions. 

It is convenient to introduce the notation 

T i ( I X I ;  T ) = T o ( T 2 / X 2 ) - T ~ ,  I X l / T < p .  (48) 

Then (see Appendix 3) equation (46) yields: 

where 

a* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=or* 

d* = @  -6)T* 

U = p T  

E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( d w )  + (4 k2 - 3 0’) K ( d v ) .  8k4 - 8k’O’ + p” 
- 

b2 

K and E are the complete elliptic integrals of the first and the second kind. T* is an arbitrary 
time measure. a is obviously the current half-length of the region of sliding and d ,  is the 
length of the tearing region at a = a *  h@) increases monotonically from unity at 0 = 0 to 
infinity at /3 = CJC, where c, is the Rayleigh wave velocity, see Fig. 16. 

One observes that T changes with T* because of the relation (48), i.e. the assumption of 
self-similarity is not consistent with the concept of a modulus of tearing as a material 
property. However, the smallness of the tearing region,compared to the length of the region 
of sliding (except in the early stages) enables a quasi-dynamic treatment, such that the 
concept of a modulus of tearing can be used. From the structure of the right member of 
equation (50) follows that such a consideration implies that equations (49) and (50) change 
to 

2 

n 
(7- - ~ ~ ) ( 2 u ) ” ~ = - h @ ) T  (53) 
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On zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtransient sliding motion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA417 
10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 
9 

8 

7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 .. 

5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 " 

'. 

'. 

.' 

.' 

.' 

0 0.1 0.2 0.3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.L 0.5 
- - P  

Figure 16. The function h @) for k 2  = 1/3. The non-dimensional Rayleigh wave velocity is p = 0.5308. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
where d is a constant length and T ~ ( x )  is a function of (a - 1x1) such that ~~(1x1 )  = 0 
for lx I < a - d .  Naturally, as in Section 3, T should depend on the (non-dimensional) 
velocity 0 and on the normal stress uz. 

Equations (53) and (54) obviously parallel equations (14) and (13) in Section 3. The 
right member of equation (53), which can be written 2h@)T@)/n, for clarity, is a 
monotonically increasing function, of /3 (at least if T is not decreasing at increasing P). Thus 
the velocity 0 increases with a, i.e. the edges of the sliding region are accelerated during the 
extension. It is assumed that this acceleration can also be described in a quasi-dynamic 
treatment, so that equation (53) is still (approximately) valid even if 0 varies with a. 

One observes that a certain minimum length, 2ao, of the region of slip nucleation (for 
instance a region where the 'static friction' is lower than 7,) is required to initiate sustained 
extensional sliding. Thus from equation (53): 

2 a , = - [ - ] .  1 2T(O) 

n2 T a - T D  
( 5 5 )  

From equation (41) one obtains for 0 - Ix I / T  * P - 6: 

-- - 

Then use of equation (49) and (51) gives 

a2ux k2 - 0' -3 12 

-- - (T--TD) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5 -+) - 
aT2 Pg20Glx l  

Since u, should be much smaller in the tearing regions than in the central part of the region 
of sliding one obtains after two integrations: 

This expression holds also in the quasi-dynamic formulation, with the proper relation 
between /3 and a found from equation (53). 
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418 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK.  B. Broberg zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The maximum amount of slip is 

Au zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 

on each side. In view of equation (53) this equation can also be written 

Au = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(k2 - 0’) (rm - TD) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

gz co) G zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
TZ .- f@) 

n2(1 - k Z ) G  roo - r D  

(5 7) 

where f@) = (1 - k2)L (1 /0’)/(2kZ0) is the same function as used in equation (1 6). 

by is given by the expression (see Appendix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4): 
The energy dissipation per unit of area of the interface after the tearing region has passed 

One observes the similarity between this equation and equation (22). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 Summary and conclusions 

By introducing two material constants (though dependent on slip propagation velocity and 
normal stress), the moduli of tearing ( T )  and healing (H) ,  transient sliding motion can be 
described in a rather simple way. 

