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The paper considers two questions. The first one is: Is it possible to transmit three-dimensional pictorial
information through transparent glass (or other dielectric) fibers? We find that due to modal dispersion,
pictorial information is invariably "smeared" in transmission. The second question is: Given nature's
reluctance to transmit pictures through fibers, is there anything we can do about it? We suggest that the
answer is yes and point to a class of solutions involving nonlinear optical mixing.

I. INTRODUCTION

It is well known that optical waveguides are capable, in
principle, of transmitting pictorial images. Such
guides can consist of a bundle of fibers in which each
fiber carries one resolution cell of the picture, or sin-
gle multimode fibers in which each resolution element
is carried on the average by means of one mode of the
fiber. The following discussion is limited to this sec-
ond class of fibers and more specifically to cases
where the picture field to be transmitted is coherent
and monochromatic.

It is shown that unavoidable phase delays between the
waveguide modes cause a loss of the pictorial informa-
tion but that the process is reversible and that suitable
phase compensators can restore the picture. One such
compensation based on the use of nonlinear optical
mixing is described in this paper. A second holograph-
ic approach is described in an accompanying paper. 2

To keep the discussion from becoming too diffusely
general, we will center much of the following treatment
on the quadratic index (QI) fiber. 3 Such fibers seem to
be promising candidates for pictorial transmission and
the tractability of their mathematical treatment enables
us to gain a better understanding of the underlying dis-
persion problems which lead to loss of pictorial infor-
mation.

The principle of phase correction which will be con-
sidered is general and will apply to any optical wave-
guide.

II. QUADRATIC INDEX FIBER

Here we will consider the problem of transmitting a
coherent optical image field through a length L of a di-
electric waveguide with an index of refraction profile

n2(x, y) =n2 [1 - (n2 /n) (x2 +y2 )]. (1)

We will make use of an extension of the Fresnel dif-
fraction integral to transmission through systems of
lenses and mirror4 :

f,(x,, Yl)=( ik) e ikLffo(x, y0) exp( ik [D(x2 +y2j)

- 2x1x 0 - 2yyo +A(x 2 +y2)]) dxodyo, (2)

where fo(xo, y 0) is the input optical field (i. e., the input
picture) and f,(x,, y1) is the output (transmitted) field in
plane 1. The quantities A, B, and D appearing in (2)
are elements of the ray matrix (A, B, C, D) that relate
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the output ray (r5, drl/dz) to the input
according to1

ray (ro, dro/dz)

ri A B ro

dr1  C D dr (3)
dz dz

In the case of a composite system the matrix (A, B, C, D)
is the product of the individual element matrices.

In our case the planes 1 and 0 are, respectively, the
output and input planes of a QI fiber of length L. The
ABCD matrix relating these two planes is'

A =D = cosl(n 2/n)l12 L],

B = (n/n,) /2 sin[(n2 /n)1/ 2L], (4)

C = - (n2/n)I/2 sin[(n2/n) 1
/2L].

It follows from (4) that for fiber lengths L satisfying

(n2/n)1/ 2 L = 2s~r, s = 1, 2, 3, . . . (5a)

we have

A=D=1, C=B=O. (5b)

The output field f,(x 1 , yl) at such planes is obtained by a
substitution of (5b) into (2). In this limit we can evalu-
ate the integral by the method of stationary phase, ob-
taining

fi(xi, Y1) =Moxi, Y1) e-iL (6)

i. e., the output field is identical to the input field and
perfect image transmission obtains. It follows from
(2) that at planes L such that (n2 /n)l"2 L= 7r(2s + 2), the
field is the Fourier transform of the input field f0 (xo,
y0). When (nl/n) 2 L = (2s + 1)7r, an inverted image ob-
tains. Since fo(xo, y0) may represent the complex field
from a three-dimensional object, the output field, like-
wise, contains all the necessary three-dimensional in-
formation.

Unfortunately, relation (2) is not exact. The main
mathematical approximation used in deriving it is that
of paraxial rays, which approximates the distance along
a ray by the projection of the ray along the symmetry
axis. 5 This approximation, which is inherent in much
of the formalism of coherent optics 6 and of the Gaussian
beam algebra used in optical resonator theory, 7 thus
leads us to conclude that perfect picture transmission
is possible. To test this conclusion, which we suspect
is erroneous, we will consider the problem of image
transmission in a QI fiber in an essentially exact man-
ner, pausing along the way to note carefully which
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mathematical approximations lead to the conclusion that
perfect picture transmission is possible.

