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Abstract. Given a polyomino, we prove that we can decide whether translated copies 
of the polyomino can tile the plane. Copies that are rotated, for example, are not 
allowed in the tilings we consider. If such a tiling exists the polyomino is called an 
exact polyomino. Further, every such tiling of the plane by translated copies of the 
polyomino is half-periodic. Moreover, all the possible surroundings of an exact 
polyomino are described in a simple way. 

1. Introduction 

The problem of tiling the plane has both theoretic and practical implications. 
From a theoretic viewpoint, it was proved by Wang [6] that the problem gives 
an alternative model of computation which has the same power as Turing 
machines, Post rewriting systems, and Markov algorithms. In practice, the prob- 
lem appears in connection with the organization of data, given as an array of 
numbers or symbols where we want to optimize processing by means of a parallel 
computer [5], [7]. 

In [7] Wijshoff and Van Leeuwen prove the decidability of tiling the plane 
with one polyomino. In this paper we give a stronger result, with a simpler proof: 
a polyomino is exact, i.e., can tile the plane if and only if it can be completely 
surrounded by translated copies of itself (this condition is quite simple, and less 
strong than the one exhibited in [7]). Moreover, by a careful study of the properties 
of the word which describes the contour of the polyomino, we can prove that 
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every tiling is half-periodic. This requires some technical lemmas, using essentially 
results of combinatorics on words. As a corollary of the proof of the half- 
periodicity property, we obtain a complete description of the possible surroundings 
of an exact polyomino. Only three types of complete surroundings exist with, 
respectively, six, seven, or eight polyominoes and we can describe exactly how 
they are done. 

2. Preliminaries 

Let E be a Euclidean plane and let (Q, i,j) be an orthonormal reference system. 
A cell is a closed square in E, of unit area, whose vertices have integer coordinates. 
A polyomino is a finite union of nonoverlapping cells, whose outline is a single 
simple closed curve. So, a polyomino has no hole and its interior is a connected 
set. Two polyominoes are equivalent if there exists a translation of the plane which 
maps one onto the other. The equivalence class of a polyomino p is a polyomino 
type P. Every polyomino type P has a particular element, called its canonical 
element, namely the polyomino whose leflmost vertex among the highest ones is 
in the origin of the plane. Henceforth, a polyomino type P is identified with its 
canonical element and with any of its elements if no ambiguity arises. 

2.1. Adjacency, Neighboring 

We give here general definitions which concern polyominoes of different types. 
Two polyominoes p and q (not necessarily of the same type) are called: 

neighboring if they have a nonempty intersection, with empty interior; 
simply neighboring if they are neighboring and their intersection is a connected 

set; 
adjacent if p and q are simply neighboring and their intersection is not reduced 

to a point. 

The following diagram illustrates these definitions: 

neighbouring but not 
simply neighbouring 
polyominoes 

simply neighbouring 
but not adjacent polyominoes 

F 
adjacent polyominoes 



On Translating One Polyomino To File the Plane 577 

2.2. Boundary-Edqes Boundary Between Two Simp@ Neiqhborim! 
Polyontinoes 

Note. Actually, the following definitions concern polyomino types, because these 
definitions are invariant under any translation of the polyominoes. 

The boundary h(p) of a polyomino p is clockwise oriented. The lenqth of the 
boundary  is denoted by [b(p)j. 

Let X be the alphabet II, r, u, d I (for left, right, up, and down). With every point 
of b(p) with integer coordinates, there is associated a word m on the alphabet X, 
which describes lhe sequence of moves along the boundary,  starting from an origin 
A. When the origin is changed, the word obtained is a conjugate of m. We can 
observe that jml = Ib(pj[. The word m is called the label of the boundary  b(p) with 

A'. 

the origin in A. The label of t~(p) with origin A is "uurrddrdl l lu"  in the example 
given above. 

Let A and B be two points of b(p) with integer coordinates. The ed,qe [AB] is the 
path from A to B along the boundary  b(p). The label of this edge is defined in the 
same way as the label of b(p), and is written (AB) .  

