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In the book [8], Courant and Friedrichs described the following transonic shock phenomena in a de Laval
nozzle: Given the appropriately large receiver pressure p,., if the upstream flow is still supersonic behind
the throat of the nozzle, then at a certain place in the diverging part of the nozzle a shock front intervenes
and the gas is compressed and slowed down to subsonic speed. The position and the strength of the shock
front are automatically adjusted so that the end pressure at the exit becomes p,.. When the end pressure
pr varies and lies in an appropriate scope, in general, it is expected that a curved transonic shock is still
formed in a nozzle. In this paper, we solve this problem for the two-dimensional steady Euler system with a
variable exit pressure in a nozzle whose divergent part is an angular sector. Both existence and uniqueness
are established.
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81. Introduction and main results

This paper concerns with the transonic shock problem in a nozzle when the given variable end pressure
at the exit of the nozzle lies in an appropriate scope. In [22-25], the authors have studied the well-posedness
or ill-posedness of a transonic shock for the supersonic flow through a general 2-D or 3-D slowly-varying
nozzle with an appropriately large exit pressure. However, the end pressure or the position of the shock
in [22-25] are either induced by the appropriate boundary conditions on the exit or determined by the
ordinary differential equations which are resulted from the assumptions on symmetric properties of the
supersonic incoming flow, the nozzle walls and the end pressure. In this paper, under the more natural and
physical boundary condition (i.e. the variable exit pressure in a suitable scope), we will study the transonic
shock problem when a supersonic flow goes through a 2-D curved nozzle with a straight diverging part. In
particular, we will verify the following transonic shock phenomena for the steady Euler flow as illustrated
in [8]: Given the appropriately large receiver pressure p.(z), if the upstream flow is still supersonic behind
the throat of the nozzle, then at a certain place in the diverging part of the nozzle a shock front intervenes
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and the gas is compressed and slowed down to subsonic speed, moreover, the position and the strength of
the shock front are automatically adjusted so that the end pressure at the exit becomes p(z).

To simplify the presentation, we only consider the isentropic gases. In fact, by a slight modification,
our discussions are also available to the non-isentropic case. The steady isentropic Euler system in two
dimensional space is

O1(pur) + O2(pu2) = 0,
(P + pu3) + D (puruz) = 0, (1.1)
81(pu1u2) + 82(P + pu%) = 0,

where u = (u1,us2),p and P are the velocity, the density and the pressure respectively. Moreover, the
pressure function P = P(p) is smooth with P’'(p) > 0 for p > 0, and ¢(p) = \/P’(p) being the sound speed.
For the ideal polytropic gas, the equation of state is given by

P =Ap7,

here A and ~ are positive constants, and 1 < v < 3 (especially v = 1.4 with respect to the air).

Assume that the nozzle walls I'; and T'y are C*%—regular for Xo—1 <7 = /27 + 22 < Xo+1 (Xo > 0
is a fixed constant and the constant o € (0,1)) and T; consists of two curves I'} and I'? with I'} and '}
including the walls for the converging part of the nozzle, while I'? and I'3 being straight line segments so
that the divergent part of the nozzle is part of a symmetric angular sector. Assume that I'? is represented
by zo = (fl)itgéoxl with z1 > 0 and Xo <1 < Xg+1, where 0 < fp < 7 is sufficiently small. Furthermore,
it is assumed that the C**—smooth supersonic incoming flow (pg (), u; o(2), u5 o(2)) is symmetric near

r = X so that p; (z) = py (r) and v o(z) = M(z = 1,2) near r = Xy (this assumption can be easily

realized by the hyperbolicity of the supersonic incoming flow and the symmetric property of the nozzle
walls for Xy < r < Xo + 1, one can see [13]).

£Ia

(0,0)

Suppose that the possible shock ¥ and the flow field state behind 3 are denoted by x; = n(z2) and
(p*(x),uf (z),ud (z)) respectively. Then the Rankine-Hugoniot conditions on ¥ become

[pur] — n'(z2)[pu2] = 0,
[P + pui] =1 (z2)[puruz] = 0, (1.2)
[puruz] — 1/ (2)[P + pu3] = 0.

In addition, PT(x) satisfies the physical entropy condition (see [8]):
Pt(z) > P () on z1 = n(xg). (1.3)
On the exit of the nozzle, the end pressure is prescribed by

Pt (x) =P, +ePy(0) on r=Xo+1, (1.4)
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here € > 0 is sufficiently small, § = arctcm%7 Py(0) € C>[—0y, 0] with

Pl(+600) = PP (£0,) =0, || Po(arctan™2)

. <
1 ||Cd’a{(3517352)1\/w§+$§:X0+17|$2|§I1tan90} <G,

the constant P, denotes the end pressure for which a symmetric shock lies at the position r = rg with
ro € (Xo,Xo + 1) and the supersonic incoming flow is given by (p, (r), Uy (7)), for more details, one can
see Proposition 2.1 in §2.

Since the flow is tangent to the nozzle walls x5 = (—1)%tgfox1(i = 1,2), then

ug = (—1)'tgfoui on T9 = (—1)'tglox;. (1.5)
Finally, Xy and 0y are assumed to be suitably large and small respectively so that

Xoby =1 and % <0y <no (1.6)
with 19 > 0 being a suitably small constant.

It is noted here that the assumption (1.6) implies that the nozzle wall T'? : x5 = (—1)%tgfyz; is close to
the line segment xo = (—1)% for Xo <7 < X + 1.

As will be shown in §2, under the above assumptions on the nozzle and the symmetric supersonic incoming
flow near the throat of the nozzle, there exists a unique symmetric transonic shock solution for the given
constant end pressure. Furthermore, the position of the shock location, r = ry, depends monotonically
on the given end pressure. This solution will be the background solution. Let (Py(r), U (r)) be the
subsonic part of the background solution for ry < r < Xy + 1, which can be extended into the domain
{r: Xo <7< Xo+1} and the extension will be denoted by (Py (r), Us (r)). For more details, one can see
Proposition 2.1 and Remark 2.2 in §2.

The first main result in this paper is

Theorem 1.1. (Uniqueness)

- +1
Let the assumptions above hold and My (Xo) = UO_(XO) > /2 ’y_ 2. Then there ezists a con-
c(po (Xo))
stant g = 5 such that for all ¢ € (0,g0], the problem (1.1)-(1.5) has no more than one solution

Xg
(P*(z),uf (z),ug (x);n(x2)) with the following properties:

(i). n(xe) € CH*[xl, 23], and

/
[n(z2) = \/75 — 3]l L~ [21,02] < CoXoe, [(n(x2) = /7§ — 23) [l cs.a (o1 ,02) < Coe,

where (2%, 25)(i = 1,2) stands for the intersection points of x1 = n(xa) with xo = (—1)itgbyz; fori=1,2,
and Cy is a positive constant depending on « and the supersonic incoming flow.

(ii). (P*(2), uf (@),u3 (2) € C¥(Qy), and
||(P+7ufau;r) - (P(;Fvaimﬂér)”C&“(QJr) < 0057

where 4 is the subsonic region given by
Oy = {(z1,22) : n(w2) < 21 < \/(Xo + 1)2 — 23, |22| < tgboz1},

and (B ,ai o, i3) = (Py (r), U (r)2).

Remark 1.1. Besides the uniqueness result described by Theorem 1.1, it will be also shown that the
position of the shock depends on the given end pressure monotonically. This will be stated more precisely
in Proposition 3.2 in §3. In addition, the order Xoe in the assumption of ||n(x2) — /7§ — 3 Lo
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comes essentially from the relation between the shock position and the end pressure (see Proposition 5.3
and Remark 5.2 in §5). This implies that the shock position will move with the order XoO(e) when the end
pressure changes in an order O(e) in (1.4).

Remark 1.2. Due to the corners in the subsonic region, the requirement of C*® regularity for the
uniqueness in Theorem 1.1 seems stringent. However, based on such a uniqueness, we can obtain the
existence of a transonic solution in the same regularity class, see Theorem 1.2 below and Appendiz.

Remark 1.3. The previous uniqueness results in [22, 24-25] require that either the transonic shock
curve goes through a fixed point or one solution has special symmetry.

Remark 1.4. The assumption that ro € (Xo, Xo + 1) is made to ensure a positive distance between the
shock position and the exit of the nozzle, this will be used in the analysis in §4.

Based on Theorem 1.1, we can establish the following existence theorem.

Theorem 1.2. (Existence of a transonic shock solution)

For the nozzle and the supersonic incoming flow defined as above, the problem (1.1) with (1.2)-(1.5) has
a unique transonic shock solution such that (p*,ui,ui; n(x2)) satisfies the estimates in Theorem 1.1.

Remark 1.5. It should be noted that similar results as in Theorem 1.1 and Theorem 1.2 hold for the
2-D FEuler flows with the pressure depending on both the density and the entropy. However, neither the
uniqueness nor the existence as in Theorem 1.1 and Theorem 1.2 holds for irrotational flows, see [22, 24].

Remark 1.6. Theorem 1.1 and Theorem 1.2 can be extended into the 3-D nozzle case, which will be
given in our forthcoming paper [15].

Remark 1.7. For nozzles with part of symmetric angular sector as the converging part, one can also
establish a corresponding theory of uniqueness and existence of a transonic shock lying in the converging
part of the nozzle as Theorem 1.1 and 1.2. However, it is shown in [25] that such a transonic shock is
dynamically unstable.

It is noted that there have been many works on the steady transonic problems (see [3-9], [12], [14], [18-28]
and the references therein). In particular, in [25], it is shown that under the same assumptions as in this
paper on the nozzle and the supersonic incoming flows, there exist two constant pressures P; and P, with
P, < Py, such that if the exit constant pressure P, € (Py, P;), then the symmetric transonic shock exists
uniquely in the diverging part of the nozzle, and the position and the strength of the shock is completely
determined by P.. More importantly, we establish the dynamically asymptotic stability of such a transonic
shock for the unsteady Euler system in both 2-D and 3-D cases. Various related results, such as uniqueness
with additional assumptions, non-existence, compatibility conditions, and many useful analytical tools on
transonic shocks in slightly curved nozzles with given appropriate end pressure at the exit of the nozzle for
either steady irrotational flows or steady Euler flows have been established in [22-25], see also [5-7, 26].

Next we would like to comment on the proofs of the main results in this paper. In should be noted that
in almost all the previous works mentioned above except [15, 22], the uniqueness is obtained under the
additional assumption that the shock curve goes through a fixed point in advance [7, 22-26]. This condition
is crucial in the proofs. However, for non-flat nozzles, this additional condition may lead the transonic
shock problem to be over-determined [22]. In the present paper, we have found a new way to determine the
position of the transonic shock and remove the undesired assumption that the shock curve goes through a
fixed point so that the transonic shock problem as described by Courant-Friedrichs is well-posed. Besides
the analytical tools developed in [22-25], the new key ingredients in this paper are to establish the monotonic
property of the pressure along the nozzle walls and to estimate the gradients of the solution instead of the
solution itself so that one can avoid the difficulties induced by the unknown position of the shock, for more
detailed explanations, see §5. It follows from this that the position of the shock can be uniquely determined
in Theorem 1.1 when the end pressure is given, and the continuous dependence and monotonic property of
the end pressure on the position of the shock are also derived. With these crucial results, we can complete
the proofs on Theorem 1.1 and Theorem 1.2.

