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ON TRANSONIC SHOCKS IN TWO-DIMENSIONAL
VARIABLE-AREA DUCTS FOR STEADY EULER SYSTEM∗

HAIRONG YUAN†

Abstract. This paper concerns transonic shocks in compressible inviscid flow passing a two-
dimensional variable-area duct for the complete steady Euler system. The flow is supersonic at the
entrance of the duct, whose boundaries are slightly curved. The condition of impenetrability is posed
on the boundaries. After crossing a nearly flat shock front, which passes through a fixed point on
the boundary of the duct, the flow becomes subsonic. We show that to ensure the stability of such
shocks, pressure should not be completely given at the exit: it only should be given with freedom
one, that is, containing an unknown constant to be determined by the upstream flow and the profile
of the duct. Careful analysis shows that this is due to the requirement of conservation of mass in
the duct. We used Lagrangian transformation and characteristic decomposition to write the Euler
system as a 2 × 2 system, which is valid for general smooth flows. Due to such a simplification, we
can employ the theory of boundary value problems for elliptic equations to discuss well-posedness or
ill-posedness of transonic shock problems in variable-area duct for various conditions giving at the
exit.

Key words. Euler system, transonic shocks, free boundary problem, hyperbolic-elliptic com-
posite system, ill-posed problem
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1. Introduction. Using nozzles and pipes to transport and control fluid flows
has numerous applications. For instance, one of the important phenomena in gas
dynamics is that by appropriate design of a nozzle there may generate one or several
shock waves to adjust the supersonic gas flow at the entrance of the nozzle to a certain
subsonic state at the exit, which is required, for example, for the jet engines of some
types of supersonic airplanes to work. (See, for instance, [31, section 7.13] for detailed
discussions.) Other examples are various wind tunnels [25]. Since compressible flows
in nozzles exhibit abundant phenomena; such as chocking, local supersonic bubble,
formation of shock waves and their interactions with the boundaries of nozzles, etc.
(see [12, Chapter 5] and [24, section 6.2.3]), rigorous and thorough mathematical
analysis of flows in nozzles is a formidable task.

Nevertheless, progress has been made for several model problems. For unsteady
quasi–one-dimensional gas flow in a duct of variable area (see [27, section 8.1]), Liu
showed in a series of papers [22], [23], [17] that supersonic and subsonic flows are
stable, and for transonic flows, the shock waves tend to decelerate along an expanding
duct and accelerate along a contracting duct. See also [18]. For inviscid isentropic
irrotational gas flows, using the full velocity potential equation, Chen and Feldman
studied the existence and stability of multidimensional transonic shocks through an
infinite nozzle and determined the state of the flows at infinity by the data of the
coming flows and the geometry of the nozzle [4], [5], [6]. In [28] Xin and Yin considered
a similar problem for finite nozzle with a class of conditions involving potential giving
at the exit. It is also remarkable that Kuz’min [19] studied subsonic-supersonic smooth
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flows in nozzles by using the Chaplygin equation (which is equivalent to the full
velocity potential equation) and the simplified von Kármán equation. See also, for
example, [9], [10], [13] for other interesting and important works concerning systems
of conservation laws, multidimensional shock waves, and flow patterns in nature.

In this paper we study a class of transonic flows with shocks in a two-dimensional
variable-area duct for the steady full Euler system, which is a more precise description
of compressible inviscid flows. The flow is supersonic at the entrance of the duct,
whose boundaries are suitable perturbations of straight lines, while the flow becomes
subsonic across a nearly flat shock front. The condition of impenetrability is posed on
the boundaries. We will show that for given pressure at the exit, in general such flow
patterns may not exist except the pressure at the exit satisfies an additional restriction:
something about the pressure has already been determined by the state of the flow at
the entrance and the geometry of the duct. Precisely, to ensure the stability of such
transonic shocks, the pressure at the exit can be given only apart from a constant
difference, that is, it should contain an unknown constant to be solved simultaneously
with the flow fields in the duct. The proof reveals that the requirement of conservation
of mass in the duct is closely connected to this phenomenon (see Remark 8.1 in section
8.1).

On the other hand, given pressure at the exit is a physically well accepted con-
dition for flows in nozzles [12]. So our result indicates that the transonic shock we
investigated here is unstable and not likely to be observed in practice. However, since
the flow fields of the transonic shock we studied here are relatively simple, it may help
us gain some insight into understanding those more complicated transonic shocks ap-
pearing, for example, in de Laval nozzles. Note that all the works cited above on
transonic shocks and [8], [7], [29] are devoted to the study of the class of transonic
shocks we investigate here.

In this paper we also discuss, from the mathematical point of view, the well-
posedness or ill-posedness of a transonic shock problem in variable-area ducts if other
conditions are given at the exit. It is shown that for given density, entropy, Mach
number, or the velocity component parallel to the axis of the duct, the problem is in
general ill-posed; however, it is well-posed for the given velocity component, which is
perpendicular to the axis of the duct. For a list of such results, see section 11.

We remark that in [8] Chen has discussed the special case when the boundaries
of the duct are straight lines and the flow has certain symmetric properties, while the
upstream supersonic flow is perturbed. The author [29] has also investigated the case
for flows in a cylinder with cylindrical symmetry by a different method from [8], and
the radial velocity vanishing condition was posed at the exit. In [7] Chen and Yuan
developed the methods initiated in [29] and solved the transonic shock problem for a
three-dimensional steady full Euler system under the periodic conditions on the lateral
boundary of the duct, and hence obtained the solution of the transonic shock problem
in a three-dimensional duct with a constant square section under certain assumptions
on the symmetry of the coming flow. The ill-posedness for given pressure at the exit
is also demonstrated in detail there. However, due to the special structure of the
two-dimensional stationary Euler system, we developed a different and more powerful
approach here and obtained more results.

Now we comment on several difficulties which lie in the transonic shock problem
we investigate presently. First is the treatment of the shock front, which is a free
boundary and should be determined with the solutions (the subsonic states of the
gas flows) simultaneously. Fruitful techniques have been developed in [1], [2], [3],
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[8], [20] to deal with the type of free boundaries we meet here. In a rough way,
those techniques allow us, by suitable reformulation of the Rankine–Hugoniot jump
conditions, to construct a boundary modifying mapping, whose fixed point is the
desired free boundary. The definition of the boundary modifying mapping involves
solving a series of nonlinear fixed boundary problems.

Second, the steady full Euler system is a hyperbolic-elliptic composite system for
subsonic flow. For such a system, classical techniques such as energy estimates, maxi-
mum principle, and estimates of fundamental solutions, are not valid in a straightfor-
ward way. One needs to separate the “elliptic part” and “hyperbolic part” appropri-
ately to use the classical theory of elliptic and hyperbolic differential equations. To
cope with the curved boundary, we also write the system in Lagrangian coordinates
by virtue of the law of conservation of mass, and then decompose it into a 2×2 system
(which is elliptic for subsonic flow, hyperbolic for supersonic flow, and of mixed type
for transonic flow) and two algebraic equations (one is Bernoulli’s law and the other is
the invariance of entropy along streamlines for C1 flows). This simplifies greatly the
Euler system and enables us to study the transonic shock problem comprehensively.
For example, one of the merits of this approach is that it avoids loss of derivatives.
We remark that this formulation may be used to study other smooth flow patterns in
ducts. Such a technic has already been used by Chen to study a flat Mach configu-
ration in [11] and by Fang to study the transonic shocks attached to a curved wedge
[14].

Third, later on we will find out that we need to solve an elliptic system in a
rectangular domain. It is well known that the corners may cause singularities in the
solutions (even the well-posedness; see an example in [30]), which in turn affect the
regularity of the shock front, and then the smoothness of the boundary itself, and
then may cause new trouble in the regularity of solutions. Another feature is that
the “hyperbolic part” may transport the singularity at the corners produced by the
“elliptic part” to other points in the domain. We are lucky that we can use weighted
Hölder spaces and the results established in [16] by Gilbarg, Hörmander and in [21]
by Lieberman to overcome this difficulty.

Fourth, as mentioned above, it turns out we are in fact dealing with an ill-posed
problem if we give directly the pressure at the exit. We will show its relation to
the Neumann boundary problems for Poisson equations and determine appropriate
boundary conditions to make such a problem well-posed.

We will use the following well-known Banach contraction mapping principle twice
to solve the transonic shock problem:

Any contractive mapping on a complete metric space has one and

only one fixed point.

