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In the book [8], Courant and Friedrichs described the following transonic shock phenomena in a de Laval
nozzle: Given the appropriately large receiver pressure pr, if the upstream flow is still supersonic behind
the throat of the nozzle, then at a certain place in the diverging part of the nozzle a shock front intervenes
and the gas is compressed and slowed down to subsonic speed. The position and the strength of the shock
front are automatically adjusted so that the end pressure at the exit becomes pr. When the end pressure
pr varies and lies in an appropriate scope, in general, it is expected that a curved transonic shock is still
formed in a nozzle. In this paper, we solve this problem for the two-dimensional steady Euler system with a
variable exit pressure in a nozzle whose divergent part is an angular sector. Both existence and uniqueness
are established.
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§1. Introduction and main results

This paper concerns with the transonic shock problem in a nozzle when the given variable end pressure
at the exit of the nozzle lies in an appropriate scope. In [22-25], the authors have studied the well-posedness
or ill-posedness of a transonic shock for the supersonic flow through a general 2-D or 3-D slowly-varying
nozzle with an appropriately large exit pressure. However, the end pressure or the position of the shock
in [22-25] are either induced by the appropriate boundary conditions on the exit or determined by the
ordinary differential equations which are resulted from the assumptions on symmetric properties of the
supersonic incoming flow, the nozzle walls and the end pressure. In this paper, under the more natural and
physical boundary condition (i.e. the variable exit pressure in a suitable scope), we will study the transonic
shock problem when a supersonic flow goes through a 2-D curved nozzle with a straight diverging part. In
particular, we will verify the following transonic shock phenomena for the steady Euler flow as illustrated
in [8]: Given the appropriately large receiver pressure pe(x), if the upstream flow is still supersonic behind
the throat of the nozzle, then at a certain place in the diverging part of the nozzle a shock front intervenes
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and the gas is compressed and slowed down to subsonic speed, moreover, the position and the strength of
the shock front are automatically adjusted so that the end pressure at the exit becomes pe(x).

To simplify the presentation, we only consider the isentropic gases. In fact, by a slight modification,
our discussions are also available to the non-isentropic case. The steady isentropic Euler system in two
dimensional space is ⎧⎪⎨⎪⎩

∂1(ρu1) + ∂2(ρu2) = 0,

∂1(P + ρu2
1) + ∂2(ρu1u2) = 0,

∂1(ρu1u2) + ∂2(P + ρu2
2) = 0,

(1.1)

where u = (u1, u2), ρ and P are the velocity, the density and the pressure respectively. Moreover, the
pressure function P = P (ρ) is smooth with P ′(ρ) > 0 for ρ > 0, and c(ρ) =

√
P ′(ρ) being the sound speed.

For the ideal polytropic gas, the equation of state is given by

P = Aργ ,

here A and γ are positive constants, and 1 < γ < 3 (especially γ ≈ 1.4 with respect to the air).
Assume that the nozzle walls Γ1 and Γ2 are C4,α−regular for X0 − 1 ≤ r =

√
x2

1 + x2
2 ≤ X0 + 1 (X0 > 0

is a fixed constant and the constant α ∈ (0, 1)) and Γi consists of two curves Γ1
i and Γ2

i with Γ1
1 and Γ1

2

including the walls for the converging part of the nozzle, while Γ2
1 and Γ2

2 being straight line segments so
that the divergent part of the nozzle is part of a symmetric angular sector. Assume that Γ2

i is represented
by x2 = (−1)itgθ0x1 with x1 > 0 and X0 < r < X0+1, where 0 < θ0 < π

2 is sufficiently small. Furthermore,
it is assumed that the C4,α−smooth supersonic incoming flow (ρ−0 (x), u−

1,0(x), u−
2,0(x)) is symmetric near

r = X0 so that ρ−0 (x) = ρ−0 (r) and u−
i,0(x) = U−

0 (r)xi
r (i = 1, 2) near r = X0(this assumption can be easily

realized by the hyperbolicity of the supersonic incoming flow and the symmetric property of the nozzle
walls for X0 < r < X0 + 1, one can see [13]).

Suppose that the possible shock Σ and the flow field state behind Σ are denoted by x1 = η(x2) and
(ρ+(x), u+

1 (x), u+
2 (x)) respectively. Then the Rankine-Hugoniot conditions on Σ become⎧⎪⎨⎪⎩

[ρu1] − η′(x2)[ρu2] = 0,

[P + ρu2
1] − η′(x2)[ρu1u2] = 0,

[ρu1u2] − η′(x2)[P + ρu2
2] = 0.

(1.2)

In addition, P+(x) satisfies the physical entropy condition (see [8]):

P+(x) > P−(x) on x1 = η(x2). (1.3)

On the exit of the nozzle, the end pressure is prescribed by

P+(x) = Pe + εP0(θ) on r = X0 + 1, (1.4)
2



here ε > 0 is sufficiently small, θ = arctanx2
x1

, P0(θ) ∈ C3,α[−θ0, θ0] with

P ′
0(±θ0) = P

(3)
0 (±θ0) = 0, ‖P0(arctan

x2

x1
)‖

C3,α{(x1,x2):
√

x2
1+x2

2=X0+1,|x2|≤x1tanθ0} ≤ C,

the constant Pe denotes the end pressure for which a symmetric shock lies at the position r = r0 with
r0 ∈ (X0, X0 + 1) and the supersonic incoming flow is given by (ρ−0 (r), U−

0 (r)), for more details, one can
see Proposition 2.1 in §2.

Since the flow is tangent to the nozzle walls x2 = (−1)itgθ0x1(i = 1, 2), then

u+
2 = (−1)itgθ0u

+
1 on x2 = (−1)itgθ0x1. (1.5)

Finally, X0 and θ0 are assumed to be suitably large and small respectively so that

X0θ0 = 1 and
η0

2
< θ0 < η0 (1.6)

with η0 > 0 being a suitably small constant.
It is noted here that the assumption (1.6) implies that the nozzle wall Γ2

i : x2 = (−1)itgθ0x1 is close to
the line segment x2 = (−1)i for X0 ≤ r ≤ X0 + 1.

As will be shown in §2, under the above assumptions on the nozzle and the symmetric supersonic incoming
flow near the throat of the nozzle, there exists a unique symmetric transonic shock solution for the given
constant end pressure. Furthermore, the position of the shock location, r = r0, depends monotonically
on the given end pressure. This solution will be the background solution. Let (P+

0 (r), U+
0 (r)) be the

subsonic part of the background solution for r0 < r < X0 + 1, which can be extended into the domain
{r : X0 ≤ r ≤ X0 + 1} and the extension will be denoted by (P̂+

0 (r), Û+
0 (r)). For more details, one can see

Proposition 2.1 and Remark 2.2 in §2.
The first main result in this paper is
Theorem 1.1. (Uniqueness)

Let the assumptions above hold and M−
0 (X0) ≡ U−

0 (X0)
c(ρ−0 (X0))

>

√
2γ+1 − 2

γ . Then there exists a con-

stant ε0 = 1
X3

0
such that for all ε ∈ (0, ε0], the problem (1.1)-(1.5) has no more than one solution

(P+(x), u+
1 (x), u+

2 (x); η(x2)) with the following properties:
(i). η(x2) ∈ C4,α[x1

2, x
2
2], and

‖η(x2) −
√

r2
0 − x2

2‖L∞[x1
2,x2

2]
≤ C0X0ε, ‖(η(x2) −

√
r2
0 − x2

2

)′‖C3,α[x1
2,x2

2]
≤ C0ε,

where (xi
1, x

i
2)(i = 1, 2) stands for the intersection points of x1 = η(x2) with x2 = (−1)itgθ0x1 for i = 1, 2,

and C0 is a positive constant depending on α and the supersonic incoming flow.
(ii). (P+(x), u+

1 (x), u+
2 (x)) ∈ C3,α(Ω̄+), and

‖(P+, u+
1 , u+

2 ) − (P̂+
0 , û+

1,0, û
+
2 )‖C3,α(Ω̄+) ≤ C0ε,

where Ω+ is the subsonic region given by

Ω+ = {(x1, x2) : η(x2) < x1 <
√

(X0 + 1)2 − x2
2, |x2| < tgθ0x1},

and (P̂+
0 , û+

1,0, û
+
2 ) = (P̂+

0 (r), Û+
0 (r)x

r ).
Remark 1.1. Besides the uniqueness result described by Theorem 1.1, it will be also shown that the

position of the shock depends on the given end pressure monotonically. This will be stated more precisely
in Proposition 3.2 in §3. In addition, the order X0ε in the assumption of ‖η(x2) −

√
r2
0 − x2

2‖L∞[x1
2,x2

2]
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comes essentially from the relation between the shock position and the end pressure (see Proposition 5.3
and Remark 5.2 in §5). This implies that the shock position will move with the order X0O(ε) when the end
pressure changes in an order O(ε) in (1.4).

Remark 1.2. Due to the corners in the subsonic region, the requirement of C3,α regularity for the
uniqueness in Theorem 1.1 seems stringent. However, based on such a uniqueness, we can obtain the
existence of a transonic solution in the same regularity class, see Theorem 1.2 below and Appendix.

Remark 1.3. The previous uniqueness results in [22, 24-25] require that either the transonic shock
curve goes through a fixed point or one solution has special symmetry.

Remark 1.4. The assumption that r0 ∈ (X0, X0 + 1) is made to ensure a positive distance between the
shock position and the exit of the nozzle, this will be used in the analysis in §4.

Based on Theorem 1.1, we can establish the following existence theorem.
Theorem 1.2. (Existence of a transonic shock solution)
For the nozzle and the supersonic incoming flow defined as above, the problem (1.1) with (1.2)-(1.5) has

a unique transonic shock solution such that (ρ+, u+
1 , u+

2 ; η(x2)) satisfies the estimates in Theorem 1.1.
Remark 1.5. It should be noted that similar results as in Theorem 1.1 and Theorem 1.2 hold for the

2-D Euler flows with the pressure depending on both the density and the entropy. However, neither the
uniqueness nor the existence as in Theorem 1.1 and Theorem 1.2 holds for irrotational flows, see [22, 24].

Remark 1.6. Theorem 1.1 and Theorem 1.2 can be extended into the 3-D nozzle case, which will be
given in our forthcoming paper [15].

Remark 1.7. For nozzles with part of symmetric angular sector as the converging part, one can also
establish a corresponding theory of uniqueness and existence of a transonic shock lying in the converging
part of the nozzle as Theorem 1.1 and 1.2. However, it is shown in [25] that such a transonic shock is
dynamically unstable.

It is noted that there have been many works on the steady transonic problems (see [3-9], [12], [14], [18-28]
and the references therein). In particular, in [25], it is shown that under the same assumptions as in this
paper on the nozzle and the supersonic incoming flows, there exist two constant pressures P1 and P2 with
P1 < P2, such that if the exit constant pressure Pe ∈ (P1, P2), then the symmetric transonic shock exists
uniquely in the diverging part of the nozzle, and the position and the strength of the shock is completely
determined by Pe. More importantly, we establish the dynamically asymptotic stability of such a transonic
shock for the unsteady Euler system in both 2-D and 3-D cases. Various related results, such as uniqueness
with additional assumptions, non-existence, compatibility conditions, and many useful analytical tools on
transonic shocks in slightly curved nozzles with given appropriate end pressure at the exit of the nozzle for
either steady irrotational flows or steady Euler flows have been established in [22-25], see also [5-7, 26].

Next we would like to comment on the proofs of the main results in this paper. In should be noted that
in almost all the previous works mentioned above except [15, 22], the uniqueness is obtained under the
additional assumption that the shock curve goes through a fixed point in advance [7, 22-26]. This condition
is crucial in the proofs. However, for non-flat nozzles, this additional condition may lead the transonic
shock problem to be over-determined [22]. In the present paper, we have found a new way to determine the
position of the transonic shock and remove the undesired assumption that the shock curve goes through a
fixed point so that the transonic shock problem as described by Courant-Friedrichs is well-posed. Besides
the analytical tools developed in [22-25], the new key ingredients in this paper are to establish the monotonic
property of the pressure along the nozzle walls and to estimate the gradients of the solution instead of the
solution itself so that one can avoid the difficulties induced by the unknown position of the shock, for more
detailed explanations, see §5. It follows from this that the position of the shock can be uniquely determined
in Theorem 1.1 when the end pressure is given, and the continuous dependence and monotonic property of
the end pressure on the position of the shock are also derived. With these crucial results, we can complete
the proofs on Theorem 1.1 and Theorem 1.2.

The rest of the paper is organized as follows. In §2, for reader’s convenience, the description of the
background solution is given although it has been done in [25]. In §3, we reformulate the 2-D problem
(1.1) with the boundary conditions (1.2)-(1.5) so that one can obtain a weakly coupled second order elliptic
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equation for the density ρ with mixed boundary conditions, a 2×2 first order system for the angular velocity
U2 and an algebraic equation on (ρ, u1, u2) along a streamline. In §4, using the decomposition techniques
in §3, we establish some a priori estimates on the derivatives of difference between two possible solutions.
In §5, based on the estimates given in §4, and through looking for an ordinary differential inequality along
a nozzle wall, we can derive that the end pressure on the wall is monotonic with respect to the position of
the shock, thus the position of the shock can be uniquely determined by the end pressure and the proof
of the uniqueness result in Theorem 1.1 is then completed. In §6, along the nozzle walls, by establishing
the continuous dependence of the shock position on the end pressure, we can determine the position of the
shock and complete the proof on Theorem 1.2. Finally, in Appendix, we will give a proof on the existence
of a transonic shock C3,α solution when the transonic shock is assumed to go through a fixed point and the
end pressure is suitably adjusted by a constant.

In what follows, we will use the following convention:
O(ε) means that there exists a generic constant C1 > 0 independent of X0 and ε such that ‖O(ε)‖C2,α ≤

C1ε.
O( 1

Xm
0

)(m > 0) means that there exists a generic constant C2 > 0 independent of X0 and ε such that

‖O( 1
Xm

0
)‖C1,α ≤ C2

Xm
0

.

§2. The background solution.

In this section, we will describe the transonic solution to the problem (1.1) with (1.2)-(1.5) when the end
pressure is a suitable constant Pe under the assumptions on the nozzle walls and the supersonic incoming
flow in §1. Such a solution is called the background solution and can be obtained by solving the related
ordinary differential equations. In fact, the related analysis has been given in Section 147 of [8] and the
details can be seen in [22, 25]. But for the reader’s convenience and later computations in this paper, we
still outline it here.