The rest of the paper is organized as follows. In §2, for reader’s convenience, the description of the
background solution is given although it has been done in [25]. In §3, we reformulate the 2-D problem
(1.1) with the boundary conditions (1.2)-(1.5) so that one can obtain a weakly coupled second order elliptic
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equation for the density p with mixed boundary conditions, a 2 x 2 first order system for the angular velocity
Us and an algebraic equation on (p,u1,us) along a streamline. In §4, using the decomposition techniques
in §3, we establish some a priori estimates on the derivatives of difference between two possible solutions.
In §5, based on the estimates given in §4, and through looking for an ordinary differential inequality along
a nozzle wall, we can derive that the end pressure on the wall is monotonic with respect to the position of
the shock, thus the position of the shock can be uniquely determined by the end pressure and the proof
of the uniqueness result in Theorem 1.1 is then completed. In §6, along the nozzle walls, by establishing
the continuous dependence of the shock position on the end pressure, we can determine the position of the
shock and complete the proof on Theorem 1.2. Finally, in Appendix, we will give a proof on the existence
of a transonic shock C*® solution when the transonic shock is assumed to go through a fixed point and the
end pressure is suitably adjusted by a constant.

In what follows, we will use the following convention:

O(e) means that there exists a generic constant C; > 0 independent of X and € such that ||O(e)||c2.a <
Clc":'.

O(ﬁ)(m > 0) means that there exists a generic constant Cy > 0 independent of Xy and & such that

10(k) love <

§2. The background solution.

In this section, we will describe the transonic solution to the problem (1.1) with (1.2)-(1.5) when the end
pressure is a suitable constant P, under the assumptions on the nozzle walls and the supersonic incoming
flow in §1. Such a solution is called the background solution and can be obtained by solving the related
ordinary differential equations. In fact, the related analysis has been given in Section 147 of [8] and the
details can be seen in [22, 25]. But for the reader’s convenience and later computations in this paper, we
still outline it here.

Proposition 2.1. (Existence of a transonic shock for the constant end pressure) For the
2-D nozzle and the supersonic incoming flow given in §1, there exist two constant pressures Py and Ps
with Py < Py, which are determined by the incoming flow and the nozzle, such that if the end pressure
P. € (P, P,), then the system (1.1) has a symmetric transonic shock solution

(P(;(T),Uio(l‘),uio(l‘)), fOT r <7,
(Py" (), ufo(2), uz9(2)), forr >,

(P,Ul,UQ) = {

here uzio(x) = Ugt(r)%(i =1,2), and (P (r),U{(r)) are C**— smooth. Moreover, the position r = rg
with Xo < 1o < Xo + 1 and the strength of the shock are determined by P..

Proof. Let r = rg be the location of the shock which to be found. It follows from (1.1) that the supersonic
incoming flow (py (1), Uy (r))(Xo < r < 1) and the subsonic flow (pg (r), U (r))(r0 < 7 < Xo + 1) satisfy

respectively p
+rrby _
L e e ns 2
3U5)? +hlpy) = 5(Uq (r0))* + h(py (r0)),
+y : : 1oy E)
here h(pg ) is the enthalpy given by h'(py) = e
0
The corresponding Rankine-Hugoniot conditions across the shock r = rq are
Ug]l =0,
{ [po (;] (2.2)
[POU() + Po] =0.

As in the [22, 25], the proof of the Proposition can be divided into four steps.
Step 1. For the supersonic state (py (70), Uy (o)), there exists a unique subsonic state (pg (ro), Uy (70))
satisfying (2.2).
)



The proof can be found in Section 147 of [8], so it is omitted here.

Step 2. For a given supersonic state (p, (Xo), Uy (Xo)), (2.1) has a unique supersonic solution (p; (),
Uy (1)) for r € [Xo, Xo + 1].

In fact, it follows from (2.1) that

{ filpy Uy ) =rpy (nUy (r) = Co =0,
falpy Uy o) = $(Ug (1)* + hipy (1) = C; =0

with Co = Xopy (Xo)Uy (Xo) and Cf = 3(Uy (X0))? + h(pg (Xo))-

Since
dpg _  pa(Uy)?
dr (U ) = c*(py))
dUs _  Us c*(pg)
dr— r((Ug)* = *(py))
and
d((Ug )* = A(py)) _ (2P"(py) + po P"(p)) (U )?
dr WUy P =)
then one has
W5 (11 = 2y ) = 3 (U5 (0P = 5 (X)) >0 T Xo<r<Xobl @3

LA, - — O(f1,
In addition #75?) = T((Uo (r)? = (po (7"))) and %Lg(xn)ﬂﬂxo),xo

gether with the implicit function theorem and (2.3), yields that (2.1) has a unique supersonic solution
(pgy (1), Uy (1)) for r € [Xo, Xo + 1].

Step 3. For a given subsonic state (pg (Xo), Uy (X)), (2.1) has a unique subsonic solution (pf (1), Uy (1))
for r € [Xo, Xo + 1].

The proof is similar to that in Step 2, so is omitted.

Step 4. The shock position rq is a continuously decreasing function of P, when the end pressure P, lies
in an appropriate scope.

In fact, it follows from (2.1) and (2.2) that for r € [ X, Xo + 1]

> 0. This, to-

{ TpaC(T)USZ(T) = (y, (2.4)

3(U5 (1) + hipg (1)) = CF,

here C’li are the Bernoulli’s constants. Note that C;” and C} are different in general, moreover, C;~ depends
on the end pressure Py (X + 1) = P..
Especially,
{ Xopgy (Xo)Ug (Xo) = Co,

3(U5 (X0))? + hipg (Xo)) = CF- (2:5)

Next we derive the dependence of rg on the end pressure Py (Xg + 1) = P..
It follows from the first equation in (2.4) and the second equation in (2.5) that

d(py (r))Uq (o)) _ drg
Tty R gy
U (ro) , c*(pg (r)) dpg (ro) _ dCY

dpg (Xo) Pchﬁ(TO) dpg (Xo) — dpg (Xo)'

(2.6)

Uy (ro) +



&

In addition, by C;" = + h(pg (Xo + 1)), the second equation in (2.2) and (2.6), one has

2X2(pg (Xo+1))2
dr do; F(ro)(c3(Xo + 1) — (Uy (Xo + 1))?
[,OoUg] 0 :pa-( ) _ pO( 0)( 0( 0 ) ( 0 ( 0 )) ) (27)

rodpg (Xo +1) dpf (Xo+1) pg (Xo+1)

Since [poUZ] < 0 due to [poUg + Po] = 0 and [Pp] > 0, then (2.7) implies that rq is a continuous and
strictly decreasing function of the end pressure P0+ (Xo+1).

Next, we complete the proof on Proposition 2.1.

For ro € [Xo,Xo + 1), it follows from Step 2 that there exists a unique supersonic flow in [Xg, ro].
Moreover, due to Step 1 and Step 3, there exists a unique shock at ry and a unique subsonic flow in
[ro, Xo + 1]. Thus one can define a function F(rg) = Py (X + 1) for o € (Xo, Xo +1). By Step 4, F(r) is
a strictly decreasing and continuous differentiable function on PO+ (Xo+1). When rg = Xg or ro = Xop + 1,
one can obtain two different end pressures P; and P, with P, < P,. Therefore, by the monotonicity of
F(rg), one can obtain a symmetric transonic shock for Py" (X + 1) = P. € (P, Py).

Remark 2.1. By the assumption (1.6) and the equation (2.4), one can easily conclude that there exists
a constant C' > 0 independent of Xy such that for Xo <r < Xo+1

d* Uy (r)
drk

d“ Py (r)

et k=123, 4. (2.8)

= k0
X()

Remark 2.2. It follows from Step 2 and Remark 2.1 that one can extend the subsonic flow (pg (r), Ug" (1))
into (pg (1), U (1)) defined for v € (Xo, Xo+ 1) and satisfies (2.1) on (Xo, Xo+1). This extension will be
often used later on.

§3. The reformulation on problem (1.1) with (1.2)-(1.5)

In this section, the nonlinear problem (1.1) with (1.2)-(1.5) will be reformulated so that one can obtain
a second order elliptic equation for p*(z) and two 2 x 2 first order systems for the radial speed Uf' and the
angular speed U,". To this end, as in [22, 25], we firstly derive the relations between (P*,U;") and U~ on
the shock X. It is more convenient to use the polar coordinates

r1 = rcosh, (3.1)
To = rsind '
and decompose (u],uj) as
ui" = Uf'cos@ - U;sinﬁ,
ot + (32)
uy = Ui sind + U5 cosb.

Then, (1.1) and (1.2) become respectively
"
O(p*UT) + 200 US) + 2 = 0,

O (pt (U2 + PH) + Loy (ot U UL ) + M —0, (3.3)
O (pTULUS) + 205(PT + pT(US)?) + 2p7 U US =0

and .
o]~ U
(U2 + P - ’;;(( ))[pUlUg] o, (3.4)
_ 7 (9)




where r = 7(0) stands for the shock ¥ in the coordinate (r, ).
In addition, for any C* solution, (3.3) is equivalent to

O (Pt UF) + Las(p™UF) + 2 UL =,
U 0,Uf + Y a,Uf + 2L - W2l g, (3.5)
UF0,UF + Z20,U5 4 L2 4 UV —,

It follows from (3.4) that on r = 7#(9)

{ (0" = 53 (ro))Uq (ro) + p§ (ro) (U = Ug (ro)) = a1,
(P — By (r0)) + (o — o (r0))(U)? + 268 (ro) U (ro) (U — Uy (o)) = g2,

here
277+ +\2 .
g = m — (o5 (r0)Ug (r0) — p3 Ug') — (o — 3¢ (ro))(UF — U (1)),
go = LTUTUS)  pe ) o) — (o (ro) (U ()2 — 0 (U )?) — o) (U — Ut (ro)?
2 [P}er_s_(U;_)Q o \To o \"0 o \"0 0 0 o \"0 1 o \"0 :

Thus, a direct computation yields that on r = 7(6)

{ Uy = Uy (r0) = 1((US)2, Py — Py (r0), Uy — Uy (7o), (36)
Pt — B (ro) = 32((U)2, By — Py (r0), Uy — Uy (o))

with §;(0,0,0) = 0 for ¢ = 1,2, here the quantities on the right hand sides of the above will be suitably

small.
For convenience, the following transformation

{ yL=r, (37)
Y2 = Xoea .

will be used to change the fixed walls into yo = +1 respectively.
In addition, the superscripts “4” will be neglected for convenience in case no confusions.

Then, (3.5) and (3.4) can be rewritten respectively as

X U-
82!1 (pUl) + ﬁayz(pU2) + % =0,

P 2
U1y, Uy + 28020, 0, + ay;) - % =0, (3.8)

X0U23 Us +X0 asz+ UU; _

Ulayl Us + 17 T
and X E/( )
o€ (2 _
[pU1] — £(y2) [pUs] =0,
2 Xo&'(y2)
[pUf + P] — W[PUNJQ} 0, (3.9)

U102 - 2L p 1 g -

where {(y2) = 7(5Z).



Note that the transformation between the coordinate systems (z1, z2) and (y1, y2) keeps the equivalence
of C** norm independent of Xy. So from now on, we will use the coordinate system (y1,y2) instead of

(.’L‘l 5 .%2).
Let ya = y2(y1,8) be the characteristics starting from the point (£(3), ) for the first order differential

operator U109y, + %83,2. Then

{ A28 — X0 (1) (g1, a1, ), .10,
v2(8(8),8) =6,  Bel-11].