To find the transonic shock front, we will show that the boundary modifying mapping
is contractive (see section 10). However, to define the boundary modifying mapping,
we need again the Banach contraction mapping principle to show that a series of
nonlinear fixed boundary problems are uniquely solvable under some hypothesis (see
section 9). Due to our great efforts contributed to simplify the original problem
(section 3–7), obtaining the necessary estimates is straightforward and not hard work.

The paper is organized as follows. In section 2 we rigorously formulate the problem
of transonic shocks in variable-area ducts (denoted as problem (A)) and state our
main results, i.e., Theorem 2.8. In section 3 we write the Euler system in Lagrangian
coordinates, which also transform the curved boundaries of ducts into straight lines.
In section 4 we decompose the resulted system into the “elliptic part” and “hyperbolic
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part” and in section 5 we show the existence of supersonic flow in the ducts. In section
6 we formulate a free boundary problem (denoted as problem (B)) and then reduce
it to a set of fixed boundary problems (denoted as problem (C)) and a boundary
modifying problem. In section 7, by rewriting the Rankine–Hugoniot jump conditions
we express problem (C) in an equivalent but more transparent form (denoted as
problem (D)). Section 8 is devoted to the linearized version of problem (D). In section
9 we solve problem (C) by the Banach contraction mapping principle. In section 10 we
construct the boundary modifying mapping and show that it has a fix point by using
Banach contraction mapping principle once again, thus finishing the proof of our main
results, Theorem 2.8. The last section of this paper, section 11, is devoted to well-
posedness or ill-posedness of the transonic shock problem (A) for various conditions
given at the exits of the ducts. The detailed proofs of these results are omitted since
they can be done in the same spirit as the proof of Theorem 2.8, but we have sketched
out the main points.

2. Formulation of the transonic shock problem and main results.

2.1. Problem (A) and background solution. The Euler system, which mod-
els two-dimensional inviscid steady gas flow, is of the form

(2.1)

⎧

⎨

⎩

∇ · m = 0,

∇ ·
(

m ⊗ m

ρ

)

+ ∇p = 0,

with Bernoulli’s law

(2.2)
1

2
u2 + i = const,

where ρ, p, i are the density, pressure, and enthalpy of the fluid, while u = (u, v)
and m = ρu are the velocity and the momentum density vector, respectively. The
first equation in (2.1) is the conservation of mass, the second is the conservation of
momentum, and the Bernoulli’s law corresponds to the conservation of energy. Note
that the const in (2.2) depends on streamlines but is invariant on the same streamline
even across a shock [12].

In the case of polytropic gas p = A(S)ργ , γ ∈ (1,∞), with S the entropy, (2.2)
takes the form

(2.3)
1

2
(u2 + v2) +

a2

γ − 1
= const,

where a =
√

γA(S)ργ−1 is the local speed of sound. For C1 flow, (2.1) can also be
written as a symmetric system:

(2.4)

⎛

⎝

ρu 0 1
0 ρu 0
1 0 u

ρa2

⎞

⎠ ∂xU +

⎛

⎝

ρv 0 0
0 ρv 1
0 1 v

ρa2

⎞

⎠ ∂yU = 0.

In this form, the first two equations are the conservation of momentum, and the last
is the conservation of mass.

Remark 2.1. In (2.4) we have set

(2.5) U =
(

u v p
)t
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as the state of the gas. Since a2 = γp/ρ, we may obtain ρ from (2.3) once the const
in it is known. Sometimes we will also set

(2.6) U =
(

u v p ρ
)t
.

In the latter we will introduce

(2.7) w =
v

u
.

To simplify the notation, for u nonzero we will also set U as

(2.8)
(

u w p
)t
.

There will be no confusion in using U to express these vectors later.
Without loss of generality, we set P :=

{

(x, y) ∈ R
2 : x ∈ [−1, 1], 0 ≤ y ≤ Γ(x)

}

to be a two-dimensional duct with variable sections, and denote the upper wall
{

y =

Γ(x) : x ∈ [−1, 1]
}

as Γ+ with Γ(x) a positive function, and Γ− =
{

y = 0 : x ∈ [−1, 1]
}

the lower wall. We also set Γs =
{

x = s : y ∈ [0,Γ(s)]
}

for s ∈ [−1, 1].
We are interested in the following boundary value problem (A):

(2.9) (A) :

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(2.1)(2.2) in P,

v = 0 on Γ−,

v − uΓ′(x) = 0 on Γ+,

U = U−
b on Γ−1,

p = p1 on Γ1.

The conditions on Γ± mean that the boundary is impermeable and it is natural for

ducts without holes on its boundaries. We suppose U−
b :=

(

u−
b 0 p−b ρ−b

)t
is

a constant supersonic state with ρ−b > 0 on Γ−1, which represents supersonic flow
entering the duct when u−

b > 0. Hence the const in Bernoulli’s law (2.3) is

c0 = (u−
b )2/2 + (a−b )2/(γ − 1)

and independent of streamlines. It is necessary to control the pressure at Γ1 to obtain
transonic flows in P; otherwise the flow may be purely supersonic in P, which is why
we need the last condition in (2.9). However, the following simple but fundamental
result indicates we may have trouble if we give p1 in an arbitrary way. (Giving other
conditions on Γ1 instead of p will be discussed in section 11. In the following sections
2–10 we concentrate only on the typical case, i.e., problem (A).)

Proposition 2.1. For the special case Γ(x) ≡ 1, suppose the solution U to (2.9)
depends only on x; then for given supersonic state U−

b , there exists a unique constant

p1 = p+
b determined by U−

b such that

(2.10) Sb :
{

x = 0
}

is a shock front with uniform supersonic state U−
b ahead of it (i.e., in {x < 0}) and

uniform subsonic state U+
b =

(

u+
b 0 p+

b ρ+
b

)t
behind it (i.e., in {x > 0}). Sb

and (U−
b , U+

b ) make up a piecewise smooth weak entropy solution to (2.9) containing

shocks. Here “uniform” means that the states U±
b are constant vectors.
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Proof. From the one-dimensional steady Euler system it is obvious that any
solution without a jump must be uniform. So U ≡ U−

b for x ∈ [−1, 0]. The Rankine–
Hugoniot jump conditions (see [4, 13]) now takes the form

ρu = ρ−b u
−
b , ρu2 + p = ρ−b (u−

b )2 + p−b , Eu = E−
b u−

b ,

where E = γ
γ−1p + 1

2ρ |u|
2
. By supersonic condition u−

b > a−b it is easy to get

u =
c∗

u−
b

, c∗ := 2c0
γ − 1

γ + 1
,

ρ =
ρ−b (u−

b )
2

c∗
,

p = ρ−b (u−
b )2 + p−b − c∗ρ

−
b .

Direct calculation demonstrates that u < a (subsonic) and the Lax entropy condition
(see [13])

(2.11) p > p−b .

So U+
b ≡ U = (u, 0, 0, p, S)t for x ∈ [0, 1], and thus p1 = p is uniquely determined by

U−
b as well as U±

b .
Remark 2.2. In the rest of this paper we call the above obtained (U±

b ) and
Sb :

{

x0 = 0
}

a background solution and denote it as Ub = (U−
b , U+

b ;Sb). Equation
(2.10) is used to fix the position of the shock front since we may set x = c for any
c ∈ (−1, 1) as the shock front and obtain the same U±

b . One may also observe from
the above result that the pressure p = p1 at Γ1 is necessary, though it cannot be
given arbitrarily. The main result of this paper, Theorem 2.6 below, shows that for
two-dimensional flow this observation is also valid.