Proposition 2.1. (Existence of a transonic shock for the constant end pressure) For the
2-D nozzle and the supersonic incoming flow given in §1, there exist two constant pressures P1 and P2

with P1 < P2, which are determined by the incoming flow and the nozzle, such that if the end pressure
Pe ∈ (P1, P2), then the system (1.1) has a symmetric transonic shock solution

(P, u1, u2) =

{
(P−

0 (r), u−
1,0(x), u−

2,0(x)), for r < r0,

(P+
0 (r), u+

1,0(x), u+
2,0(x)), for r > r0,

here u±
i,0(x) = U±

0 (r)xi

r (i = 1, 2), and (P±
0 (r), U±

0 (r)) are C4,α− smooth. Moreover, the position r = r0

with X0 < r0 < X0 + 1 and the strength of the shock are determined by Pe.
Proof. Let r = r0 be the location of the shock which to be found. It follows from (1.1) that the supersonic

incoming flow (ρ−0 (r), U−
0 (r))(X0 < r < r0) and the subsonic flow (ρ+

0 (r), U+
0 (r))(r0 < r < X0 + 1) satisfy

respectively {
d
dr

(rρ±0 U±
0 ) = 0,

1
2 (U±

0 )2 + h(ρ±0 ) = 1
2 (U±

0 (r0))2 + h(ρ±0 (r0)),
(2.1)

here h(ρ±0 ) is the enthalpy given by h′(ρ±0 ) = c2(ρ±
0 )

ρ±
0

.
The corresponding Rankine-Hugoniot conditions across the shock r = r0 are{

[ρ0U0] = 0,

[ρ0U
2
0 + P0] = 0.

(2.2)

As in the [22, 25], the proof of the Proposition can be divided into four steps.
Step 1. For the supersonic state (ρ−0 (r0), U−

0 (r0)), there exists a unique subsonic state (ρ+
0 (r0), U+

0 (r0))
satisfying (2.2).
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The proof can be found in Section 147 of [8], so it is omitted here.
Step 2. For a given supersonic state (ρ−0 (X0), U−

0 (X0)), (2.1) has a unique supersonic solution (ρ−0 (r),
U−

0 (r)) for r ∈ [X0, X0 + 1].
In fact, it follows from (2.1) that{

f1(ρ−0 , U−
0 , r) ≡ rρ−0 (r)U−

0 (r) − C0 = 0,

f2(ρ−0 , U−
0 , r) ≡ 1

2 (U−
0 (r))2 + h(ρ−0 (r)) − C−

1 = 0

with C0 = X0ρ
−
0 (X0)U−

0 (X0) and C−
1 = 1

2 (U−
0 (X0))2 + h(ρ−0 (X0)).

Since ⎧⎪⎪⎨⎪⎪⎩
dρ−0
dr

= − ρ−0 (U−
0 )2

r((U−
0 )2 − c2(ρ−0 ))

,

dU−
0

dr
= U−

0 c2(ρ−0 )
r((U−

0 )2 − c2(ρ−0 ))

and
d((U−

0 )2 − c2(ρ−0 ))
dr

=

(
2P ′(ρ−0 ) + ρ−0 P ′′(ρ−0 )

)
(U−

0 )2

r((U−
0 )2 − c2(ρ−0 ))

,

then one has

(U−
0 (r))2 − c2(ρ−0 (r)) ≥ 1

2

(
(U−

0 (X0))2 − c2(ρ−0 (X0))
)

> 0 for X0 ≤ r ≤ X0 + 1. (2.3)

In addition ∂(f1, f2)
∂(ρ−0 , U−

0 )
= r

(
(U−

0 (r))2 − c2(ρ−0 (r))
)

and ∂(f1, f2)
∂(ρ−0 , U−

0 )
∣∣
ρ−
0 (X0),U

−
0 (X0),X0

> 0. This, to-

gether with the implicit function theorem and (2.3), yields that (2.1) has a unique supersonic solution
(ρ−0 (r), U−

0 (r)) for r ∈ [X0, X0 + 1].
Step 3. For a given subsonic state (ρ+

0 (X0), U+
0 (X0)), (2.1) has a unique subsonic solution (ρ+

0 (r), U+
0 (r))

for r ∈ [X0, X0 + 1].
The proof is similar to that in Step 2, so is omitted.
Step 4. The shock position r0 is a continuously decreasing function of Pe when the end pressure Pe lies

in an appropriate scope.
In fact, it follows from (2.1) and (2.2) that for r ∈ [X0, X0 + 1]{

rρ±0 (r)U±
0 (r) ≡ C0,

1
2 (U±

0 (r))2 + h(ρ±0 (r))) ≡ C±
1 ,

(2.4)

here C±
1 are the Bernoulli’s constants. Note that C−

1 and C+
1 are different in general, moreover, C+

1 depends
on the end pressure P+

0 (X0 + 1) = Pe.
Especially, {

X0ρ
±
0 (X0)U±

0 (X0) ≡ C0,
1
2 (U±

0 (X0))2 + h(ρ±0 (X0)) ≡ C±
1 .

(2.5)

Next we derive the dependence of r0 on the end pressure P+
0 (X0 + 1) = Pe.

It follows from the first equation in (2.4) and the second equation in (2.5) that⎧⎪⎪⎨⎪⎪⎩
d(ρ±0 (r0)U±

0 (r0))
dρ+

0 (X0)
= −ρ±0 (r0)U±

0 (r0)
dr0

r0dρ+
0 (X0)

,

U+
0 (r0)

dU+
0 (r0)

dρ+
0 (X0)

+ c2(ρ+
0 (r0))

ρ+
0 (r0)

dρ+
0 (r0)

dρ+
0 (X0)

= dC+
1

dρ+
0 (X0)

.

(2.6)
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In addition, by C+
1 = C2

0

2X2
0 (ρ+

0 (X0+1))2
+ h(ρ+

0 (X0 + 1)), the second equation in (2.2) and (2.6), one has

[ρ0U
2
0 ]

dr0

r0dρ+
0 (X0 + 1)

= ρ+
0 (r0)

dC+
1

dρ+
0 (X0 + 1)

=
ρ+
0 (r0)(c2

0(X0 + 1) − (U+
0 (X0 + 1))2)

ρ+
0 (X0 + 1)

. (2.7)

Since [ρ0U
2
0 ] < 0 due to [ρ0U

2
0 + P0] = 0 and [P0] > 0, then (2.7) implies that r0 is a continuous and

strictly decreasing function of the end pressure P+
0 (X0 + 1).

Next, we complete the proof on Proposition 2.1.
For r0 ∈ [X0, X0 + 1), it follows from Step 2 that there exists a unique supersonic flow in [X0, r0].

Moreover, due to Step 1 and Step 3, there exists a unique shock at r0 and a unique subsonic flow in
[r0, X0 + 1]. Thus one can define a function F (r0) = P+

0 (X0 + 1) for r0 ∈ (X0, X0 + 1). By Step 4, F (r0) is
a strictly decreasing and continuous differentiable function on P+

0 (X0 + 1). When r0 = X0 or r0 = X0 + 1,
one can obtain two different end pressures P1 and P2 with P1 < P2. Therefore, by the monotonicity of
F (r0), one can obtain a symmetric transonic shock for P+

0 (X0 + 1) ≡ Pe ∈ (P1, P2).
Remark 2.1. By the assumption (1.6) and the equation (2.4), one can easily conclude that there exists

a constant C > 0 independent of X0 such that for X0 ≤ r ≤ X0 + 1∣∣∣∣dkU+
0 (r)

drk

∣∣∣∣ +
∣∣∣∣dkP+

0 (r)
drk

∣∣∣∣ ≤ C

Xk
0

, k = 1, 2, 3, 4. (2.8)

Remark 2.2. It follows from Step 2 and Remark 2.1 that one can extend the subsonic flow (ρ+
0 (r), U+

0 (r))
into (ρ̂+

0 (r), Û+
0 (r)) defined for r ∈ (X0, X0 + 1) and satisfies (2.1) on (X0, X0 + 1). This extension will be

often used later on.

§3. The reformulation on problem (1.1) with (1.2)-(1.5)

In this section, the nonlinear problem (1.1) with (1.2)-(1.5) will be reformulated so that one can obtain
a second order elliptic equation for ρ+(x) and two 2× 2 first order systems for the radial speed U+

1 and the
angular speed U+

2 . To this end, as in [22, 25], we firstly derive the relations between (P+, U+
1 ) and U+

2 on
the shock Σ. It is more convenient to use the polar coordinates{

x1 = rcosθ,

x2 = rsinθ
(3.1)

and decompose (u+
1 , u+

2 ) as {
u+

1 = U+
1 cosθ − U+

2 sinθ,

u+
2 = U+

1 sinθ + U+
2 cosθ.

(3.2)

Then, (1.1) and (1.2) become respectively⎧⎪⎪⎨⎪⎪⎩
∂r(ρ+U+

1 ) + 1
r ∂θ(ρ+U+

2 ) + ρ+U+
1

r = 0,

∂r(ρ+(U+
1 )2 + P+) + 1

r ∂θ(ρ+U+
1 U+

2 ) + ρ+((U+
1 )2−(U+

2 )2)
r = 0,

∂r(ρ+U+
1 U+

2 ) + 1
r ∂θ(P+ + ρ+(U+

2 )2) + 2
r ρ+U+

1 U+
2 = 0

(3.3)

and ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[ρU1] − r̃′(θ)
r̃(θ) [ρU2] = 0,

[ρU2
1 + P ] − r̃′(θ)

r̃(θ) [ρU1U2] = 0,

[ρU1U2] − r̃′(θ)
r̃(θ) [P + ρU2

2 ] = 0,

(3.4)
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where r = r̃(θ) stands for the shock Σ in the coordinate (r, θ).
In addition, for any C1 solution, (3.3) is equivalent to⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂r(ρ+U+
1 ) + 1

r ∂θ(ρ+U+
2 ) + ρ+U+

1
r = 0,

U+
1 ∂rU

+
1 + U+

2
r ∂θU

+
1 + ∂rP+

ρ+ − (U+
2 )2

r = 0,

U+
1 ∂rU

+
2 + U+

2
r ∂θU

+
2 + 1

r
∂θP+

ρ+ + U+
1 U+

2
r = 0.

(3.5)

It follows from (3.4) that on r = r̃(θ){
(ρ+ − ρ̂+

0 (r0))Û+
0 (r0) + ρ̂+

0 (r0)(U+
1 − Û+

0 (r0)) = g1,

(P+ − P̂+
0 (r0)) + (ρ+ − ρ̂+

0 (r0))(U+
1 )2 + 2ρ̂+

0 (r0)Û+
0 (r0)(U+

1 − Û+
0 (r0)) = g2,

here

g1 =
(ρ+)2U+

1 (U+
2 )2

[P ] + ρ+(U+
2 )2

− (ρ−0 (r0)U−
0 (r0) − ρ−0 U−

0 ) − (ρ+ − ρ̂+
0 (r0))(U+

1 − Û+
0 (r0)),

g2 =
(ρ+U+

1 U+
2 )2

[P ] + ρ+(U+
2 )2

− (P−
0 (r0) − P−) − (ρ−0 (r0)(U−

0 (r0))2 − ρ−0 (U−
0 )2) − ρ̂+

0 (r0)(U+
1 − Û+

0 (r0))2.

Thus, a direct computation yields that on r = r̃(θ){
U+

1 − Û+
0 (r0) = g̃1((U+

2 )2, P−
0 − P−

0 (r0), U−
0 − U−

0 (r0)),

P+ − P̂+
0 (r0) = g̃2((U+

2 )2, P−
0 − P−

0 (r0), U−
0 − U−

0 (r0))
(3.6)

with g̃i(0, 0, 0) = 0 for i = 1, 2, here the quantities on the right hand sides of the above will be suitably
small.

For convenience, the following transformation{
y1 = r,

y2 = X0θ,
(3.7)

will be used to change the fixed walls into y2 = ±1 respectively.
In addition, the superscripts “+” will be neglected for convenience in case no confusions.
Then, (3.5) and (3.4) can be rewritten respectively as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂y1(ρU1) + X0
y1

∂y2(ρU2) + ρU1
y1

= 0,

U1∂y1U1 + X0U2
y1

∂y2U1 + ∂y1P
ρ − U2

2
y1

= 0,

U1∂y1U2 + X0U2
y1

∂y2U2 + X0
y1

∂y2P
ρ + U1U2

y1
= 0.

(3.8)

and ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[ρU1] − X0ξ
′(y2)

ξ(y2)
[ρU2] = 0,

[ρU2
1 + P ] − X0ξ

′(y2)
ξ(y2)

[ρU1U2] = 0,

[ρU1U2] − X0ξ
′(y2)

ξ(y2)
[P + ρU2

2 ] = 0,

(3.9)

where ξ(y2) = r̃( y2
X0

).
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Note that the transformation between the coordinate systems (x1, x2) and (y1, y2) keeps the equivalence
of C4,α norm independent of X0. So from now on, we will use the coordinate system (y1, y2) instead of
(x1, x2).

Let y2 = y2(y1, β) be the characteristics starting from the point (ξ(β), β) for the first order differential
operator U1∂y1 + X0U2

y1
∂y2 . Then

{ dy2(y1, β)
dy1

= X0
y1

(U2
U1

)
(y1, y2(y1, β)),

y2(ξ(β), β) = β, β ∈ [−1, 1].
(3.10)

It follows from the second and the third equations in (3.8) that the following Bernoulli’s law holds

(
1
2
(U1)2 +

1
2
(U2)2 + h(ρ)

)
(y1, y2(y1, β)) = G0(β) (3.11)

with

G0(β) =
1
2
(U1(ξ(β), β))2 +

1
2
(U2(ξ(β), β))2 + h(ρ)(ξ(β), β).

Next, we derive the governing problems for U1 and U2.

It follows from (3.11) that

⎧⎪⎨⎪⎩
U1∂y2U1 + U2∂y2U2 + ∂y2P

ρ = d
dβ

G0(β)∂y2β(y1, y2), (3.12)

U1∂y1U1 + U2∂y1U2 + ∂y1P

ρ = −X0
y1

(
U2
U1

)
(y1, y2(y1, β)) d

dβ G0(β)∂y2β(y1, y2), (3.13)

here β(y1, y2) denotes the inverse function of y2 = y2(y1, β).