It follows from the second and the third equations in (3.8) that the following Bernoulli’s law holds
1, 1
§<U1) + §(U2) +h(p) | (Y1, 92(y1, 8)) = Go(B) (3.11)

with

GolB) = 5(U(E(), ) + 3 (Ua(E(8), 5))? + hip) E(5). B).

Next, we derive the governing problems for U; and Us.
It follows from (3.11) that

Oy, P
U10,,U1 + Uad,, Uz + 2= = 45.Go(8)3,,8(y1. v2), (3.12)
010,01 + Usdy, Uy + 202 = — Ko (53) (91,921, 8)) 5 Gol(5) Dy, By v2), (3.13)

here 3(y1,y2) denotes the inverse function of yo = y2(y1, 5).
Combining (3.12)-(3.13) with the first equation and the third equation in (3.8) yields

{ 0y, U1 = hq (P, U1, Us, 0y, P, 0y, P), (3.14)
0y, U1 = ho(P, Uy, Us, Oy, P, 0y, P) ’
and
0y, Uz = h3(P,Uy1,Us, 0y, P, 0y, P),
0y, Uz = ha(P,Uy1,Us, 0y, P, 0y, P), (3.15)

Ug(yl, il) = 0,

here h; = £:(1 < i < 4) with




Ay _ ()2 + (Uz)Z’
n

Ay =2 (B0 D) R (O S0 ) 301, )04. 0. 10) )

- ([ﬁ)g ([y] + oy P o 3"‘2]’))
8o =2+ O (6o B 10 ) - 228 ) 4 22 (s i, P+ X282,

- B o) B )0y Sl ) + o (ijf PO (S Sl B

O @0, P 200, p) - T, p o (O S0 () 301, 1) 0B, )

Ay = [Egl(f)(Ul Oy, P+ Ifa P) - U2(6yyff + Z—ZZ?) + = v dﬂGO)(ﬂ(ylvlﬂ)) 0y B(y1, y2)

(E ey,
Xoyr  Xop
Next, we derive the governing problem for the density p.
It follows from Us = 0 on y, = +1 and the third equation in (3.8) that

Oy,p =10 on yo = £1. (3.16)

Furthermore, applying the first order operator U;0,, + %Ugayz to the first equation in (3.8) and sub-

sequently subtracting 9y, (p x {the second equation in (3.8)}) and 9y, (p x {the third equation in (3.8)})
yield the following boundary value problem for the density

8’5}1 ((U12 - 02(p)) y1 P + X0U1U2 ayzp) + ayz (U1U2ay1p + XD ((U2)2 (C(p))2)8y2p) =

=0y, (%pUlay2U2 + py% - %834 Ur + pU?) - 78?;2 (pUQalel PUlaleQ)
+(8y1 Ui + %8112[]2)((]181/1[) + %UZ& 2P+ payl Uy + payzUZ + p;? )7

(3.17)
P(p) = Py (ro) = g2((U2)?, P~ = Py (r0), U~ = Uy (r0))  on  y1=E(ya),
Oy,p =0 on Yo = %1,
Plp)=Pe+ePo(E) on yi=Xo+1
In addition, due to the third equation of (3.9), it holds that
U, U:
(y) = SWPth U] (3.18)

Xo[pUs + P|’

Therefore, in order to prove Theorem 1.1, it suffices to show

Theorem 3.1. Let the assumptions of Theorem 1.1 hold. Then for e < X%?’ the free boundary value
problem (8.14)-(3.15) and (3.17) with (3.9) has no more than one solution (P(y),U1(y), Ua(y); £(y2)) satis-
fying the following estimates with a uniform constant C > 0 (depending on « and the supersonic incoming
flow):

(i). £(y2) € CH*[—1,1], and

1€(y2) = rollLes—1,1] < CXov/ Xoe, €' (y2)llcsap—1,1] < Ce.
10



(P(y),Ui(y), Uz(y)) € C**(@y)

satisfies

L. C
Hag}jl ((P7 Ul)(y) - (P(;F7U(;~_)(y1))‘|co‘(@+) < X7§7 k= 07 17273

and
10y, (P, U1)||c2.e (@4) + ||U2]|c3.0 (@04) < C,

where wy = {(y1,¥2) 1 €(y2) <n < Xo+1,-1 <y2 < 1}.

Remark 3.1. It is noted that (i) and (i) in Theorem 3.1 are less restrictive than (i) and (ii) in Theorem
1.1.

To show Theorem 3.1, as in [25], one may reduce the free boundary problem (3.14)-(3.15) and (3.17)
with (3.9) into a fixed boundary value problem. Indeed, set

b= U £(y2)
Xo+1-E&(y2)’ (3.19)
22 = Y2.
Then the domain w becomes
Eif ={(z1,22):0< 21 <1,-1< 2z, < 1}. (3.20)
For convenience, one sets
Do = l = 1
Yo &(z) + 21(Xo+1—E&(22))
= - 1
Dr=0n = 331 —2(m) O
D, = X0y Xo(z1 — 1)€'(22) 0. + Xo P
= A 1 I Tt T

Then, (3.9) and (3.14)-(3.15) can be rewritten respectively as

UL (E(z2), 22) = 206 C2) (171 (¢(2), 22),

§(22)
(PU? + PI(g(z2).22) = 22D (U] (€2). 22), (322)
PUD)(E(z2), 22) = 2D [P+ pU31(€(2). 22),
{ DU, = ﬁl(P, U1,Us, D1 P, Dy P), (3.23)
DyUy = ho(P,Ur,Us, D1 P, Dy P)
and ~
DUy = h3(P,Uy,Us, D1 P, D3 P),
DyUs = ha(P,Uy,Us, D1 P, Dy P), (3.24)

UQ(Zl7 :tl) = 0,

here ]:LVZ(Z =1,2,3,4) has the same property as h,.
11



In addition, (3.17) becomes

D1 ((U? — ¢*(p))D1p 4+ UrUzD2p) 4+ Do (UrUaD1p + (U3 — c2(p))Dap) =
—D1(DopU} + DopU3) + DopUy DoUs — D1 (pUy) DaUs + Da(pUy) D1Us
—DopUzDoU; + Dy (pUz) DaUy — Do (pUs) D1 Uy
+(D1Uy + DoUs) (U D1p + UaDap + pD Uy + pDoUs + DopUy ), (3.25)
P(p) = P (ro) = §2((U2)%, P~ = Fy (r0), U~ = Uy (r0))  on 21 =0,
0.,p=0 on 29 = £1,
P(p) = Pe +ePo(32) on  z =1

We conclude this section by noting that as a by-product of the analysis for Theorem 3.1 and Theorem
1.1, one can further obtain more estimates on the location of the shock and its monotonic dependence on
the end pressure. Indeed, suppose that the problem (1.1) with (1.2)-(1.3) and (1.5) has two C*< solutions
(p,U1,Usz;&1) and (g, Vi, Va; &) which satisfy the exit pressure conditions P, 4+ ePp1(6) and P, + £Pys(0)
at r = Xy + 1 respectively and admit the estimates in Theorem 1.1. In terms of the transformations
(3.1), (3.7) and (3.19), the end conditions of P(p) and P(q) can be written as P(p) = P + eFo1(5%) and
P(q) = Pe 4+ ePp2(32). Then we can arrive at

Proposition 3.2. Under the assumptions of Theorem 1.1, if (p,Uy,Usz;&1) and (q, Vi, Va;&2) are defined
as above, then the following estimates hold

Z2 22

1 1
I€4(22) = Ea(z2)lemoion < Ol (1) = )] el g (B () = PialGolenoinn)  (326)
and

lp = dllez.a(z,) + [(Ur, U2) = (Vi, Va)|l o2y
Z2

1 1 , 2 ,
< C(Xfo\il(l) — &)+ Ellyo(Pm(fQO) - POZ(XO))HCL“[fl,I])a (3.27)

where E is given in (3.20).
Furthermore, if POl(%) = Pog(%) + C1 with the constant C; > 0, then

€1(22) < &2(22). (3.28)

84. A priori estimates on the solutions of (3.22)-(3.25).

In this section, we establish some key a priori estimates on the gradients of the difference between two

solutions (p, Uy, Us; &1(22)) and (g, Vi, Va; €2(22)) to the problem (3.22)-(3.25) with exit pressure conditions
P, +ePy ( ;220) and P, + €P02(%) respectively. These estimates will play crucial roles in proving Theorem

1.1 and Theorem 1.2. o
For convenience, let @ = P(q) denote the pressure for the density ¢, and (Dg, D1, D2) and (Dy, D1, D2)
will denote the expressions as in (3.21) corresponding to (p, U1, Uz; &1(22)) and (g, V1, Va; €2(22)) respectively.

et (Wi, Wa)(2) = (Us, p) (£1(22) + 21(Xo + 1 = &1(22)), 22)
—(Viy ) (&2(22) + 21(Xo + 1 — &2(22)), 22), 1=1,2,
Wi = £1(22) — €a(22),
szazIWj7 7=1,23,

Ny =0.,,W,  k=1,234.
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A key technical point here is that we will focus on the estimates on M;(j = 1,2,3) and Ni(k =1,2,3,4)
directly, which will be established in a series of Lemmas (Lemma 4.1-Lemma 4.5). In the following lemmas,
we always assume that the assumptions in Theorem 3.1 hold.

Lemma 4.1.
Dy — DO = O(X YWy,

Dy — O(1)W4d.,, (4.1)
D, — D2 O(e )W4azl + O(1)N1d;, + O(3)Wads, .

Proof. We only check the estimate on Dy — bvl since the other terms can be treated similarly.
Indeed,

51(2’2) - 52(22)

D _.DN == 821
P T (X 1= &(2)) (X + 1= &5(22))
_ Wy o
(Xo+1—&(22))(Xo+1-&(22)) 7
. o . 1 < ‘ .
so the second inequality in (4.1) holds since || KT T—a@) Ko T 1=-6()) lore < C and &(z2) is a

small perturbation of ry due to the assumptions.
Lemma 4.2. (Estimate of N4) It holds that

[Nallo2e < Ce([[(Wr, Wa, Ws)llora + [[Wal| e + [[(N1,e7 " No, N3) | (4.2)

Proof. It follows from (3.18) that

Xo&1(22)[pU3 + P)(€1(22), 22) = &1(22)[pU1 Ua] (€1 (22), 22),
Xo&5(22)[qVs + Ql(6a(22), z2) = Ea(22)[qV1Va] (E2(22), 22).-
The difference of these two equations yields
{ Ni(z2) = O(e) - (Wy, Wa, Wa, Wy) 4+ O(e) - (N1, No, N3, X5 ' Ny),
Ny(£1) =0,

here and what follows, for notational convenience, O(¢) - A denotes the inner product of vectors A and O(e)
whose component is of order €. (4.2) then follows from this initial value problem for an ODE.
Lemma 4.3. (Estimates of M;)

C _

1, M3)|[ctie = —— 1,€A0Wa, W3, Wa)||c1,e € 1,€ 2,1V3, N4 )||Cc1res .
[[(M, Ms)]| <XOH(W XoWa, Ws, Wa)llcr.e + Cel|(N1,e~ ' Na, N3, Ny)| (4.3)
[ Mz|lcre < Ce([[(Wh, (eXo) ™ Wa, Ws, Wa)llcro + [[(eN1, Na, e N3, (6X0) " Ny) [ c1.0).-

(4.4)