We solve Maxwell's propagation equation

V 2E + W2 gE(r) E(r) = - V((1/E) E . yE) . (7)

For small fractional change of E per wavelength we can
neglect the right-hand side of Eq. (7). We can, in ad-
dition, factor out the fast phase variation by defining

E(x, y, z) = *(x, y, z) e-ikt k = (wic) n

and specialize the treatment to the case of a quadratic
index variation

E(r)=Eon2(r)=-Eona[1-(n2/n)ra], r 2 =x 2 +y'.

The wave equation now takes the form

v + a-2ik a + - k2' 2 r2o = .O (8)

The Gaussian beam ABCD formalism widely used
coherent optics and in treating optical resonators1 ' 7

is based on assuming slow variation of 0, so that

k 9A 820zp 00

8Z az2

which causes (8) to simplify to

a20 + a2 p 2ik a" - k2 n2 rao = o .
-~7 -r 8Z .

in

At sets of planes L where the condition

(n 2 /n) 1 12 L=2s7T, s=1,2,3,... (15)

is satisfied, the phase factors exp[+i(n2/n)1/2 ( + m +1)

X L] in (14) are all unity and f 1(x1 , y 1) = e-Lfo(x 1 , y 1),
i.e., perfect image transmission results.

We have thus obtained the same result as from the
use of the diffraction integral (2). The set of image
planes (15) is the same as that obtained in (5a). To
test the validity of this conclusion we now solve (8) ex-
actly, i. e., without resorting to the approximation (9).
The resulting differential equation is identical to the
harmonic oscillator Schrodinger equation, and its eigen-
modes are8

Eim(X, y, z) =HI ( Gi X)Hm ( r2 ) exp? ( 2 +Y)

x exp{ik~ ( { (I +m+ ( z6

(16)

We note that transverse mode profiles are the same
as that of the approximate solution (11). The only dif-
ference is in the propagation constant 3,m, which is now
given by

(10)

The eigenmodes satisfying (10) are

Elm(X, y, z) = ?im(X, y, z) e iamz

(H f1 x) H.(2 y) ex _tX o2 3V

where H, is the Hermite polynomial of order 1, and w,
the spot size, is given by

=Q)1 2 (n) 1 /4 (X)1/2 (1/4

We will now apply the approximate modes as given by
(11) to the problem of image propagation in a QI fiber.
An input field fo(xo, y0) at z = 0 is expanded in terms of
the orthonormal set (11)

f(x,y)= Z Al m. H, (X) Hm(WI yO) e-(x 2+ /wa,
(12)

so that the picture information is specified by means of
the complex coefficients Alm.

The output field at z = L is obtained by propagating
each mode, i. e., by multiplying it by the phase factor

exp(- i/3mL)i=exp{ i[k- (n2/n)1/2 (1 +m+1)]L}, (13)

and then summing the modes to obtain

f2xtY1=E ,mI( x /nHm I Y

e( 1Y 1 exp{ i[k -() (I +m+1)]L}.

(14)

im= k[1 - (2/k) (n 2/n)1/2 (I +m + 1)11/2 (17)

The propagation constants (elm are no longer related by
an addition of integral multiples of some constant as in
(13). It thus follows that there no longer exist planes
L as in (15) where all the modes 1, m are in the same
phase relationship as in the input plane. The field
f 1(x 1, yl) at z = L cannot, consequently, be made propor-
tional to the input field fo(xo, y0) and image information
is lost.

By comparing the "exact" solution (16) to the paraxial
solution (11) we find that it is indeed the approximation
(9) that leads us to conclude, erroneously, that perfect
picture transmission is possible. Furthermore, from
(16) we find that for distances L such that

(fIm - i0oo) L << iT, (18)

the cumulative phase difference between modes does
not spoil the picture reconstruction, and the image in-
formation can be extracted. Expanding (17) in powers
of (2/k) (n2/n)1/2 (I +m+1) and using the second-order
term only [the first-order terms are identical to (13)
and thus add up in phase at distances L satisfying (15)],
we obtain

Lmax < 2i r2

X(n2/n) (Imax +mmax + )' (19)

for the maximum transmission distance. We note that
since Ima,1 and mma: are essentially the number of pic-
ture resolution elements in the x and y directions, re-
spectively, the distance Lmax within which we can re-
cover the picture is smaller the larger the number of
resolution elements to be transmitted.