Combining (3.12)-(3.13) with the first equation and the third equation in (3.8) yields

{
∂y1U1 = h1(P, U1, U2, ∂y1P, ∂y2P ),
∂y2U1 = h2(P, U1, U2, ∂y1P, ∂y2P )

(3.14)

and

⎧⎪⎨⎪⎩
∂y1U2 = h3(P, U1, U2, ∂y1P, ∂y2P ),
∂y2U2 = h4(P, U1, U2, ∂y1P, ∂y2P ),
U2(y1,±1) = 0,

(3.15)

here hi = Δi

Δ0
(1 ≤ i ≤ 4) with
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Δ0 =
(U1)2 + (U2)2

y1
,

Δ1 =
U2

y1

(
X0∂y2P

y1ρ
+

U1U2

y1

)
− U1

y1

(
∂y1P

ρ
+

X0U2

y1U1
(

d

dβ
G0)(β(y1, y2))∂y2β(y1, y2)

)
− (U2)2

y1

(
U1

y1
+

1
ρc2(ρ)

(
U1∂y1P +

X0U2

y1
∂y2P

))
,

Δ2 =
(

U1

y1
+

(U2)2

y1U1

)(
(

d

dβ
G0)(β(y1, y2))∂y2β(y1, y2) − ∂y2P

ρ

)
+

U2

X0

(
U1

ρc2(ρ)
(
U1∂y1P +

X0U2

y1
∂y2P

)
− X0U2

y1U1
(

d

dβ
G0)(β(y1, y)))∂y2β(y1, y2)

)
+

(U2)2

X0U1

(
X0∂y2P

y1ρ
+

U1U2

y1

)
+

( (U1)2

y1
− ∂y1P

ρ

) U2

X0
,

Δ3 =
U1U2

y1ρc2(ρ)
(U1∂y1P +

X0U2

y1
∂y2P ) − X0U1

y2
1ρ

∂y2P − U2

y1

(
∂y1P

ρ
+

X0U2

y1U1
(

d

dβ
G0)(β(y1, y2))∂y2β(y1, y2)

)
,

Δ4 = − (U1)2

ρc2(ρ)
(
U1

X0
∂y1P +

U2

y1
∂y2P ) − U2

(
∂y2P

y1ρ
+

U1U2

X0y1

)
+

U2

y1
(

d

dβ
G0)(β(y1, y2))∂y2β(y1, y2)

−
(

(U1)2

X0y1
− ∂y1P

X0ρ

)
U1.

Next, we derive the governing problem for the density ρ.
It follows from U2 = 0 on y2 = ±1 and the third equation in (3.8) that

∂y2ρ = 0 on y2 = ±1. (3.16)

Furthermore, applying the first order operator U1∂y1 + X0
y1

U2∂y2 to the first equation in (3.8) and sub-
sequently subtracting ∂y1

(
ρ × {the second equation in (3.8)}) and ∂y2

(
ρ × {the third equation in (3.8)})

yield the following boundary value problem for the density⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂y1

(
(U2

1 − c2(ρ))∂y1ρ + X0U1U2
y1

∂y2ρ
)

+ X0
y1

∂y2

(
U1U2∂y1ρ + X0

y1
((U2)2 − (c(ρ))2)∂y2ρ

)
=

−∂y1

(
X0
y1

ρU1∂y2U2 + ρU2
1

y1
− X0ρU2

y1
∂y2U1 + ρU2

2
y1

) − X0
y1

∂y2

(
ρU2∂y1U1 − ρU1∂y1U2

)
+(∂y1U1 + X0

y1
∂y2U2)(U1∂y1ρ + X0

y1
U2∂y2ρ + ρ∂y1U1 + X0

y1
ρ∂y2U2 + ρU1

y1
),

P (ρ) − P̂+
0 (r0) = g̃2((U2)2, P− − P−

0 (r0), U− − U−
0 (r0)) on y1 = ξ(y2),

∂y2ρ = 0 on y2 = ±1,

P (ρ) = Pe + εP0( y2
X0

) on y1 = X0 + 1.

(3.17)

In addition, due to the third equation of (3.9), it holds that

ξ′(y2) =
ξ(y2)[ρU1U2]
X0[ρU2

2 + P ]
. (3.18)

Therefore, in order to prove Theorem 1.1, it suffices to show
Theorem 3.1. Let the assumptions of Theorem 1.1 hold. Then for ε < 1

X3
0
, the free boundary value

problem (3.14)-(3.15) and (3.17) with (3.9) has no more than one solution (P (y), U1(y), U2(y); ξ(y2)) satis-
fying the following estimates with a uniform constant C > 0 (depending on α and the supersonic incoming
flow):

(i). ξ(y2) ∈ C4,α[−1, 1], and

‖ξ(y2) − r0‖L∞[−1,1] ≤ CX0

√
X0ε, ‖ξ′(y2)‖C3,α[−1,1] ≤ Cε.
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(ii).
(P (y), U1(y), U2(y)) ∈ C3,α(ω̄+)

satisfies

‖∂k
y1

(
(P, U1)(y) − (P̂+

0 , Û+
0 )(y1)

)‖Cα(ω̄+) ≤ C

X2
0

, k = 0, 1, 2, 3

and
‖∂y2(P, U1)‖C2,α(ω̄+) + ‖U2‖C3,α(ω̄+) ≤ Cε,

where ω+ = {(y1, y2) : ξ(y2) < y1 < X0 + 1,−1 < y2 < 1}.
Remark 3.1. It is noted that (i) and (ii) in Theorem 3.1 are less restrictive than (i) and (ii) in Theorem

1.1.
To show Theorem 3.1, as in [25], one may reduce the free boundary problem (3.14)-(3.15) and (3.17)

with (3.9) into a fixed boundary value problem. Indeed, set{
z1 = y1 − ξ(y2)

X0 + 1 − ξ(y2)
,

z2 = y2.
(3.19)

Then the domain ω+ becomes

E+ = {(z1, z2) : 0 < z1 < 1,−1 < z2 < 1}. (3.20)

For convenience, one sets

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
D0 ≡ 1

y1
= 1

ξ(z2) + z1(X0 + 1 − ξ(z2))
,

D1 ≡ ∂y1 = 1
X0 + 1 − ξ(z2)

∂z1 ,

D2 ≡ X0
y1

∂y2 = X0(z1 − 1)ξ′(z2)
(ξ(z2) + z1(X0 + 1 − ξ(z2)))(X0 + 1 − ξ(z2))

∂z1 + X0
ξ(z2) + z1(X0 + 1 − ξ(z2))

∂z2 .

(3.21)
Then, (3.9) and (3.14)-(3.15) can be rewritten respectively as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[ρU1](ξ(z2), z2) = X0ξ
′(z2)

ξ(z2)
[ρU2](ξ(z2), z2),

[ρU2
1 + P ](ξ(z2), z2) = X0ξ

′(z2)
ξ(z2)

[ρU1U2](ξ(z2), z2),

[ρU1U2](ξ(z2), z2) = X0ξ
′(z2)

ξ(z2)
[P + ρU2

2 ](ξ(z2), z2),

(3.22)

{
D1U1 = h̃1(P, U1, U2, D1P, D2P ),

D2U1 = h̃2(P, U1, U2, D1P, D2P )
(3.23)

and ⎧⎪⎨⎪⎩
D1U2 = h̃3(P, U1, U2, D1P, D2P ),

D2U2 = h̃4(P, U1, U2, D1P, D2P ),
U2(z1,±1) = 0,

(3.24)

here h̃i(i = 1, 2, 3, 4) has the same property as hi.
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In addition, (3.17) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1

(
(U2

1 − c2(ρ))D1ρ + U1U2D2ρ
)

+ D2

(
U1U2D1ρ + (U2

2 − c2(ρ))D2ρ
)

=

−D1(D0ρU2
1 + D0ρU2

2 ) + D0ρU1D2U2 − D1(ρU1)D2U2 + D2(ρU1)D1U2

−D0ρU2D2U1 + D1(ρU2)D2U1 − D2(ρU2)D1U1

+(D1U1 + D2U2)(U1D1ρ + U2D2ρ + ρD1U1 + ρD2U2 + D0ρU1),

P (ρ) − P̂+
0 (r0) = g̃2((U2)2, P− − P−

0 (r0), U− − U−
0 (r0)) on z1 = 0,

∂z2ρ = 0 on z2 = ±1,

P (ρ) = Pe + εP0( z2
X0

) on z1 = 1.

(3.25)

We conclude this section by noting that as a by-product of the analysis for Theorem 3.1 and Theorem
1.1, one can further obtain more estimates on the location of the shock and its monotonic dependence on
the end pressure. Indeed, suppose that the problem (1.1) with (1.2)-(1.3) and (1.5) has two C3,α solutions
(ρ, U1, U2; ξ1) and (q, V1, V2; ξ2) which satisfy the exit pressure conditions Pe + εP01(θ) and Pe + εP02(θ)
at r = X0 + 1 respectively and admit the estimates in Theorem 1.1. In terms of the transformations
(3.1), (3.7) and (3.19), the end conditions of P (ρ) and P (q) can be written as P (ρ) = Pe + εP01( z2

X0
) and

P (q) = Pe + εP02( z2
X0

). Then we can arrive at
Proposition 3.2. Under the assumptions of Theorem 1.1, if (ρ, U1, U2; ξ1) and (q, V1, V2; ξ2) are defined

as above, then the following estimates hold

‖ξ′1(z2) − ξ′2(z2)‖C2,α[−1,1] ≤ C
( 1
X2

0

|ξ1(1) − ξ2(1)| + ε‖ 1
X0

(P ′
01(

z2

X0
) − P ′

02(
z2

X0
))‖C1,α[−1,1]

)
(3.26)

and

‖ρ − q‖C2,α(E+) + ‖(U1, U2) − (V1, V2)‖C2,α(E+)

≤ C
( 1
X0

|ξ1(1) − ξ2(1)| + ε‖ 1
X0

(P ′
01(

z2

X0
) − P ′

02(
z2

X0
))‖C1,α[−1,1]

)
, (3.27)

where E+ is given in (3.20).
Furthermore, if P01( z2

X0
) = P02( z2

X0
) + C1 with the constant C1 > 0, then

ξ1(z2) < ξ2(z2). (3.28)

§4. A priori estimates on the solutions of (3.22)-(3.25).

In this section, we establish some key a priori estimates on the gradients of the difference between two
solutions (ρ, U1, U2; ξ1(z2)) and (q, V1, V2; ξ2(z2)) to the problem (3.22)-(3.25) with exit pressure conditions
Pe + εP01(

z2
X0

) and Pe + εP02(
z2
X0

) respectively. These estimates will play crucial roles in proving Theorem
1.1 and Theorem 1.2.

For convenience, let Q = P (q) denote the pressure for the density q, and (D0, D1, D2) and (D̃0, D̃1, D̃2)
will denote the expressions as in (3.21) corresponding to (ρ, U1, U2; ξ1(z2)) and (q, V1, V2; ξ2(z2)) respectively.

Set ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(Wi, W3)(z) = (Ui, ρ)
(
ξ1(z2) + z1(X0 + 1 − ξ1(z2)), z2

)
−(Vi, q)

(
ξ2(z2) + z1(X0 + 1 − ξ2(z2)), z2

)
, i = 1, 2,

W4 = ξ1(z2) − ξ2(z2),
Mj = ∂z1Wj , j = 1, 2, 3,

Nk = ∂z2Wk, k = 1, 2, 3, 4.
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A key technical point here is that we will focus on the estimates on Mj(j = 1, 2, 3) and Nk(k = 1, 2, 3, 4)
directly, which will be established in a series of Lemmas (Lemma 4.1-Lemma 4.5). In the following lemmas,
we always assume that the assumptions in Theorem 3.1 hold.

Lemma 4.1. ⎧⎪⎪⎨⎪⎪⎩
D0 − D̃0 = O( 1

X2
0
)W4,

D1 − D̃1 = O(1)W4∂z1 ,

D2 − D̃2 = O(ε)W4∂z1 + O(1)N4∂z1 + O( 1
X0

)W4∂z2 .

(4.1)

Proof. We only check the estimate on D1 − D̃1 since the other terms can be treated similarly.
Indeed,

D1 − D̃1 =
ξ1(z2) − ξ2(z2)

(X0 + 1 − ξ1(z2))(X0 + 1 − ξ2(z2))
∂z1

=
W4

(X0 + 1 − ξ1(z2))(X0 + 1 − ξ2(z2))
∂z1 ,

so the second inequality in (4.1) holds since ‖ 1
(X0 + 1 − ξ1(z2))(X0 + 1 − ξ2(z2))

‖C1,α ≤ C and ξi(z2) is a

small perturbation of r0 due to the assumptions.
Lemma 4.2. (Estimate of N4) It holds that

‖N4‖C2,α ≤ Cε
(‖(W1, W2, W3)‖C1,α + ‖W4‖L∞ + ‖(N1, ε

−1N2, N3)‖C1,α

)
. (4.2)

Proof. It follows from (3.18) that

X0ξ
′
1(z2)[ρU2

2 + P ](ξ1(z2), z2) = ξ1(z2)[ρU1U2](ξ1(z2), z2),

X0ξ
′
2(z2)[qV 2

2 + Q](ξ2(z2), z2) = ξ2(z2)[qV1V2](ξ2(z2), z2).

The difference of these two equations yields{
N ′

4(z2) = O(ε) · (W1, W2, W3, W4) + O(ε) · (N1, ε
−1N2, N3, X

−1
0 N4),

N4(±1) = 0,

here and what follows, for notational convenience, O(ε) ·A denotes the inner product of vectors A and O(ε)
whose component is of order ε. (4.2) then follows from this initial value problem for an ODE.

Lemma 4.3. (Estimates of Mi)

‖(M1, M3)‖C1,α ≤ C

X0
‖(W1, εX0W2, W3, W4)‖C1,α + Cε‖(N1, ε

−1N2, N3, N4)‖C1,α , (4.3)

‖M2‖C1,α ≤ Cε
(‖(W1, (εX0)−1W2, W3, W4)‖C1,α + ‖(εN1, N2, ε

−1N3, (εX0)−1N4)‖C1,α

)
.