Proof. Rewrite (3.8) as

Dy (pUh) + Da(pU2) + Do(pUr) = O(;)Wa + O(e)Na
DyP + pUrDyUs + pU2DaUs — Do(pU3) = O(5)Wa + O () Na (4.5)

pUy DUy + pUs DaUs + Dy P + Do(pUyUs) = O(e) Wy + O(X%)N
13



Then tedious but elementary computations using the assumptions in Theorem 3.1 show that

Ul./D\;W;g + piin = O(Xo_l) . (I/Vl,E.X()VVQ7 Wg,W4) + 0(5) . (M2,€M3) + 0(5) . (571]\72, N3, N4),
c2(p)D1Ws + pUy DiWy = O(Xg ') - (Wh,eXoWa, W, Wy) + O(e2) My + O(e)Ny + O(<& ) Na,
pU1 D1 Wy = 0(5) . (Wl, <8X0)_1W2, Wi, W4) + 0(6) . (6]\427 Mg) + 0(6)N2 -+ O(l)Ng + O(XLO)NAI,
(4.6)
With respect to the variables (D1 W7, D1Wa, D1W3), the determinant of the coefficient matrix in (4.6)

is p?U(c?(p) — U?) > 0 for subsonic states, then a direct computation yields Lemma 4.3.
Lemma 4.4. (Estimates of N; and Ns) Fori=1,2,

C
||Ni||cl,a < CEH(Wl, WQ,W3,W4)HCLa + YOHNLLHCZ‘X + C”NS”CI,a. (47)

Proof. First, we deal with the term (%Go)(ﬁ(zl,22))D2ﬁ(21,22) contained in (3.23) and (3.24).
Let z21(s~; z) and z3(s;z) be the characteristics of (3.10) going through (21, z2) with 23(0;2z) = 3 and
22(0; z) = B corresponding to (U, Us) and (Vi, Va) respectively, i.e.,

dz%(s; z)  Xof
ds -

z(2132) =22,  2(052) =B,

Xo ﬁ; SIENIA (&1(22) + s(Xo + 1 — &(21)), 28),

where

A1 = (€a(2) + 8(Xo +1 = &1(22))) U1 + U2 Xo(s — 1)€1 (3).-

Similarly, one can define z2(s; z) corresponding to (Vi, Va), & and 3.
Set I(s;2) = z4(s;2) — 232(s;2). Then one has

{ L = O(e)l + O(e)Wa(s, ) + O(1)Wa(s, 28) + O(€)Wa(4) + O(c*)Na(:4) (4.8)

(0;2) = B—=B,  Uz1;2) =0,
Since the solution has the C*“—regularities, then all the coefficients in (4.8) are in C*, this will lead

to the C%“ estimate of 3 — 3.
By (4.8), one has

18 = Bllzee < Cl[(eWr, Wa, eWy, e2Ny)|| 1

and
{ 0—p8= fozl (O(E)Wl(t, 23+ O()Wa(t, 23) + O(e)Wy(23) + O(e2) Ny (23) + O(e)l(t; z))dt, (4.9)
(s52) = [2 (O(6)Wa(t, 24) + O()Walt, 28) + O()Wa(2h) + O Na(4) + Ot 2))dt,
and
102, (8, D)l cze < Cey 02,(8, B)ll 2 < C.
This yields
18 = Bllcze < C|l(eWr, Wa, Wy, e2Ny) |2 (4.10)

In addition, set

{ By = (§5G0)(B(21,22)) D2 (21, 22),
By = (5Go)(B(21, 22)) Dafi (21, 22).
14



Then, direct computations using (3.11) and (3.21) show that
By~ By = O()Wa+ O(*)Na + O()-, (5~ §) + 0(0)2-, (6 — )
+0(e) - (W1, W, W3) (0, 8) + O(1) - (N1,eN2, N3)(0, 8) + O(e) (5 — ).

Thus, by use of (4.10), the following estimate holds

[ B1 — Bzllcre
< Ce(||(Wr, Wa, W3, X ' Wy, eNy)||lcria + |8 = Bllo2a) + C||(N1,eN2, N3)(0, 22) | ora 1,11
< Cel|(Wr, Wa, Ws, Xy ' Wy, eNy)|| g2 + C||(N1,eN2, N3)(0, 22)[|cro(—1,1)- (4.11)

Note that the third equation in R-H conditions (3.9) implies that

Xo&i(22)  Xo(€l(22))* 1  Xo&i(22)0; [pUF + P]
Gl (@(2)? U2+ P <87W1U2) é1(22) )

here 0, denotes the tangent derivative of z; = £;(22) and similar expression holds for £3(z3).
This, together with the first two equations in (3.9), yields for i = 1, 3,

1
N;(0,23) = O(g) - (Wy, Wa, W, Xo~*Wy) 4+ O(e) Ny + O(YO)M. (4.12)

It follows from (4.11), (4.12) and (4.3)-(4.5) that
1By = Ballcr.e

_ C
< Cel|(Wy, Wa, W3, X5 ' Wa) | c2.e + f||N4||cl,a + Ce|| N2 c1.a
0
_ C
< C€(||(W1,W2,W37XO 1W4)||Cl,a + ||(N1,N2,N3)||C1,a) + YHNALHCQ,Q. (4.13)
0

By (3.23) and (3.24), one has

{ l:\)tlwl — O(XLO) . (W1,€X0W27W37W4) +0(e) - (N37X071N455_1M37Bl - BQ)’ (4.14)
DyWy = (%0) - (eW1, Wa, e XoWs, Wa) + O(1) - (N3, X' Na, e Mg, By — By)
and
{ zzlvv2 = O(e) - (W1, (eXo) ™" Wa, W3, Wa) + O(1) - (N3, Xg ' Nu,eMs,e*(B1 — Ba)), (4.15)
DoWa = O(55) - (Wi,eXoWs, W, W) + O(e) - (N3, Ny,e™ My, By — By).

‘We can now estimate Ns.
Since Wa(z1,£1) = 0, then there exists zo = 23(21) such that Na(z1,22(21)) = 0 holds. So, (4.15) implies

that
621 N2 (6

) - (Wi, Wa, W3, Wy) + O(e) - (N1, (X0) ' Na, (eX0) "' N3, Ny, M3)
+0(1) - (0., N3,0:,N3, X' 0., Ny) + O(£?) - (B1 — Ba,0.,(B1 — By)),
0., Ny = O(e) - (Wi, Wa, Wy, Wa) + O(e)Ms + O(5) - (Ny, Na, N3, Ny)
+O(e) - ( 1., N3, 0., N3, 0:, Ny, (B1 — Ba),0.,(By — By)),
)

Ny(z1,22(21)) =
15



It should be emphasized here that instead of estimating W5 in (4.15) directly, one differentiates (4.15)
with respect to z5 and uses the structure of the background solution to derive the desired system for No
(with order O(e) coefficients for W; (i = 1,2,3,4) and M3). This will make it possible to obtain a control
on || Na||cre in terms of e|/(Wy, Wa, Wa, Wy)||cr.a, X5 (|[N1]lcre + || Nallc2a), and || N3||cre. Indeed, it
follows from this system for N, (4.3)-(4.4), (4.13), and a direct computation that

c
[N2[|cre < ClIV.Na g < Cel|(Wy, Wa, Wy, Wa)l[cre + fo(llNlllcm + [|Nallgz.e) + C[|Ns[|gre (4.16)

Next, note that (4.14) shows that
92, N1 = O(e) - (Wr, Wa, W3, Wy) + O(5:) - (XoMs, N1,eXoNa, N3, Ny)
+0(1)9:, N3 + O() (92, N3, X0~ ' 02, N4, By — B3, 0.,(B1 — B2)),
02, N1 = O(e) - (Wh, Wa, Wa, W) + O(XLO) - (eXoMs, N1, N2, eXoN3, Ny)
+0(e)d,, N3 + 0(1)0,, N3 + O(X%])[“)ZZNAL + O(e)(B1 — Ba) + O(1)0,,(B1 — Bs),
Ni(z,%1) =0,
where N1(0,£1) = 0 follows from the compatibility condition derived in [22].
Then one can estimate N7 as above to obtain

C
INUloro <Cell(Wa, Wo, Wy, Wa)lere + 5= ([ Nallone + [ Nafloze) + ClINsllcr.e.

Combining this with (4.16) shows Lemma 4.4.
Finally, we estimate N3.
Lemma 4.5. (Estimate of N3) N3 satisfies

C
[N3llcre < Cel|(Wy, Wa, Ws, Wy)|cra + YO(H(Nth)HcLa + [Nl c2.e)

22 Z2

1
+ Cell (R (52) = Pal G Dlen (-1 (@.17)

Proof. Due to (3.25), one has by a direct computation that

D1 ((U2 = *(p)D1Ws + UiUs DaWs3) + Do (UyUs Dy Wi + (U3 — ¢(p)) DaWs)

= O(%g) . (W1,6X0W27 Wg, W4) + O(%O) . (M1,€XOM2, Mg) + O(&)Nl + O(%O)Nz
+0(e)N3 + O(5:)Na + O(5:)0z, N,

Wg(l, 22) = Pil(Pe -+ EPOl()Z%o» — Pil(Pe + 6.P02()Z(f2))7

Ng(Zl, :l:l) =0.

It follows from this and (4.12) that

D1 (U2 = ¢2(p)) D1 N3 + UrUs Dy N3) + Do (UUs Dy N3 + (u3 — ¢2(p))DaN3)
=0, (0(e) - (M3, N3)) + 9., (O() - (N1, (eX0) ' N2, N3, Xy ' Nu) + O(XLO)aZQNLL)
+0(e) - (Wr, Wa, W3, Wy) + O(e) - (My, Ma,eM3) + O(X;?) - (N1,eXoNa, N3, Ny)
+0(5;)02 N1 + 0(€)0:, Na + O(5;)0:, Ns, (4.18)
N3(0,22) = O(e) - (W1, Wa, W3, X' W) + O() Ny + O(5 ) Na,
N3(1, 22) = O(e)Ws(1, 22) + O() (Po1 (2) — Poa(52)),
Ns(z1,£1) = 0.
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As in [22], it can be verified that the compatible condition holds at the corner points (0,+1) and (1, £1).
Furthermore, these compatible conditions guarantee the C1® regularity of solution.

So by the regularity estimates of second order elliptic equations with divergence forms in [1-2], one can
arrive at from (4.18) and (4.3)-(4.4) that

C
[N3llore < Cel|(Wr, Wa, Ws, Wy)|cra + 70(||(N1’N2)”C]’a + [ Nallc2.e)

1 Z9 z9
+C€H70(Pél(fo) _P62(X70))Hclva[—1,1]a

which shows Lemma 4.5.

Finally, we point out that all the estimates above can be improved.

Remark 4.1. Let (p, Ul, U2;§1(2’2)) = (ﬁg(’ro + Zl(XO +1-— To)), UJ(TO + Zl(X() +1-— TQ)), O;To) be
the background solution and (g, V1, Va;&2(22)) be any solution to the problem (3.22)-(3.25) as before. Then
the corresponding estimates in Lemma 4.2 and Lemma 4.3-Lemma 4.5 can be improved C>% and C>*
respectively. This fact is used to get the high reqularity estimates in Theorem 1.2. Indeed, by Proposition
2.1, in this case, (p,Uy,Us;&1(22)) is CH“-smooth. It follows that the coefficients of I(s;z) in (4.8) are
C>%-smooth. Hence, one may obtain the desired higher regularity estimates just following the proofs of
Lemma 4.2-Lemma 4.5.