The considerations leading to (19) are of the same
physical origin as those used to describe group velocity
dispersion and its influence on pulse broadening in op-
tical fibers. 9 In the latter case, group velocity disper-
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sion manifests itself as a limitation on the number of
pulses, i. e., temporal resolution elements, that can
be transmitted per second through a length L.

It is of interest to recast (19) in a slightly different
form which may offer a better physical insight to the
number of resolution elements that can be carried a
distance L without appreciable distortion. According
to (19) we should use a fiber with as small a quadratic
coefficient n2 as possible. Since the Gaussian spot size
w [see (11)] depends on n2 according to

cd =(X/~l 2 (/nn)l /4

the minimum value of n2 depends on the radius ro of the
fiber core. If we choose n2 such that X = 2 ro and take
the total number of resolution elements as Nm. = 12m=
= nma , Eq. (19) yields

lNmaXLma_~ v 4 n 2r4/16X3 . (20)

The advantages of a large radius and a short operating
wavelength are apparent.

To gain an appreciation for the magnitudes involved,
consider the following typical case:

1maxm mm, =25 (i.e., 25x25 resolution elements)

ro=200 gm, n=1.5, X=1 /Jm .

The maximum usable fiber length is obtained from (20)
as L n., 98 cm.

III. IMAGE COMPENSATION

One consequence of treating the problem of image
propagation by means of the normal modes of the wave-
guide as in (14) is that it suggests immediately a meth-
od for recovering the image. The following discussion
is general and applies to any multimode invariant wave-
guide with coherent image excitation.

Consider a waveguide with a complete orthonormal
set of propagating modes

Emn(X, y) ei5mnZ .

A complex input field [since the input fieldfo(x0 , yo) is
complex the eigenfunctions Emn(x, y) can be considered
as complex or, alternatively, we may consider the in-
put f ield as fo(xo, yo) = for(xo ,) + if,0 i(x0, yo), where for
andf 0 i are real functions, and expand each of these by
means of a set of real eigenfunctions] fo(x, y) at z = 0
excites the modes according to

f 0(x 0, Yo) A AmnEmn(XO, YO), (21)
m, n

where the expansion coefficients Amn are complex. Ac-
cording to (21), the field at some point x0, yo can be
visualized as corresponding to the resultant of the ad-
dition in the complex plane of a large number of
phasors A nEmn(xo, yo). At an "output" plane z =L the
field becomes, according to (16) and (17),

f 1(x11, y) = E AmnEmn(xi, yl)e mnL . (22)
m, n

In obtaining the total field f1(xl, y) at a point (x0, yo) we
thus add the same set of phasors AmnEmn in the complex

plane except that now each phasor is rotated relative to
its original (z = 0) position by an angle - 13mnL. If we
define the residual phase shift AmnL of mode (mn) by
- ImnL = integer times 27r+ m\mnL, the magnitude and
phase of the resultant vector f1 (xo, yo) is different in
magnitude and phase from fo(xo, yo) as soon as AmmnL be-
comes comparable to 27T for a considerable fraction of
the modes m, n represented in the expansion. More-
over, the ratio f, (x0, yo)/f0(x0, y,) becomes a function of
position (x0, yo) corresponding to a loss of image infor-
mation.

To regain the image information it would be neces-
sary to shift the phase of each mode m, n at z = L by
+ !mnL so that the resulting field is, according to (21),

f1 (compensated) = E Amn Emn(x1, y1) e-'8 mn-$mn)L
m, n

=f0(x1 , Yi'D
Holographic means for accomplishing this phase shift
will be considered in the accompanying paper. 2 An al-
ternative method would be to convert the field (22) at
z = L into its complex conjugate

(A) = E Aemn E*Mn ein" (23)
m, n

Possible means for accomplishing this conjugation will
be considered below. The conjugate field is allowed to
propagate through another section of length L. Each
mode m, n will exercise according to (20) a phase shift
- IOmnL between z = L and z = 2L. Using (22) we thus ob-
tain for the field at z = 2L,

f 2(x2, Y2) = E Amn E~mn (24)

which is the complex conjugate of input field (20). The
original field can be recovered by conventional image
inversion or by a second step of field conjugation.

The above method for regaining the image by phase
reversal and additional propagation is reminiscent of the
spin echoes of magnetic resonance. 10 The phase Ip,4mnL

is equivalent to the temporal phase Awt accumulated by
spins with a local "field" (w. +Aw)/Iy1. The field con-
jugation is equivalent to the 1800 pulse which reverses
the order of the precessing spins. The spin echo ob-
served at time 2t is thus equivalent to the image re-
covery at z =2L.