(4.4)

Proof. Rewrite (3.8) as⎧⎪⎪⎨⎪⎪⎩
D̃1(ρU1) + D̃2(ρU2) + D̃0(ρU1) = O( 1

X0
)W4 + O(ε)N4

D̃1P + ρU1D̃1U1 + ρU2D̃2U1 − D̃0(ρU2
2 ) = O( 1

X0
)W4 + O( ε

X0
)N4

ρU1D̃1U2 + ρU2D̃2U2 + D̃2P + D̃0(ρU1U2) = O(ε)W4 + O( 1
X0

)N4.

(4.5)
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Then tedious but elementary computations using the assumptions in Theorem 3.1 show that⎧⎪⎪⎨⎪⎪⎩
U1D̃1W3 + ρD̃1W1 = O(X−1

0 ) · (W1, εX0W2, W3, W4) + O(ε) · (M2, εM3) + O(ε) · (ε−1N2, N3, N4),

c2(ρ)D̃1W3 + ρU1D̃1W1 = O(X−1
0 ) · (W1, εX0W2, W3, W4) + O(ε2)M1 + O(ε)N1 + O( ε

X0
)N4,

ρU1D̃1W2 = O(ε) · (W1, (εX0)−1W2, W3, W4) + O(ε) · (εM2, M3) + O(ε)N2 + O(1)N3 + O( 1
X0

)N4,
(4.6)

With respect to the variables (D̃1W1, D̃1W2, D̃1W3), the determinant of the coefficient matrix in (4.6)
is ρ2U1(c2(ρ) − U2

1 ) > 0 for subsonic states, then a direct computation yields Lemma 4.3.
Lemma 4.4. (Estimates of N1 and N2) For i = 1, 2,

‖Ni‖C1,α ≤ Cε‖(W1, W2, W3, W4)‖C1,α +
C

X0
‖N4‖C2,α + C‖N3‖C1,α . (4.7)

Proof. First, we deal with the term ( d
dβ G0)(β(z1, z2))D2β(z1, z2) contained in (3.23) and (3.24).

Let z1
2(s; z) and z2

2(s; z) be the characteristics of (3.10) going through (z1, z2) with z1
2(0; z) = β and

z2
2(0; z) = β̃ corresponding to (U1, U2) and (V1, V2) respectively, i.e.,⎧⎨⎩ dz1

2(s; z)
ds

= X0(X0 + 1 − ξ1(z1
2))

A1
U2

(
ξ1(z1

2) + s(X0 + 1 − ξ1(z1
2)), z1

2

)
,

z1
2(z1; z) = z2, z1

2(0; z) = β,

where
A1 = (ξ1(z1

2) + s(X0 + 1 − ξ1(z1
2)))U1 + U2X0(s − 1)ξ′1(z

1
2).

Similarly, one can define z2
2(s; z) corresponding to (V1, V2), ξ2 and β̃.

Set l(s; z) = z1
2(s; z) − z2

2(s; z). Then one has{ dl
ds

= O(ε)l + O(ε)W1(s, z1
2) + O(1)W2(s, z1

2) + O(ε)W4(z1
2) + O(ε2)N4(z1

2)

l(0; z) = β − β̃, l(z1; z) = 0.
(4.8)

Since the solution has the C3,α−regularities, then all the coefficients in (4.8) are in C2,α, this will lead
to the C2,α estimate of β − β̃.

By (4.8), one has
‖β − β̃‖L∞ ≤ C‖(εW1, W2, εW4, ε

2N4)‖L∞

and{
β − β̃ =

∫ z1

0

(
O(ε)W1(t, z1

2) + O(1)W2(t, z1
2) + O(ε)W4(z1

2) + O(ε2)N4(z1
2) + O(ε)l(t; z)

)
dt,

l(s; z) =
∫ s

z1

(
O(ε)W1(t, z1

2) + O(1)W2(t, z1
2) + O(ε)W4(z1

2) + O(ε2)N4(z1
2) + O(ε)l(t; z)

)
dt,

(4.9)

and
‖∂z1(β, β̃)‖C2,α ≤ Cε, ‖∂z2(β, β̃)‖C2,α ≤ C.

This yields
‖β − β̃‖C2,α ≤ C‖(εW1, W2, εW4, ε

2N4)‖C2,α . (4.10)

In addition, set {
B1 = ( d

dβ G0)(β(z1, z2))D2β(z1, z2),

B2 = ( d

d�β
G̃0)(β̃(z1, z2))D̃2β̃(z1, z2).
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Then, direct computations using (3.11) and (3.21) show that

B1 − B2 = O(
ε

X0
)W4 + O(ε2)N4 + O(ε2)∂z1(β − β̃) + O(ε)∂z2(β − β̃)

+ O(ε) · (W1, W2, W3)(0, β) + O(1) · (N1, εN2, N3)(0, β) + O(ε)(β − β̃).

Thus, by use of (4.10), the following estimate holds

‖B1 − B2‖C1,α

≤ Cε(‖(W1, W2, W3, X
−1
0 W4, εN4)‖C1,α + ‖β − β̃‖C2,α) + C‖(N1, εN2, N3)(0, z2)‖C1,α[−1,1]

≤ Cε‖(W1, W2, W3, X
−1
0 W4, εN4)‖C2,α + C‖(N1, εN2, N3)(0, z2)‖C1,α[−1,1]. (4.11)

Note that the third equation in R-H conditions (3.9) implies that

X0ξ
′′
1 (z2)

ξ1(z2)
− X0(ξ′1(z2))2

(ξ1(z2))2
=

1
[ρU2

2 + P ]

(
∂τ (ρU1U2) − X0ξ

′
1(z2)∂τ [ρU2

2 + P ]
ξ1(z2)

)
,

here ∂τ denotes the tangent derivative of z1 = ξ1(z2) and similar expression holds for ξ2(z2).
This, together with the first two equations in (3.9), yields for i = 1, 3,

Ni(0, z2) = O(ε) · (W1, W2, W3, X0
−1W4) + O(ε)N2 + O(

1
X0

)N4. (4.12)

It follows from (4.11), (4.12) and (4.3)-(4.5) that

‖B1 − B2‖C1,α

≤ Cε‖(W1, W2, W3, X
−1
0 W4)‖C2,α +

C

X0
‖N4‖C1,α + Cε‖N2‖C1,α

≤ Cε
(‖(W1, W2, W3, X

−1
0 W4)‖C1,α + ‖(N1, N2, N3)‖C1,α

)
+

C

X0
‖N4‖C2,α . (4.13)

By (3.23) and (3.24), one has{
D̃1W1 = O( 1

X0
) · (W1, εX0W2, W3, W4

)
+ O(ε) · (N3, X

−1
0 N4, ε

−1M3, B1 − B2

)
,

D̃2W1 = O( 1
X0

) · (εW1, W2, εX0W3, W4

)
+ O(1) · (N3, X

−1
0 N4, εM3, B1 − B2

) (4.14)

and{
D̃1W2 = O(ε) · (W1, (εX0)−1W2, W3, W4

)
+ O(1) · (N3, X

−1
0 N4, εM3, ε

2(B1 − B2)
)
,

D̃2W2 = O( 1
X0

) · (W1, εX0W2, W3, W4

)
+ O(ε) · (N3, N4, ε

−1M3, B1 − B2

)
.

(4.15)

We can now estimate N2.
Since W2(z1,±1) = 0, then there exists z2 = z2(z1) such that N2(z1, z2(z1)) = 0 holds. So, (4.15) implies

that ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂z1N2 = O(ε) · (W1, W2, W3, W4

)
+ O(ε) · (N1, (εX0)−1N2, (εX0)−1N3, N4, M3

)
+O(1) · (ε∂z1N3, ∂z2N3, X

−1
0 ∂z2N4

)
+ O(ε2) · (B1 − B2, ∂z2(B1 − B2)

)
,

∂z2N2 = O(ε) · (W1, W2, W3, W4) + O(ε)M3 + O( 1
X0

) · (N1, N2, N3, N4

)
+O(ε) · (ε−1∂z1N3, ∂z2N3, ∂z2N4, (B1 − B2), ∂z2(B1 − B2)

)
,

N2(z1, z2(z1)) = 0.
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It should be emphasized here that instead of estimating W2 in (4.15) directly, one differentiates (4.15)
with respect to z2 and uses the structure of the background solution to derive the desired system for N2

(with order O(ε) coefficients for Wi (i = 1, 2, 3, 4) and M3). This will make it possible to obtain a control
on ‖N2‖C1,α in terms of ε‖(W1, W2, W3, W4)‖C1,α , X−1

0 (‖N1‖C1,α + ‖N4‖C2,α), and ‖N3‖C1,α . Indeed, it
follows from this system for N2, (4.3)-(4.4), (4.13), and a direct computation that

‖N2‖C1,α ≤ C‖∇zN2‖Cα ≤ Cε‖(W1, W2, W3, W4)‖C1,α +
C

X0
(‖N1‖C1,α + ‖N4‖C2,α) + C‖N3‖C1,α . (4.16)

Next, note that (4.14) shows that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂z1N1 = O(ε) · (W1, W2, W3, W4

)
+ O( 1

X0
) · (εX0M3, N1, εX0N2, N3, N4

)
+O(1)∂z1N3 + O(ε)

(
∂z2N3, X0

−1∂z2N4, B1 − B2, ∂z2(B1 − B2)
)
,

∂z2N1 = O(ε) · (W1, W2, W3, W4

)
+ O( 1

X0
) · (εX0M3, N1, N2, εX0N3, N4

)
+O(ε)∂z1N3 + O(1)∂z2N3 + O( 1

X0
)∂z2N4 + O(ε)(B1 − B2) + O(1)∂z2(B1 − B2),

N1(z1,±1) = 0,

where N1(0,±1) = 0 follows from the compatibility condition derived in [22].
Then one can estimate N1 as above to obtain

‖N1‖C1,α ≤Cε‖(W1, W2, W3, W4)‖C1,α +
C

X0
(‖N2‖C1,α + ‖N4‖C2,α) + C‖N3‖C1,α .

Combining this with (4.16) shows Lemma 4.4.
Finally, we estimate N3.
Lemma 4.5. (Estimate of N3) N3 satisfies

‖N3‖C1,α ≤ Cε‖(W1, W2, W3, W4)‖C1,α +
C

X0

(‖(N1, N2)‖C1,α + ‖N4‖C2,α

)
+ Cε‖ 1

X0
(P ′

01(
z2

X0
) − P ′

02(
z2

X0
))‖C1,α[−1,1]. (4.17)

Proof. Due to (3.25), one has by a direct computation that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

D̃1

(
(U2

1 − c2(ρ)D̃1W3 + U1U2D̃2W3

)
+ D̃2

(
U1U2D̃1W3 + (U2

2 − c2(ρ))D̃2W3

)
= O( 1

X2
0
) · (W1, εX0W2, W3, W4

)
+ O( 1

X0
) · (M1, εX0M2, M3

)
+ O(ε)N1 + O( 1

X0
)N2

+O(ε)N3 + O( ε
X0

)N4 + O( 1
X0

)∂z2N4,

W3(1, z2) = P−1(Pe + εP01( z2
X0

)) − P−1(Pe + εP02( z2
X0

)),

N3(z1,±1) = 0.

It follows from this and (4.12) that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D̃1

(
(U2

1 − c2(ρ))D̃1N3 + U1U2D̃2N3

)
+ D̃2

(
U1U2D̃1N3 + (u2

2 − c2(ρ))D̃2N3

)
= ∂z1

(
O(ε) · (M3, N3)

)
+ ∂z2

(
O(ε) · (N1, (εX0)−1N2, N3, X

−1
0 N4) + O( 1

X0
)∂z2N4

)
+O(ε) · (W1, W2, W3, W4

)
+ O(ε) · (M1, M2, εM3

)
+ O(X−2

0 ) · (N1, εX0N2, N3, N4

)
+O( 1

X0
)∂z1N1 + O(ε)∂z1N2 + O( 1

X0
)∂z1N3,

N3(0, z2) = O(ε) · (W1, W2, W3, X
−1
0 W4

)
+ O(ε)N2 + O( 1

X0
)N4,

N3(1, z2) = O(ε)W3(1, z2) + O( ε
X0

)(P ′
01(

z2
X0

) − P ′
02(

z2
X0

)),

N3(z1,±1) = 0.

(4.18)
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As in [22], it can be verified that the compatible condition holds at the corner points (0,±1) and (1,±1).
Furthermore, these compatible conditions guarantee the C1,α regularity of solution.

So by the regularity estimates of second order elliptic equations with divergence forms in [1-2], one can
arrive at from (4.18) and (4.3)-(4.4) that

‖N3‖C1,α ≤ Cε‖(W1, W2, W3, W4)‖C1,α +
C

X0

(‖(N1, N2)‖C1,α + ‖N4‖C2,α

)
+ Cε‖ 1

X0
(P ′

01(
z2

X0
) − P ′

02(
z2

X0
))‖C1,α[−1,1],

which shows Lemma 4.5.
Finally, we point out that all the estimates above can be improved.
Remark 4.1. Let (ρ, U1, U2; ξ1(z2)) = (ρ̂+

0 (r0 + z1(X0 + 1 − r0)), Û+
0 (r0 + z1(X0 + 1 − r0)), O; r0) be

the background solution and (q, V1, V2; ξ2(z2)) be any solution to the problem (3.22)-(3.25) as before. Then
the corresponding estimates in Lemma 4.2 and Lemma 4.3–Lemma 4.5 can be improved C3,α and C2,α

respectively. This fact is used to get the high regularity estimates in Theorem 1.2. Indeed, by Proposition
2.1, in this case, (ρ, U1, U2; ξ1(z2)) is C4,α-smooth. It follows that the coefficients of l(s; z) in (4.8) are
C3,α-smooth. Hence, one may obtain the desired higher regularity estimates just following the proofs of
Lemma 4.2–Lemma 4.5.

Based on Lemma 4.1–Lemma 4.5, the uniqueness result of Theorem 3.1 (and thus Theorem 1.1) will be
proved in next section.

§5. Proof of the Theorem 1.1.

Due to the equivalence between Theorem 1.1 and Theorem 3.1, it suffices to prove Theorem 3.1 only.
In §4, we have established a priori estimates for the gradients of the solution instead of the solution itself.