Based on Lemma 4.1-Lemma 4.5, the uniqueness result of Theorem 3.1 (and thus Theorem 1.1) will be
proved in next section.

85. Proof of the Theorem 1.1.

Due to the equivalence between Theorem 1.1 and Theorem 3.1, it suffices to prove Theorem 3.1 only.
In §4, we have established a priori estimates for the gradients of the solution instead of the solution itself.
If trying to derive a priori estimates on the solution itself, one then can obtain from (4.6) and (4.15) that

[|Ms5]|cra < Cp||N2||g1.« + some positive terms with small coefficients

and
[IN2|lc1e < Cal|Ms||c1.e + some positive terms with small coefficients,

with C; and Cs being some order one positive constants. Thus, it seems difficult to get any useful informa-
tion on M3 and Ns. To overcome this difficulty, we derive the gradient estimates on the solution instead of
the solution itself. Furthermore, we also estimate N3 instead of M3 from the corresponding second order
elliptic equation (4.18) to avoid the difficulties caused by the constant P, in the variable end pressure.
Combining these estimates with properties of the background solution, we can derive the monotonic and
continuous dependence between the shock position and the exit pressure along the nozzle wall, which will
be crucial in proving Theorem 1.1 and Theorem 1.2.

Assume that there exist two solutions (p, Uy, Us; &) and (g, Vi, Va; &2) to the problem (3.22)-(3.25). First,
we intend to show &;(1) = £;3(1) holds by contradiction.

Otherwise, without loss of generality, one may assume

(1) < &(1). (5.1)

Under this assumption, it will be shown that the corresponding end pressures are different, which is
contradictory with (1.4). Indeed, we have first

Uy (Xo) 2t — 2
Lemma 5.1. Under the assumption (5.1) and My (Xo) = c(;_ (Xo) > P it holds that
0 0

p(€1(1),1) > q(&2(1), 1). (5:2)
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Proof. Note that the background supersonic solution (py (y1), Uy (y1)) satisfies

dpy  __po (Mo )*
dy, yi(1— (Mg )7)’
avgy Uy
dyr (- (My)?) (5.3)
_ y—1,
dMy _Mo (1+ T(MO )?)
dy yp(1-(My)%) 7
here M (y1) = 651(27((%;;) denotes the Mach number of the supersonic incoming flow.
0 1
This yields that for large X and y € (Xo — 1, Xo + 1),
o o 1
Py, Us s My )(y1) = (po , Uy » My )(Xo) + O(YO)-

In addition, ) )
dlpg U )"+ ) _ _paUg)” _
dyx J1 4

dlpoUs) _  poUg
g ==ty <o,

(5.4)

Next, we analyze the relation between the density p(y1,1) and the shock position (yi,1).
Since Us = 0 for yo = £1, then the Rankine-Hugoniot conditions (3.9) imply that

[pU1)(y1,1) =0, [pUf + PJ(y1,1) = 0.
This yields for the polytropic gas,
Alp(y1, 1)) = By1)p(y1,1) + Cy1) = 0, (5.5)
with B(y1) = Py (y1) + po (y1)(Ug (y1))? and C(y1) = (pg (y1)Uqg (y1))*.

It follows from (5.5) that
dp(yr,1) _ p(y1, 1)B'(y1) = C'(y1)
dy: p(y1, 1)(e(p(yr, 1)) = U?)

In addition, (5.4) shows that

Uy (1))?

Py 1B (1) — C' () = P01 o B 05 () pln. 1)

Next, elementary calculations show that 2p, (y1) < p(y1, 1) for y1 € (Xo, Xo + 1).
Indeed, set
f@) = A" = B(y1)a + C(y), (5.6)

then by the expressions of B(y;) and C(y1), it holds that

floo (1)) =0,  f(pg (1)) <0,  f'(x)>0forz >0,  f(+o0)=+o0,

so there exists a unique point p(yi,1) > py (y1) such that

f(p(y17 1)) = Oa
18



namely, (5.5) holds.
On the other hand, noting that M (y1) > M, (Xo) > 1 due to (5.3), one has for large Xo

_ ol I
f2pq (Y1) = po (Y1) By (2/1)(77 — (Mg (11))7) <0,
. _ 27+l _ 9
where one has used the assumption M (Xo) > .

Thus, one concludes that
p(y1,1) > 2pq (41)-

This implies that % < 0, and consequently

p(€1(1),1) > q(&2(1), 1).

Remark 5.1. It follows from the assumption (5.1) and Lemma 5.1 that W5(0,1) > 0 holds in §4. This
property will play an important role in proving Theorem 3.1.

Next, we establish some estimates which will be used to derive the monotonic property of the shock
position on the end pressure.

Lemma 5.2. For gy < L5

<3 in Proposition 3.2, the following estimates hold
0

I(Wr, W, X5 ' Wa, My, Ms)||ere < CW3(0,1)] + CEII;%(%A%) = Po(3)llere-1,
[(W, Ma)llore < 5[ W3(0,1)] +C€||%O(P61(%) — Pio()) lera-1; (5.8)
4

C 1 22
D INillee < < W0, 1)] 4 Cell 5 (P (F

22
— P, (= 111
- 0 Xo) oz(XO))HCl [-1,1]

Proof. As in the derivation of (5.5), one may obtain that

Ap(€1(1), 1) = B(&1(1)p(&2(1), 1) + C(&1(1)) = 0. (5.9)

Same expression holds for (g, V1, &2).
Then,

Alp(&1(1), 1)) = p(€2(1), 1) A(g(€2(1), 1)) = q(&2(1), DVE(&(1), 1)(p(61(1),1) — q(€2(1),1))
= p(&2(1), )(B(&(1)) — B(&2(1))) — (C(&:(1)) — C(&(1)))-
This, together with (5.4) and the definitions of B(y;) and C(y1), yields
Po (O)(Ug *(€)
3

agWs3(0,1) = (205 (€) — p(&1(1),1))Wa(1), (5.10)

for some & between £;(1) and & (1), and

oo = AEDEEE 1) = LD e 072, 1)
> a(&(1). 1)p((];(€1()€718);13()§;(ﬁfql()€2(1)’1))) — q(&(1), )VP(&(1), 1)

> 0.



Then under the assumptions of lemma 5.1, it follows from (5.10) and the R-H conditions for (p,U;) and
(g, V1) respectively that

(W1 (0, )] < CIW3(0, 1), [Wa(1)] < CXo[W3(0, 1), [W3(0,1)] < X£0|W4(1)|- (5.11)

Since

[Willere <IWi(0, 1) + [[Milcre + [[Nif[cra
[Wallcra <[[Ma][cra + [[Naflcre,

[Wsllore <[W3(0, )| + [ Ms]lcre + | Ns]lcre,
[Wallcra <[Wa(L)| + | Naflcr.e,

then one has by (5.11) that

[Willora < CIW3(0,1)] + [[M1]|cra + [ N1 cra,
[Wallcre < [[Mallcra + [ N2l cra, (5.12)
[Wallora < [W3(0,1)] + [[Ms]|cre + [ N3] o1,
[Willora < CXo|W5(0,1)] + [[Nallcr.a
On the other hand, it follows from lemma 4.2-lemma 4.5 that
[(N1, N2, N3)[|gra + || Nal[cz.a < Ce([|(W1, W, W3, Wy)|[cra + [[(Mi1, Ma, M3)||cr.)
Ce zZ9 22
+ EIIP&(E) - Pég(Xfo)ch[le},
C
[ (My, M3)[|cre < YOH(WLEXOWQ,W37W4)H01"’ + Ce||Mz||cr.a
C
+ Y(H(NMEXON2>N3)HC1’“ + HN4||C2,(1),
0
C
[Mz||cre < Cel|[(Wi, W3, Wa)|cria + YOHWzHcm
C
+ Ce([|(My, Ms, N1, Na)||cre + [[Nall o) + <~ [I N2l
0
This implies that
1 z z
I(N1, Na, N3)llore + | Nalloze < Cell(Wy, Wa, W, Wi)llor.a + Ccllo— (Poy (5=) = Poa()) lora 1,11,
Xo Xo Xo

C 1 2z z
(M1, Ms)[[cre < ~— (Wi, Wa, Wa) [ cre + Cel|Walloro + Cell < (Pgy (50-) — Pop(=2)) lera—1,1,
X() XO XO XO

2

C 1 22
[Mz|cr.a < Cel[(Wi, W3, Wa)|lcre + yOHWzHcm + C€Hf0(P61(X0) - Péz(fo))\\CLaH,l].

Consequently, combining this with (5.12) yields (5.8), which completes the proof of Lemma 5.2.
Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1.

Under the assumption of Py1(%) = Po2(5%), it suffices to prove

Wi =Wy =W3=W,; =0.
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It can be verified directly that (4.6) may be rewritten as

UrDiWs + pDy Wy = a; Wiy + O(X%J) - (Wh,eXoWa, W3) + O(e) - (Ma,eMs)
+O(1)N2 + O(E) . (]\/vg,]\/ll)7

— — 5.13
Cz(p)D1W3 + pU1D1W1 = (12W4 + O(XLO) . (W1,6X0W27 Wg) —+ O(Ez)Ml ( )
+0(e)N1 + O(; ) Na,
where
S ! 9., (pU1)
T Mot -G Ko+ 1- &)
(1 — 21)pUt €
- (61(22) + 21(Xo +1 = &1(22))) (€a(22) + 21(Xo + 1 — Ea(22))) + O(Xo ),
- 1 2 £
G2 = (Xo+1—&(22)(Xo + 1 — &(20)) (c*(p)0z,p + pU10:,Ur) + O(XO)'
Then, it follows from (3.21) and (5.13) that for every 2z € [—1,1],
0., W —a(2) W + O(Xio) (W, eXoWa, Ws) + O(c) - (eMy, My, eMz) + O(1) Ny
+ O(g) - (N1, N3, Ny), (5.14)
where
Xo+1-¢&(1
a(z) _W(% —Uray)
0z, p

- X0+1_£1(22)
(2(p) = UP)(&1(22) + 21(Xo + 1 = &1(22))) (€a(22) + 21(Xo + 1 — &2(22))) Xo”

Under the assumptions of Theorem 3.1, we have

1
321p>0, 821,0:O(f), U1>O, U1=O(1),
0

(p)=Uf >0, ¢*(p)—UF =0(1).

Hence, a(z) is a negative function in the subsonic domain. Then it follows from Remark 5.1, Lemma 5.2
and (5.14) that for every 2o € [—1,1]

0., W3 = a(2)Wy(z2) + b(2)W3(0,1) (5.15)

with [[b(2)[[ e < O(x5).
In addition, W4(1) < 0 due to assumption (5.1). This means that the term a(z)W4(1) is always non-
negative. Therefore, along the line z5 = 1, (5.15) yields

{ 821 W3 Z b(Zl, 1)VV3(07 1),
W5(0,1) > 0.
Thus, for suitably large X

Wg(zl, 1) > C’1VV3(O7 1) >0
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for some constant C; > 0. However, this contradicts to W3(1,1) = 0 due to the end pressure condition
(1.4).
This implies that the assumption (5.1) is not right. Thus, & (1) = £2(1) holds, namely, W,4(0,1) = 0.
As a consequence of this and (5.11), W3(0,1) = 0. This, together with Lemma 5.2, yields

Wi =Wy =W3=W;=0,

which completes the proof of Theorem 3.1.

