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Abstract—We propose two feedback methods for transmit
beamforming in a point-to-point multiple-antenna OFDM chan-
nel. For the first method, a receiver with channel information
quantizes and feeds back the optimal transmit beamforming vec-
tors of a few selected subcarriers that are equally spaced. Based
on those quantized vectors, the transmitter linearly interpolates
the remaining beamforming vectors with different phase rotation
whose expression is explicitly shown. For the second proposed
method, a channel impulse response is quantized with a uniform
scalar quantizer. At the transmitter, channel frequency response
can be reconstructed from the quantized impulse response and
the optimal beamforming vectors can then be computed. We show
that switching between the two methods for different feedback-
rate requirement outperforms existing methods in the literature.

I. INTRODUCTION

Equipping a transmitter and a receiver with multiple anten-

nas creates multiple-input multiple-output (MIMO) wireless

channel whose capacity depends on channel information avail-

able at the transmitter and receiver. In multiantenna channel,

transmit beamforming has been shown to increase channel

capacity by directing transmit signal toward the strongest

channel mode [1]. With channel information, the receiver

can compute the optimal beamforming vector that maximizes

channel capacity and feeds the vector back to the transmitter.

Due to a finite feedback rate, the beamforming vector needs

to be quantized. Several quantization schemes and codebooks

have been proposed and analyzed, and the corresponding

performance was shown to depend on a codebook design and

the number of available feedback bits [2], [3, see references

therein].

In this work, we consider transmit beamforming for

multiple-antenna orthogonal frequency-division multiplexing

(OFDM), which converts a wideband channel into parallel

narrowband subchannels. For each subchannel or subcarrier,

the optimal beamforming vector is different and needs to be

quantized and fed back. The total number of feedback bits

required increases with the number of subcarriers, which can

be large. Reference [4]–[7] have proposed to reduce feedback

amount while maintaining a performance. In [5], the optimal

This work was supported by the 2010 Telecommunications Research and
Industrial Development Institute (TRIDI) scholarship and a joint funding from
Thailand Commission on Higher Education, Thailand Research Fund, and
Kasetsart University under grant MRG5580236.

transmit beamforming vectors of selected subcarriers, which

are a few subcarriers apart, is quantized while the rest is

approximated to equal the quantized vector of the closest

subcarrier. In [4] and [6], the rest of transmit beamforming

vectors are proposed to be linearly interpolated and spherically

interpolated, respectively. In [7], a channel impulse response

is vector quantized and fed back to the transmitter where the

frequency response can be reconstructed.

For a low feedback rate, we propose to quantize the optimal

beamforming vector at every few subcarriers with random

vector quantization (RVQ) codebook proposed by [2] and to

linearly interpolate the remaining beamforming vectors from

the quantized vectors. The proposed interpolation method is

improved upon the work by [4] by deriving a closed-form

expression for the phase-rotation parameter instead of having

to perform exhaustive search to locate the parameter. The

derived phase rotation is mainly a function of correlation

between adjacent subcarriers. When a feedback rate is ex-

tremely limited, the proposed method is shown to outperform

the interpolation by [4] for both multiple-input single-output

(MISO) and MIMO channels. Numerical results show that

for a given feedback rate and a number of fading paths,

there exists the optimal subcarrier interval that maximizes the

capacity.

When the feedback rate is high, we propose to quantize

the channel impulse response with a uniform scalar quantizer

and derive the approximate capacity upper bound for MISO

channel. A scalar quantization used in the proposed method

is less complex than a vector quantization used in [7]. The

proposed scalar quantization of channel impulse response is

shown to perform well for MISO channel. Similar results

are observed by [2] where the optimal beamformer and not

channel response is scalar quantized.

II. SYSTEM MODEL

We consider a point-to-point OFDM channel with Nt trans-

mit and Nr receive antennas, and N subcarriers. Antenna

arrays at both transmitter and receiver are assumed to be suf-

ficiently large that all antenna pairs are independent. For each

transmit-receive antenna pair, a transmitted signal propagates

through a frequency-selective Rayleigh fading channel with

order L. We denote a discrete-time channel impulse response

between the ntth transmit and the nrth receive antennas by
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an L × 1 vector hnr ,nt =
[

h
(0)
nr ,nt h

(1)
nr,nt · · · h

(L−1)
nr ,nt

]T

.