If trying to derive a priori estimates on the solution itself, one then can obtain from (4.6) and (4.15) that

‖M3‖C1,α ≤ C1‖N2‖C1,α + some positive terms with small coefficients

and
‖N2‖C1,α ≤ C2‖M3‖C1,α + some positive terms with small coefficients,

with C1 and C2 being some order one positive constants. Thus, it seems difficult to get any useful informa-
tion on M3 and N2. To overcome this difficulty, we derive the gradient estimates on the solution instead of
the solution itself. Furthermore, we also estimate N3 instead of M3 from the corresponding second order
elliptic equation (4.18) to avoid the difficulties caused by the constant Pe in the variable end pressure.
Combining these estimates with properties of the background solution, we can derive the monotonic and
continuous dependence between the shock position and the exit pressure along the nozzle wall, which will
be crucial in proving Theorem 1.1 and Theorem 1.2.

Assume that there exist two solutions (ρ, U1, U2; ξ1) and (q, V1, V2; ξ2) to the problem (3.22)-(3.25). First,
we intend to show ξ1(1) = ξ2(1) holds by contradiction.

Otherwise, without loss of generality, one may assume

ξ1(1) < ξ2(1). (5.1)

Under this assumption, it will be shown that the corresponding end pressures are different, which is
contradictory with (1.4). Indeed, we have first

Lemma 5.1. Under the assumption (5.1) and M−
0 (X0) ≡ U−

0 (X0)
c(ρ−0 (X0)

>

√
2γ+1 − 2

γ
, it holds that

ρ(ξ1(1), 1) > q(ξ2(1), 1). (5.2)
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Proof. Note that the background supersonic solution (ρ−0 (y1), U−
0 (y1)) satisfies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dρ−0
dy1

= ρ−0 (M−
0 )2

y1(1 − (M−
0 )2)

,

dU−
0

dy1
= − U−

0

y1(1 − (M−
0 )2)

,

dM−
0

dy1
= −

M−
0 (1 +

γ − 1
2

(M−
0 )2)

y1(1 − (M−
0 )2)

,

(5.3)

here M−
0 (y1) = U−

0 (y1)
c(ρ−0 (y1))

denotes the Mach number of the supersonic incoming flow.

This yields that for large X0 and y ∈ (X0 − 1, X0 + 1),

(ρ−0 , U−
0 , M−

0 )(y1) = (ρ−0 , U−
0 , M−

0 )(X0) + O(
1

X0
).

In addition, ⎧⎪⎨⎪⎩
d(ρ−0 (U−

0 )2 + P−
0 )

dy1
= −ρ−0 (U−

0 )2
y1

< 0,

d(ρ−0 U−
0 )

dy1
= −ρ−0 U−

0
y1

< 0.

(5.4)

Next, we analyze the relation between the density ρ(y1, 1) and the shock position (y1, 1).
Since U2 = 0 for y2 = ±1, then the Rankine-Hugoniot conditions (3.9) imply that

[ρU1](y1, 1) = 0, [ρU2
1 + P ](y1, 1) = 0.

This yields for the polytropic gas,

A(ρ(y1, 1))γ+1 − B(y1)ρ(y1, 1) + C(y1) = 0, (5.5)

with B(y1) = P−
0 (y1) + ρ−0 (y1)(U−

0 (y1))2 and C(y1) = (ρ−0 (y1)U−
0 (y1))2.

It follows from (5.5) that
dρ(y1, 1)

dy1
=

ρ(y1, 1)B′(y1) − C ′(y1)
ρ(y1, 1)(c2(ρ(y1, 1)) − U2

1 )
.

In addition, (5.4) shows that

ρ(y1, 1)B′(y1) − C ′(y1) =
ρ−0 (y1)(U−

0 (y1))2

y1
(2ρ−0 (y1) − ρ(y1, 1)).

Next, elementary calculations show that 2ρ−0 (y1) < ρ(y1, 1) for y1 ∈ (X0, X0 + 1).
Indeed, set

f(x) = Axγ+1 − B(y1)x + C(y1), (5.6)

then by the expressions of B(y1) and C(y1), it holds that

f(ρ−0 (y1)) = 0, f ′(ρ−0 (y1)) < 0, f ′′(x) > 0 for x > 0, f(+∞) = +∞,

so there exists a unique point ρ(y1, 1) > ρ−0 (y1) such that

f(ρ(y1, 1)) = 0,
18



namely, (5.5) holds.
On the other hand, noting that M−

0 (y1) > M−
0 (X0) > 1 due to (5.3), one has for large X0

f(2ρ−0 (y1)) = ρ−0 (y1)P−
0 (y1)(

2γ+1 − 2
γ

− (M−
0 (y1))2) < 0,

where one has used the assumption M−
0 (X0) >

√
2γ+1 − 2

γ .

Thus, one concludes that
ρ(y1, 1) > 2ρ−0 (y1).

This implies that dρ(y1,1)
dy1

< 0, and consequently

ρ(ξ1(1), 1) > q(ξ2(1), 1).

Remark 5.1. It follows from the assumption (5.1) and Lemma 5.1 that W3(0, 1) > 0 holds in §4. This
property will play an important role in proving Theorem 3.1.

Next, we establish some estimates which will be used to derive the monotonic property of the shock
position on the end pressure.

Lemma 5.2. For ε0 ≤ 1
X3

0
in Proposition 3.2, the following estimates hold

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

‖(W1, W3, X
−1
0 W4, M1, M3)‖C1,α ≤ C|W3(0, 1)| + Cε‖ 1

X0

(
P ′

01(
z2
X0

) − P ′
02(

z2
X0

)
)‖C1,α[−1,1],

‖(W2, M2)‖C1,α ≤ C
X0

|W3(0, 1)| + Cε‖ 1
X0

(
P ′

01(
z2
X0

) − P ′
02(

z2
X0

)
)‖C1,α[−1,1],

4∑
i=1

‖Ni‖C1,α ≤ C

X0
|W3(0, 1)| + Cε‖ 1

X0

(
P ′

01(
z2

X0
) − P ′

02(
z2

X0
)
)‖C1,α[−1,1].

(5.8)

Proof. As in the derivation of (5.5), one may obtain that

A(ρ(ξ1(1), 1))γ+1 − B(ξ1(1))ρ(ξ1(1), 1) + C(ξ1(1)) = 0. (5.9)

Same expression holds for (q, V1, ξ2).
Then,

A(ρ(ξ1(1), 1))γ+1 − ρ(ξ1(1), 1)A(q(ξ2(1), 1))γ − q(ξ2(1), 1)V 2
1 (ξ2(1), 1)(ρ(ξ1(1), 1) − q(ξ2(1), 1))

= ρ(ξ1(1), 1)(B(ξ1(1)) − B(ξ2(1))) − (C(ξ1(1)) − C(ξ2(1))).

This, together with (5.4) and the definitions of B(y1) and C(y1), yields

a0W3(0, 1) =
ρ−0 (ξ̃)(U−

0 )2(ξ̃)
ξ̃

(2ρ−0 (ξ̃) − ρ(ξ1(1), 1))W4(1), (5.10)

for some ξ̃ between ξ1(1) and ξ2(1), and

a0 =
ρ(ξ1(1), 1)(P (ρ(ξ1(1), 1)) − P (q(ξ2(1), 1)))

ρ(ξ1(1), 1) − q(ξ2(1), 1)
− q(ξ2(1), 1)V 2

1 (ξ2(1), 1)

≥ q(ξ2(1), 1)(P (ρ(ξ1(1), 1)) − P (q(ξ2(1), 1)))
ρ(ξ1(1), 1) − q(ξ2(1), 1)

− q(ξ2(1), 1)V 2
1 (ξ2(1), 1)

> 0.
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Then under the assumptions of lemma 5.1, it follows from (5.10) and the R-H conditions for (ρ, U1) and
(q, V1) respectively that

|W1(0, 1)| ≤ C|W3(0, 1)|, |W4(1)| ≤ CX0|W3(0, 1)|, |W3(0, 1)| ≤ C

X0
|W4(1)|. (5.11)

Since

‖W1‖C1,α ≤|W1(0, 1)| + ‖M1‖C1,α + ‖N1‖C1,α

‖W2‖C1,α ≤‖M2‖C1,α + ‖N2‖C1,α ,

‖W3‖C1,α ≤|W3(0, 1)| + ‖M3‖C1,α + ‖N3‖C1,α ,

‖W4‖C1,α ≤|W4(1)| + ‖N4‖C1,α ,

then one has by (5.11) that⎧⎪⎪⎪⎨⎪⎪⎪⎩
‖W1‖C1,α ≤ C|W3(0, 1)| + ‖M1‖C1,α + ‖N1‖C1,α ,

‖W2‖C1,α ≤ ‖M2‖C1,α + ‖N2‖C1,α ,

‖W3‖C1,α ≤ |W3(0, 1)| + ‖M3‖C1,α + ‖N3‖C1,α ,

‖W4‖C1,α ≤ CX0|W3(0, 1)| + ‖N4‖C1,α .

(5.12)

On the other hand, it follows from lemma 4.2-lemma 4.5 that

‖(N1, N2, N3)‖C1,α + ‖N4‖C2,α ≤ Cε(‖(W1, W2, W3, W4)‖C1,α + ‖(M1, M2, M3)‖C1,α)

+
Cε

X0
‖P ′

01(
z2

X0
) − P ′

02(
z2

X0
)‖C1,α[−1,1],

‖(M1, M3)‖C1,α ≤ C

X0
‖(W1, εX0W2, W3, W4)‖C1,α + Cε‖M2‖C1,α

+
C

X0

(‖(N1, εX0N2, N3)‖C1,α + ‖N4‖C2,α

)
,

‖M2‖C1,α ≤ Cε‖(W1, W3, W4)‖C1,α +
C

X0
‖W2‖C1,α

+ Cε(‖(M1, M3, N1, N2)‖C1,α + ‖N4‖C2,α) +
C

X0
‖N2‖C1,α .

This implies that

‖(N1, N2, N3)‖C1,α + ‖N4‖C2,α ≤ Cε‖(W1, W2, W3, W4)‖C1,α + Cε‖ 1
X0

(
P ′

01(
z2

X0
) − P ′

02(
z2

X0
)
)‖C1,α[−1,1],

‖(M1, M3)‖C1,α ≤ C

X0
‖(W1, W3, W4)‖C1,α + Cε‖W2‖C1,α + Cε‖ 1

X0

(
P ′

01(
z2

X0
) − P ′

02(
z2

X0
)
)‖C1,α[−1,1],

‖M2‖C1,α ≤ Cε‖(W1, W3, W4)‖C1,α +
C

X0
‖W2‖C1,α + Cε‖ 1

X0

(
P ′

01(
z2

X0
) − P ′

02(
z2

X0
)
)‖C1,α[−1,1].

Consequently, combining this with (5.12) yields (5.8), which completes the proof of Lemma 5.2.
Now we are ready to prove Theorem 3.1.
Proof of Theorem 3.1.
Under the assumption of P01( z2

X0
) = P02( z2

X0
), it suffices to prove

W1 = W2 = W3 = W4 = 0.
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It can be verified directly that (4.6) may be rewritten as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
U1D̃1W3 + ρD̃1W1 = a1W4 + O( 1

X0
) · (W1, εX0W2, W3) + O(ε) · (M2, εM3)

+O(1)N2 + O(ε) · (N3, N4),

c2(ρ)D̃1W3 + ρU1D̃1W1 = a2W4 + O( 1
X0

) · (W1, εX0W2, W3) + O(ε2)M1

+O(ε)N1 + O( ε
X0

)N4,

(5.13)

where

a1 = − 1
(X0 + 1 − ξ1(z2))(X0 + 1 − ξ2(z2))

∂z1(ρU1)

+
(1 − z1)ρU2

1

(ξ1(z2) + z1(X0 + 1 − ξ1(z2)))(ξ2(z2) + z1(X0 + 1 − ξ2(z2)))
+ O(

ε

X0
),

a2 = − 1
(X0 + 1 − ξ1(z2))(X0 + 1 − ξ2(z2))

(c2(ρ)∂z1ρ + ρU1∂z1U1) + O(
ε

X0
).

Then, it follows from (3.21) and (5.13) that for every z2 ∈ [−1, 1],

∂z1W3 =a(z)W4 + O(
1

X0
) · (W1, εX0W2, W3) + O(ε) · (εM1, M2, εM3) + O(1)N2

+ O(ε) · (N1, N3, N4), (5.14)

where

a(z) =
(X0 + 1 − ξ2(1))

c2(ρ) − U2
1

(a2 − U1a1)

= − ∂z1ρ

X0 + 1 − ξ1(z2)

− (X0 + 1 − ξ2(1))(1 − z1)ρU3
1

(c2(ρ) − U2
1 )(ξ1(z2) + z1(X0 + 1 − ξ1(z2)))(ξ2(z2) + z1(X0 + 1 − ξ2(z2)))

+ O(
ε

X0
).

Under the assumptions of Theorem 3.1, we have

∂z1ρ > 0, ∂z1ρ = O(
1

X0
), U1 > 0, U1 = O(1),

c2(ρ) − U2
1 > 0, c2(ρ) − U2

1 = O(1).

Hence, a(z) is a negative function in the subsonic domain. Then it follows from Remark 5.1, Lemma 5.2
and (5.14) that for every z2 ∈ [−1, 1]

∂z1W3 = a(z)W4(z2) + b(z)W3(0, 1) (5.15)

with ‖b(z)‖L∞ ≤ O( 1
X0

).
In addition, W4(1) < 0 due to assumption (5.1). This means that the term a(z)W4(1) is always non-

negative. Therefore, along the line z2 = 1, (5.15) yields{
∂z1W3 ≥ b(z1, 1)W3(0, 1),
W3(0, 1) > 0.

Thus, for suitably large X0

W3(z1, 1) > C1W3(0, 1) > 0
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for some constant C1 > 0. However, this contradicts to W3(1, 1) = 0 due to the end pressure condition
(1.4).