Remark. ( A A )  = l. l f B s [ A C ] , t h e n  ( A B ) ( B C ) =  (AC).  

Let p be a polyomino and let u be a vector of Z 2. We denote by p,, the image 
of p under the translation of vector u. Let p,, and q,. be two simply neighboring 
polyominoes, and A and B are the endpoints of their intersection such that the 
intersection edge goes from A to B on b(p,,) and from B to A on b(q,.). Let A1 and 
B 1 (resp. A 2 and B2) be the images of A and B in the translation of v e c t o r - u  
(resp. -v ) .  The edge [A1B1] is called the boundary ofp,, with respect to q,, and is 
denoted by [p,, q,,]. The edge [B2A2] is the boundary qfq,, with respect to p~ and 
is written [q,, p,]. The label of [p,, q,.] is denoted by (G,  q,.). We agree to represent 
in Pu and q,, the points A~, B~, A2, B2 as is done below: 

A 2 is in the origin of the plane. We draw the diagram like this: 

po 

p q 

[p,.q,,] = [A,B,]  and @,,q,.) = (A ,B1)  =dd, 

[q , . ,pJ=[B2A2]  and (q , . ,p , )= (B2A2)= uu .  
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Let T be the involution of X* recursively defined as follows: 

r(u) = d, T(d) = u, T(r) = 1, r(l) = r, 

and 

Vu e X*, Vx ~ X, T(ux) = T(x)T(u). 

T(u) will be denoted by u- .  

Remark. @, q) "= (q, q). 

We give here some basic results established in [7]:  

Lemma 2.1. Let q be a polyomino such that q and q, do not overlap. Then q, qu, 
q2u are pairwise nonoverlapping. 

Lemma 2.2. Let q, qu, q~ be three polyominoes two by two neighboring. Then q, 
%, q~, qu-~., q-u,  q ~, q,: ~ are pairwise nonoverlappinq. 

Lemma 2.3. Given a polyomino q with boundary B, let us consider two adjacent 
polyominoes q and q, fi)rminq a hole. Then the size of  the interior boundary I of  the 
union of  these polyominoes with respect to h is strictly less than ]BI. 

2.3. Surroundings 

Let p be a polyomino. A surroundin9 of p is a circular sequence (P0 . . . .  , Pk- ~) of 
polyominoes (circular means that the sequence is defined up to a circular 
permutation),  such that, for i = 0 . . . . .  k - 1, p and Pi are simply neighboring, as 
also are pi and p~+~ (indices are defined modulo  k), and, moreover,  Ai+l = B~ 

(where [p, Pi] = [AiBi])" 
The surrounding is 

complete if, for every i, p~ and Pi+~ are adjacent, and 
minimal if, for every i, I[P, Pi]l r O. 
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Examples. 

(a) (b) (c) 

In case (a), (Po, Pl, P2, P3) is not a surrounding of p because P0 and Pt are not 
simply neighboring. In case (b), (Po, Pl, P2, P3, P4) is a complete  surrounding of p. 
In case (c), (P0, Pl, P2, P3) is a minimal  surrounding of p. 

We can observe that  the concatenat ion of edges [AiAi+ t] for i = 0 . . . . .  k - 1 
is exactly the boundary  b(p) with the origin in A o, and the concatenat ion of the 
labels (AiAi+ 1> is the label of this boundary.  

Notation.  If  A is a point on the boundary  of p with integer coordinates,  we denote 
its opposi te  point  on this boundary  by A', that  is the point A' on b(p) such that  
I[AA']I  = I[A'A]].  

3. Tilings 

Let P be a po lyomino  type and let p be its canonical  element. A tiling T of the 
plane E by P is defined by a subset T of Z 2 such that  E is the union of the 
polyominoes  Pu for u in T, and, for two different vectors u and v of T, p. and Pv 
are disjoint or neighboring. We observe that  if, in a tiling T, two polyominoes  p~ 
and pv are neighboring, then they are simply neighboring, because of L e m m a  2.3. 

A po lyomino  is said to be exact if there exists a tiling of the plane by this 
polyomino.  