Assuming a uniform power delay profile for all antenna pairs,

each channel tap h
(l)
nr,nt is an independent complex Gaussian

random variable with zero mean and variance 1
L

.

A frequency response at the nth subcarrier for the (nr, nt)
antenna pair is given by a discrete Fourier transform (DFT)

of the L-tap impulse response as follows

Hnr,nt(n) = h
T
nr ,nt

Dn =
L−1
∑

l=0

h(l)
nr ,nt

e−
j2πln

N (1)

where Dn =
[

1 e−
j2πn
N e−

j2π2n
N · · · e−

j2π(L−1)n
N

]T

and

the subscript T denotes matrix transpose. Let Hn denote an

Nr × Nt channel matrix for the nth subcarrier, whose entry

is Hnr ,nt(n) shown in (1).

Applying a transmit beamforming or a rank-one precoding,

the Nr × 1 received vector on the nth subcarrier is given by

rn = Hnvnxn + zn for 0 ≤ n ≤ N − 1 (2)

where vn is an Nt × 1 unit-norm beamforming vector, xn is

a transmitted symbol with zero mean and unit variance, zn
is an Nr × 1 AWGN vector with zero mean and covariance

σ2
zI, and I is an identity matrix. We assume a uniform power

allocation in which each subcarrier is allocated equal transmit

power. Hence, the background signal-to-noise ratio (SNR) for

each subcarrier ρ = 1/σ2
z . The corresponding sum capacity

over all subcarriers is given by

C =

N−1
∑

n=0

EHn [log(1 + ρv†
nH

†
nHnvn)] (3)

where the expectation is over a distribution of Hn. From (3),

we note that the sum capacity is a function of transmit

beamforming vectors of all subcarriers, {v0,v1, . . . ,vN−1}.

III. INTERPOLATING TRANSMIT BEAMFORMING VECTORS

Feeding back transmit beamforming vectors of all sub-

carriers requires quantizing NNt complex coefficients. To

curb quantization error, a large number of feedback bits is

needed. We note that adjacent subcarriers in OFDM are highly

correlated since the number of channel taps is much lower than

that of subcarriers (L ≪ N). Hence, the optimal transmit

beamformers, which depend on channel matrices, are also

highly correlated as well.

To reduce the number of feedback bits, we propose to only

quantize a optimal transmit beamformer of every M subcar-

riers and to interpolate the rest of the transmit beamformers.

In this work, RVQ [2] is used to quantize the beamforming

vector. An RVQ codebook consists of independent isotropi-

cally distributed vectors and was shown to perform close to

the optimum codebook [2], [8]. Let K � ⌊N/M⌋ denote

the number of quantized beamformers and let B denote the

total number of available feedback bits for each feedback

update from the receiver. Thus, the number of bits used to

quantize each optimal beamforming vector is B/K . With

RVQ codebook denoted by V = {w1,w2, . . . ,w2B/K}, the

receiver selects the transmit beamforming vector for the kM th

subcarrier that maximizes the achievable rate as follows

vkM = argmax
w∈V

log(1 + ρw†
H

†
kMHkMw) (4)

= argmax
w∈V

w
†
H

†
kMHkMw (5)

where 0 ≤ k ≤ K − 1.

Between kM th and (k + 1)M th subcarriers, the unit-norm

beamforming vector is interpolated as follows [4]

vkM+m �
(1− cm)vkM + cmejθmv(k+1)M

‖(1− cm)vkM + cmejθmv(k+1)M‖ (6)

for 1 ≤ m ≤ M−1, where cm = m
M

is a linear weight and θm
is a phase-rotation parameter. In [4], θm is chosen to maximize

the sum capacity in (3) by performing exhaustive search over

the received power. To avoid search complexity, we propose

to determine the phase rotation based on a correlation between

the optimal beamformers of neighboring subcarriers.