The length of a pulse of uni-directional sliding is found to be 

where r ,  is the remote shear stress and TD the dynamic friction stress. 
The length of a region of symmetrical extensional sliding is 

where h @ )  is a function of the non-dimensional slip propagation velocity 0. At very low 
velocities h@)  equals unity. The equation gives 0 as a function of a. One observes that a 
minimum initial length 

2ao = L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[323’ 
nz 7,  - r D  

is required to initiate sustained extensional slip propagation. 
The amount of slip (on each side) produced in uni-directional propagation is 

T~ - H ~  .- fco) 
Au = 

where f@) is a function of the slip propagation velocity. At very low velocities f@) equals 
unity. The equation gives 0 as a function of Au. One observes that a minimum amount of 
dislocation at each side, 

4n(l - kZ)G T ,  - TD 

[T(0)1 - [H(O)I 
AuO = 

4n(l - kZ)C(rm - TD) 
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On transient sliding motion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA419 

The amount of slip (on each side) during extensional slip propagation is, except near the 
is required to initiate sustained uni-directional slip propagation. 

tearing regions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: 

where gz@)  is a function of the slip propagation velocity. For comparison with uni- 
directional slip propagation this expression can also be written, for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx = 0: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
AM = 

TZ .- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf@) 
n2(1 - k 2 ) G  T m - T ~ '  

The energy dissipation per unit of area of the interface, after a pulse of uni-directional 
sliding has passed by, is 

f@) (TZ + H2) 
dW 

dS 2n(l - k 2 ) G  
- =  ~ T D A M  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4- 

where the second term of the right member represents dissipation due to tearing and healing 
and the first term represents dissipation due to sliding between these regions. The ratio 
between the second and the first term of the right member is 

T ~ + H ~  T , - T D  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
j ( = - . -  

T ~ - H ~  rD 

showing that the energy dissipation due to tearing and healing is not necessarily small 
compared to the total energy dissipation. 

The energy dissipation per unit of area of the interface, after the tearing region of an 
extensional sliding motion has passed by, is given by the expression 

where u, is the current amount of slip (on each side) at the position regarded. 

expressions with the use of the tearing-healing parameter 
The mass-velocities at points outside the slip plane can be described by reasonably simple 

T/H + 1 
4=- 

T / H -  1 

in the case of uni-directional sliding motion. 
The introduction of the moduli T and H is a way to linearize the problem, completely 

analogous to the introduction of the modulus of cohesion that Barenblatt, with deep under- 
standing of the physical processes, suggested for equilibrium cracks (Barenblatt 1959). 
The modulus of tearing is related to the energy dissiaption per unit of slip propagation and 
per unit of width, due to tearing, (dW/dS)T, through the equation 

Naturally, for the modulus of healing, the same relation is valid after the change T + H. 
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420 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK .  B. Broberg zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The modulus of tearing is larger than the modulus of healing. One reason is that the 

compressive normal stress at the interface counteracts tearing but cooperates in healing. 
This mechanism is thus implicitly though not explicitly accounted for in the linearized 
analysis. 

The linearized theory becomes invalid when substantial non-linear effects are present 
not only near the tearing and healing regions but also at the sides of the intermediate region. 
Cracks, inclined forwards, can be opened at the side where the mass velocity is opposite to 
the propagation velocity. Then, in uni-directional slip propagation, a very large amount of 
slip should be propagated in successive fast-travelling pulses rather than in one single, slower 
travelling pulse. 

The importance of regions of tearing and healing in transient sliding motion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhas 
previously been recognized by Knopoff, Mouton zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Burridge (1973). 