2.2. Function spaces. Although the background solution provides us with some
useful information, however, when Γ(x) is slightly curved, rigorously solving problem
(A) still involves several difficulties, as mentioned in the introduction. For subsonic
flow, the steady Euler system is of hyperbolic-elliptic composite type: it has a real
(generalized) eigenvalue of multiplicity 1 and a pair of conjugate complex eigenvalues.
Due to conservation of mass we can introduce the Lagrangian transformation to reduce
the original equations to two algebraic equations (Bernoulli’s law and constancy of
entropy along streamlines for C1 flows) and a 2 × 2 system of partial differential
equations, which is hyperbolic for supersonic flow, elliptic for subsonic flow, and of
mixed type for transonic flow. Thus to obtain the subsonic flow behind the shock
front S, we have to confront elliptic boundary value problems on rectangular domains

(2.12) Ω =
{

(x, y) : 0 ≤ y ≤ Γ(x), f(y) ≤ x ≤ 1
}

,

where x = f(y) is the equation of the shock front S which satisfies f(0) = 0. Suppose
S and Γ+ intersect at the point Σ4 = (x∗, y∗). It is well known that the corners

(2.13) Σ1 = (0, 0), Σ2 = (1, 0), Σ3 = (1,Γ(1)), Σ4 = (x∗, y∗)

in general will cause singularities to the solutions, and the popular Schauder theory
for C2,α(α ∈ (0, 1)) domains (see [15]) may be invalid. The loss of regularity at the
corners will also influence the regularity of the shock front S itself, which in turn has
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an effect on the smoothness of the domain Ω, and thus may cause new trouble when
solving the elliptic problems. The hyperbolic part may also transport the singularities
at corners to other points in the duct. Fortunately, Gilbarg and Hörmander [16] and
Lieberman [21] have established the intermediate Schauder estimates to attack elliptic
problems on nonsmooth domain (see also the Notes of Chapter 6 in [15]), and their
theory is powerful enough to handle our dilemma. Following their ideas, we introduce

the function spaces H
(b)
a (Ω), H

′b
a [0, y∗] to describe precisely the regularity of our

desired subsonic flow and the transonic shock front, respectively. Our definition is
a little different from theirs, but due to the boundary regularity estimates (Lemmas
6.18 and 6.29 in [15]), there is no problem later in using their theorems. Note that in
the following we always suppose that 0 ≤ k < a = k +α ≤ k + 1, a+ b > 0, with k an
integer and α ∈ (0, 1] for such spaces.

The Banach spaces H
′(b)
a [0, y∗] is defined as follows. A function f on [0, y∗] is in

H
′(b)
a [0, y∗] if and only if

(2.14) ‖f‖
′(b)
a;[0,y∗] := sup

δ>0
δa+b ‖f‖Ca[δ,y∗−δ] < ∞,

with Ca here the usual Hölder space Ck,α. We define ‖·‖
′(b)
a;[0,y∗] as the norm of

H
′(b)
a [0, y∗].

The Banach space H
(b)
a (Ω) is by definition the set of functions φ defined on Ω

with the property that

(2.15) ‖φ‖(b)
a:Ω := sup

δ>0
δa+b ‖φ‖Ca(Ωδ)

< ∞,

where

(2.16) Ωδ :=
{

P = (ξ̄, η̄) ∈ Ω : distance(P,Γ±) > δ
}

.

Here Ω as in (2.12) with f ∈ H
′(b)
a [0, y∗], while Γ+ := {(x,Γ(x)) : x∗ ≤ x ≤ 1},Γ− :=

{(x, 0) : 0 ≤ x ≤ 1} are, respectively, the upper and lower boundary of Ω.
Notice that the Lagrangian transformation also has the advantage that it straight-

ens the curved boundary since it straightens the streamlines. So later by introducing

certain homeomorphisms Φ : Ω → [0, 1; 0, 1] which are of class H
(b)
a (Ω) with b < −1,

we will actually solve elliptic boundary problems on the square [0, 1; 0, 1]. For sim-

plicity, we write H
(b)
a ([0, 1; 0, 1]) as H

(b)
a , and H

′(b)
a [0, 1] as H

′(b)
a . The corresponding

norms are simply denoted as ‖·‖(b)
a , ‖·‖

′(b)
a , respectively. By direct calculations one

can verify the following.

Proposition 2.2. Suppose b < −1, Ω as before, u ∈ H
(b)
a , and Φ : Ω → [0, 1; 0, 1]

satisfy Φ ∈ H
(b)
a (Ω̄; R2). Then u ◦ Φ ∈ H

(b)
a (Ω̄) and

(2.17) ‖ u ◦ Φ ‖
H

(b)
a (Ω̄)

≤ C ‖ u ‖
H

(b)
a

,

where C = C
(

n, ‖ Φ ‖
H

(b)
a (Ω̄;Rn)

)

.

A similar result also holds for H
′(b)
a . This means that the homeomorphisms intro-

duced later (including the Lagrangian transformation) will not influence our resultant
estimates.
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We list here several useful properties of spaces H
(b)
a (they also hold for H

′(b)
a )

which are used later to obtain estimates of certain nonlinear terms. The proof and
more information about this class of weighted Hölder spaces can be found in [16].

Proposition 2.3.

‖∇φ‖(1+b)
a−1 ≤ C ‖φ‖(b)

a if a > 1,(2.18)

‖φ‖(b)
a ≤ C ‖φ‖(b′)

a if b′ ≤ b.(2.19)

Proposition 2.4. If 0 ≤ a′ ≤ a, a′ + b � 0, and b is not an integer ≤ 0, then

(2.20) ‖φ‖(b)
a′ ≤ C ‖φ‖(b)

a .

Proposition 2.5. If 0 ≤ cj ≤ a + b, a � 0, then

(2.21) ‖φψ‖(b)
a ≤ C(‖φ‖(b−c1)

a ‖ψ‖(c1)
0 + ‖φ‖(c2)

0 ‖ψ‖(b−c2)
a ).

2.3. Main results. There are two main results in this paper. Now we can state
precisely the first one as the following theorem. Another is indicated in Remark 2.12.
For details, see section 11.

Theorem 2.6. There exists a ε0 > 0 such that if

‖Γ(x) − 1‖C5[−1,1] ≤ ε < ε0,(2.22)

dk(Γ(x) − 1)

dxk

∣

∣

∣

x=−1
= 0, k = 0, 1, 2, 3, 4, 5,(2.23)

then there is a unique e ∈ R with

(2.24) |e| < C0ε

such that (2.9) with

(2.25) p1 = p+
b + e

has a unique weak entropy solution (U−, U+;S) with the following properties:

(i) U− is supersonic, U+ is subsonic, and S is the shock front separating U− and

U+ with entropy condition.

(ii) S : x = f(y), y ∈ [0, y∗], with y∗ satisfying y∗ = Γ(f(y∗)) and

(2.26) f(0) = 0.

(iii) For some α ∈ (0, 1), the following estimates hold:

∥

∥U− − U−
b

∥

∥

C3,α(P−)
< C0ε,(2.27)

∥

∥U+ − U+
b

∥

∥

(−α)

2+α;Ω
< C0ε,(2.28)

‖f‖
′(−1−α)
3+α;[0,y∗] < C0ε.(2.29)

Here ε0, C0 are constants depending only on Ub, and we have

P− := {(x, y) ∈ P : x < f(y)},

where Ω is the same as in (2.12).
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Remark 2.3. We suppose (2.26) holds to fix the position of the shock front.
This is necessary, as indicated by the translation invariance along the x axis for the
background solution: for the same p1 in Proposition 2.2 at the exit, the position of
the shock cannot be uniquely determined (see also Remark 2.3 and [4], [28]). We note
that this phenomena is different from those transonic shocks observed in de Laval
nozzles.

Remark 2.4. Equation (2.25) may be replaced by

(2.30) p1 = p+
b + g(y) + e

with e a constant to be determined simultaneously with U for any g ∈ C2,α[0,Γ(1)]
with small norm. There is no additional difficulty in the proof. Giving pressure at the
exit in this way implies that the value of the pressure at the exit can be given only
apart from a constant difference. We note that e in most cases does not vanish, as was
shown by Proposition 2.2 if g is a nonzero number: it has already been determined
by the coming upstream flow and the shape of the duct and g. This implies that for
given pressure at the exit of the duct the transonic shock problem is ill-posed. As can
be seen from the background solution, the ill-posedness is not related to the fact that
we fixed the position of the shock.

Remark 2.5. Our proof can be modified to treat the case when the upstream
supersonic flow at the entrance of the duct is also perturbed slightly if certain orders
of compatibility conditions hold at the entrance, and a similar result can be proved.
The major difference is that the constant in Bernoulli’s law may be different on
different streamlines. In [7] we have studied this case for the three-dimensional Euler
system.

Remark 2.6. We note that the method developed in this paper provides us with
more information than just presented in Theorem 2.6. It indicates clearly the well-
posedness of giving v, w at Γ1; ill-posedness of giving u, ρ, S, or the Mach number
M = |u|/a as well as p there will be discussed in detail in section 11.