A. MISO Channel

We note that for MISO channel (Nr = 1), the optimal

transmit beamforming vector for the nth subcarrier is the

normalized channel vector

v
opt
n = H

†
n/‖Hn‖. (7)

Based on numerical simulations, a correlation between optimal

beamforming vectors that are q subcarriers apart, can be

approximated as follows

E|(vopt
n )†vopt

n+q|2 = E

[

|HnH
†
n+q|2

‖Hn‖2‖Hn+q‖2

]

(8)

≈
E|HnH

†
n+q|2

E[‖Hn‖2‖Hn+q‖2]
. (9)

With some algebraic manipulation and the fact that all the

channel taps are independent Gaussian distributed, we can

show that for Nr = 1,

E|HnH
†
n+q|2 = Nt +

N2
t

L2
ϕ2(q) (10)

and

E[‖Hn‖2‖Hn+q‖2] = N2
t +

Nt

L2
ϕ2(q) (11)

where ϕ(x) �
sin(πxL

N )

sin(πx
N ) . Substituting (10) and (11) in (9), we

obtain

E|(vopt
kM )†vopt

kM+m|2 ≈ L2 +Ntϕ
2(m)

L2Nt + ϕ2(m)
� ψ(m,Nt). (12)

Evaluating a correlation between the optimal beamformer

and the interpolated beamformer that are m subcarriers apart,

E|(vopt
kM )†vkM+m|2, follows similar steps. We conjecture that

this correlation equals the correlation between the optimal

beamformers, which is approximated to be ψ(m,Nt) in

(12). Based on the conjecture, we set E|(vopt
kM )†vkM+m|2 to

ψ(m,Nt) and solve for the phase-rotation parameter given by

θm = arccos
U(m)

V (m)
(13)
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where

U(m) = (1− cm)2(ψ(m,Nt)−Nt + 1) + c2m(Ntψ(m,Nt)

− Nt

L2
ϕ2(M) + 1) (14)

and

V (m) =
2

L
(1− cm)cm(Nt −Ntψ(m,Nt) + 1)

× ϕ(M) cos

(

πM(L− 1)

N

)

. (15)

Applying RVQ to quantize K beamforming vectors with B
feedback bits and interpolating the rest with linear weight cm
and phase rotation θm, the associated sum capacity is given

by

C =
∑

k

∑

m

E log(1 + ρ|H†
kM+mvkM+m|2). (16)

B. MIMO Channel

For MIMO channel, Hn is an Nr × Nt matrix and the

optimal beamforming vector for the nth subcarrier v
opt
n is

the eigenvector of channel covariance H
†
nHn corresponding

to the maximum eigenvalue. Evaluating E|(vopt
n )†vopt

n+q|2 is

not tractable since a distribution function of the eigenvector

is extremely complex. However, we observe from numerical

examples that the correlation between channel matrices at

different subcarriers can be a good approximation as follows

E|(vopt
n )†vopt

n+q|2 ≈ E|vec(Hn)
†vec(Hn+q)|2

E[‖vec(Hn)‖2‖vec(Hn+q)‖2]
(17)

where vec(Hn) converts the Nr × Nt matrix Hn into an

NtNr × 1 vector by stacking columns of the matrix Hn on

top of one another. Since all transmit-receive antenna pairs are

independent, evaluating the right-hand side of (17) is similar

to that for MISO channel. Thus, it is straightforward to show

that

E|vec(Hn)
†vec(Hn+q)|2

E[‖vec(Hn)‖2‖vec(Hn+q)‖2]
= ψ(m,NtNr) (18)

where ψ(·, ·) is defined in (12). Replacing ψ(m,Nt) with

ψ(m,NtNr) in (13)-(15), the phase rotation θm for MIMO

channel is obtained.

The associated sum capacity for MIMO channel with this

proposed beamforming quantization and interpolation scheme

is also given by (16).

IV. QUANTIZING CHANNEL IMPULSE RESPONSE

When available feedback rate is sufficiently high, quantizing

channel impulse response directly can give a good perfor-

mance [9]. Here we propose to quantize all channel taps

of all transmit-receive antenna pairs with a scalar uniform

quantizer. A uniform quantizer is simple and performs close

to the optimal quantizer when the number of quantization

bits is high. Real and imaginary parts of all channel taps are

quantized independently with the same number of bits, which

is B
2NtNrL

. Thus, the quantized lth channel tap for the (nr, nt)
antenna pair is given by

ĥ(l)
nr,nt

= ĥ(l)
nr,nt,r

+ jĥ
(l)
nr,nt,i

(19)

= Q(h(l)
nr,nt,r

) + jQ(h
(l)
nr ,nt,i

) (20)

where h
(l)
nr ,nt,r and h

(l)
nr,nt,i

are real and imaginary parts of

h
(l)
nr,nt , Q(·) is the uniform scalar quantizer with 2

B
2NtNrL

steps, while variables with hats denote outputs of the quantizer.