A tiling T is periodic if there exists two linearly independent  vectors u and v of 
Z 2 such that  T is not changed by the cor responding  translations. A tiling T is 
regular if there are three vectors u0, u, v such that  

T = Uo + {ku + k'v/(k, k')~ Z2}. 

A tiling T is half-periodic if there is a vector u # 0 in Z 2 such that  T is unchanged 
under  the t ranslat ion of vector  u. 

Observe  that  every regular tiling is periodic and that  a periodic tiling is 
half-periodic. 
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Examples. 

-1 

I 

q ,[ ,i 
I1' 

A half-period but 
nonperiodic tiling 

I I I I 
I I I 

I I I 
I 1 1 

I I I 
I I I 

A nonregular but A regular tiling 
periodic tiling 

I 

I 

I 

Our purpose is to prove the following results: 

1. Given a polyomino p, we can decide whether p is exact. 
2. I f  p is exact: 

(a) There exist regular tilings o f  E by p. 
(b) Every tiling of  E by p is a half-periodic tiling. 

A triad is a triple (p, q, r) of polyorainoes of the same type which two by two 
are simply neighboring and such that [p, q] is followed by [p, r] in the boundary 
ofp  and, moreover, the union of p, q, and r is without hole. It induces the existence 
of a unique point common to p, q, and r. 

If we have [p,q]  = [A1A ], [q,r] = [BIB], [r,p] = [C1C ], then (A, B, C) is 
called the contact of the triad (p, q, r). 

Examples. 

q:t I A1 A 

r 

q B" 

I B C=C1 r 
A1 A I ' t q B r C 

A1 

P 

(a) (b) (c) 

A contact is said to be exact if there is at least one tiling of the plane by the 
corresponding polyomino type P in which the contact appears. 

Remark. (a) and (c) are exact contacts, but not (b). 

Theorem 3.1. Let p be a polyomino. We can decide whether p is exact. 
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Proof  Since a tiling of the plane by a polyomino p cannot  contain two 
polyominoes  which are neighboring but not simply neighbouring,  clearly, if p is 
exact, then it admits  a surrounding with other polyominoes  of the same type. So, 
Theorem 3.1 is a consequence of the following proposit ion.  []  

Proposition 3.1. Let p be a polyomino which admits a surrounding. Then p is an 
exact  polyomino and, moreover, i f  p is exact  there exists a regular tiling o f  the plane 
by this polyomino. 

Proof  Letuo . . . . .  Uk l b e k v e c t ~ 1 7 6  . . . .  P,k ,) is a surrounding 
of p. Let us define the following boundaries,  more  exactly their related labels: 

b~= (p, pu,) and b ' ~ = ( p , , , p  .... ) for i = O  . . . . .  k -  1. 

(Index integers are defined modulo  k.) Using translation we have 

( p ,  pu,) = (p . , .  p2~ = ( p  . . . .  , p . ,+ . . . .  ) = b~, 

( p , p  . . . .  ) = ( p . , . p . , ~  . . . .  ) = ( p  . . . .  , p 2  . . . .  ) = h i + , ,  

(P, , ,P .... ) = (P2u,, P,,+ .... ) = (Pu,+ .... , P2 .... ) = b'~. 

Consequently,  the triads (p, p , , ,p  .... ), (P,,, P2.,, P,,+ .... ), (P ..... P,,,+ .... , P2 .... ) are the 
same. 

On the other hand, it is not  certain that  the triple (p ..... P,,, Pu,+ .... ) is a triad. 
Actually, the polyominoes,  of course, are two by two simply neighboring but 
perhaps  the union has a hole. 

Let r~ (resp. s~, ti) be the label of the orientated edge of the boundary  of p,, (resp. 
p,,+ .... , p  .... ) whose origin is the end of [p,, ,p,,+ .... ] (resp. [p , , ,p  .... ], [P . . . .  ,Pu,]) 
and whose end is the origin of [p , , ,p  .... ] (resp. [p,,+ .... ,p,,], [p ..... p,,+ .... ]) (see 
the d iagram above). 