Remark 2.7. We emphasize here that the uniqueness of transonic shock in The-
orem 2.6 is proved only in the class of functions satisfying properties (i)–(iii) listed
there. The “global uniqueness” is an interesting open problem. Noting the nonunique-
ness of transonic shocks claimed by Smith in [26] and symmetry breaking phenomena
discussed by Kuz’min [19] and references therein, rigorous analysis of uniqueness or
nonuniqueness of certain problems in aerodynamics is very important to understand
some widely used models in practice and numerical simulations.

3. Euler equations in Lagrangian coordinates. The Euler equations (2.1),
(2.2) are difficult to handle directly. In this section we use conservation of mass to
write them in Lagrangian coordinates, which simplifies the geometry of the domain,
as well as the “hyperbolic” part of the Euler system, as will be shown in the next
section.

Set

(3.1) w =
v

u
,

and denote the integral curves of

(3.2)

⎧

⎨

⎩

dŷ(x, h)

dx
= w(x, ŷ(x, h)),

ŷ(0, h) = h
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by

(3.3)

{

x = ξ,

ŷ = ŷ(ξ, h).

(This is exactly streamlines.) Let

(3.4) η = η(x, h) =

∫ ŷ(x,h)

ŷ(x,0)

ρu(x, y)dy

be the flux of mass between two such curves. Then by using the first equation in (2.1)
we have

∂xη = ρu(x, ŷ(x, h))
∂ŷ(x, h)

∂x

−ρu(x, ŷ(x, 0))
∂ŷ(x, 0)

∂x
−
∫ ŷ(x,h)

ŷ(x,0)

∂y(ρv(x, y))dy

= 0.(3.5)

Hence η = η(−1, h) and η(−1, 0) = 0. Thus if

(3.6)
∂η(0, h)

∂h
= ρu(0, ŷ(0, h))

∂ŷ(0, h)

∂h
= ρu(0, ŷ(0, h)) �= 0,

we may obtain the inverse function h = h(η) of η = η(−1, h) and h(0) = 0. Set

(3.7) y(x, η) = ŷ(x, h(η));

then (3.4) becomes

(3.8) η =

∫ y(x,η)

y(x,0)

ρu(x, s)ds,

and by differentiating it with η one has

(3.9)
∂y

∂η
=

1

ρu
.

Now we introduce the following Lagrangian transformation (x, y) �→ (ξ, η):

(3.10)

{

x = ξ,

y = y(ξ, η).

Then by

(3.11)
∂(x, y)

∂(ξ, η)
=

(

1 0
w 1

ρu

)

,

we have

(3.12)
∂(ξ, η)

∂(x, y)
=

(

1 0
−ρv ρu

)

;
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thus

(3.13)

{

∂x = ∂ξ − ρv∂η,

∂y = ρu∂η.

So a little computation shows that (2.1) or (2.4) may be written as conservation laws

(3.14)

⎧

⎪

⎨

⎪

⎩

∂ξ(
1
ρu

) − ∂ηw = 0, (conservation of mass),

∂ξ(u + p
ρu

) − ∂η(pw) = 0, (conservation of momentum along ξ),

∂ξv + ∂ηp = 0, (conservation of momentum along η),

or as symmetric system

(3.15) A∂ξU + B∂ηU = 0,

with

(3.16) A =

⎛

⎝

u 0 1
ρ

0 u 0
1
ρ

0 u
ρ2a2

⎞

⎠ , B =

⎛

⎝

0 0 −v
0 0 u
−v u 0

⎞

⎠

and

(3.17) U =
(

u v p
)t
.

The above transformation is valid if and only if

(3.18) ρu �= 0.

Note that in (3.16) the last equation corresponds to conservation of mass.
Next we consider boundary conditions on Γ±. By (2.9) and (3.2) (and uniqueness

of solutions to Cauchy problems of ODE) Γ± are streamlines. Thus Γ− in the (ξ, η)
coordinates is

(3.19) Γ̃− : η = 0, ξ ∈ [−1, 1],

while Γ+ is

(3.20) Γ̃+ : η = η0 =

∫ 1

0

ρu(−1, s)ds, ξ ∈ [−1, 1].

In the latter, without loss of generality we always suppose that η0 ≡ 1 by suitable
normalization of the unit of the coming flow. The corresponding boundary conditions
are

(3.21)

{

w = 0 on Γ̃−,

w = Γ′(ξ) on Γ̃+.

Since the shock front may be curved, with the equation

(3.22) ξ = ψ(η), η ∈ [0, 1],
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we introduce further the following transformation Φψ : (ξ, η) �→ (ξ̄, η̄) to straighten
the shock front:

(3.23)

⎧

⎨

⎩

ξ̄ =
ξ − ψ(η)

1 − ψ(η)
,

η̄ = η,
or

{

ξ = (1 − ψ(η̄))ξ̄ + ψ(η̄),

η = η̄.

So

(ξ̄, η̄) ∈ [0, 1; 0, 1]

and

(3.24)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂

∂ξ
=

1

1 − ψ(η̄)

∂

∂ξ̄
,

∂

∂η
=

∂

∂η̄
+

(ξ̄ − 1)ψ′(η̄)

1 − ψ(η̄)

∂

∂ξ̄
.

Thus (3.15) becomes

(3.25) Ā∂ξ̄U + B̄∂η̄U = 0,

with

(3.26) Ā = A + (ξ̄ − 1)ψ′(η̄)B, B̄ = (1 − ψ(η̄))B.

Finally, note that after passing the shock front, (3.21) in the (ξ̄, η̄) coordinates is

(3.27)

{

w = 0 on Γ̄− := {(ξ̄, 0) : ξ̄ ∈ [0, 1]},
w = Γ′((1 − ψ(1))ξ̄ + ψ(1)) on Γ̄+ := {(ξ̄, 1) : ξ̄ ∈ [0, 1]}.

4. Decomposition of elliptic-hyperbolic composite system. The idea in-
volved in this section to write (3.25) as separate elliptic and hyperbolic equations is
rudimentary. Let λ be a generalized eigenvalue of B̄ with respect to Ā:

(4.1) det(λĀ− B̄) = 0,

and let the corresponding generalized left (row) eigenvector be l, i.e.,

(4.2) lB̄ = λlĀ,

then multiply (3.25) from the left by l to get

(4.3) lĀ(∂ξ̄ + λ∂η̄)U = 0.

Now suppose λ (and thus l) is complex:

(4.4) λ = λR + iλI , l = lR + ilI , i =
√
−1;

then (4.3) is equivalent to

(4.5)

{

lRĀ∂IU + lIĀ∂RU = 0,

lRĀ∂RU − lIĀ∂IU = 0,
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with

(4.6) ∂R = ∂ξ̄ + λR∂η̄, ∂I = λI∂η̄.

So roughly speaking, the real eigenvalue λ corresponds to the hyperbolic equation
(4.3) while the complex λ and its conjugation λ̄ correspond to the elliptic system
(4.5).

System (3.25) has a real eigenvalue λ0 and a pair of complex eigenvalues λ =
λR± iλI if the Mach number M = |u|/a < 1 (the computation is straightforward and
we omit it):

λ0 = 0,(4.7)

λR = −
(1 − ψ)

(

(ξ̄ − 1)ψ′(u2 + v2) − v
ρ

)

1
ρ2

(

u2

a2 − 1
)

− (ξ̄ − 1)2ψ′2(u2 + v2) + 2
ρ
(ξ̄ − 1)ψ′v

,(4.8)

λI =
(1 − ψ)u

ρ

√
1 −M2

1
ρ2

(

u2

a2 − 1
)

− (ξ̄ − 1)2ψ′2(u2 + v2) + 2
ρ
(ξ̄ − 1)ψ′v

.(4.9)

Here and in the following we write ψ = ψ(η̄), ψ′ = ψ′(η̄). The corresponding left
eigenvectors are

l0 =
(

u v 0
)

,(4.10)

lR =
(

λR

ρ
− λR(ξ̄ − 1)vψ′ + (1 − ψ)v λR(ξ̄ − 1)ψ′u− (1 − ψ)u −λRu

)

,(4.11)

lI =
(

λI

ρ
− λI(ξ̄ − 1)vψ′ λI(ξ̄ − 1)ψ′u −λIu

)

.(4.12)

Thus

l0Ā =
(

u2 uv u
ρ

)

,(4.13)

lRĀ =
(

(1 − ψ)uv −(1 − ψ)u2 0
)

,(4.14)

lIĀ =
(

0 0 −(1 − ψ)u
√

1−M2

ρ

)

.(4.15)

By (4.3), (4.7), and (4.13) we get the hyperbolic equation

(4.16)
1

2
∂ξ̄(u

2 + v2) +
1

ρ
∂ξ̄p = 0

if u �= 0. On the other hand, from Bernoulli’s law (2.3) one gets

1

2
∂ξ̄(u

2 + v2) +
1

γ − 1
∂ξ̄a

2 = 0;

hence

1

ρ
∂ξ̄p−

1

γ − 1
∂ξ̄a

2 = 0.