Here we select a step size of the quantizer by the existing rule

of thumb for Gaussian input (cf. [10, p. 125])

∆ =
4E[(h

(l)
nr,nt,r)

2]

2
B

2NtNrL

=
1√
L
2

3
2−

B
2NtNrL , (21)

which changes with the variance of channel tap and the

number of quantization bits. Then, the transmitter computes

a DFT of the quantized channel impulse response to obtain an

approximate frequency response as follows

Ĥnr,nt(n) = ĥ
T
nr ,nt

Dn =
L−1
∑

l=0

ĥ(l)
nr ,nt

e−
j2πln

N , (22)

which is the (nr, nt) entry of the quantized Nr ×Nt channel

matrix for the nth subcarrier denoted by Ĥn =
[

Ĥnr,nt(n)
]

.

Based on Ĥn, the transmitter is able to compute the optimal

transmit beamforming vector. For MISO channel (Nr = 1),

the optimal transmit beamforming vector based on quantized

channel is given by

v̂
opt
n = Ĥ

†
n/‖Ĥn‖. (23)

and the corresponding sum rate over all subcarriers is given

by

C =
N−1
∑

n=0

E
[

log(1 + ρ|Hnv̂
opt
n |2)

]

(24)

= NE

[

log(1 + ρ
|HnĤ

†
n|2

‖Ĥn‖2
)

]

(25)

where we substitute (23) into (24) and use the fact that dis-

tribution of the received power |Hnv̂
opt
n |2 for each subcarrier

is identical. Furthermore, we apply Jensen’s inequality and

approximate a expectation of quotient by a quotient of the

two expectations. Consequently, the approximate upper bound

of the sum capacity is given by

C � N log(1 + ρ
E|HnĤ

†
n|2

E‖Ĥn‖2
). (26)

Applying the fact that real and imaginary parts of channel taps

are independent Gaussian distributed with zero mean, variance
1
2L , and a probability density function for h

(l)
nr,nt,r denoted by

fhr(·), we can show that

E‖Ĥn‖2 = Nt(1− 2LE[(ĥr − hr)
2]) (27)
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and

E|HnĤ
†
n|2 = Nt(1 +

1

L
− (2L− 1)E[(ĥr − hr)

2]

+ 2LE[ĥ2
rh

2
r] + 4L(NtL− 1)E2[ĥrhr])

(28)

where the mean squared error is given by

E[(ĥr − hr)
2] =

∫

(Q(x)− x)2fhr(x) dx (29)

and the correlation and its second moment are given by

E[ĥrhr] =

∫

xQ(x)fhr (x) dx (30)

E[ĥ2
rh

2
r] =

∫

x2Q2(x)fhr (x) dx. (31)

We remark that without loss of clarity, we have dropped

indices nt, nr, and l from random variable h
(l)
nr ,nt,r.

Each term in (29)-(31) can be computed numerically.

However, to obtain some insight on how the sum capacity

depends on a feedback rate and other channel parameters, we

approximate each term in a high feedback-rate regime. It was

shown that for large B [11],

E[(ĥr − hr)
2] ≈ ∆2

12
=

2

3L
2−

B
NtL . (32)

Applying property of the optimum quantizer [12], we obtain

E[ĥrhr] ≈
1

2L
− E[(ĥr − hr)

2]. (33)

As B → ∞, ĥr → hr. Hence,

lim
B→∞

E[ĥ2
rh

2
r] =

3

4L2
. (34)

Substituting (32)-(34) into (27) and (28), we obtain the ap-

proximate upper bound for a sum capacity for MISO channel

with large B as follows

C � N log(1 + ρ(1− 1

L
+ (NtL− 1)ΞB +

3

4L2ΞB

)) (35)

where ΞB = 1
L
− 4

3L2
− B

NtL .

For MIMO channel, the optimal transmit beamformer v̂opt
n

is the eigenvector of ĤnĤ
†
n. Deriving a similar sum capacity

requires E|Hn+qv̂
opt
n |2, which is intractable. Thus, an ana-

lytical approximation of the sum capacity for MIMO channel

remains an open problem.