This implies that the assumption (5.1) is not right. Thus, ξ1(1) = ξ2(1) holds, namely, W4(0, 1) = 0.
As a consequence of this and (5.11), W3(0, 1) = 0. This, together with Lemma 5.2, yields

W1 = W2 = W3 = W4 ≡ 0,

which completes the proof of Theorem 3.1.
Proof of Proposition 3.2
(3.26) and (3.27) in Proposition 3.2 follow immediately from Lemma 5.2. So it suffices to show (3.28)-

(3.29).
By P01( z2

X0
) = P02( z2

X0
) + C1, we get ‖P ′

01(
z2
X0

) − P ′
02(

z2
X0

)‖C1,α[−1,1] = 0 in (5.8). Thus, it follows from
the third inequality in (5.8) and (5.11) that there exits a generic constant C > 1 such that

1
C
|W3(0, 1)| ≤ |W3(0, z2)| ≤ C|W3(0, 1)|.

First, we claim that ξ1(1) < ξ2(1) holds. Otherwise, it follows from the proof of Lemma 5.1 that
W4(1) ≥ 0 and W3(0, 1) ≤ 0. This, together with (5.15), shows that{

∂z1W3 ≤ b(z1, 1)W3(0, 1) on z2 = 1,

W3(0, 1) ≤ 0
(5.16)

with ‖b(z1, 1)‖L∞ = O( 1
X0

).
Hence W3(1, 1) ≤ 0 for suitably large X0, which contradicts to P01( z2

X0
) > P02( z2

X0
). Similarly, one can

obtain ξ1(−1) < ξ2(−1).
Next, we show that ξ1(z2) < ξ2(z2) for z2 ∈ [−1, 1]. Note that W4(z2) = W4(1)+N4(z̃2)(z2−1) for some

z̃2 ∈ [z2, 1]. By (5.8) and (5.11), ‖N4‖L∞ ≤ CX−1
0 |W3(0, 1)| ≤ CX−2

0 |W4(1)|. Hence W4(z2) < 0 holds for
all z2 ∈ [−1, 1] for suitably large X0 since W4(1) < 0. So we complete the proof of Proposition 3.2.

In the end of this section, based on Lemma 5.1 and Remark 2.1-Remark 2.2 in §2, one can estimate
the differences of two shock positions and the related subsonic flows in the domain {(r, θ) : X0 ≤ r ≤
X0 + 1,−θ0 ≤ θ ≤ θ0} corresponding to two different background transonic shock solutions.

Proposition 5.3. Let (ρ̂+
0,i, Û

+
0,i)(r), i = 1, 2, r ∈ [X0, X0 + 1] be two subsonic flows with corresponding

shock location r0,i and constant exit pressures Pi,e (i = 1, 2) respectively as described in Remark 2.2. Then
for large X0, it holds that{ ‖(P̂+

0,2(r), Û
+
0,2(r)) − (P̂+

0,1(r), Û
+
0,1(r))‖C4,α[X0,X0+1] ≤ C|P2,e − P1,e|,

|r0,2 − r0,1| ≤ CX0|P2,e − P1,e|.
(5.17)

Remark 5.2. It follows from Proposition 5.3 that if the difference of two end pressures is of order O(ε),
then the differences of related shock positions and extended subsonic flows will be of order X0O(ε) and O(ε)
respectively. In addition, it also implies that the assumptions in Theorem 1.1 are plausible although the
actual shock position and further the related background transonic flow are not known in advance for such
an end pressure condition Pe + O(ε).

Proof. Without loss of generality, we assume that X0 < r0,2 < r0,1 < X0 + 1. Then

X0 − r0,1

X0 + 1 − r0,1
<

X0 − r0,2

X0 + 1 − r0,2
< 0.

Denoted by L the interval [
X0 − r0,2

X0 + 1 − r0,2
, 1]. As in §4, we set⎧⎪⎨⎪⎩

W1(z1) = Û+
0,2(r0,2 + z1(X0 + 1 − r0,2)) − Û+

0,1(r,1 + z1(X0 + 1 − r0,1)), z1 ∈ L,

W3(z1) = ρ̂+
0,2(r0,2 + z1(X0 + 1 − r0,2)) − ρ̂+

0,1(r0,1 + z1(X0 + 1 − r0,1)), z1 ∈ L,

W4 = r0,2 − r0,1.
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Since (ρ̂+
0,i(r), Û

+
0,i(r))(i = 1, 2) satisfy⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dρ̂+
0,i(r)
dr

= − ρ̂+
0,i(r)(Û

+
0,i(r))

2

r((Û+
0,i(r))2 − c2(ρ̂+

0,i(r)))
, r ∈ [X0, X0 + 1]

dÛ+
0,i(r)
dr

=
Û+

0,i(r)c
2(ρ̂+

0,i(r))

r((Û+
0,i(r))2 − c2(ρ̂+

0,i(r)))
, r ∈ [X0, X0 + 1],

then it follows from Remark 2.2 and a direct computation that⎧⎪⎨⎪⎩
dW1

dz1
= O(X−1

0 ) · (W1, W3) + b1(z1)W4, z1 ∈ L,

dW3

dz1
= O(X−1

0 ) · (W1, W3) + b3(z1)W4, z1 ∈ L,

(5.18)

where ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
b1(z1) = − X0 + 1

(r0,2 + z1(X0 + 1 − r0,2))(r0,1 + z1(X0 + 1 − r0,1))
Û+

0,1c
2(ρ̂+

0,1)

(Û+
0,1)2 − c2(ρ̂+

0,1)

b3(z1) =
X0 + 1

(r0,2 + z1(X0 + 1 − r0,2))(r0,1 + z1(X0 + 1 − r0,1))
ρ̂+
0,1(Û

+
0,1)

2

(Û+
0,1)2 − c2(ρ̂+

0,1)
.

Obviously, b3(z1) < 0 and bi(z1) = O(X−1
0 )(i = 1, 3) for large X0.

As a consequence of W4 < 0, Lemma 5.1 and (5.11), one has

W3(0) > 0, |W1(0)| ≤ C|W3(0)|, |W4| ≤ CX0|W3(0)|, |W3(0)| ≤ C

X0
|W4|. (5.19)

Thus, it follows from (5.18)-(5.19) and the positivity of b3(z1)W4 that⎧⎪⎨⎪⎩
W3(z1) ≥ C(W3(0) − X−1

0 ‖W1‖L∞[0,1]), z1 ∈ [0, 1],

‖W1‖L∞[0,1] ≤ C(X−1
0 ‖W3‖L∞[0,1] + W3(0)),

‖W3‖L∞[0,1] ≤ C(X−1
0 ‖W1‖L∞[0,1] + W3(0)).

This yields that {
W3(z1) ≥ C(W3(0) − X−2

0 ‖W3‖L∞), z1 ∈ [0, 1],
‖W3‖L∞[0,1] ≤ CW3(0).

Therefore, W3(z1) ≥ CW3(0) for z1 ≥ 0 and further W3(0) ≤ CW3(1) hold true.
On the other hand, by (5.18), one has{

‖W1‖C3,α(L) ≤ C(|W1(0)| + X−1
0 |W4| + X−1

0 ‖W3‖C2,α(L)),

‖W3‖C3,α(L) ≤ C(|W3(0)| + X−1
0 |W4| + X−1

0 ‖W1‖C2,α(L)).
(5.20)

Combining (5.20) with (5.19) and 0 < W3(0) ≤ CW3(1) yields

‖(W1, W3)‖C3,α(L) ≤ C|W3(1)|. (5.21)

This, together with |W4| ≤ CX0|W3(0)| in (5.19), shows

|W4| ≤ CX0|W3(1)|,
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which is the second inequality in (5.17).
Next, we prove the first estimate in (5.17).
In fact, Remark 2.1 in §2 implies that

‖((P̂+
0,1)

′, (Û+
0,1)

′)‖C3,α[X0,X0+1] ≤ CX−1
0 .

Thus,

‖P̂+
0,2(r) − P̂+

0,1(r)‖C3,α[X0,X0+1]

≤‖P̂+
0,2

(
r0,2 +

r − r0,2

X0 + 1 − r0,2
(X0 + 1 − r0,2)

) − P̂+
0,1

(
r0,1 +

r − r0,2

X0 + 1 − r0,2
(X0 + 1 − r0,1)

)‖C3,α[X0,X0+1]

+ ‖P̂+
0,1(r0,1 +

r − r0,2

X0 + 1 − r0,2
(X0 + 1 − r0,1)) − P̂+

0,1(r0,1 +
r − r0,1

X0 + 1 − r0,1
(X0 + 1 − r0,1))‖C3,α[X0,X0+1]

≤C(‖W3‖C3,α(L) + ‖(P̂+
0,1)

′‖C3,α[X0,X0+1]|W4|)
≤C|W3(1)|. (5.22)

Analogously, Û+
0,2 − Û+

0,1 can be estimated. Thus the proof of Proposition 5.3 is completed.

§6. Proof of Theorem 1.2

In this section, based on Theorem 1.1 and the related estimates given in §4-§5, we will show the existence
result in Theorem 1.2. First, note that if the transonic shock is required to go through some fixed point
on the wall, then as in [26], one can prove that the problem (1.1) with (1.2)-(1.3) and (1.5) has a unique
transonic shock solution when the end pressure Pe + εP0(θ) in (1.4) is adjusted by an appropriate constant.
It follows from this that if one can show that there exists a point at the wall such that the shock goes
through this point and the corresponding adjustment constant on the end pressure is zero, then Theorem
1.2 will be proved.

Next we state an existence result when the shock is assumed to go through a fixed point on the wall,
whose proof will be given in Appendix.

Consider the 2-D nozzle and the supersonic incoming flow as given in §1. Let (x0
1, x

0
1tanθ0) be a given

point on the wall of the nozzle with r0 = x0
1

√
1 + tan2θ0 ∈ (X0, X0 + 1). Denote by Pe ∈ (P1, P2) the

constant exit pressure when the shock position is given by r = r0 with P1 and P2 being given in Proposition
2.1 of §2. Then one has

Theorem 6.1. Under the assumptions as in Theorem 1.1, there exists a constant C0 such that the
transonic shock problem (1.1) with (1.2), (1.3) and (1.5) has a solution with the following properties

(ρ+, u+
1 , u+

2 ; η(x2)) ∈ C3,α, (6.1)

η(x0
1tanθ0) = x0

1, (6.2)

P+ = Pe + εP0(θ) + C0 on r = X0 + 1. (6.3)

Moreover, the solution satisfies the analogous estimates in Theorem 1.1. In particular, |η(x2) − r0| ≤ Cε
holds true.

In terms of the coordinates (y1, y2) in (3.7), Theorem 6.1 can be restated equivalently as follows
Theorem 6.1′. Under the assumptions in Theorem 6.1, there exists an appropriate constant C0 such

that the free boundary value problem (3.14)-(3.15), (3.9), and (3.14) has a C3,α solution (ρ, U1, U2; ξ)
satisfying

ξ(1) = r0, (6.4)

P (ρ) = Pe + εP0(
y2

X0
) + C0 on y1 = X0 + 1. (6.5)
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Moreover, the solution admits the same estimates as in Theorem 3.1. In particular, |η(y2) − r0| ≤ Cε.
It follows from Proposition 3.2 that the adjustment constant C0 in Theorem 6.1 (Theorem 6.1′) depends

continuously on the position where the shock intersects with the wall of the nozzle. More precisely, one has
Lemma 6.1. (Continuity and uniqueness)
(i) Assume that two variable exit pressures P̃1 and P̃2 have the form (1.4) and satisfy P̃1 = P̃2 + C0

with a constant C0. Let (ρ, U1, U2; ξ1) and (q, V1, V2; ξ2) be solutions to the free boundary value problems
(3.14)-(3.15), (3.9) and (3.14) corresponding to the exit pressure P̃1 and P̃2 respectively and satisfy the
corresponding estimates in Theorem 3.1. Then

|C0| ≤ C

X0
|ξ1(1) − ξ2(1)|. (6.6)

with a uniform constant C.
(ii). If the transonic shock goes through a fixed point on the wall of the nozzle, then the corresponding

exit pressure is uniquely determined. Namely, if there exist two constants C1 and C2 such that the end
pressures of two solutions are P̃1 = Pe + εP0(θ) + C1 and P̃2 = Pe + εP0(θ) + C2, then C1 ≡ C2.

Remark 6.1. By Theorem 3.1, the solutions corresponding to the variable exit pressure P̃1 and P̃2 are
unique respectively.

Based on Lemma 6.1, we now prove Theorem 1.2.
Proof of Theorem 1.2.
Denote by P̄1 = Pe −

√
X0ε and P̄2 = Pe +

√
X0ε the exit pressures of the symmetric transonic shock

solutions with corresponding shocks at y1 = r1 and y1 = r2 respectively. Then it follows from Remark 5.1
and the uniqueness result in Theorem 1.1 that r1 > r2.

For each fixed point (y1∗, 1) with y1∗ ∈ [r2, r1], it follows from Theorem 6.1′ that there exists a constant
C0 such that problem (1.1) with (1.2)-(1.3), (1.5) and the end pressure P = Pe + εP0(θ) + C0 has a unique
solution (ρ, U1, U2; ξ(y2)) which satisfies ξ(1) = y1∗ and the estimates in Theorem 3.1.

If y1∗ = r2, then this corresponding adjustment constant, C0, must be positive. Indeed, if not, then
C0 ≤ 0. Applying the estimate (3.27) to (ρ, U1, U2; ξ(y2)) and the background solution (q, V1, V2; r2) which
corresponds to the constant end pressure P̄2, and noting that W4(1) = 0, one has

‖W3‖L∞ ≤ Cε‖ 1
X0

P ′
0(

z2

X0
)‖C1,α < Cε. (6.7)

On the other hand, W3(1, 1) = P̄2 − (Pe + εP0( 1
X0

)) ≥ C
√

X0ε > Cε, which contradicts to (6.7) for
large X0. Hence, C0 > 0. Similarly, for y1∗ = r2, the corresponding adjustment constant, C0, must be
negative. It follows from Theorem 6.1 and Lemma 6.1 that C0 is a Lipschitz continuous function of y1∗,
i.e. C0 = C0(y1∗). We have shown that C0(r2) > 0 and C0(r1) < 0, thus there exists a y0

1 ∈ (r2, r1) such
that C0(y0

1) = 0. Consequently, it follows from Theorem 6.1 that the problem (1.1)-(1.5) has a transonic
shock solution (P (y), U1(y), U2(y); ξ(y)) and the transonic shock passes through (y0

1 , 1). By Theorem 1.1
such a solution is unique. Thus Theorem 1.2 is proved.

Appendix

In this section, we will focus on the proof on Theorem 6.1′. In [26], for almost parallel nozzle walls and
a special exit pressure boundary condition, when the shock is required to go through a fixed point, it is
proved that the problem (1.1) with the related boundary conditions has a solution in some weighted Hölder
space if the exit pressure is adjusted by an appropriate constant. It should be noted that the exit boundary
in [26] is straight, this makes it possible to straighten out both the solid walls and the exit of the nozzle
simultaneously by a Langrange transformation. This ingredient plays an important role in the proof of the
main result in [26]. However, in our case, the exit of the nozzle is curved, so it is related to the solution
itself under a Langrange transformation. Thus, in order to overcome this difficulty and also obtain higher
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regularities (than weighted Hölder regularity) of the solution, we will use a different method. In particular
the reformation of the system (1.1) in §3 will be used.