By p = A(S)ργ , a2 = γA(S)ργ−1 the above equation is actually the constancy of
entropy along streamlines for C1 solutions

(4.17) ∂ξ̄

(

p

ργ

)

= 0.



14 HAIRONG YUAN

Similarly, we can write (4.5) as

(4.18)

{

∂ξ̄p + λR∂η̄p− β1∂η̄w = 0,

∂ξ̄w + β2∂η̄p + λR∂η̄w = 0,

with

(4.19)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

β1 = − (1 − ψ)u3

1
ρ2

(

u2

a2 − 1
)

− (ξ̄ − 1)2ψ′2(u2 + v2) + 2
ρ
(ξ̄ − 1)ψ′v

,

β2 = −
1

uρ2 (1 − ψ)(1 −M2)

1
ρ2

(

u2

a2 − 1
)

− (ξ̄ − 1)2ψ′2(u2 + v2) + 2
ρ
(ξ̄ − 1)ψ′v

.

When M < 1, (4.18) is an elliptic system. However, for M > 1, i.e., supersonic
flow, we can also carry out similar calculations to obtain (4.18), which is a hyperbolic
system. Thus if

(4.20) det

⎛

⎝

l0
lR
lI

⎞

⎠ = (1 − ψ)λIu(u2 + v2)

is nonzero, (4.17) and (4.18) are equivalent to (3.25) for C1 solutions. This is true if

(4.21) ρu �= 0, M �= 1, u �= a, ‖ψ‖C1 ≪ 1.

Remark 4.1. The first equation in (4.18) is in essence the conservation of mass.
In fact, it is obtained by multiplying by λI by (3.25). Notice that the third argument
in λI is nonzero and the last equation in (3.25) is the conservation of mass.

5. Existence of supersonic flow. In this section we always set ψ ≡ 0, and
we will use (4.18) to show existence and uniqueness of supersonic flow in the duct P

when its boundary is slightly curved, without considering the conditions at the exit.
Now (4.18) is

(5.1) ∂ξ

(

w
p

)

+

(

̟ β
κ ̟

)

∂η

(

w
p

)

= 0,

with

̟ =
ρva2

u2 − a2
, β =

a2(M2 − 1)

u(u2 − a2)
, κ =

ρ2a2u3

u2 − a2
.

Consider the following mixed initial-boundary value problem:

(5.2)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(5.1) in P̃ = [−1, 1] × [0, 1],

p = p−b on Γ̃−1 : ξ = −1,

w = 0 on Γ̃−1 : ξ = −1,

w = 0 on Γ̃− : η = 0,

w = Γ′(ξ) on Γ̃+ : η = 1,

where

(5.3) p = d0ρ
γ , or ρ =

(

p

d0

)
1
γ

,
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(5.4) u =

{

2

1 + w2

(

c0 −
γd0

γ − 1

(

p

d0

)
γ−1
γ

)}

1
2

,

with

(5.5) d0 = p−b /(ρ
−
b )γ .

Equation (5.3) originates from (4.17), and (5.4) comes from Bernoulli’s law (2.3) and
(5.3).

Remark 5.1. The system (5.1) is genuinely nonlinear in a neighborhood of U−
b .

Direct computation shows that the eigenvalues are

(5.6) λ± = ̟ ±
√

βκ =
ρa2

u2 − a2
(v ± u

√

M2 − 1),

and the corresponding left (resp., right) eigenvectors l± (r±) are

l± =
(

±√
κ

√
β
)

,(5.7)

r± =
(

±
√
β

√
κ
)t
.(5.8)

Thus

(5.9) ∇λ± · r±(U−
b ) =

1

2
(1 + γ)

ρu4
√
u

(u2 − a2)2

∣

∣

∣

∣

U=U−

b

�= 0.

Set W = (w, p)t. The characteristic form of (5.1) is

(
√
κ,
√

β)(∂ξ + (̟ +
√

βκ)∂η)W = 0,(5.10)

(−
√
κ,
√

β)(∂ξ + (̟ −
√

βκ)∂η)W = 0.(5.11)

Theorem 5.1. There exists a positive ε0 such that if (2.22) and (2.23) hold,

then problem (5.2) has a unique solution (w, p) satisfies

(5.12) ‖w‖C3,α(P̃) +
∥

∥p− p−b
∥

∥

C3,α(P̃)
≤ C0ε.

The constants ε0, C0 depend solely on U−
b , and α ∈ (0, 1) may be arbitrary.

Corollary 5.2. Under the same assumptions of Theorem 5.1, by (3.1), (5.3),
(5.4), and (5.12) we also have

(5.13)
∥

∥u− u−
b

∥

∥

C3,α(P)
+ ‖v‖C3,α(P) +

∥

∥ρ− ρ−b
∥

∥

C3,α(P)
+
∥

∥p− p−b
∥

∥

C3,α(P)
≤ C0ε.

Remark 5.2. Hereafter we denote the u, v, p, ρ, w, S obtained in Theorem 5.1 and
Corollary 5.2 as u−, v−, p−, ρ−, w−, S− in accordance with the notation in Theorem
2.6.

The proof of Theorem 5.1 is standard; it just needs a little modification of the
proof of Theorem 3.3 in Chapter 4 of [20] (p. 180). (We may get local existence directly
by this theorem.) In fact, if the boundary condition is a small perturbation of zero,
then the existence can be semiglobal. It means that the life span of the smooth
solution depends on the smallness of the perturbation of boundary data. In other
words, the life span can be larger than any given number, provided the perturbation
is small enough.

Remark 5.3. For Γ′(ξ) < 0 and the case when perturbation is not small, Chen
has proved in [10] that the solution may blow up in finite distance from the entrance
and shocks will appear.



16 HAIRONG YUAN

6. Free boundary problem (B) and fixed boundary problem (C).

6.1. Problem (B). Knowing the supersonic flow, now we are in the position to
determine the shock front and the subsonic state behind it simultaneously, satisfying
the restrictions of pressure at the exit. We formulate it as the free boundary problem
(B).

Let

(6.1) S : ξ = ψ(η), η ∈ [0, 1],

be the shock front. By (3.14) the following Rankine–Hugoniot jump conditions [12]
should hold across S:

−
[

1

ρu

]

= [w] ψ′(η),(6.2)

−
[

u +
p

ρu

]

= [pw] ψ′(η),(6.3)

[v] = [p] ψ′(η).(6.4)

By (6.4) we have

(6.5) ψ′(η) =
[v]

[p]
.

Due to Remark 2.7 concerning (2.26), we set

(6.6) ψ(0) = 0.

Substituting (6.5) in (6.2) and (6.3), we have

G1(U,U−) := [w][uw] +

[

1

ρu

]

[p] = 0,(6.7)

G2(U,U−) := [pw][uw] +

[

u +
p

ρu

]

[p] = 0.(6.8)

Here U :=
(

u w p
)t

, and U− :=
(

u− w− p−
)t

with U− = U−(ψ(η), η).
Note that (6.5), (6.7), and (6.8) are equivalent to (6.3)–(6.4) provided [p] �= 0, which
is guaranteed by (2.11) if the perturbations are small.

Problem (B) can be stated now as the following:
Find U,ψ(η) and a real number e such that
(i) ψ(η) satisfies (6.1), (6.5), (6.6);
(ii) (6.7), (6.8) hold on S;
(iii) w = 0 on Γ̃−;
(iv) w = Γ′(ξ) on Γ̃+;
(v) p = p+

b + e on Γ̃1.
(vi) Set Ωψ := {(ξ, η) : η ∈ [0, 1], ψ(η) ≤ ξ ≤ 1}, then (4.17), (4.18)
should hold in Ωψ as well as Bernoulli’s law (2.3).