What is needed is thus a real time method for con-
verting a (complex) optical field into its complex con-
jugate. One method for performing this operation is by
nonlinear optical multiplication as sketched in Fig. 1.
A nonlinear crystal is inserted at z = L. The signal
field at z = L is taken following (22) as

El= E AmnEmn(x, y) ei'(1t-Amnz) + c. c. ' (25)
m, n

where the time dependence exp(iwo t) has been explicitly
introduced. This field "mixes" in the nonlinear crystal
with an intense "pump" field at wc3 2w1 ,

Eei e 3 3 + c.c. (26)

to yield an output field at w2 = W3 - C01 proportional to the
product term8

303 J. Opt. Soc. Am., Vol. 66, No. 4, April 1976 Amnon Yariv 303



Pump
field

at
W,. U
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field
at

W, + 5-
plane -w I-
(0) (I) r (2) (3) ' + (4)

to (u, y) Omf HmneJ N.L | H +PmL) N. L.
-#,,L] crystal ca~nHmnew Crystal

z=0 z=L z =2L

EamnH.ne - fo(xy)

FIG. 1. Multimode optical waveguide with nonlinear crystals
used for image restoration. The length of the crystal is as-
sumed very short and is neglected in calculating the modal
phase dispersion.

E3E*= E E3 e"3t-03L)A*nEL e-f(w1t-mL)
m, n

-E3 e63L E A*mnE*ne'(w2t+BmnL) D (27)
mn

which is the form of the field at plane 2 of Fig. 1. The
derivation of (27) is given in the Appendix.

This field propagates a distance L to plane 3, where
it becomes (assuming w2 O1)

E3 e-03L E A*nEL0 ew2t
m, n

and is now mixed again with the pump to give a field
proportional to

E AmnEmneic"1t =f 0 (x, y)

We note that between planes 1 and 2 the field has been
converted from frequency w1 to w2 . It is imperative
that before plane 3, one get rid of the residual field at
w1. One would ideally choose wA = w2 but have the field
produced by the nonlinear mixing be orthogonally po-
larized to the signal field. The mixing described above
is well known in the field of nonlinear optics8 and can,
in principle, be performed so that the resulting beat
field at w2 is more intense than the input field at o1.
This process of parametric amplification may thus be
used for image amplification but is not fundamental to
the process of phase reversal described above, which
may be achieved by other nonlinear means.

We have not considered in this paper problems such
as differential mode attenuation, fiber uniformity and
intermode scattering. These problems will, in prac-
tice, limit the maximum fiber length for which the
scheme proposed above will work. They are, however,
symptomatic of the imperfect fiber and, as such, sub-
ject to continuous improvement. The problem which we
addressed above is fundamental and would exist even in
the perfect fiber.

In summary, the problem of coherent image trans-
mission in multimode dielectric fibers has been con-
sidered. A detailed solution of the propagation problem
in a quadratic index fiber shows that within the limits
of the conventional paraxial ray treatment one would
conclude, erroneously, that perfect image transmission

is possible. A more exact treatment reveals the nature
of the mode dispersion that leads to loss of pictorial in-

formation with distance of propagation. A nonlinear
phase reversal technique is discussed which may lead
to image recovery. This nonlinear processing of the
image in a crystal may be viewed in a general sense as
a form of real-time holographic interaction and it is ex-
pected that it will find other applications involving im-
age processing and reconstruction.

APPENDIX: MIXING OF THE PICTURE FIELD IN A
NONLINEAR OPTICAL CRYSTAL

In this Appendix we will consider the effect of mixing
in a nonlinear crystal of the picture field (22) with the
pump laser field, and show how this results in a com-
plex conjugate field as in (27).

From Maxwell's equations

- aH
VXE=-M atM

(Al)

VxH= at (EoE+P)
tat

we obtain

V2 E = ue0 a82E 82 P(r, t),
7 + p. -6-t-Py , ) (A2)

where P =D - EoE is the medium polarization. In a non-
linear crystal containing a number of fields at different
frequencies we can take the polarization as the sum of
a linear term and that due to mixing. We designate the
latter as PNL(r, t) and rewrite (A2) as

V2E - p.e(r) atE = a2t PNL(r, t),8/ 8t (A3)

where we use P = (e - EO)E for the linear polarization.