Proof of Proposition 3.2

(3.26) and (3.27) in Proposition 3.2 follow immediately from Lemma 5.2. So it suffices to show (3.28)-
(3.29).

By Poi(%) = Po2(32) + C1, we get || Py (22) — Foo(32)llera—1,1) = 0 in (5.8). Thus, it follows from
the third inequality in (5.8) and (5.11) that there exits a generic constant C' > 1 such that

1
cWs(0,1)] < [W3(0, )| < CW3(0,1)].

First, we claim that & (1) < &(1) holds. Otherwise, it follows from the proof of Lemma 5.1 that
Wy (1) > 0 and W3(0,1) < 0. This, together with (5.15), shows that

{ 821W3 S b(Zl, 1)W3<0, ].) on Z9 = 1,

Mao.1) < 0 (5.16)

with [|b(z1,1)||pe = O(Xio)

Hence Wj3(1,1) < 0 for suitably large Xo, which contradicts to Po1(52) > FPo2(%2). Similarly, one can
obtain 51(71) < 52(71)

Next, we show that &1 (z2) < £2(22) for 22 € [—1,1]. Note that Wy(z2) = Wy (1) + Ny(Z2)(22 — 1) for some
Zy € [22,1]. By (5.8) and (5.11), || Ny||p= < CXy [W3(0,1)| < OXy2[Wy(1)|. Hence Wy(22) < 0 holds for
all zo € [—1,1] for suitably large X since Wy (1) < 0. So we complete the proof of Proposition 3.2.

In the end of this section, based on Lemma 5.1 and Remark 2.1-Remark 2.2 in §2, one can estimate
the differences of two shock positions and the related subsonic flows in the domain {(r,0) : Xy < r <
Xo+1,—00 <6 <6y} corresponding to two different background transonic shock solutions.

Proposition 5.3. Let (ﬁg:w (jg"i)(r), i=1,2, r € [Xo, X0+ 1] be two subsonic flows with corresponding
shock location ro; and constant exit pressures P; . (i = 1,2) respectively as described in Remark 2.2. Then
for large Xy, it holds that

{ 1(Pofo(r), Uy (1) = (Bt (), Ughy () |l oo (30, x50 41 < C| P2 — Prel,

(5.17)
[ro,2 —10,1] < CXo|Poe — Piel-

Remark 5.2. It follows from Proposition 5.3 that if the difference of two end pressures is of order O(g),
then the differences of related shock positions and extended subsonic flows will be of order XoO(e) and O(g)
respectively. In addition, it also implies that the assumptions in Theorem 1.1 are plausible although the
actual shock position and further the related background transonic flow are not known in advance for such
an end pressure condition P, + O(g).

Proof. Without loss of generality, we assume that Xy < o2 < ro1 < Xo+ 1. Then

Xo—r10,1 Xo—rop2

< 0.
X0+1—’I“071 Xo+1—7“0’2

Xo — 10,2
X() -+ 1-— 7’0’2

Wl(Zl) = US:Q(TO’Q + Zl(XO + 1-— TO’Q)) - U(jﬁ(",l + Zl(XO +1- 7‘0’1))7 z1 € L,

Ws(21) = pgo(roz +21(Xo+1—7102)) — pi1(ron +z21(Xo+1—r01)), 21 €L,
Wi =192 —"70,1-

Denoted by L the interval | ,1]. As in §4, we set
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Since (pg,(r), Ug(r)) (i = 1,2) satisfy

dpg (1) ﬁgi(r)(UJi(T))Q
, - 0 : , r € [Xo, X 1
& OG0 —eGLmy SRRty
dUd:-(r) _ Ud’:i(T)CQ(ﬁa_’i(T)) r € [Xo, Xo + 1]

dr r((Ug ()2 = (g, (r)

then it follows from Remark 2.2 and a direct computation that

where

dw. _
=0 (WL Wa) +bi(2)Wa, =z €L,
21
e (5.18)
dzl3 =O0(Xg ") - (Wi, Wa) +b3(20)Wa, 2z €L,
b1(z1) = — Xo+1 ﬁ(rlcQ(ﬁ(JJr,l)
(ro2 +21(Xo + 1 =10.2))(rox + 21(Xo + 1 = 7r01)) (Ug)2 — c2(p4)
bs(z1) = Xo+1 P51 (Us)?
(ro2 +21(Xo +1=10.2))(roa + 21(Xo + 1 = 10.1)) (U)% — 2(p¢,)
Obviously, bz(z1) < 0 and b;(z1) = O(X; ') (i = 1,3) for large Xo.
As a consequence of Wy < 0, Lemma 5.1 and (5.11), one has
C
W5(0) >0,  [W(0)] <CIW5(0)[, Wyl < CXo[W5(0)[,  [W5(0)] < fO|W4|~ (5.19)
Thus, it follows from (5.18)-(5.19) and the positivity of b3(z1)W, that
Wa(21) 2 C(W3(0) = Xg [Willz~po,p), 21 €[0,1],
IWillzeego,1) < C(Xg [ Wall poe o1y + W3(0)),
Wl (0,1 < C(Xg M Wil oo go,0) + Wa(0)).
This yields that
{ Wi(21) > C(W3(0) = X5 *[Wallz=), 2 €[0,1],
[WsllL<po,1) < CW3(0).
Therefore, W5(2z1) > CW5(0) for z; > 0 and further W3(0) < CW3(1) hold true.
On the other hand, by (5.18), one has
Willes.awy < COIWL(0)] + Xg  [Wal + X5 ' [Wal|c2e (), (5.20)
[Wslls.any < C(Ws(0)] + Xg {Wal + Xg Wi llezer))-
Combining (5.20) with (5.19) and 0 < W5(0) < CW3(1) yields
(W1, Ws)|cs.ar) < ClW5(1)]. (5.21)

This, together with [Wy| < CXo|W3(0)| in (5.19), shows

[Wa| < CXo|W5(1)],
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which is the second inequality in (5.17).
Next, we prove the first estimate in (5.17).
In fact, Remark 2.1 in §2 implies that

1(Pey) s (Ugh))lleso x0,x0+1) < C X

Thus,

||p(f2(7”) - p(j:l(r)||c3v"[Xo7X0+l]

~ r—17T02 ~ T —To0,2

<|| P —= (X 1- - pt —= (X 1-— o
<||1 Py (ro2 + Xorio 7‘0,2( o+ r0,2)) o1 (o1 + Xorio 7‘0,2( 0+ 1—701))llcae(xo,Xo+1]

A T —To0,2 A T —To,1

Pr — = (X, 1-— - pt — (X 1-— o

+ ([P (o + Xo1io 7“0,2( o+ r0,1)) — Py (ro1 + Xo1io ?”0,1( o+ 70,1))|lc3.2 (X0, X0+1]

<C(IWslls.o ) + 1P lsaxo,x0+11 1 Wal)
<C|Ws(1)]. (5.22)

Analogously, Ugr 5 — Ugr 1 can be estimated. Thus the proof of Proposition 5.3 is completed.
§6. Proof of Theorem 1.2

In this section, based on Theorem 1.1 and the related estimates given in §4-85, we will show the existence
result in Theorem 1.2. First, note that if the transonic shock is required to go through some fixed point
on the wall, then as in [26], one can prove that the problem (1.1) with (1.2)-(1.3) and (1.5) has a unique
transonic shock solution when the end pressure P, +eP;(6) in (1.4) is adjusted by an appropriate constant.
It follows from this that if one can show that there exists a point at the wall such that the shock goes
through this point and the corresponding adjustment constant on the end pressure is zero, then Theorem
1.2 will be proved.

Next we state an existence result when the shock is assumed to go through a fixed point on the wall,
whose proof will be given in Appendix.

Consider the 2-D nozzle and the supersonic incoming flow as given in §1. Let (29, 20tanfy) be a given
point on the wall of the nozzle with ro = x0v/1 + tan26y € (Xo, Xo + 1). Denote by P. € (P;, P,) the
constant exit pressure when the shock position is given by r = rq with P; and P, being given in Proposition
2.1 of §2. Then one has

Theorem 6.1. Under the assumptions as in Theorem 1.1, there exists a constant Cy such that the
transonic shock problem (1.1) with (1.2), (1.8) and (1.5) has a solution with the following properties

(p+au;L7u5L;n($2)) € 03’(17 (61)
n(aftanbo) = a9, (6.2)
Pt =P, +ePy(0) +Cy on r=Xo+ 1. (6.3)

Moreover, the solution satisfies the analogous estimates in Theorem 1.1. In particular, |n(za) — o] < Ce
holds true.
In terms of the coordinates (y1,y2) in (3.7), Theorem 6.1 can be restated equivalently as follows
Theorem 6.1'. Under the assumptions in Theorem 6.1, there exists an appropriate constant Coy such
that the free boundary value problem (3.14)-(3.15), (3.9), and (3.14) has a C*® solution (p,Ur,Us;§)
satisfying
£(1) = ro, (6.4)

P(p) :Pe+5po(%)+co on oy =Xo+1 (6.5)
0
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Moreover, the solution admits the same estimates as in Theorem 3.1. In particular, |n(yz) — ro| < Ce.

It follows from Proposition 3.2 that the adjustment constant Cy in Theorem 6.1 (Theorem 6.1") depends
continuously on the position where the shock intersects with the wall of the nozzle. More precisely, one has

Lemma 6.1. (Continuity and uniqueness)

(i) Assume that two variable exit pressures Py and Py have the form (1.4) and satisfy P, = Py + Cy
with a constant Cy. Let (p,Ur,Us2;&1) and (g, Vi, Va;€2) be solutions to the free boundary value problems
(8.14)-(3.15), (3.9) and (3.14) corresponding to the exit pressure P, and Py respectively and satisfy the
corresponding estimates in Theorem 3.1. Then

Col < lE1() - &) (6:0)

with a uniform constant C'.

(ii). If the transonic shock goes through a fixved point on the wall of the nozzle, then the corresponding
exit pressure is uniquely determined. Namely, if there exist two constants Cy; and Cs such that the end
pressures of two solutions are P, = P, + ePy(0) + C1 and P,=P, + ePy(0) + Co, then Cy = Cs.

Remark 6.1. By Theorem 3.1, the solutions corresponding to the variable exit pressure Py and Py are
unique respectively.

Based on Lemma 6.1, we now prove Theorem 1.2.

Proof of Theorem 1.2.

Denote by P, = P. — /Xpe and P, = P. + /Xy¢ the exit pressures of the symmetric transonic shock
solutions with corresponding shocks at y; = r1 and y; = ro respectively. Then it follows from Remark 5.1
and the uniqueness result in Theorem 1.1 that r1 > rs.

For each fixed point (y;*,1) with y;* € [ra,71], it follows from Theorem 6.1’ that there exists a constant
Cy such that problem (1.1) with (1.2)-(1.3), (1.5) and the end pressure P = P, +cPy(0) + Cp has a unique
solution (p, U, Us;&(y2)) which satisfies (1) = y1* and the estimates in Theorem 3.1.