6.2. Problem (C). The idea of dealing with problem (B) is, roughly speaking,
by iteration: first we fix the boundary and solve a fixed boundary problem, use (6.5),
(6.6) to update the boundary, and then solve another fixed boundary problem, etc.
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Set

(6.9) Sσ =
{

ψ(η) ∈ H
′(−1−α)
3+α [0, 1] : ‖ψ‖

′(−1−α)
3+α;[0,1] ≤ σ, ψ(0) = 0

}

with

(6.10) σ ≤ σ0 <
1

2
.

For any ψ ∈ Sσ, we may use transformation (3.23), which is of class H
(−1−α)
3+α;Ωψ

, to state

the fixed boundary problem (Cψ) as follows:

Find U and e ∈ R such that
(i) (4.17), (4.18), and (2.3) hold in Ω := [0, 1] × [0, 1];
(ii) (3.27) holds on Γ̄±;
(iii) (6.7), (6.8) hold on ξ̄ = 0;
(iv) p = p+

b + e holds on ξ̄ = 1.

Now if problem (Cψ) is uniquely solvable, with the solution Uψ, then by the
Cauchy problem of the ODE (note that η = η̄)

(6.11)

{

ψ̃′(η) =
[vψ]
[pψ] ,

ψ̃(0) = 0,

later (section 10) we will construct a mapping Ψ : Sσ → Sσ given by Ψ(ψ) = ψ̃ if ε0

in Theorem 2.6 is small. Clearly the fixed point ψ̄ of Ψ corresponds to the desired
shock front in problem (B), and the solution Uψ̄ obtained by problem (Cψ̄) is the
subsonic state we are looking for. We call Ψ the boundary modifying mapping.

7. Problem (D): An equivalent form of problem (C). This section is de-
voted to writing problem (Cψ) in an equivalent, but more transparent and tractable,
form called problem (Dψ). This is a nonlinear boundary problem for nonlinear sys-
tems.

We first deal with the boundary conditions. Since Gi(U
+
b , U−

b ) = 0 for i = 1, 2
holds, we may write (6.7), (6.8) as

∇+Gi(U
+
b , U−

b ) · (U − U+
b )(7.1)

= ∇+Gi(U
+
b , U−

b ) · (U − U+
b ) − (Gi(U,U

−
b ) −Gi(U

+
b , U−

b ))

+(Gi(U,U
−
b ) −Gi(U,U−))

:= gi(U,U−),

where ∇+Gi(U,U−) is the gradient of Gi(U,U−) with respect to the variables U . By
direct calculations (note that here by Bernoulli’s law we consider ρ as a function of
p, w, u),

∇+Gi(U
+
b , U−

b ) =
∂(G1, G2)(U,U−)

∂(u,w, p)

∣

∣

∣

∣

(U,U−)=(U+
b
,U−

b
)

=

(

a1 0 b1
a2 0 b2

)

(7.2)
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with

a1 = − 2c0 + u2

2c0 − u2
· [p]

ρu2

∣

∣

∣

∣

(U+
b
,U−

b
)

= −2c0 + u+
b

2

2c0 − u+
b

2 · p
+
b − p−b

ρ+
b u

+
b

2 ,

b1 = − [p]

ρup

∣

∣

∣

∣

(U+
b
,U−

b
)

,

a2 = [p]

(

1

γ
− p

ρu2

)∣

∣

∣

∣

(U+
b
,U−

b
)

,

b2 =

[

u +
p

ρu

]∣

∣

∣

∣

(U+
b
,U−

b
)

= 0.

Thus

d1 := det

(

a1 b1
a2 b2

)

=
[p]2

ρup

(

1

γ
− p

ρu2

)∣

∣

∣

∣

(U+
b
,U−

b
)

= − [p]2

γρup

(

a2

u2
− 1

)

∣

∣

∣

∣

∣

(U+
b
,U−

b
)

�= 0,

and we may rewrite (7.1) as

p− p+
b =

1

d1
(a1g2 − a2g1) := h1(U,U−),(7.3)

u− u+
b =

1

d1
(b2g1 − b1g2) := h2(U,U−).(7.4)

They should hold on ξ̄ = 0.
Next we manipulate the equations. In the following we denote the value of U on

ξ̄ = 0 as U0. For example, by (7.3), (7.4), p0 = h1 + p+
b , u0 = h2 + u+

b .
Now by (4.17) and Bernoulli’s law (2.3) we get

ρ0 =
γ

γ − 1
· p0

c0 − 1
2u

2
0(1 + w2

0)
,(7.5)

ρ = ρ0

(

p

p0

)
1
γ

,(7.6)

u =

{

2

1 + w2
·
(

c0 −
γ

γ − 1
· p
ρ

)}
1
2

,(7.7)

while w, p may be solved from (4.18).
Let

(7.8) λi := βi|U=U+
b
,ψ=0 for i = 1, 2,

with βi defined as in (4.19), and let

f1(U,ψ) = −λR∂η̄p + (β1 − λ1)∂η̄w,(7.9)

f2(U,ψ) = −λR∂η̄w + (λ2 − β2)∂η̄p;(7.10)



TRANSONIC SHOCKS IN DUCTS 19

then λi is positive and we may write (4.18) as

(7.11)

{

∂ξ̄p− λ1∂η̄w = f1(U,ψ),

∂ξ̄w + λ2∂η̄p = f2(U,ψ).

For subsonic flow this is a first order nonlinear elliptic system.
So far problem (C) may be expressed in the following equivalent way if (4.21)

holds.
Problem (D1)—boundary value problem for a first order elliptic sys-
tem:

(7.12)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂ξ̄p− λ1∂η̄w = f1(U,ψ) in Ω,

∂ξ̄w + λ2∂η̄p = f2(U,ψ) in Ω,

p = p+
b + h1(U,U−) on ξ̄ = 0,

p = p+
b + e on ξ̄ = 1,

w = 0 on η̄ = 0,

w = Γ′((1 − ψ(1))ξ̄ + ψ(1)) on η̄ = 1.

Problem (D2)—algebraic equations (recall that U0 = U |ξ̄=0):

(7.13)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u0 = u+
b + h2(U,U−),

p0 = p+
b + h1(U,U−),

ρ0 =
γ

γ − 1
· p0

c0 − 1
2u

2
0(1 + w2

0)
,

ρ = ρ0

(

p
p0

)
1
γ

,

u =
{

2
1+w2 ·

(

c0 − γ
γ−1 · p

ρ

)}
1
2

.

We call the above two coupled problems problem (Dψ) (or problem (D) for sim-
plicity). The equivalence for smooth solutions is obvious from the deductions in the
above sections.

8. Solving linearized problem (D). It is nature and standard to use iteration
methods, such as the Banach contraction mapping principle, to solve problem (D).
Thus in this section we concentrate on the related “linearized” problems.

8.1. Linearized problem (D1). This is to solve p̄, w̄, and e ∈ R satisfy

(8.1)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂ξ̄p̄− λ1∂η̄w̄ = f1 in Ω,

∂ξ̄w̄ + λ2∂η̄p̄ = f2 in Ω,

p̄ = p+
b + h1 on ξ̄ = 0,

p̄ = p+
b + e on ξ̄ = 1,

w̄ = 0 on η̄ = 0,

w̄ = g(ξ̄) on η̄ = 1,

where f1, f2, h1, g are suitable nonhomogeneous terms. This is a boundary value
problem on a domain with a piecewise smooth boundary, so we need a generalized
version of the usual Schauder theory for elliptic equations.
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We may separate problem (8.1) into the following two problems:

(8.2)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂ξ̄p̄1 − λ1∂η̄w̄1 = f1 in Ω,

∂ξ̄w̄1 + λ2∂η̄p̄1 = 0 in Ω,

p̄1 = p+
b + h1 on ξ̄ = 0,

p̄1 = p+
b + e on ξ̄ = 1,

w̄1 = 0 on η̄ = 0,

w̄1 = g(ξ̄) on η̄ = 1;

(8.3)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂ξ̄p̄2 − λ1∂η̄w̄2 = 0 in Ω,

∂ξ̄w̄2 + λ2∂η̄p̄2 = f2 in Ω,

p̄2 = 0 on ξ̄ = 0,

p̄2 = 0 on ξ̄ = 1,

w̄2 = 0 on η̄ = 0,

w̄2 = 0 on η̄ = 1.