We can observe that  the concatenat ion ris~t~ is the label of the hole in the union 
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p . . . .  w p . , w p . , +  .... . Finally,  if Irl] = 0, then since p .... and  Pu,+ .... are s imply 
ne ighbor ing ,  it implies tha t  Isll = [t~l = 0 (similarly, if sl or  t~ is the e m p t y  word,  
then the o ther  two are empty) .  Now,  if we c o m p u t e  the length of  the b o u n d a r y  
of  p, by look ing  at the p o l y o m i n o  p., (resp. p.,+ ..... ) and  if we sum for i = 0 up to 
k - 1, c o m p a r i n g  the two results we conc lude  tha t  the sum of the [s~l is equal  to 
zero:  

Ib(p)[ = 21bll + Ib~+ll + Ib i - l l  + Ib'il + Ib'~- 11 + Ir~l + Et~-,I. 

Let  us sum for i = 0 to k - 1: 

klb(p)l = 4 ~ lb , I  + 2 ~lb'~l + ~ l r ,  I + ~ l t ,  I. (1) 

C o m p u t i n g  in the same way  the length of  the b o u n d a r y  of  p., + ..... we have 

[b(p)l = 2[b,I + 21b'~l + 2lb,+~l + Is,[ + It, I + Iril. 

~ul+l / 

klbfp)l = 4 ~ l b ,  I + 2 ~[b[[  + ~ l s ,  l + ~ l t , I  + ~ l r ,  I. (2) 

C o m p a r i n g  (1) and  (2) we conc lude  I sil = I rll - I ti[ = 0 for every i. We  can conc lude  
that  (p . . . . .  p.,, p.,+ . . . .  ) is a t r iad for every i and  that  (p . . . . . . .  p.,, p . . . .  , p . . . . . .  , p - . , ,  
p_.,+,) is a s u r round ing  of  p ( look at the s u r r o u n d i n g  of  p=.+ .... below). 

The  sum is 

This su r round ing  can be t rans la ted  whence  the set T = {kui + k'ui+ 1/(k, k') E Z 2} 
is a regular  tiling of  the p lane  by p, and  this holds  for each i. [ ]  

Corollary 3.1. E v e r y  surroundin9 o f  a polyomino can be ex tended  to a tilin9 o f  the 
whole plane, and consequent ly  every  contact  appearin9 in a surrounding is an exac t  

one. 
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It now remains just to prove that  if a po lyomino  p is exact, then every tiling 
of the plane by p is half-periodic. For  that, we need two lemmas that  follow directly 
from the proof  of Proposi t ion  3.1. 

L e m m a  3.1. Let P be a tiling of  the plane with a polyomino type P. Let (p, q, r) 
be a triad in this tiling whose contact is (A, B, C). Then we have 

[p, q] = [B'A],  [q, r] = [C'B],  [r, p] = [A'C], 

[q, p] = [BA'],  [r, q] = [CB'] ,  [p, r] = [AC']. 

Proof  If (p, q, r) is a triad of P, then q and r are two consecutive polyominoes  
of a surrounding of p (not necessarly complete) in P. So, p, q, and r are like p, 
p,,, and p .... in the p roof  of Proposi t ion 3.1, and since r i, si, and ti are reduced to 
points, L e m m a  3.1 holds. [ ]  

L e m m a  3.2 (under the same hypothesis). I f  u and v are two vectors such that 
q = p= and r = Pv, then (pu, p,, ,p,,_u,P_u,p v,p,_~) is a surrounding o f p  (see the 

| ..Q 

I:: �9 B A ' B C 

C B' 

B 

A' 

diagram below). 

Proof  
apply (3) and L e m m a  3.2 is proved. 

We consider p, q, r as p, Pu,, P .... in the proof  of Proposi t ion  3.1. So we 
[]  

A po lyomino  p is a pseudohexagon ABCA'B 'C '  if there exist three points A, B, 
C on the boundary  of P such that  B ~ [AC] and ( A ' B ' )  = ( A B } ,  (B 'C ' }  = ( B C } ,  
( C ' A }  = (CA ' } .  (It is equivalent to write that  there exists a point  A such that  the 
label of b(P) starting at A can be written uvwu~v~w- . )  

P -V B ~ p  

A u U-V 

PV-U u- 

B" PV 
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The previous results can now be stated in the following form 

Theorem 3.2. A polyomino p is exact iff it is a pseudohexagon. 