We now apply (A3) at z = L to the propagation of the
picture field (22) within the nonlinear crystal in the
presence of a uniform pump field

E 3 (z, t) = I E3 ei (W 3t3z) + C. C. (A4)

Taking the picture field frequency as w1 the effect of
nonlinear mixing is to generate a polarization at W2 = W3

- w1. Let us expand the main scalar component of the
new field at w2 as

(A5)

The functions 62m)(x, y) are the eigenmodes of (A3) with
PNL = 0 and thus satisfy

(A6)
2 + 2 - I30 2) sm) + °t=

The subscript 2 refers to the field at w2, while B.(z)
are normal mode amplitudes.

We substitute (A5) into (A3) which, after using (A6),
leads to

ei 2t [ Iman2 dzm + I d2B ) g"`)e-f3m2" + c, c.

82
(AW)

where PNL(r, t) is the component of PNL(r, t) along Ez.
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If we assume a "slow" change of Bm(z) so that

d2B_ I << 0_2l dB_
dz dz

we can rewrite (A7) as

z(- iPIm2 ddm S&m)(x, y) eiQ'2t-0m2z)) + c cdz 2 C..

a2
/1 at? PNL(r, t) . (A8

The picture field incident on the nonlinear crystal is
taken as

El~, A 2 LA(z)'S ()x, y) ei'l3lZ (ACI)

A comparison of (A9) to (22) establishes the corre-
spondence between the general expansion (A9) and that
used in the body of this paper to describe the field in a
quadratic index fiber. We choose to keep the general
form (A9) since the treatment is independent of the par-
ticular waveguide which is used.

The nonlinear polarization at CO2 = -3 - W1 is taken as
the product of the field at w3 [Eq. (A4)] and w, according
to

P,(r, t)= dE3A*,(z) '(,) e-Mf3 -ll )zei(W3-W1)t (A10)
2

where d is the appropriate nonlinear tensor element of
the mixing crystal. ' Using (A10) in (A8) leads to

LJ- ig ddBm m) e-? nm2z e it + c. c.
dz 2

= - X2 dE3 A* S (1) e- t(3-^l)z et"at + c. c. (All)
2 l1

We multiply Eq. (All) by 8(S)(x,.y) and integrate over
all x and y. We choose the normalization constant of
S(s) according to

: &(sS m)mdxdy = 6s. (A12)

The result is

dBs 2 dE 'e(3~~s)~iPS2 d =-22 d3 EAI* e-'(031 5)
-i32 dz -- 2

x f f ()8s~dxdy . (A13)

If the frequencies xl and w2 are sufficiently close we
can ignore the subscripts in the integral of (A13) and
take the orthonormality condition (A13) to apply to a
mixed field product, i. e.,

7 f S 6(),s) dxdy = 6s ,

which when applied to (A13) results in

dBs = w21i -A*pAS)Zdz w2i~ dE3A*

and in a like manner,
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(A14)

dA4k =i W12 dE3Bs ei(Aas)

dz 2/3s,

where

AVs- /33 - sl - /s2 - (A16)

Equations (A15) are of the same form as that of
plane wave parametric mixing. ' The important new
feature here is that in the case of multimode fields,
which are considered here, each mode s of the signal

) (wl) field interacts only with its counterpart s at w2.
This is a manifestation of the need to "phase match" in
the transverse direction as well as in the z direction.
This lack of mode mixing can be spoiled if E3 is not uni-
form in the x-y plane or if (A14) is not obeyed.

If w2~ x c- w, we can rewrite (A15) as

d 8 = - i gA* e (A^s)8
dz 2 s(A17)

dA*S ____ ~
d =i g B e (6);

dz 2s

gz W( /.) / 2 dE3 . (A18)

Referring to Fig. 1 we take the input plane to the non-
linear crystal as z = L. The picture field (at wl) is giv-
en by (21) so that we associate

As(O)-Amn,,

and from (22)

A* (L) = A* (0) e+ IISIL (A19)

Equation (A19) is used as a boundary condition in solv-
ing (A17). The second condition is Bs(L)= 0 since the
modes B, at w2 are generated by the mixing crystal at
z>L and only forward waves are considered. With
these conditions the solution of (A17) for z>L is'

Bs(z) 2bA*(0) ei^slL sinh[lb(z - L)] e'(/^S/2 )(eL)

(A20)
b =2[g 2 

- (Ap38)2]112

for sufficiently large parametric gain g>> Ais we ap-
proximate (A20) by

B,(z) =-iAs*(O) eMSIL sinh[I g(z - L)] ei(ABs/
2

)(z-L)