Then

(8.4) p̄ = p̄1 + p̄2, w̄ = w̄1 + w̄2

is the solution of problem (8.1). Since Ω is simply connected, we may introduce
potentials φ1(ξ̄, η̄), φ2(ξ̄, η̄) such that

∂ξ̄φ1 = −λ2(p̄1 − p+
b ), ∂η̄φ1 = w̄1,(8.5)

∂ξ̄φ2 = λ1w̄2, ∂η̄φ2 = p̄2,(8.6)

and write (8.2), (8.3) as

(8.7)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1
λ2
∂2
ξ̄
φ1 + λ1∂

2
η̄φ1 = −f1 in Ω,

∂ξ̄φ1 = −λ2h1 on ξ̄ = 0,

∂ξ̄φ1 = −λ2e on ξ̄ = 1,

∂η̄φ1 = 0 on η̄ = 0,

∂η̄φ1 = g(ξ̄) on η̄ = 1;

(8.8)

{

1
λ1
∂2
ξ̄
φ2 + λ2∂

2
η̄φ2 = f2 in Ω,

φ2 = 0 on ∂Ω.

Equation (8.8) is the Dirichlet problem for Poisson equations. By Theorem 7.2
and Remark (2) in [16], we know there is a unique solution φ2 and

(8.9) ‖φ2‖(−1−α)
3+α ≤ C ‖f2‖(1−α)

1+α ,

where C depends only on Ub and σ0, and α ∈ (0, 1) may be arbitrary.
Next we consider (8.7), which is actually the Neumann problem for Poisson equa-

tions:
{

△φ = f in Ω,
∂φ
∂ν

= g on ∂Ω,
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where ν is the unit outward normal of ∂Ω. It is well known that such a problem is
solvable if and only if

(8.10)

∫

Ω

f dξ̄dη̄ =

∫

∂Ω

g ds.

This is in essence the reason why we have to introduce the number e in the pressure
giving at the exit of the duct.

Applying (8.10) to (8.7), we get

∫

Ω

f1 dξ̄dη̄ =

∫ 1

0

(e− h1) dη̄ − λ1

∫ 1

0

g(ξ̄) dξ̄;

thus if we take

(8.11) e =

∫

Ω

f1 dξ̄dη̄ + λ1

∫ 1

0

g(ξ̄) dξ̄ +

∫ 1

0

h1 dη̄,

(8.7) is solvable, and any two solutions differ only from a constant.
Now if (8.11) holds, then by Theorem 1.4 in [21] there exists a unique solution

φ1 to (8.7) with φ1(0, 0) = 0, and furthermore the following estimate holds for some
α ∈ (0, 1):

(8.12) ‖φ1‖(−1−α)
3+α ≤ C

(

‖f1‖(1−α)
1+α + ‖g‖C2+α[0,1] + ‖h1‖

′(−α)
2+α

)

.

So finally by (8.4)–(8.6), (8.9), and (8.12) we get

∥

∥p̄− p+
b

∥

∥

(−α)

2+α
+ ‖w̄‖(−α)

2+α + |e|(8.13)

≤ C
(

‖f1‖(1−α)
1+α + ‖f2‖(1−α)

1+α + ‖g‖C2+α[0,1] + ‖h1‖
′(−α)
2+α

)

.

Remark 8.1. An important observation is that the first equation in (8.1), which
is responsible for the well-posedness or ill-posedness of the transonic shock problem
under pressure giving on the exit, is in essence the equation of conservation of mass,
as can be checked by tracing its origin. This fact can be seen more clearly by using
another completely different method which was developed in [7].

8.2. “Linearized” problem (D2). This problem solves (recall that U0 =
U |ξ̄=0):

(8.14)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ū0 = u+
b + h2(U,U−),

p̄0 = p+
b + h1(U,U−),

ρ̄0 =
γ

γ − 1
· p̄0

c0 − 1
2 ū

2
0(1 + w̄2

0)
,

ρ̄ = ρ̄0

(

p̄
p̄0

)
1
γ

,

ū =
{

2
1+w̄2 ·

(

c0 − γ
γ−1 · p̄

ρ̄

)}
1
2

.

9. Solution of problem (C). With the above preparations, we solve in this
section problem (D) (i.e., problem (C)) by the Banach contraction mapping principle.
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Set

Oδ :=
{

U = (u,w, p, ρ)t :
∥

∥u− u+
b

∥

∥

(−α)

2+α
+ ‖w‖(−α)

2+α

+
∥

∥p− p+
b

∥

∥

(−α)

2+α
+
∥

∥ρ− ρ+
b

∥

∥

(−α)

2+α
≤ δ
}

,(9.1)

with

(9.2) δ < δ0

and δ0 a constant depending only on Ub such that our preparations in the preceding

sections are valid. Oδ is a closed subset of Banach space (H
(−α)
2+α )4. By Proposition

2.4 the norm here is in fact equivalent to that used in Theorem 2.6. We will construct
a mapping T from Oδ to Oδ by problem (D) and show this mapping contracts when
ε0 (the perturbation of the wall of the duct) is small.

For any U = (u,w, p, ρ)t ∈ Oδ, substitute

f1 = f1(U,ψ),(9.3)

f2 = f2(U,ψ),(9.4)

h1 = h1(U,U−),(9.5)

g(ξ̄) = Γ′((1 − ψ(1))ξ̄ + ψ(1))(9.6)

in problem (D1), with fi(U,ψ)(i = 1, 2) as in (7.9), (7.10) and h1(U,U−) defined by
(7.3). By (2.18)–(2.21) and (7.1), (7.9), (7.10) we have the following estimates for
i = 1, 2:

‖fi(U,ψ)‖(1−α)
1+α ≤ C(δ2 + δσ),(9.7)

‖hi(U,U−)‖
′(−α)
2+α ≤ C(δ2 + ε).(9.8)

‖g‖C2,α[0,1] ≤ Cε.(9.9)

We may get unique p̄, w̄, e from problem (D1), and by (8.13) we have

(9.10)
∥

∥p̄− p+
b

∥

∥

(−α)

2+α
+ ‖w̄‖(−α)

2+α + |e| ≤ C(δ2 + δσ + ε).

Now consider problem (D2). By (8.14) and analyticity of each expression, we
easily obtain that

∥

∥ū− u+
b

∥

∥

(−α)

2+α
≤ C(δ2 + δσ + ε),(9.11)

∥

∥ρ̄− ρ+
b

∥

∥

(−α)

2+α
≤ C(δ2 + δσ + ε).(9.12)

So far we obtained the unique Ū := (p̄, ū, w̄, ρ̄)t from U = (p, u, w, ρ)t ∈ Oδ and
have the estimate

(9.13)
∥

∥p̄− p+
b

∥

∥

(−α)

2+α
+‖w̄‖(−α)

2+α +
∥

∥ū− u+
b

∥

∥

(−α)

2+α
+
∥

∥ρ̄− ρ+
b

∥

∥

(−α)

2+α
+|e| ≤ C(δ2+δσ+ε).

Now choosing ε0, σ0 such that

Cδ0 ≤ 1

4
,(9.14)

Cσ0 ≤ 1

4
,(9.15)
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and

(9.16) δ = 2Cε,

we get

(9.17)
∥

∥p̄− p+
b

∥

∥

(−α)

2+α
+ ‖w̄‖(−α)

2+α +
∥

∥ū− u+
b

∥

∥

(−α)

2+α
+
∥

∥ρ̄− ρ+
b

∥

∥

(−α)

2+α
+ |e| ≤ δ.

Thus the mapping T : U = (u,w, p, ρ)t �→ Ū = (ū, w̄, p̄, ρ̄)t is into Oδ.

What is left is to show the contraction of T . For i = 1, 2, suppose

ψ(i) ∈ Sσ,

U (i) = (u(i), w(i), p(i), ρ(i))t ∈ Oδ,

and denote

Ū (i) = (ū(i), w̄(i), p̄(i), ρ̄(i))t = T ((u(i), w(i), p(i), ρ(i))t),

(9.18) U
(i)
− = U−(ψ(i)(η̄), η̄),

(9.19) g(i) = Γ′((1 − ψ(i)(1))ξ̄ + ψ(i)(1)).

Recall that
∥

∥U− − U−
b

∥

∥

C3,α(P)
≤ C0ε; we get

∥

∥

∥
U

(1)
− − U

(2)
−

∥

∥

∥

′(−α)

2+α
≤ Cε

∥

∥

∥ψ(1) − ψ(2)
∥

∥

∥

′(−α)

2+α
≤ Cε

∥

∥

∥ψ(1) − ψ(2)
∥

∥

∥

′(−1−α)

3+α
.