Proof  If p is an exact polyomino,  then Lemma 3.1 proves that p is a pseudohexa- 
gon, considering that if q and r are two simply neighbor instances of p, then 
(q, r> = (r,  @2 Now, if we write ( B ' A )  = u(AC'> = v and (C'B> = w, then p is 
a pseudohexagon.  [ ]  

Conversely, let U = A C  and V = BA'. Then (Pv, Pv, P v - v ,  P - v ,  P - v ,  Pv-v)  is a 
surrounding of p and so p is an exact polyomino.  

The following statement is a clear consequence of Lemma 3.2 and Theorem 3.2: 

Corollary 3.2. / f  (A, B, C) is an exact contact for  the polyomino p, then p is a 
pseudohexagon B 'AC 'BA 'C  and conversely. 

4. Half-Periodicity 

From now on, p is an exact polyomino. 
Lemma 4.1 is quite impor tant  for the p roof  of half-periodicity. 

Lemma 4.1. I f  (A, C, B') and (A, D, B') are two different exact contacts (C # D), 
such that C ~ [BD] and B # C or D # A', then the following properties are satisfied: 
there exists a prime word ct = ~1~2 and a conjugate ~r = ~2~1 of  ct such that 

( B A'> e act +, 

(CD>ec t2 ,  

< BC> e ~*oq, 

(DA'> ~ ~2 a*, 

(B'A> e a[ot[ +, 

<C'D'> e ~2 +, 

( B'C'> e c(( a ~* = ~2"*~7 , 

(D'A> e ~~*o~ 2 = ct2 ~[*. 

Proof  Let ( B C ) =  a, ( C D ) =  b, and ( D A ' ) =  c. Then < C A ' ) =  bc. We have 
<C'A> = <CA'>- = (bc)- = c - b - .  O n  the other hand, 

(C'A> = <C'D'>(D'A> = (C 'D '>(DA'>-  = (C 'D ' ) c  ~. 

Letting <C'D'> = d # 1 we have the equation 

c - b "  = dc - ,  

and this implies that  there exists a primitive word e = ela2 and a conjugate of ~, 
(X c = a20C 1 such that  

d e e  + , b - e ~ ' ,  c - ecc*~  r 
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On the other hand, 

and 

but also 

So 

<BD> = (BC)<CD> = ab 

(B 'D' )  = <BD)-  = b - a -  

( B'D'> = < B 'C ' ) (  C'D') = a~ < C'D'>. 

b ~ a  ~ = a ~ d .  

Hence, there exists a primitive word (which is necessarily ~) such that d e ~+ and 
a conjugate of ~ (which is necessarily ~c) such that b -  e ~+ and a -  e ~cr 2 = ~2~* 
(here we use the fact that a and c are not both empty). So, (BA'> = ( B C ) ( C A ' >  
and 

<BA'> e ~" a~'*~" +u~'~~* = a ~ ' ( a ~ 2 ) * ( ~ ' ~ 2 ) + ~ ( ~ a ~ )  * = a~~x- + 

In the same way we have <B'A> e ~c~  +. 
So the result is proved (changing ct in ~c) and can be explained by the following 

scheme obtained by an "unfolding" of the contour  of p: 

ct' ~(x ' --+ 

[--7 

A B C D A' B' C' D' A I_.1 

Lemma 4.2. I f (A ,  B, B') is an exact contact, then we have 

<AB> = (A'B'> ~ and <BA'> = (B 'A>- .  