Before starting to prove Theorem 6.1′, we now state a regularity result for the Laplacian equation with
mixed boundary conditions satisfying suitable compatibility conditions at the corners.

Lemma A.1. Let ⎧⎪⎨⎪⎩
Δu(x1, x2) = f(x1, x2) in Ω = (−1, 1) × (−1, 1),
u(x1, x2) = g(x1, x2) on x2 = ±1,

∂x1u(x1, x2) = 0 on x1 = ±1,

(A.1)

where f ∈ C2,α(Ω̄), g ∈ C4,α(Ω̄) and ∂x1g(±1,±1) = ∂3
x1

g(±1,±1) = 0, ∂x1f(±1, x2) = 0, then the equation
(A.1) has a unique solution u(x1, x2) ∈ C4,α(Ω̄).

Proof. First it is noted that the Dirichlet boundary is not empty, so it follows from [16] that (A.1) has
a unique solution

u ∈ C4,α(Ω) ∩ C4,α({±1} × (−1, 1)) ∩ C4,α((−1, 1) × {±1}) ∩ C0(Ω̄).

To obtain the higher regularities of the solution at the corners, one can use the standard reflection
method such as in [1-2] or [6]. Without loss of generality, we deal only with the corner (−1,−1) as an
example since the treatments on other corners are the same. Set

U(x1, x2) =
{

u(x1, x2), −1 ≤ x1 < 1,

u(−2 − x1, x2), −3 < x1 ≤ −1,

F (x1, x2) =
{

f(x1, x2), −1 ≤ x1 < 1,

f(−2 − x1, x2), −3 < x1 ≤ −1,

G(x1, x2) =
{

g(x1, x2), −1 ≤ x1 < 1,

g(−2 − x1, x2), −3 < x1 ≤ −1.

Then it follows from the compatibility conditions of f and g that F (x) ∈ C2,α, G(x) ∈ C4,α and
U(x), F (x), G(x) satisfy{

ΔU(x1, x2) = F (x1, x2) in Ω = (−3, 1) × (−1, 1),
U(x1, x2) = G(x1, x2) on x2 = ±1.

(A.2)

So it follows from the local regularity estimates in [11], that U(x) ∈ C4,α in a small neighborhood of the
point (−1,−1). Hence, u(x) ∈ C4,α(Ω̄) admits the following estimate

‖u‖C4,α(Ω̄) ≤ C(‖g‖C4,α(Ω̄) + ‖f‖C2,α(Ω̄)).

Thus, Lemma A.1. is proved.
Lemma A.2. If the system (3.8), with (3.9) and (1.4)-(1.5), has a solution (ρ(y), U1(y), U2(y), ξ(y2))

with (ρ(y), U1(y), U2(y)) ∈ C3,α and ξ(y2) ∈ C4,α, then the following compatible conditions at the corners
hold ⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂y2ρ(y1,±1) = 0, ∂3
y2

ρ(y1,±1) = 0,

∂y2U1(y1,±1) = 0,

U2(y1,±1) = 0, ∂2
y2

U2(y1,±1) = 0,

ξ′(±1) = 0, ξ(3)(±1) = 0.

(A.3)
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Proof. It follows from boundary condition (1.5), the jumping condition and (3.8) that

U2(y1,±1) = 0, ∂y2ρ(y1,±1) = 0, ξ′(±1) = 0.

Applying ξ′(y2)∂y1 + ∂y2 to the first and the second equations in (3.9) yields

∂y2U1(ξ(±1),±1) = 0, ∂y2ρ(ξ(±1),±1) = 0.

Thus, in terms of the second equation in (3.8), ∂y2U1(y1,±1) satisfies{
U1∂y1(∂y2U1) + (∂y1U1 + X0

y1
∂y2U2)∂y2U1 = 0 on y2 = ±1,

∂y2U1(ξ(±1),±1) = 0,

which implies ∂y2U1(y1,±1) = 0.
In addition, differentiating the first equation of (3.8) with respect to y2, one can get

∂2
y2

U2(y1,±1) = 0.

And taking ξ′(y2)∂y1 + ∂y2 on the third equation of (3.9) twice yields

∂3
y2

ξ(±1) = 0.

The other equalities can be obtained similarly, and then the proof of Lemma A.2 is completed.
Next, we reformulate the problem in Theorem 6.1′ for easy presentation.
Let (ρ, U1, U2; ξ) be a solution to (3.8)-(3.9) such that ξ(1) = r0. In terms of the transformation (3.19),

the domain
ω+ = {(y1, y2) : ξ(y2) < y1 < X0 + 1,−1 < y2 < 1}

is transformed into
E+ = {(z1, z2) : 0 < z1 < 1,−1 < z2 < 1}. (A.4)

Set w = U2
U1

. Then it follows from a direct computation that the system (3.8) with (1.4), (3.6), (3.16)
and (3.18) is equivalent to the following problem⎧⎨⎩ ξ′(z2) = ξ(z2)(ρU1U2)(ξ(z2), z2)

X0((ρU2
2 )(ξ(z2), z2) + P (ξ(z2), z2) − P−

0 (ξ(z2)))
,

ξ(1) = r0

(A.5)

and ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂1w + λ1∂2ρ = F1(ρ, U1, U2, w; ξ),
∂2w − λ2∂1ρ = F2(ρ, U1, U2, w; ξ),

P (ρ) = P̂+
0 (r0) + g̃2((U2)2, P− − P−

0 (r0), U− − U−
0 (r0)) on z1 = 0,

P (ρ) = Pe + εP0( z2
X0

) on z1 = 1,

w = 0 on z2 = ±1,

(A.6)

where

λ1 =
X0

r0

(X0 + 1 − r0)
ρ̂+(r0)

c2(ρ̂+(r0))
(Û+

0 (r0))2
, λ2 =

r0

X0

1
ρ̂+(r0)(X0 + 1 − r0)

(c2(ρ̂+(r0))
(Û+

1 (r0))2
− 1

)
, (A.7)
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and

F1(ρ, U1, U2, w; ξ) =
w

ρ
∂z1ρ − X0(1 − z1)ξ′(z2)

ρ(ξ(z2) + z1(X0 + 1 − ξ(z2)))
(c2(ρ)

U2
1

− w2
)
∂z1ρ

−
(

X0(X0 + 1 − ξ(z2))
ρ(ξ(z2) + z1(X0 + 1 − ξ(z2)))

(
c2(ρ)
U2

1

− w2) − λ1

)
∂z2ρ, (A.8)

F2(ρ, U1, U2, w; ξ) =
(

(ξ(z2) + z1(X0 + 1 − ξ(z2))
X0(X0 + 1 − ξ(z2))ρ

(c2(ρ)
U2

1

− 1) − λ2

)
∂z1ρ

− w

ρ

(
(z1 − 1)ξ′(z2)
X0 + 1 − ξ(z2)

∂z1 + ∂z2

)
ρ − (z1 − 1)ξ′(z2)

X0 + 1 − ξ(z2)
∂z1w − 1 + w2

X0
.

(A.9)

After determination of w and ρ, U1 can be obtained through the Bernoulli’s law⎧⎪⎪⎨⎪⎪⎩
{(U1 + X0(z1 − 1)ξ′(z2)U2

ξ(z2) + z1(X0 + 1 − ξ(z2))
)
∂z1 + X0(X0 + 1 − ξ(z2))U2

ξ(z2) + z1(X0 + 1 − ξ(z2))
∂z2}( 1

2U2
1 (1 + w2) + h(ρ)) = 0,

( 1
2U2

1 (1 + w2) + h(ρ))(ξ(z2), z2) =
(

1
2 (Û+

0 + g̃1)2 + 1
2w2(Û+

0 + g̃1)2

+h(ρ̂+
0 (r0) + g̃2

)
(ξ(z2), z2),

(A.10)
here g̃i(i = 1, 2) in (A.6) and (A.10) have the analogous expressions as in (3.6).

With a slight abuse of notations, we still set{
ρ(z) = ρ(ξ(z2) + z1(X0 + 1 − ξ(z2)), z2),
Ui(z) = Ui(ξ(z2) + z1(X0 + 1 − ξ(z2)), z2), i = 1, 2.

Now we begin to prove Theorem 6.1′. This will be achieved by using of the contractible mapping theorem.
To this end, we introduce the iteration spaces as

Sσ = {ξ(z2) ∈ C4,α[−1, 1] : ‖ξ − r0‖C4,α[−1,1] ≤ σ, ξ(1) = r0, ξ
′(±1) = ξ(3)(±1) = 0} (A.11)

and

Ξδ ={(ρ(z), U1(z), U2(z)) : ‖(ρ1U1) − (ρ̂+
0 , Û+

0 )(r0 + z1(X0 + 1 − r0))‖C3,α(E+) + ‖U2‖C3,α(E+) ≤ δ,

∂z2U1(z1,±1) = 0, U2(z1,±1) = ∂2
z2

U2(z1,±1) = 0,

∂z2ρ(z1,±1) = ∂3
z2

ρ(z1,±1) = 0}, (A.12)

where σ > 0 and δ > 0 will be determined later on.
The proof of Theorem 6.1′ will be divided into five steps.
Step 1. Approximate Shock.
For every (q, V1, V2) ∈ Ξδ, the approximate shock is defined as follows⎧⎨⎩ ξ′(z2) = ξ(z2)

X0

(qV1V2)(0, z2)
P (q(0, z2)) − P−

0 (ξ(z2)) + (qV 2
2 )(0, z2)

,

ξ(1) = r0.

(A.13)

Obviously, (A.13) has a unique solution ξ = ξ(z2) ∈ C4,α([−1, 1]), moreover, one has

ξ′(±1) = 0, ξ(3)(±1) = 0, (A.14)

and
‖ξ(z2) − r0‖Ck,α[−1,1] ≤ C‖V2‖Ck−1,α(E+), k = 2, 3, 4. (A.15)
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If δ > 0 is chosen such that
Cδ ≤ σ, (A.16)

then (A.15) yields
‖ξ(z2) − r0‖C4,α[−1,1] ≤ σ. (A.17)

namely, ξ(z2) ∈ Sσ.
Step 2. Approximate ρ and w.
In this Step, we will look for the solution (ρ(z), w(z)) to the following problem⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂1w + λ1∂2ρ = F1(q, V1, V2,
V2
V1

; ξ),

∂2w − λ2∂1ρ = F2(q, V1, V2,
V2
V1

; ξ),

ρ = ρ̂+
0 (r0) + g̃2(V 2

2 (0, z2), P−
0 (ξ(z2)) − P−

0 (r0), U−
0 (ξ(z2)) − U−

0 (r0)) on z1 = 0,

P (ρ) = Pe + εP0( z2
X0

) + C0 on z1 = 1,

w = 0 on z2 = ±1,

(A.18)

where F1 and F2 are defined by (A.8) and (A.9), and C0 is a constant to be adjusted so that (A.18) has a
solution.

Let (ρ1, w1) and (ρ2, w2) solve⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂1w1 + λ1∂2ρ1 = F1(q, V1, V2,
V2
V1

; ξ),

∂2w1 − λ2∂1ρ1 = 0,

ρ1 = 0 on z1 = 0,

ρ1 = 0 on z1 = 1,

w1 = 0 on z2 = −1,

w1 = 0 on z2 = 1

(A.19)

and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂1w2 + λ1∂2ρ2 = 0,

∂2w2 − λ2∂1ρ2 = F2(q, V1, V2,
V2
V1

; ξ),

ρ2 = ρ̂+
0 (r0) + g̃2(V 2

2 (0, z2), P−
0 (ξ(z2)) − P−

0 (r0), U−
0 (ξ(z2)) − U−

0 (r0)) on z1 = 0,

P (ρ2) = Pe + εP0( z2
X0

) + C0 on z1 = 1,

w2 = 0 on z2 = −1,

w2 = 0 on z2 = 1

(A.20)

respectively. Set w = w1 + w2 and ρ = ρ1 + ρ2. Then (ρ, w) solves (A.18).
To solve the elliptic systems (A.19) and (A.20), one may introduce potential functions φ1(z) and φ2(z)

as follows
∂1φ1 = w1, ∂2φ1 = λ2ρ1, φ1(0, 0) = 0 (A.21)

and
∂1φ2 = −λ1ρ2, ∂2φ2 = w2, φ2(0, 0) = 0. (A.22)

Then (A.19) becomes {
∂2
1φ1 + λ1

λ2
∂2
2φ1 = F1(q, V1, V2,

V2
V1

; ξ) in E+,

φ1 = 0 on ∂E+

(A.23)
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while (A.20) is changed into

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ2
λ1

∂2
1φ2 + ∂2

2φ2 = F2(q, V1, V2,
V2
V1

; ξ) in E+,

∂1φ2 = −λ1(ρ̂+
0 (r0) + g̃2(V 2

2 (0, z2), P−
0 (ξ(z2)) − P−

0 (r0), U−
0 (ξ(z2)) − U−

0 (r0))) on z1 = 0,

∂1φ2 = −λ1P
−1(Pe + εP0( z2

X0
) + C0) on z1 = 1,

∂2φ2 = 0 on z2 = −1,

∂2φ2 = 0 on z2 = 1,

φ2(0, 0) = 0.
(A.24)

First, due to (A.8), one can check that F1(q, V1, V2,
V2
V1

; ξ) ∈ C2,α(E+) and F1(z1,±1) = ∂2
2F1(z1,±1) = 0,

so the compatible conditions for (A.23) are satisfied. Then, similar to the proof of Lemma A.1, (A.23) has
a unique solution φ1(z) ∈ C4,α(E+) and admits the following estimate

‖w1‖C3,α(E+) + ‖ρ1‖C3,α(E+) ≤ ‖φ1‖C4,α(E+) ≤ C‖F1(q, V1, V2,
V2

V1
; ξ)‖C2,α(E+)

≤ O(
1

X0
+ δ + σ)‖V2‖C3,α(E+) + O(δ)‖q − ρ̂+

0 (r0 + z1(X0 + 1 − r0))‖C3,α(E+)

+ O(δ + σ)‖V1 − Û+
0 (r0 + z1(X0 + 1 − r0))‖C3,α(E+) + O(δ)‖ξ − r0‖C4,α[−1,1]

≤ O(
1

X0
+ δ + σ)δ. (A.25)

Furthermore, the following compatible conditions hold

∂2
2φ1(z1,±1) = ∂1∂

2
2φ1(z1,±1) = ∂4

2φ1(z1,±1) = 0. (A.26)

Next we solve the problem (A.24).
It follows from (A.9) and (q, V1, V2) ∈ Ξσ that

F2(q, V1, V2,
V2

V1
; ξ) ∈ C2,α(E+), ∂1φ2(0, z2) ∈ C3,α[−1, 1], ∂1φ2(1, z2) ∈ C3,α[−1, 1]

and

∂2F2(q, V1, V2,
V2

V1
; ξ)(z1,±1) = 0, ∂k

2 (∂1φ2)(0,±1)) = ∂k
2 (∂1φ2)(1,±1)) = 0, k = 1, 3.