No attention has been paid to the fact that frictional sliding is usually a very irregular 
process, due to inhomogeneous conditions at the sliding surfaces. Such effects could, in 
principle, be incorporated in the theory by ascribing each fault its characteristic signature, 
given in terms of quantities used to describe stochastic processes. However, complications 
would arise, because the simple Galilean transformation or the self-similarity could no longer 
be taken advantage of. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Appendix 1 

The following problem is considered: 
A linearly elastic, homogeneous and isotropic semi-infinite solid, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy > 0, is subjected to a 
remote stress zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArXy = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr ,  > 0 and to the stress r,,. = T ~ ( X  - Vt) on y = 0 ,  -b < x - Vt < b y  
where V is a constant velocity and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf the time. The displacement in the positive x direction, 
u, is zero o n y = O , x  - Vf > b and equals a constant o n y = O , x  - Vf < - b .  Thestressu,, 
is constant and can be taken to be zero. The stresses T , , ~  and u, ony = 0 are sought as well 
as the displacements u and u (the displacement in the positive y direction) in the solid. 

A simpler problem will first be solved. In this problem the semi-infinite solid is subjected 
to the stresses T , , ~  = PS (x - Vf), u,, = 0 on y = 0, where 6 (x) is the Dirac delta-function. The 
displacement u is sought. 

If one puts 

(A1 .l) 

(Al.2) 
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On transient sliding motion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA42 1 

then the potential functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq3 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$ satisfy the equations 

a2$ +-=-. a2@ 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 
ax2 ay2 c2 a t 2  

a2$ a2$ 1 a2$ c ax2 ay2 k2C2 at2  
+-= -  . -  

(Al.3) 

(Al.4) 

where c is the propagation velocity of irrotational waves and kc the propagation velocity of 
equivoluminal waves. The stresses can be written in the following way: 

= pc2 [ - a2 9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt (1 - 2k2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa24, t 2k2 -1 a2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ/ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0, ax2 aY2 axay 

OY ax2 axay 

t (1 - 2k2) - a2 9 - 2k2 -1 a2 $ 

[ a29 a2$ 
rxy = pk2c2 2 - - - 

axay ax2 ay2 

(Al.5) 

(Al.6) 

(Al.7) 

The boundary conditions are 

\ ryx = P6 (x - Vt) (Al.8) 

1 = o  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
*Y 

for y = 0. 

(A1 -9) 

It is immediately obvious that the field quantities in the problem are functions of x - Vr, 
only. Therefore the transformation 

x - Vt=x) 

( y = y). 

is introduced. For simplicity, in the following treatment the prime sign is dropped so that x 
actually stands for x - Vt. Equations (A1.1-2, 5-7, 9) then remain unchanged, whereas 
equations (A1 3-4) are changed to 

a2$ a2@ 
ax2 ay2 

+ - =  0 

a2$ a2$ 

ax2 ay2 
a : - + - = o  

where 

= 1 - v2/c2, 

a; = 1 - V2/k2c2, 

al > o 
a2 > 0. 

1 

Further, equation (Al.8) is changed to 

(Al.10) 

(A1.11) 

ryx = P6 (x) for y = 0. (Al.12) 
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422 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB. Broberg 

and the condition of boundedness of field quantities as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00, is given by 
A solution to equations (A1 .lo-1 l), satisfying the symmetry conditions of the problem 

I r- 

A exp (- al zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAay) sin cwsda I @ =  J, (A1.13) 

(A1.14) 

where A and C are functions of a. Use of the boundary conditions (A1.9) and (A1.12) 
gives 

‘s,:az [(I + - 2az zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq sin axda = 0 

G /owaz [- 2alA + (1 +a: )  C] cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcyxda= P6(x)  

where G = pkZc2 is the modulus of rigidity. 
Inversion gives 

( ( 1  + a : ) A  - 2a,C= 0 

where 

R@) = 4 U 1 U 2  - (1 + 0 = V/C. 