Proof  It is a clear consequence of Corol lary 3.1. [ ]  

A polyomino  p is a pseudoparallelogram ABA'B'  iff there are two points A and 
B on the boundary  ofp  such that B e [AA'] and one of the two following conditions 
is satisfied: 

<AB> = <A'B') ~ and ( B A ' )  = <B'A>- or 
(AB> = (A'B'> ~, and there is a prime word ct and a conjugate word of ~, 

such that ( BA'> e ot~ + and ( B'A ) e ~~ (t ~ § (we can observe that a pseudo- 
parallelogram is a particular exact polyomino). 
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So Lemmas  4.1 and 4.2 have a corollary:  

Corollary 4.1. I f  (A, C, B') and (A, D, B') are two different contacts, then p is a 
pseudoparallelogram ABA'B'.  

We now formulate three technical lemmas about  pseudoparal lelograms which 
we shall need later. 

Lemma 4.3. Let ABA'B'  be a pseudoparallelogram p and let P be a tiling of the 
plane by p. Let r, q, s be three polyominoes in the tiling, with p type, such that: 

�9 [r, q] = [CA' ] ,  C + [BA'], 
�9 [q, s]  = [ o a ' ] ,  D e [BA' ] ,  O r B, 
�9 C ~e D and I (B 'C ' ) [  >_ [a[ where ct is the prime word such that ( B A ' ) s ~  +. 

Under these hypothesis the polyomino ran, belongs to the tiling. 

Lemma 4.4. Let ABA'B'  be a pseudoparallelogram p and let P be a tiling of the 
plane by p. Let q and r be two polyominoes in the tiling such that: 

�9 [r, q] = [CA' ] ,  C + [BA'] ,  
�9 [ (BC) I  is more than or equal to the maximum of the length of a boundary 

between any two adjacent polyominoes in this tiling. 

Then r A~, belongs to the tiling. 



L e m m a  4.5. Let ABA'B' be a pseudoparallelogram p and let P be a tiling of the 
plane by p. Let r, q, s be three polyominoes in this tiling such that: 

�9 [r, q] = [BC],  C r  [BA'], C # A', C # B, 
�9 [q, s] = [DA'], DE [BA'], C # D. 

Then the polyomino qAn, belongs to the tiling. 
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N o w  we are able to give the last main  s ta tement  of this paper ,  and  the steps 
of the proof. 

Theorem 4.1. I f  p is an exact polyomino, every tiling of" the plane by p is 
half-periodic. 

Sketch of  the proof 

Step 1, The first s tep is the p roof  of a main  lemma on which the remainder  of 
the p roo f  depends.  

L e m m a  4.6. Let P be a tiling of the plane by p. Let q be a polyomino of this tiling 
and let q.~, q.2, q.3, q.4 be a sequence of four adjacent polyominoes of the surrounding 
of q in P such that [q.2, q J  is of maximal length in the set of boundaries of two 
adjacent polyominoes in P. Then the following properties are satisfied: 

(a) u 1 = u 2 - u3 or u 4 = u3 - -  u 2 .  

(b) I f  one of the two equalities does not hold, then p is a pseudoparallelogram. 

7A2 
q u2 

q U 1A, I~.=A' 3 A'2/A. 4 
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A'I rA2 [ 
] qu2 ] q u a ]  

l A'2J A, A'2J 

Fig. 1. Fig. 2. 

Fig. 3. 

The  p r o o f  of  this l e m m a  uses the  results  of  L e m m a s  3.1, 3.2, 4.1, a n d  4.2. W e  

suppose  tha t  u I 4 :u2  - u3 a n d  u4 4 :u3  - u2 a n d  we p rove  that  it implies  tha t  the 
b o u n d a r y  of p is n o t  a simple closed curve.  

Definition. If  u l  = u2 - u3 a n d  u4 = u3 - u2, the b o u n d a r y  vec tor  u 3 - u 2 is said 
to be propagated on both sides from the pair (q,2, q,3) onto q (Fig. 1). I f u  1 = u2 - u3 
a n d  u 4 r u 3 - u 2, the b o u n d a r y  vec to r  u 3 - u :  is said to be propagated on one 
side (on the left or on the right) onto q (Figs. 2 a n d  3). 