(A21)
The total converted picture field at the output z =L+ I of
the nonlinear crystal (I= crystal length) is obtained
from (A5) and (A21) as

E 2(z =L+ 1)= - 2 sinh(lgf A*m(O) S
2 \2/2

X e+ ,l L eat6s) 1/2 effort

The input field at wl at z =L is according to (22),

El(z = L) = E Am(O) 8 (m) e-0Bm1L efwlt .
m

(A22)

*(A23)

Apart from the phase factor exp[2i(AP) 8l], we find
that the complex amplitude of the output field (A22) is

(A15) proportional to the complex conjugate of the input field
(z =L) as given by (A23). This fact was used in Eqs.
(26) and (27) to characterize the action of the nonlinear

Amnon Yariv 305

I 

I 

- I �



crystal. The factor sinh(2 gl) can be made to exceed
unity, in which case we have parametric gain, i.e., im-
age intensification. The factor exp[2i(Ao35)I] in (A22) is
very nearly unity in most cases since 1, in practice,
will probably be limited to a few centimeters. It can
easily be shown, however, that a subsequent stage of
parametric mixing, which is needed to regain the image,
will introduce the complimentary factor exp[- ' i(AJ 5)l],
thus correcting even this small phase deviation. The
proportionality of the mixed field (27) to E3 results, ac-
cording to (A18) and (A22), in the small gain limit gL << 1.

*Work supported by the Air Force Office of Scientific Re-
search.
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The problem of coherent image transmission through a single multimode optical fiber is discussed. A scheme
is presented for recovering the transmitted image after distortions brought about by the fiber modes
dispersion. Realization of this scheme by holographic techniques and with lens systems is proposed, and its
limitations pointed out. The application of this scheme in canceling out temporal signal dispersion in a
multimode fiber transmission line is also discussed briefly.

I. INTRODUCTION AND QUALITATIVE
DESCRIPTION OF THE PROBLEM

Recent developments in the area of low-loss optical fi-
bers promise to make optical communication via fibers
a reality in the near future. Most of the systems con-
sidered today, involve some sort of electrical modulation
of an optical beam propagating in a fiber. The informa-
tion is recovered at the receiving end after detection
and decoding.

To obtain high data rates (say rates in excess of 200
Mbits/s) in the type of system described above it will
be necessary to use single mode fibers in order to avoid
pulse spreading or distortion due to modal dispersion.1

In this paper we wish to examine the basic problem of
direct image transmission in multimode optical fibers
by means of coherent light. By direct transmission we
mean a system whereby an image, which, in principle,
can be three dimensional, is projected onto the input
end of a fiber and is recovered in real time at the output
end without the need for electronic intermediaries. A
second approach to the same problem based on nonlin-
ear mixing is described in an accompanying paper. 2

Let the multimode optical waveguide, henceforth to be
designated as the channel, possess a discrete number N
of confined propagating modes of the form

E,(x, y, z) = eP(x, y) exp(- ifz) X (1)

where z is the cylindrical axis of the propagation chan-
nel, E,(x, y) is a function describing the transverse field
distribution, and f3p is the propagation constant of the
pth mode. The modes 'E(x, y) are orthonormal in the
sense
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(2)E, ((X y)E,.(X, y) dxdy = 6op, .
cross section

Now consider a coherent picture field u(x, y, 0) that is
projected onto the input (z = 0) face of the channel. The
field excites the discrete as well as the radiation, i. e.,
nonconfined, modes of the channel. Since the radiation
modes are lost in a short distance and cannot contribute
to the output for any reasonable channel length, we take
the effective input field as

N

ui(x, y) = E Apep(X, y) ,
P=1

where, using (2),

AP = senu(x, y, 0)EP(x, y) dx dy .
cross section

(3)

(4)

The field ul(x, y) is thus the field that results from spa-
tial frequency band limiting of the true input field
u(x, y, 0). It is limited to -N resolution elements
(where N is the number of confined modes), which is a
reflection of the fact that the fiber has a finite numeri-
cal aperture. In the following discussion we will con-
sider the problem of transmitting and recovering the
field ul(x, y).

To obtain the form of field at the output end (z =L) of
the channel we propagate each mode with its character-
istic propagation constant and receive from (3)

N

u2(x, y, L) = E APE,(x, y) e-pL exp(- i3ppL) ,
P=1

where the possibility of intermode scattering has been
ignored. A comparison of (5) to (3) shows that picture
distortion can be attributed to two mechanisms: (a) the
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(5)