If y1% = 7y, then this corresponding adjustment constant, Cy, must be positive. Indeed, if not, then
Cp < 0. Applying the estimate (3.27) to (p, U1, Us;&(y2)) and the background solution (g, Vi, Va;r2) which
corresponds to the constant end pressure P, and noting that Wy(1) = 0, one has

[Wsl[L~ < C€H*Po( )Ilm o« < Ce. (6.7)

On the other hand, W5(1,1) = P, — (P, + EPo(%O)) > C+v/Xpe > Ce, which contradicts to (6.7) for
large Xg. Hence, Cy > 0. Similarly, for y3* = 7o, the corresponding adjustment constant, Cy, must be
negative. It follows from Theorem 6.1 and Lemma 6.1 that Cy is a Lipschitz continuous function of y;x*,
i.e. Cp = Cy(yi*). We have shown that Cy(re) > 0 and Cy(ry) < 0, thus there exists a y{ € (r2,71) such
that Cp(y?) = 0. Consequently, it follows from Theorem 6.1 that the problem (1.1)-(1.5) has a transonic
shock solution (P(y),U1(y),Uz2(y);€(y)) and the transonic shock passes through (y9,1). By Theorem 1.1
such a solution is unique. Thus Theorem 1.2 is proved.

Appendix

In this section, we will focus on the proof on Theorem 6.1’. In [26], for almost parallel nozzle walls and
a special exit pressure boundary condition, when the shock is required to go through a fixed point, it is
proved that the problem (1.1) with the related boundary conditions has a solution in some weighted Holder
space if the exit pressure is adjusted by an appropriate constant. It should be noted that the exit boundary
in [26] is straight, this makes it possible to straighten out both the solid walls and the exit of the nozzle
simultaneously by a Langrange transformation. This ingredient plays an important role in the proof of the
main result in [26]. However, in our case, the exit of the nozzle is curved, so it is related to the solution
itself under a Langrange transformation. Thus, in order to overcome this difficulty and also obtain higher
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regularities (than weighted Holder regularity) of the solution, we will use a different method. In particular
the reformation of the system (1.1) in §3 will be used.

Before starting to prove Theorem 6.1’, we now state a regularity result for the Laplacian equation with
mixed boundary conditions satisfying suitable compatibility conditions at the corners.

Lemma A.1. Let

Au(zy, 22) = f(x1,22) in Q=(-1,1) x (-1,1),
u(zy,x2) = g1, 22) on X9 = %1, (A1)

Op,u(z1,22) =0 on r, = %1,

where f € C*%(Q),g € C**(Q) and 0, g(£1,£1) = 82 g(+1,+1) = 0,0,, f(£1,z2) = 0, then the equation
(A1) has a unique solution u(zy,z2) € CH* ().

Proof. First it is noted that the Dirichlet boundary is not empty, so it follows from [16] that (A.1) has
a unique solution

u € CH Q)N C({£1} x (=1,1)) NCH((=1,1) x {£1}) N C°(Q).
To obtain the higher regularities of the solution at the corners, one can use the standard reflection

method such as in [1-2] or [6]. Without loss of generality, we deal only with the corner (—1,—1) as an
example since the treatments on other corners are the same. Set

Uz, 20) = u(z,2), —-1<7 <1,

b U(—2 - Il,x2)7 -3 < T S —1,
Fla1,29) = flzr,@2),  —1<a <1,

n f(_2_.%'17x2), _3<x1 S —1,
o { A s

b g(_z_xlax2)7 _3<.T1 S—l

Then it follows from the compatibility conditions of f and g that F(x) € C** G(x) € C* and
U(zx), F(x),G(x) satisfy

{ AU(z1,22) = F(21,22) in Q=(-3,1) x (-1,1), (A2)

U(zy,22) = G(21,x2) on Ty = £1. ’

So it follows from the local regularity estimates in [11], that U(x) € C** in a small neighborhood of the
point (—1,—1). Hence, u(z) € C**(Q) admits the following estimate

||U||c4~o<(§z) < C(Hg”C‘*ﬂ(Q) + Hf||c2~a((z))~

Thus, Lemma A.1. is proved.

Lemma A.2. If the system (3.8), with (3.9) and (1.4)-(1.5), has a solution (p(y),U1(y),Us2(y),&(y2))
with (p(y), U1(y), Uz2(y)) € C> and £(ya) € C+*, then the following compatible conditions at the corners
hold )

Dy, p(y1,£1) = 0,03 p(y1,£1) = 0,

ayzUl(yh il) =0,
Ug(yh :tl) =0 82 Uz(yl, :|:1) = 07

? Y2

€/(21) = 0,60) (1) = 0.

(A.3)
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Proof. It follows from boundary condition (1.5), the jumping condition and (3.8) that
Ua(y1,%£1) = 0,0y, p(y1, £1) = 0, (£1) =0.

Applying &'(y2)0y, + 0y, to the first and the second equations in (3.9) yields
Oy, U1 (&(£1),£1) = 0,0y, p(£(£1),£1) = 0.

Thus, in terms of the second equation in (3.8), 0y, U1 (y1,£1) satisfies

U8y, (0, Un) + (0, Ur + 328,,U02)0,,U1 =0 on yp = +1,
8y2U1(§(i1)7 il) = Oa

which implies 0y, U1 (y1, £1) = 0.
In addition, differentiating the first equation of (3.8) with respect to y2, one can get

92, Us(y1,£1) = 0.
And taking &'(y2)0y, + 0y, on the third equation of (3.9) twice yields

95,6(+1) =0.

The other equalities can be obtained similarly, and then the proof of Lemma A.2 is completed.

Next, we reformulate the problem in Theorem 6.1’ for easy presentation.

Let (p, U1, Us;€) be a solution to (3.8)-(3.9) such that £(1) = 7. In terms of the transformation (3.19),

the domain
wi ={(,y2) : &(y2) <y < Xo+1,-1 <y <1}

is transformed into
By ={(21,22) : 0 < z1 <1, -1 < 29 < 1}.

(A.4)

Set w = [% Then it follows from a direct computation that the system (3.8) with (1.4), (3.6), (3.16)

and (3.18) is equivalent to the following problem

5/(22) _ 5(22)(/)U1U2)(§(22)722)
Xo((pU3)(&(22), 22) + P(E(22), 22) — Py (£(22)))
£(1) =9
and
Ow + M 0ap = Fi(p, U1, U, w; §),
aQUJ — )\281p - F2(97 U17 Uva;§)7
P(p) = Py (ro) + G2((U2)?, P~ = Py (ro), U~ — Uy (ro)) on 2 =0,
P(p) = Pe +ePo(32) on 21 =1,
w=20 on zo = *£1,
where
), = Xo (Xo+1—r9) (pT(ro) T'o 1 A(pt(ro) 1)
1 — 9 )

2= Xo 57 (ro) (Ko + L= 10) (U} (ro))?
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and

Fi(p, Uy, Uy, w;€) = 1;) Lp— p(§(z2)X.£(211(_Xz()lf/l(zj)g(@)))(Cj](?) —w?)d,,p

( o e ) (vgp o) - M)a””’ &8
Fy(p, Uy, Up, wi€) = <( Z;) }?f‘;”;(‘f)(p D 2(15) —1)—)\2>8z1p
(B B

After determination of w and p, U; can be obtained through the Bernoulli’s law

Xo(z1 — 1)€'(22)Us Xo(Xo +1—&(22))Us > 2 _
O+ oy o+ 1= €)= ¥ o) 1 (% +1 = € 0o GUEL+ 07 +1(0) =

(3UR(L+ w?) + h(p))(E(22), 22) = (30 +q1)* + 50Uy + G1)?

+h(pg (ro) + G2) (£(22), 22),
(A.10)

here g;(7 = 1,2) in (A.6) and (A.10) have the analogous expressions as in (3.6).
With a slight abuse of notations, we still set

{ p(z) = p(&(z2) + 21(Xo + 1 = £(22)), 22),
(Z) ( (ZQ) + Zl(XO +1-— (ZQ))722)7 1= 1, 2.

Now we begin to prove Theorem 6.1’. This will be achieved by using of the contractible mapping theorem.
To this end, we introduce the iteration spaces as

So = {€(22) € C*[=1,1] : ||€ = rollcar-11) < 0,€(1) = 7o, (£1) = P (£1) = 0} (A.11)

and

Zs ={(p(2), U1(2), U2(2)) : [[(p1U1) — (8¢ U ) (ro + 21(Xo + 1 = 10))lcae () + 1U2llcoe (e, < 6,
8Z2U1(Zl, :|:1) = 07 U2(2’17 :tl) = 8§2U2(2’1, :l:].) = 0,
Dzyp(21, £1) = 82, p(21, £1) = 0}, (A.12)
where ¢ > 0 and § > 0 will be determined later on.
The proof of Theorem 6.1’ will be divided into five steps.

Step 1. Approximate Shock.
For every (q,V1,Va2) € Zs, the approximate shock is defined as follows

{ §(z) = §(z2) (qV1V2)(0, 22)

Xo P(q(0,22)) — Fy (£(22)) + (aV3)(0, 22)” (A.13)
£(1) =ro.

Obviously, (A.13) has a unique solution £ = £(z2) € C*%([—1, 1]), moreover, one has
g =0, ¥(£1)=0, (A.14)

and
1€(22) = rollok.aj—1,11 < ClIVallor-1.0 8, k=2,34. (A.15)
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If § > 0 is chosen such that
CH <o, (A.16)

then (A.15) yields
[€(22) = 7rollcaaj—1,1) < o (A.17)

namely, £(z3) € S,.
Step 2. Approximate p and w.
In this Step, we will look for the solution (p(z),w(z)) to the following problem

A1w + Mdap = Fi(q, Vi, Va, 173 €),
Dyw — Aadip = Fa(q, Vi, Va, 125 €),
p = B (ro) + Ga(VE(0, 22), Py (€(22)) — Py (ro) Uy (€(2)) — Uy () on 2 =0,  (A8)
P(p) = Pe +ePo(32) + Co on z1 =1,
w =10 on zo = %1,
where Fy and F» are defined by (A.8) and (A.9), and Cj is a constant to be adjusted so that (A.18) has a

solution.
Let (p1,w1) and (p2,ws) solve

drwy + Mdapy = Fi(q, Vi, Va, {5€),
Oawy — A201p1 = 0,

p =0 on z1 =0,

(A.19)
p =0 on z1=1,
w; =0 on zo = —1,
w; =0 on 2o =1
and
O1wa + A\ Oapa =0,
82w2 - )\281/02 = FQ(Q? Vla X/Qa %7£)7
p2 = iy (ro) + G2(V5 (0, 22), Py (€(22)) — Py (r0), Uy (&(22)) = Uy (r0))  on 21 =0, (A.20)
P(py) =P, + by %20) +Cy on 21 =1,
we =0 on 29 = —1,
we =0 on 29 =1

respectively. Set w = wy + wq and p = p1 + p2. Then (p, w) solves (A.18).
To solve the elliptic systems (A.19) and (A.20), one may introduce potential functions ¢1(z) and ¢2(2)
as follows

0141 = wi, 021 = Aap1, ¢1(0,0) =0 (A.21)
and

o =—Aip2, Qoo =w2,  ¢2(0,0) =0. (A.22)
Then (A.19) becomes

2 A1 92 o Va. 7
{ 0101 + 350301 = Fi(q, V1, Va, 2:€) . By, (A.23)
¢1=0 on  OF,
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while (A.20) is changed into

2072 + D3¢s = Fo(q, Vi, Vo, {%;€)  in By,

d1¢2 = =M1 (pg (r0) + G2(VF(0, 22), Py (£(22)) — Fy (r0), Uy (€(22)) = Uy (r0)))  on 21 =0,
Oy = -\ PP, +ePy(Z) + Co) on 21 =1,

Oapo =0 on 29 = —1,

Oapo =0 on 2 =1,

$2(0,0) = 0.