Step 2. At this step, two cases have  to be cons ide red :  

Case 1. Every  t ime the m a x i m a l  b o u n d a r y  vec tor  u 3 - u 2 appea r s  in the t i l ing P, 
it  is p r o p a g a t e d  o n  b o t h  sides o n t o  the  two p o l y o m i n o e s  at each end  of 

the  b o u n d a r y .  
Case2. There  exist  at least  two p o l y o m i n o e s  r a n d  s in the t i l ing such tha t  

s = r.3_.2 a n d  the b o u n d a r y  vec tor  u3 - u2 is p r o p a g a t e d  on  one side f rom 
the  pa i r  (r, s) at  one  e n d  of  the  b o u n d a r y .  

Case 1. U s i n g  L e m m a s  3.1 a n d  4.1 it is p roved  that ,  for each p o l y o m i n o  t in the 

tiling, t.4 be longs  to the t i l ing a n d  so P is half-per iodic .  
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Let (A~, A 1, X) be the contact  of the triad (q.,, q, q.o) (q.,, is the po lyomino  adjacent  
to q., in the surrounding of q, before q.).  We prove that:  

If (A'2A1) is a prime word, then x = A 3  and, 

in that  case, the tiling is regular (Fig. 4). (I) 

If X 4: A3, then (A'2A'1) is not primitive and 

the tiling is u 4 invariant  (Fig. 5). (II) 

Fig. 4. Fig. 5. 

Case 2. We can suppose that  ul ~ u 2 - u 3  and u 4 = u 2 - u 3  (Fig. 2). Using 
Lemmas  4.3 and 4.4 we deduce that  q,,_,2 belongs to P. 

) q  ' ~) qul-u2 
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Fig. 6. 

Fig. 7. 

Let (B, A~, A1) be the contact  of the triad (qu,, qu2, q)- Then we prove (using previous 
lemmas) that:  

If  B = A'I, then the tiling is u 2 or u 4 or  both u 2 and u4 invariant (Fig. 6). (III) 

If B r A~, then the tiling is u 2 invariant (Fig. 7). (IV) 

So the p roof  is achieved. [ ]  

5. Surroundings o f  an Exact  Po lyomino  

The different lemmas established in the previous section are now very useful to 
describe all the complete surroundings of an exact polyomino.  

Theorem 5.1. Every complete surrounding of an exact polyomino contains six, 
seven, or eight polyominoes, and the minimal surrounding extracted from the complete 
one contains, respectively, six, five, or four polyominoes. 
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Proof First, by Corollary 3.1 every surrounding can be extended in a tiling of 
the whole plane, so we have only to look at the surroundings appearing in the 
tilings of the plane. However, in Theorem 4.1 we proved that every tiling is of one 
of the types described in (I)-(IV). In cases (I) and (II), each complete surrounding 
contains six polyominoes and is minimal. In cases (III) and (IV) every complete 
(minimal) surrounding has six, seven, or eight (resp. six, five, or four) polyominoes. 

[] 

We give below the different complete and, respectively, minimal surroundings 
of an exact polyomino. 

Complete 6-surroundings (they are also minimal). 

�9 <BA'> = < B ' A > - .  

�9 There exists a word ~ = ~1~2 such that: 

( AC> ~ ~*0~1, 

< A ' D > ~ ? ~  ~*, 

<CB> E ~2~*, 

<DB'> ~ ~ ~*~ .  

Complete 7-surroundings (the associated minimal ones contain five polyominoes). 

�9 <BA'>  = < B ' A > - .  

�9 There exists a word ~ such that: 

< A B > r  +, < A ' C > ~  ~+, <CB'>r  - +  
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Complete 8-surroundings ( the  a s s o c i a t e d  m i n i m a l  o n e s  c o n t a i n  fou r  p o l y o m i n o e s ) .  

�9 <AB> = <A'B'> ~, <BA'> = <B'A> ~. 

F r o m  th i s  d e s c r i p t i o n  we i m m e d i a t e l y  d e d u c e  t he  f o l l o w i n g  p r o p e r t y :  

Proposition ft.1, I f  a polyomino has a complete surroundin9 with seven polyominoes, 
then it also has a complete surroundin9 with six or eight polyominoes. 
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