From equations (Al.1-2) and (A1.13-16) one obtains fory > 0: 

2 

exp (- azay) cos cuxda. uI exp (- slay) - - 1 1 +a: 

Integration gives 

au 2~ az 

ax nc R@) 
- l ( o ( X )  =-.- 

(A1.15) 

(Al.16) 

(A1 .17) 

(Al.18) 
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On zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtransient sliding motion 423 

where 

(Al.19) 

(Al.20) 

ThusuO(x)+-n(1 + a ~ - ~ a l a 2 ) F ( x ) / 2 a z a s y  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+o. 
Now the original problem will be treated. Since the solutions (Al.17-18) were obtained 

for given stresses zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT , , ~  = P6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor = 0 on y = 0 then for the stresses T,,. = ~ ( x ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu,, = 0 on 
y = 0 one obtains 

since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r (x)  = 

+-  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~ ( a ) &  (x - a)da. I- rn 

A s y + o  

+- - da = 
au 1 az( l  - a ; )  

ax n c  R @ )  
- 

where f@) = 2( 1 - k2)a2(l - a;) /R@) +. 1 as 0 + 0. 
The boundary conditions of the problem are 

Txy = 7 ,  

rrx = -T~(X) for Ix I < b, y = 0 

u y = O  f o r y = O  

a u p x  = 0 

asx2 t y2 + 00 

for 1x1 > b, y = 0. 

Introduce the sectionally holomorphic function 

where z = x t iy and 

The bar-sign denotes complex conjugation. 

2i(1 - k2)Cu/f@) = U. 

Further the following substitution is made: 

(Al.2 1) 

(Al.22) 

(A 1.23) 

(Al.24) 

(A 1.25) 

(A 1.26) 

(Al.27) 
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424 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB. Broberg 

Then, using the notations 

F+ (x )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= lim F(x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAiy) 
y + + o  

F-(x)= lim F(x + iy) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
y - - 0  

one obtains (by the Plemelj formulae): 

F+ ( X )  - F- ( X )  = T ( X )  1 F+ ( X I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt F- (XI = a u p x .  

Thus, considering the boundary conditions (Al.25) and (Al.27), one can write 

(Al.28) 

(AI.29) 

(Al.30) 

By equation (A1.30) a Hilbert problem is formulated. The solution (ck Muskhelishvili 
1953) is 

for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy > 0. P(z) is  a polynomial that will be determined by making use of condition (Al.24). 
One obtains for Ix I < b : 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC on the integral sign denotes the Cauchy principal value. Similarly, for Ix I > b: 

Condition (A1 -24) gives 

P(x) = - iTJ2. 
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On zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtransient sliding zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmotion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Thus, making use of equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Al.28-29), one obtains for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= t 0: 

T ~ ( x )  for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1x1 < b 

1 b t x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA' I2  b ro(s) (b - ,)'I2 b t x ' I 2  
ds+ - r ,  for 1x1 > b - -  - n l b - x l  j - b ( b + S ) ' I 2 ( X - s )  I b - x l  

ax zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
\O  for Ixl> b .  

By puttingx = b t E ,  E > 0, one finds that 

ryx -+ ro(b - 0)  as e + 0 if 

d s = r , .  

425 

f o r l x l<b  

(Al.3 1) 

Thereby continuity of the stresses is obtained at Ix I = b .  Use of equation (A1 3 1) gives for 
y = t o :  

ro(x) for 1x1 < b (Al.32) 

for 1x1 > b (Al.33) 
rYX =[  1 x ( x 2 - b 2 ) 1 / 2  b TO(S)dS 

n Ix I I - b (b2 - s2)1/2(x - s) 
- .  

(Al.34) 

\O for I x l > b .  (A1.35) 

Use of equations (A1.5, 13-16) gives, after comparison with equation (A1.23): 

U, = 4( i  - k 2 ) c  au/ax fory = 0. (A1 36)  

Equations (A1 34-35) give &/ax for y = t 0. Since ryx = ~ ( x )  is now known for all 
values of x on y = 0, through equations (A1 32-33) one obtains from equation (Al.21) for 
y >  0: 

From equation (Al.22) it follows that au/ax for y > 0 equals the right member of 
equation (A1 37 )  after the change uo(x * a)  + uo(x f a) has been made. However, &/ax 
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426 K. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB. Broberg 

may contain a term corresponding to a rigid body rotation. In order to get rid of this term 
one zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshall subtract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(au/dx),, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI- ,-  from the result found. Thus 