V. NUMERICAL RESULTS

In Fig. 1, we show averaged capacity per subcarrier for

MISO-OFDM channel with the two proposed feedback meth-

ods and the interpolation method by [4]. When the number of

feedback bits B or the number of transmit antennas Nt in-

crease, the capacity increases as expected. For a low feedback

rate, our beamforming interpolation method performs better

than that by [4]. We also note that the method by [4] requires

some minimum number of feedback bits, which is used to

quantize the phase-rotation parameter θm. For both interpola-

tion schemes, beamformers at every M = 8 subcarriers are

quantized while the rest are interpolated.

For a high feedback rate, quantizing channel taps directly

performs comparably to the interpolation method by [4].

We observe that for Nt = 3, switching from beamforming

interpolation to quantization of channel taps should occur

when B = 50, and for Nt = 5, it should occur when B = 80.

We also note that for Nt = 3, feeding back 100 bits can

potentially increase capacity by 60% compared to the zero-

feedback capacity.
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Quantizing channel taps

Interpolating beamforming vector

Choi and Heath [5]

Optimum beamforming with N
t
 = 5

N
t
 = 5

N
t
 = 3

Fig. 1. Average capacity for MISO-OFDM with different feedback methods
are shown with B and Nt for N = 64, L = 8, M = 8, and ρ = 10 dB.

For a 3 × 2 MIMO channel, the average capacity per

subcarrier is shown in Fig. 2 with total feedback bits B and

different number of channel taps for N = 64, M = 8, and

ρ = 10 dB. We remark that for a very low feedback rate,

the proposed interpolation method outperforms the method

by [4]. For MIMO channel in general, quantizing channel taps

requires much larger B than the interpolation method does.

For example, allocating 4 quantization bits for each complex

channel tap leads to the total feedback bits B = 4NtNrL,

which can be unreasonably large. For this numerical example,

it turns out that quantizing channel taps needs more than 140

bits and hence, we omit its performance plot.

In Fig. 3, we compare a capacity per subcarrier of 3 × 1
channel obtained from simulation and the approximate upper

bound (35) for a direct quantization of channel taps. A number

of channel taps L varies between 4 to 16. From the figure,

the approximate upper bound exhibits the same performance

trend as simulation results and the gap between the two is

about 12%. Although the approximation is derived for a large

feedback rate, it seems to predict the simulation result even

with relatively small B well. In addition, we observe from

simulation results that approximately 3 bits per real coefficient

is needed to achieve close to the capacity maximum. While

the number of fading paths L increases, B also increases to

achieve close to the capacity maximum.

The last figure shows capacity per subcarrier for a 3 × 1
OFDM channel with beamforming interpolation for severely
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Fig. 2. Shown is a capacity per subcarrier of a 3× 2 OFDM channel with
beamforming interpolation for N = 64, M = 8, and ρ = 10 dB.
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Sim. with L = 4

Sim. with L = 8

Sim. with L = 16

Analytical approx. with L = 4

Analytical approx. with L = 8

Analytical approx. with L = 16

Fig. 3. A comparison between capacity obtained from simulation and the
analytical upper bound for the channel-tap quantization is shown with N =

64, Nt = 3, and ρ = 10 dB.

limited feedback rate, B = 32. Different plots correspond to

different L and are shown with M , which denotes the number

of subcarriers between adjacent quantized beamformers. For

small M , more beamforming vectors are quantized and fed

back from the receiver, but with smaller number of feedback

bits per vector. For large M , the opposite is true. Thus, there

exists the optimal M that maximizes the capacity. For a

flat fading channel (L = 1), frequency response is constant

across subcarriers and there is only a need for one quantized

beamforming vector with all available feedback bits. Thus,

the optimal M = N . For larger L, channel becomes more

frequency-selective and thus, the optimal M is smaller. Based

on this numerical example, we should operate with M = 16
when L = 4 and B = 32.

VI. CONCLUSIONS

In this paper, we have proposed a beamforming interpo-

lation, which can perform well with very limited feedback,

and quantization of channel impulse response, which needs

high feedback rate to perform well. Thus, switching between
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Fig. 4. Average capacity of a 3 × 1 OFDM channel with beamforming
interpolation is shown with M for different L, N = 64, B = 32, and
ρ = 10 dB.

the two methods for different feedback rate is recommended.

We have also analyzed the capacity with direct quantization

of channel taps, which depends on feedback rate and the

number of antennas and channel taps. Our future work includes

analyzing the capacity with the interpolation method and the

optimal subcarrier interval for quantizing beamformers.
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