(A.24)

First, due to (A.8), one can check that Fy(q, V1, Va, %; ) € C?**(E,) and Fy(z1,£1) = 02F)(2,%1) =0,

so the compatible conditions for (A.23) are satisfied. Then, similar to the proof of Lemma A.1, (A.23) has
a unique solution ¢;(z) € C**(E,) and admits the following estimate

Va
lwilles.e e,y + llpilles.ery) < d1llcre e,y < ClIFi(g, Vi, Va, A ez sy

1 «
< O(fo + 6+ 0)|[Vallcao(myy + O0) g — 3 (ro + 21(Xo + 1 — 7o)l cza (i)
+ 0(5 + (J')HVl — UJ_(TO + Zl(X() + 1-— T‘Q))||C3,cx(E+) + O((S)Hf — T‘()||C4,a[_171]

< 0(Xi0 45405 (A.25)

Furthermore, the following compatible conditions hold
D3¢1(21,£1) = 010501 (21, £1) = 031 (21, £1) = 0. (A.26)

Next we solve the problem (A.24).
It follows from (A.9) and (g, V1, Va) € Z, that

Ve
F2(Q>V17V27 V?a&) € CQ7Q(E+)7 019252(0722) S C3,a[717 1]7 81¢2(1,22) S Cg’a[fla 1}

and

%B@WJ%%KX%iU=Q 5 (01¢2)(0, £1)) = 95 (91¢2) (1, £1)) =0, k=1,3.

In addition, it can be verified directly that the background solution (g (ro + 21(Xo + 1 — ro)), U (ro +
z1(Xo+1—170)),0; TO) satisfies

202y + 03¢5 = Fa(pf (ro + 21(Xo + 1 —10)), U (ro + 21(Xo +1—10)),0,0,70)  in  Ey,
a1<£2 = —A1ﬁ3_(ro) on z1 =0,

gy =-MPHP) on oz =1,

(929272 =0 on 29 = —1,

82@32 =0 on 29 =1,

$2(0,0) =0,

(A.27)
where 81¢2 = —/\1/33(7“0 + Zl(X() +1-— ’r‘o)), 82¢2 =0.
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So as in [11], the solvability condition for (A.24) is

V5 . ~
// (FQ(Q7V1a%a %75) - FQ(p(T(TO + Zl(XO +1- TO))) UJ(TO + Zl(XO +1- 7"0)),0,077"0)>d2
By

= )\2/ <§2(‘6(0,22),PJ(§(22)) = Py (r0), Ug (&(22)) = Ug (ro)) + P~ (Pe)

-1

- P (P, +5P0(X )+ Co))dzs. (A.28)

It is easy to check that (A.28) has a unique solution Cy. Hence, (A.24) has a unique solution ¢ €
C**(E,) with the following estimate

lwallcs.o (i) + o2 — B¢ (ro + 21(Xo + 1 = 10)) e, + |Col
< Cllg2 — dollcin(m,)

v X
< C(||F2(q,V1,V2,77 &) — Fa(pg (ro + 21(Xo + 1 —10)), Ug (ro + 21(Xo + 1 —10)),0,0,70) | 2.0 (8,

+[192(VZ (0, 22), Py (&(22)) = Py (r0), Ug (§(22)) = Uy (7‘0))||03a<E+>+6||P0(X Mes.e-1,1)

1 R
< O(f + )€ = rollcaaj—1,1) + O Vallcsa(p,) + O(* +0) Vi = Uy (ro + z1(Xo + 1 —10)) || c20 ()

1
+O(X +6+0)llg—pg (7‘0+Z1(X0+1—7‘0))||C?Q(E+)+C5||P0(X MNese(my)

1

< O3 +8+0)(0 +8)+Ce. (A.29)

Meanwhile, it follows from (A.20)-(A.24) that the following compatible conditions hold
82(;52(21, :|:].) = aggbg(zl, :|:1) — 8182(;52(21, :|:].) = 6163@52(2’1, :l:].) — 0 (A30)

Due to (A.21), (A.22), (A.25)-(A.26) and (A.29)-(A.30), it holds that

. 1 1
Hp—pg(ro—kzl(Xo +1 _TO))”CSJX(EJF) + ||IUH03,Q(E+) +|Co| < O(fo +5+0’)(5+O(f0 +0d)o+Ce (A.31)
and
Oop(21,£1) = 83p(21, £1) = 0, w(z1,+1) = Qw(z,£1) = 0. (A.32)

Step 3. Approximate U;.
By (A.10), U; is obtained by solving

o) + 1Ko 41— €))% ¥ &) + (Ko 71— €z ) GUELH0) +h(p)) =0,

(v Xo(z1 — )€ (22) V2 Xo(Xo+1—¢&(22))Va
(%U (14 w?) + h(p))(0,22) =

uumeKWMHﬁMm@wmwm—mmmmwm—wmw

+h(pg (r0) + G2(V3 (0, 22), Py (£(22)) — By (70), Uy (£(22)) — Uy (r0))-

(A.33)
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It follows from the characteristics method and the analysis in §4 that (A.33) has a unique solution
U, = Ui(z) € C>*(E,) such that

UL = U (ro + 21(Xo + 1 = r0)) [l os.e i)

R 1
< O)(llp = 45 (ro + 21(Ko + 1= 10))n ) + Oz + D) = rollosn(v.a) + O + o) wlenoen

< O(Xi0 +6+O—)5+O(XL0 +d)o + Ce. (A.34)

Due to (A.32) and the definition of =5, one can check from (A.33) by following the proof of Lemma A.2
that
32U1(21, :El) =0. (A35)
Step 4. A mapping on =;.
Note that the coefficients of € in (A.31) and (A.34) depend only on the background solution and then

are uniformly bounded. Hence, one can select proper constants o = O(1)e > 0 and 6 = O(1)e > 0 such
that the solution (p, Uy, Us; &) obtained in Step 1-Step 3 satisfies

€ = rollctag—1,1) < 0.

and
[(p1U1) — (¢, U ) (ro + 21(Xo + 1 = 10))lcs.a ey ) + U2l coa e, ) < 6.

This, together with (A.14), (A.32) and (A.35), shows that
€E Sa'a (p(zlaZQ)aUl(th?))UQ(zl?ZQ)) € E(S'

Therefore, for each (g, V1,V2) € Es, by use of Step 1-Step 3, we can define a mapping T from Z; into
itself by

T(q,V1,V2) = (p, U1, Ua). (A.36)

In order to prove Theorem 6.1’, it suffices to show that the mapping 7T is contractible in C%(E,).
Step 5. Contractible estimate on the mapping 7'
For any given (p,U;,Uz) and (g, V1, Va) in Es, set

T(p,U1,Us) = (p,U1,Us), T(q,V1,Va) = (¢, V4, Va).

The corresponding approximate shocks &1 (22) and €2(22) can be obtained from (A.12).

Asin §4, define W;(i = 1,2,3), M;(j = 1,2, 3), Ni(k = 1,2, 3) corresponding to (p, U, Us) and (¢, V1, V2),
and define W;(i = 1,2,3,4), M;(j = 1,2,3), Np(k = 1,2,3,4) in terms of (p,Uy,Us; &) and (G, Vi, Va; &2).
In addition, set W5 = % — % and Wy = %f — ‘%

We first establish some estimates on 7.

By (A.13), one has

- _ ~ 4 x 5N\ n _
{ Ni(20) = O(8)W1 + O(1)Wa + O(8)Ws + O(-5-) Wi (=L1), (A.37)

Wa(1) = 0.
This implies that

IWallcsop—1,1) < COllWillcza(z,y + ClWallgza(i, ) + COlWsll g2z, )- (A.38)
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y (A.18) and (A.28), one has

O Ws + M0 W5 = O( )W1 + O( 75 SHWs + O(5%)Wy + O(X YW

Xo 0

+O(5)M3+O( )N3+O( )N4,

82W5 - )\281W3 = O(X2 + = )Wl + O( + 52)W3 + O( 5 Y(S O'(S)W4 + O( (5)W5

+O(8)M; + O(8)N; + O(0)d,, Wy + 0()§ )N,
W3 = O(0)W1 + O(0)Ws + O(00)Ws + O(5= + 08)Wa+ O(6)Ns  on 2z =0,
Wy = O(0)W1 + O(0)Ws + O(00)Ws + O(5= + 08)Wa+ O(6)Ns  on 2z =1,
Ws=0 on zo = —1,
Ws=0 on z9 = 1.

(A.39)
So following the arguments in Step 2, one can arrive at
Wallezaz,y + 1Wsllezai,) < C( + o) Willeza(z,y + CollWallza(s,)
+ C(fo + 5)||W3||c2»a(E+) + C(fo + 5)||W4||02va[—1,1] + C(fo +o+ 5)HW5HC2’Q(E+)'
It follows from (A.38) and the expression of W5 that
Wallcza,) + 1Wsllc2a,) < C(* +0)[Willgze (g, ) + C( ~to+ )IWellc2.e i, )
+C’(Y0 +5)||W3||C2,Q(E+). (A.40)

In addition, due to (A.33), one can calculate to obtain
- - - 1 - . -
Wy = 0(5)W2+O(1)W3+O(06)W1+O(U)W2+O(05)W3+O(f+05)W4+0(5)N4+0(6)(ﬁ—5), (A.41)
0

where 8 and f stand for the starting points from the transonic shock of two characteristics respectively,
whose definitions are given in (4.8).
As in Lemma 4.4, one can obtain the following estimate

18 = Blleza(a,y < COIWillcza(a, + IWallczas,) + 81 Wallc2o(-1,17)- (A.42)
Then, it follows from (A.41) and (A.42) that

Wiz, ) SCOlWallo2ia (i, ) + ClIWallcza(a, ) + Cl06 + 8)|Willg2a (i, ) + Clo + 8)[Wallcza(a, )

. 1 .
+ CU(S“Wg“Cz,a(E+) + C(Yo + 5)HW4HCS,Q[,1J].
This, together with (A.38) and (A.40), yields

1 P 1 -
Willcza e, <Cl5 + WL Wa)llczas,) + Cls + 0+ 0)IW2llcaes,)- (A.43)
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Combining (A.38) with (A.43) yields
1 s 1 -
(W, Wa, W3) || c2.0 () < C(fo + o) [[(W1, Wa) | c2.0(02) + C(fo + 04 6)[Wal| g2
C -
+ E||W4||c2wa[—1,1}o
Thus, combining this with the estimate (A.38), we arrive at

1 - 1 -
(W, Wa, W3) |l o200y < C(fo + o) [|(W1, W3) |l o2 () + C(fo + 0+ 6) W2l c2.0q)- )
A.44

This shows that the mapping 7' is contractible in C*“(E,.) for suitably small §, o and X L In fact, as

stated in Step 4, we can choose ¢ = O(1)e > 0 and 6 = O(1)e > 0.

Therefore, the system (A.5), (A.6) and (A.10) has a unique solution

(p(2), Ur(2), Ua(2); €(22))

when the exit pressure condition in (A.6) is adjusted by a unique constant Cy (determined by the integral
equality (A.28)). Since the coordinate transformation (A.4) is reversible and keeps the equivalence of C*4<
norms between the two coordinates (z1, z2) and (y1,ys2) for rg € (Xo, Xo + 1) and suitably small o = O(¢),
then we finish the proof of Theorem 6.1’ and Theorem 6.1.
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