In addition, it can be verified directly that the background solution
(
ρ̂+
0 (r0 + z1(X0 + 1 − r0)), Û+

0 (r0 +
z1(X0 + 1 − r0)), 0; r0

)
satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ2
λ1

∂2
1 φ̂2 + ∂2

2 φ̂2 = F2(ρ̂+
0 (r0 + z1(X0 + 1 − r0)), Û+

0 (r0 + z1(X0 + 1 − r0)), 0, 0, r0) in E+,

∂1φ̂2 = −λ1ρ̂
+
0 (r0) on z1 = 0,

∂1φ̂2 = −λ1P
−1(Pe) on z1 = 1,

∂2φ̂2 = 0 on z2 = −1,

∂2φ̂2 = 0 on z2 = 1,

φ̂2(0, 0) = 0,
(A.27)

where ∂1φ̂2 = −λ1ρ̂
+
0 (r0 + z1(X0 + 1 − r0)), ∂2φ̂2 = 0.
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So as in [11], the solvability condition for (A.24) is∫ ∫
E+

(
F2(q, V1, V2,

V2

V1
; ξ) − F2

(
ρ̂+
0 (r0 + z1(X0 + 1 − r0)), Û+

0 (r0 + z1(X0 + 1 − r0)), 0, 0, r0

))
dz

= λ2

∫ 1

−1

(
g̃2

(
V2(0, z2), P−

0 (ξ(z2)) − P−
0 (r0), U−

0 (ξ(z2)) − U−
0 (r0)

)
+ P−1(Pe)

− P−1
(
Pe + εP0(

z2

X0
) + C0)

)
dz2. (A.28)

It is easy to check that (A.28) has a unique solution C0. Hence, (A.24) has a unique solution φ2 ∈
C4,α(E+) with the following estimate

‖w2‖C3,α(E+) + ‖ρ2 − ρ̂+
0 (r0 + z1(X0 + 1 − r0))‖C3,α(E+) + |C0|

≤ C‖φ2 − φ̂2‖C4,α(E+)

≤ C(‖F2(q, V1, V2,
V2

V1
; ξ) − F2(ρ̂+

0 (r0 + z1(X0 + 1 − r0)), Û+
0 (r0 + z1(X0 + 1 − r0)), 0, 0, r0)‖C2,α(E+)

+ ‖g̃2(V 2
2 (0, z2), P−

0 (ξ(z2)) − P−
0 (r0), U−

0 (ξ(z2)) − U−
0 (r0))‖C3,α(E+) + ε‖P0(

z2

X0
)‖C3,α[−1,1])

≤ O(
1

X0
+ δ)‖ξ − r0‖C4,α[−1,1] + O(δ)‖V2‖C3,α(E+) + O(

1
X0

+ δ)‖V1 − Û+
0 (r0 + z1(X0 + 1 − r0))‖C3,α(E+)

+ O(
1

X0
+ δ + σ)‖q − ρ̂+

0 (r0 + z1(X0 + 1 − r0))‖C3,α(E+) + Cε‖P0(
z2

X0
)‖C3,α(E+)

≤ O(
1

X0
+ δ + σ)(σ + δ) + Cε. (A.29)

Meanwhile, it follows from (A.20)-(A.24) that the following compatible conditions hold

∂2φ2(z1,±1) = ∂3
2φ2(z1,±1) = ∂1∂2φ2(z1,±1) = ∂1∂

3
2φ2(z1,±1) = 0. (A.30)

Due to (A.21), (A.22), (A.25)-(A.26) and (A.29)-(A.30), it holds that

‖ρ− ρ̂+
0 (r0 + z1(X0 +1− r0))‖C3,α(E+) + ‖w‖C3,α(E+) + |C0| ≤ O(

1
X0

+ δ +σ)δ +O(
1

X0
+ δ)σ +Cε (A.31)

and
∂2ρ(z1,±1) = ∂3

2ρ(z1,±1) = 0, w(z1,±1) = ∂2
2w(z1,±1) = 0. (A.32)

Step 3. Approximate U1.
By (A.10), U1 is obtained by solving

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{(V1 + X0(z1 − 1)ξ′(z2)V2

ξ(z2) + z1(X0 + 1 − ξ(z2))
)
∂z1 + X0(X0 + 1 − ξ(z2))V2

ξ(z2) + z1(X0 + 1 − ξ(z2))
∂z2}

(
1
2U2

1 (1 + w2) + h(ρ)
)

= 0,(
1
2U2

1 (1 + w2) + h(ρ)
)
(0, z2) =

1
2

(
1 + w2(0, z2)

)(
Û+

0 (r0) + g̃1

(
V 2

2 (0, z2), P−
0 (ξ(z2)) − P−

0 (r0), U−
0 (ξ(z2)) − U−

0 (r0)
))2

+h
(
ρ̂+
0 (r0) + g̃2(V 2

2 (0, z2), P−
0 (ξ(z2)) − P−

0 (r0), U−
0 (ξ(z2)) − U−

0 (r0)
)
.

(A.33)
31



It follows from the characteristics method and the analysis in §4 that (A.33) has a unique solution
U1 = U1(z) ∈ C3,α(E+) such that

‖U1 − Û+
0 (r0 + z1(X0 + 1 − r0))‖C3,α(E+)

≤ O(1)(‖ρ − ρ̂+
0 (r0 + z1(X0 + 1 − r0))‖C3,α(E+) + O(

1
X0

+ δ)‖ξ − r0‖C4,α[−1,1] + O(δ + σ)‖w‖C3,α(E+)

≤ O(
1

X0
+ δ + σ)δ + O(

1
X0

+ δ)σ + Cε. (A.34)

Due to (A.32) and the definition of Ξδ, one can check from (A.33) by following the proof of Lemma A.2
that

∂2U1(z1,±1) = 0. (A.35)

Step 4. A mapping on Ξδ.
Note that the coefficients of ε in (A.31) and (A.34) depend only on the background solution and then

are uniformly bounded. Hence, one can select proper constants σ = O(1)ε > 0 and δ = O(1)ε > 0 such
that the solution (ρ, U1, U2; ξ) obtained in Step 1-Step 3 satisfies

‖ξ − r0‖C4,α[−1,1] ≤ σ.

and
‖(ρ1U1) − (ρ̂+

0 , Û+
0 )(r0 + z1(X0 + 1 − r0))‖C3,α(E+) + ‖U2‖C3,α(E+) ≤ δ.

This, together with (A.14), (A.32) and (A.35), shows that

ξ ∈ Sσ, (ρ(z1, z2), U1(z1, z2), U2(z1, z2)) ∈ Ξδ.

Therefore, for each (q, V1, V2) ∈ Ξδ, by use of Step 1-Step 3, we can define a mapping T from Ξδ into
itself by

T (q, V1, V2) = (ρ, U1, U2). (A.36)

In order to prove Theorem 6.1′, it suffices to show that the mapping T is contractible in C2,α(E+).
Step 5. Contractible estimate on the mapping T .
For any given (ρ̃, Ũ1, Ũ2) and (q̃, Ṽ1, Ṽ2) in Ξδ, set

T (ρ̃, Ũ1, Ũ2) = (ρ, U1, U2), T (q̃, Ṽ1, Ṽ2) = (q, V1, V2).

The corresponding approximate shocks ξ1(z2) and ξ2(z2) can be obtained from (A.12).
As in §4, define Wi(i = 1, 2, 3), Mj(j = 1, 2, 3), Nk(k = 1, 2, 3) corresponding to (ρ, U1, U2) and (q, V1, V2),

and define W̃i(i = 1, 2, 3, 4), M̃j(j = 1, 2, 3), Ñk(k = 1, 2, 3, 4) in terms of (ρ̃, Ũ1, Ũ2; ξ1) and (q̃, Ṽ1, Ṽ2; ξ2).
In addition, set W5 = U2

U1
− V2

V1
and W̃5 = Ũ2

Ũ1
− Ṽ1

Ṽ2
.

We first establish some estimates on T .
By (A.13), one has{

Ñ4(z2) = O(δ)W̃1 + O(1)W̃2 + O(δ)W̃3 + O( δ
X0

)W̃4 in (−1, 1),

W̃4(1) = 0.
(A.37)

This implies that

‖W̃4‖C3,α[−1,1] ≤ Cδ‖W̃1‖C2,α(Ē+) + C‖W̃2‖C2,α(Ē+) + Cδ‖W̃3‖C2,α(Ē+). (A.38)
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By (A.18) and (A.28), one has⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂1W5 + λ1∂2W3 = O( σ
X0

)W̃1 + O(
ε + σ

X0
+ δ2)W̃3 + O(δ2)W̃4 + O(

1
X0

)W̃5

+O(δ)M̃3 + O(δ)Ñ3 + O( 1
X0

)Ñ4,

∂2W5 − λ2∂1W3 = O( 1
X2

0
+ 1

X0
)W̃1 + O( 1

X0
+ δ2)W̃3 + O( δ

X0
+ σδ

X0
+ σδ)W̃4 + O( σ

X0
+ δ)W̃5

+O(δ)M̃3 + O(δ)Ñ3 + O(σ)∂z1W̃5 + O( δ
X0

)Ñ4,

W3 = O(σ)W̃1 + O(σ)W̃2 + O(δσ)W̃3 + O( 1
X0

+ σδ)W̃4 + O(δ)Ñ4 on z1 = 0,

W3 = O(σ)W̃1 + O(σ)W̃2 + O(δσ)W̃3 + O( 1
X0

+ σδ)W̃4 + O(δ)Ñ4 on z1 = 1,

W5 = 0 on z2 = −1,

W5 = 0 on z2 = 1.
(A.39)

So following the arguments in Step 2, one can arrive at

‖W3‖C2,α(Ē+) + ‖W5‖C2,α(Ē+) ≤ C(
1

X0
+ σ)‖W̃1‖C2,α(Ē+) + Cσ‖W̃2‖C2,α(Ē+)

+ C(
1

X0
+ δ)‖W̃3‖C2,α(Ē+) + C(

1
X0

+ δ)‖W̃4‖C2,α[−1,1] + C(
1

X0
+ σ + δ)‖W̃5‖C2,α(Ē+).

It follows from (A.38) and the expression of W5 that

‖W3‖C2,α(Ē+) + ‖W5‖C2,α(Ē+) ≤ C(
1

X0
+ σ)‖W̃1‖C2,α(Ē+) + C(

1
X0

+ σ + δ)‖W̃2‖C2,α(Ē+)

+ C(
1

X0
+ δ)‖W̃3‖C2,α(Ē+). (A.40)

In addition, due to (A.33), one can calculate to obtain

W1 = O(δ)W2+O(1)W3+O(σδ)W̃1+O(σ)W̃2+O(σδ)W̃3+O(
1

X0
+σδ)W̃4+O(δ)Ñ4+O(δ)(β−β̃), (A.41)

where β and β̃ stand for the starting points from the transonic shock of two characteristics respectively,
whose definitions are given in (4.8).

As in Lemma 4.4, one can obtain the following estimate

‖β − β̃‖C2,α(Ē+) ≤ C(δ‖W̃1‖C2,α(Ē+) + ‖W̃2‖C2,α(Ē+) + δ‖W̃4‖C2,α[−1,1]). (A.42)

Then, it follows from (A.41) and (A.42) that

‖W1‖C2,α(Ē+) ≤Cδ‖W2‖C2,α(Ē+) + C‖W3‖C2,α(Ē+) + C(σδ + δ2)‖W̃1‖C2,α(Ē+) + C(σ + δ)‖W̃2‖C2,α(Ē+)

+ Cσδ‖W̃3‖C2,α(Ē+) + C(
1

X0
+ δ)‖W̃4‖C3,α[−1,1].

This, together with (A.38) and (A.40), yields

‖W1‖C2,α(Ē+) ≤C(
1

X0
+ σ)‖(W̃1, W̃3)‖C2,α(Ē+) + C(

1
X0

+ σ + δ)‖W̃2‖C2,α(Ē+). (A.43)
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Combining (A.38) with (A.43) yields

‖(W1, W2, W3)‖C2,α(Ω̄) ≤ C(
1

X0
+ σ)‖(W̃1, W̃3)‖C2,α(Ω̄) + C(

1
X0

+ σ + δ)‖W̃2‖C2,α(Ω̄)

+
C

X0
‖W̃4‖C2,α[−1,1].

Thus, combining this with the estimate (A.38), we arrive at

‖(W1, W2, W3)‖C2,α(Ω̄) ≤ C(
1

X0
+ σ)‖(W̃1, W̃3)‖C2,α(Ω̄) + C(

1
X0

+ σ + δ)‖W̃2‖C2,α(Ω̄).
(A.44)

This shows that the mapping T is contractible in C2,α(E+) for suitably small δ, σ and X−1
0 . In fact, as

stated in Step 4, we can choose σ = O(1)ε > 0 and δ = O(1)ε > 0.
Therefore, the system (A.5), (A.6) and (A.10) has a unique solution

(ρ(z), U1(z), U2(z); ξ(z2))

when the exit pressure condition in (A.6) is adjusted by a unique constant C0 (determined by the integral
equality (A.28)). Since the coordinate transformation (A.4) is reversible and keeps the equivalence of C4,α

norms between the two coordinates (z1, z2) and (y1, y2) for r0 ∈ (X0, X0 + 1) and suitably small σ = O(ε),
then we finish the proof of Theorem 6.1′ and Theorem 6.1.
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