(Al.38) 

(Al.39) 

Appendix 2 

The following problem is considered: 

A homogeneous, isotropic and linearly elastic semi-infinite solid, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz z 0, is subjected to a 
remote shear stress zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT,, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7, > 0 and to a stress T, = T,,(T~/x~) on z = 0, Ix I < PT = Pct, 
where P is a constant, c the propagation velocity of irrotational waves and t the time. It is 
assumed that P < k, where k is the ratio between the propagation velocities of equivoluminal 
and irrotational waves. The displacement u, in the positive x direction is zero on z = 0, 
Ix I > P T .  The stress u, is constant and can be taken to zero. The stress T, on z = 0, Ix I > PT 
and the displacement u, on z = 0, Ix I < PT are sought. 

The first part of the treatment contains some frequently used relations, the derivation 
of which are not given. It parallels an earlier treatment (Broberg 1960) where details can be 
found. 

Due to the self-similarity of the problem, the stress T, on z = 0 must be of the form 

It is assumed that T , ~  - 
The displacement vector 

is integrable. 
can be related to two potential functions, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqi and 5, through 

the equations 

a2 ii - _  - grad qi - k2 curl $ 
aT2 

(A2.2) 

where qi and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 satisfy the equations 

div grad qi = a2qi/aT2, qi = qi(x, Z) (A2.3) 

1 

k2 
- curl curl $= - a2 $/aT2, $= $(x, z)p (A2.4) 

where 9 is the unit vector in the positive y direction. 
Since u, = 0, the stress vector on z = 0 is 

~ , ~ ( ~ / 1 x I ) R = p c ~ [ - ( l  -2k2)qiz^+ k2&x 2-2k2aii/az] (A2.5) 

where p is the density and 2 and Z the unit vectors in the positive x and z directions. 
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On transient sliding zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmotion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA427 

one obtains zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
+P2@ 

[A*=$ k2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA* 
(A2.6) 

(A2.7) 

(A2.8) 

(A2.9) 

The solution to equations (A2.6-7), satisfying the symmetry conditions of the problem 
and the condition of boundedness at infinity, can be written: 

Then, from equations (A2.8-9) one obtains for z = 0: 

(A2.10) 

(A2.11) 

(A2.12) 

(A2.13) 

(A2.14) 
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428 K. B. Broberg 

Inversion of equation (A2.12) and use of equation (A2.13) gives 

1 ap(p2/k2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa')"' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A = -  

2nC R(p,a) 

p2/2k2 t a' 
B =  A 

k2a(p2/k2 t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa2 1 ' I 2  

where 

(A2.15) 

and 

R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(p, a) = (p2/2k2 t a')' - a2(p2 t (Y~) ' '~  (p2/k2 t a' ) -  ' I 2  

Being a one-sided Laplace-transform of a function that behaves algebraically as T +m, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S(pIxI) is regular for R e p  > 0 and then also F(p/a) is regular for R e p  > 0. 
Since F(-p/a) =F(p/a), due to the symmetry of the problem, the function F(p/a) is regular 
in the whole p plane, except for points on the imaginary axis. 

Insertion of the expressions for A and B into equation (A2.14) and inversion of equation 
(A2.15) gives 

PS = ' j- F(p/a) cos a Ix I da. 
n o  

Restriction is now made to real, positive values of p. With the substitution 

ia 1x1 = -pe 

one obtains 

where 

L(u) = (u - l/k2)''2 [u(u - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl)'"(u - l/k2)"' - (1/2k2 - u)']-'. 

The path of integration can be deformed so that 

1 

2nk2 C Ix I 
p2wx = - Rep jowH(e2/x2)L (e2/x2)  exp (-PO) dB 

2 
Re p jo- iH(e2/x2) exp (-PO) dB 

(A2.16) 

(A2.17) 

(A2.18) 

(A2.19) 

(A2.20) 

(A2.21) 
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On transient sliding motion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA429 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
with indentations below singular points on Im zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0. 

The Laplace-transforms can now be inverted after inspection (Cagniard's method), giving 

Now the boundary conditions 

for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIx I/P i 7, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ~ ( T ~ / X ~ )  for 7 > I X  I/P 

shall be satisfied. After writing 

for 7 < IX ~ / p  

u, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

= o 
27 

aTxz/a7 = - 71)(?/x2) for 7 > Ix I /p  i X2 

one obtains: 

Since L(?/x2) is real for 7 > Ix I/p the last equation can be written: 

(A2.22) 

(A2.23) 

(A2.24) 

-(A2.25) 

(A2.26) 

(A2.27) 

Equations (A2.26-27) form a Hilbert problem (of the Keldyh--Sedov variety), the 
solution of which (cf., e.g. Muskhelishvili 1953) is: 

H(T'/x') L ( T ~ / X ~ )  = - ni - T~ 
Ix I 

(A2.28) 

where U is the unit step function, I,, is a constant and 

S'"TI)(S)L (s) 

(s - 1/p2)"2(s - u )  
ds 

where C on the integral sign denotes the Cauchy principal value. Then from equation 
(A2.22) one obtains: 

(A2.29) 
azu, 1 -- - 
h2 2nk2CIxI 
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430 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK.  B. Broberg 

As zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr/ Ix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI -+ m, au,/ar + C1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt C2x2/r2 + . . . , where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC1 and C2 are constants. Thus 

Hence , 

Now one can write 

11(u)= ( 1 / P 2  - u ) - ’ I o - ( l / p ~ - u ) - ~ z ( u )  

where 

Z ( U )  = ds . 

Thus 

s - u  

and, from equations (A2.23) and (A2.28), for r > Ix I: 

where 
-112 

M(u)= [L(u)]-’ ( i - u )  Z ( U ) .  

Integration of equation (A2.32) gives for r > Ix 1 ,  assuming stress continuity: 

72, = ro(1/P2) - Ix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

M(u2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdu 

(A2.3 0) 

(A2.31) 

(A2.32) 

(A2.33) 

(A2.34) 

so that 

2 VP 
r,  = ro(1/P2) t - Re M(u2) du zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

71 

since Re M(u) = 0 for u < 1 .  A combination of this equation and equation (A2.34) gives 
for 1x1 < r < Ixl/P: 

(A2.35) 
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On zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtransient sliding motion 43 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

Appendix 3 

Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr&) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIx l/r < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 (cf. equation (47)), equation (46) can be written: 

where r2 (s) = ro(s) - r D  . Since 

du n - - Sdieg - 2) ( l / P  - u2)1/2 2 s y s  - l/P2)"2 

and s - 1/b2 the last term can be written: 

T 2 ( r : / X 2 )  

= .I=:-d* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a* - I x  
d 1x1 

a, = 07, 
d ,  = ~l j r ,  

with a, being an arbitrarily chosen half-length of the sliding region. The function g2@)  has 
been determined in terms of complete elliptic integrals, see equation (52). It turns out that 

g2@)-+2k2(1 - k z )  asp+O. 

g2 @) is the mode 2 equivalent to the function g o )  for mode 1 ,  given by Broberg (1 960). 

15 
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432 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK. B. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABroberg 

Appendix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 

The energy dissipation per unit of area of the interface after the tearing region has passed 
by is 

With zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= rzx(r/ Ix I) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu, = u,(r/ Ix I) one obtains 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa2u,/au2, given by equation (41), can be written (since u = w = l/o); 

Insertion of this expression and change of the order of integration gives 

where 
N =  [(u - l/fl)’/2 + (w - l/p)”2] - [ (u - l//3)”2- (w - 1/10 112 ] -1 . 

Partial integration gives 

Then, by using the same technique as the one leading to equation (22) one obtains: 

where f@) is the same function as used in equation (22). 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/5
2
/3

/3
9
7
/7

1
9
4
4
6
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2