Then direct calculation shows that for j = 1, 2,

∥

∥

∥
fj(U

(1), ψ(1)) − fj(U
(2), ψ(2))

∥

∥

∥

(1−α)

1+α
(9.20)

≤ C(δ + σ)
(∥

∥

∥U (1) − U (2)
∥

∥

∥

(−α)

2+α
+
∥

∥

∥
ψ(1) − ψ(2)

∥

∥

∥

′(−1−α)

3+α

)

,

∥

∥

∥hj(U
(1), U

(1)
− ) − hj(U

(2), U
(2)
− )
∥

∥

∥

′(−α)

2+α
(9.21)

≤ C(δ + ε)
(∥

∥

∥U (1) − U (2)
∥

∥

∥

(−α)

2+α
+
∥

∥

∥ψ(1) − ψ(2)
∥

∥

∥

′(−1−α)

3+α

)

.

∥

∥

∥g(1) − g(2)
∥

∥

∥

C2,α[0,1]
≤ Cε

∥

∥

∥ψ(1) − ψ(2)
∥

∥

∥

′(−1−α)

3+α
.(9.22)

Thus by solving corresponding problem (D) we get

∥

∥

∥
Ū (1) − Ū (2)

∥

∥

∥

(−α)

2+α
(9.23)

≤ C(δ + σ + ε)
(∥

∥

∥U (1) − U (2)
∥

∥

∥

(−α)

2+α
+
∥

∥

∥ψ(1) − ψ(2)
∥

∥

∥

′(−1−α)

3+α

)

.

For ψ(1) = ψ(2) = ψ, we obtain contraction of T by choosing δ0.ε0, σ0 such that

(9.24) C(ε0 + δ0 + σ0) <
1

2
.

This solves problem (Cψ) for any ψ ∈ Sσ with σ0 small.
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10. Solution of problem (B): Determination of shock front. For any
ψ ∈ Sσ, we have solved problem (Cψ) to obtain the unique solution Uψ. Now by
solving the Cauchy problem

(10.1)

{

ψ̃′(η) =
[vψ]
[pψ] ,

ψ̃(0) = 0,

we constructed a mapping by Ψ(ψ) = ψ̃.
Obviously we have

(10.2)
∥

∥

∥ψ̃
∥

∥

∥

′(−1−α)

3+α
≤ C(δ + ε) ≤ Cε

by using (9.16). Taking

(10.3) σ = Cε,

we then have Ψ : Sσ �→ Sσ provided ε0 is sufficiently small.
For ψ(i) ∈ Sσ, i = 1, 2, denote U (i) as Uψ(i) ; then by (9.23) (recall now that

Ū (i) = U (i)) one gets

(10.4)
∥

∥

∥
U (1) − U (2)

∥

∥

∥

(−α)

2+α
≤ C(δ + σ + ε)

∥

∥

∥
ψ(1) − ψ(2)

∥

∥

∥

′(−1−α)

3+α
;

thus

∥

∥

∥
ψ̃(1) − ψ̃(2)

∥

∥

∥

′(−1−α)

3+α
(10.5)

≤ C
∥

∥

∥U (1) − U (2)
∥

∥

∥

(−α)

2+α
+ Cε

∥

∥

∥ψ(1) − ψ(2)
∥

∥

∥

′(−1−α)

3+α

≤ C(δ + σ + ε)
∥

∥

∥ψ(1) − ψ(2)
∥

∥

∥

′(−1−α)

3+α
.

If (9.24) holds, Ψ contracts on Sσ. By the Banach contraction mapping principle we
know the free boundary problem (B) is uniquely solvable. Combining this result and
Theorem 5.1 we proved Theorem 2.6.

Remark 10.1. We explain here further why the uniqueness claimed in Theorem
2.6 holds. By (10.5) we see the fixed point, i.e., the transonic shock front ψ̄ is unique.
Uniqueness for nonlinear problem (Dψ̄) in section 9 (thus problem (Cψ̄)) follows from
the contraction argument of the mapping T defined on the line after estimate (9.17)
(consult (9.23) with the case ψ(1) = ψ(2) = ψ̄). Moreover, uniqueness of constant e for
nonlinear problem (Dψ̄) follows by writing the nonlinear problem as a linear problem
(8.1) with right-hand sides defined by (9.3)–(9.6), and then using uniqueness of e for
linear problem (8.1). Thus the subsonic flow is also unique.

11. Discussion on well-posedness or ill-posedness for other conditions
given at the exit of duct. In this section we discuss the well-posedness or ill-
posedness of transonic shock problem (A) if other conditions are given at the exit
of the duct. Our tool is the well-posedness or ill-posedness of the corresponding
boundary value problem for elliptic systems (8.1). We remark that all the results
listed below can be proved rigorously in the same fashion as we have done for giving
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pressure at the exit before. We just sketch out the key points that are needed for such
proofs.

1. As have been shown above (in section 8), given p at Γ1 corresponds to the
Neumann problem for Poisson equations. So in general for given pressure at the exit,
problem (A) is ill-posed.

2. However, if we give w at the exit, then we need to solve a mixed boundary
value problem for Poisson equations with Dirichlet data nonempty. It is well known
that such a problem is well-posed; i.e., we can give w at the exit in an arbitrary way
and also obtain a unique solution (although we require that w|Γ1 should be small
since we are dealing with a small perturbation problem). So for w given at the exit,
problem (A) is well-posed.

3. For arbitrarily given v = g at the exit, Problem (A) is still well-posed. In fact,
this corresponds to given

w =
g

u

for any U = (u, v, p, ρ)t ∈ Oδ in the linearized problem (D1). The linearized problem
(D1) is then uniquely solvable, and the contraction by

w(1) − w(2) = g
u(1) − u(2)

u(1)u(2)

is still available, since g is small.
4. For given entropy S = g at the exit, problem (A) is ill-posed. In fact, by

constancy of entropy along streamlines behind the shock front, we get

p0

ργ0
= g.

Now by the third equation in (7.13), one has

w0 =

⎧

⎪

⎨

⎪

⎩

2
c0 − p0

γ
γ−1

(

g
p0

)
1
γ

u2
0

⎫

⎪

⎬

⎪

⎭

1
2

.

Since p0, u0 are known, we obtain both p0 and w0 on ξ̄ = 0. This means we encounter
an initial-boundary value problem for the elliptic system (i.e., the first two equations
in (8.1) or (7.12)). It is well known that such problems are ill-posed.

5. For giving Mach number M = g at the exit, Problem (A) is ill-posed. Indeed,
by Bernoulli’s law (2.3) we have

γ
p

ρ
= a2 =

c0
1

γ−1 + 1
2g

2
.

From constancy of entropy we get

p

ργ
=

p0

ργ0
,

where ρ0 can be expressed by the third equation in (7.13). Thus we can solve the
above two equations to obtain

p = p0h,
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where

h =

{

c0

(c0 − 1
2u

2
0(1 + w2

0))(1 + 1
2 (γ − 1)g2)

}
γ

γ−1

.

Thus we get

p− p+
b = (p0 − p+

b )h + p+
b (h− 1).

Notice that

h(U+
b ) = 1

and

‖h− 1‖ ≤ C(
∥

∥u0 − u+
b

∥

∥+
∥

∥g −M+
b

∥

∥+ ‖w0‖2
).

(Note here that w0 is itself small and that fortunately w2
0 appears in the expression

of h. This observation is of crucial importance!) With such an estimate in hand, the
remaining work is the same as giving pressure at the exit. Thus problem (A) is not
well-posed for the given arbitrary Mach number at the exit of the duct.

6. For given arbitrary density ρ = g at the exit, problem (A) is not well-posed.
From constancy of entropy we have

p =
p0g

γ

ργ0
.

Due to the third equation in (7.13), we get

p =

(

γ

γ − 1

)γ

p1−γ
0 gγ

(

c0 −
1

2
u2

0(1 + w2
0)

)γ

.

The left analysis is the same as in 5.
7. For given u = g at the exit, problem (A) is still ill-posed. By Bernoulli’s law

we get

p

ρ
=

γ − 1

γ

(

c0 −
1

2
g2(1 + w2

1)
)

;

here w1 is the value of w restricted on ξ̄ = 1. Using constancy of entropy we also have

p

ργ
=

p0

ργ0
.

By the expressions of ρ0 (the third equation in (7.13)) we can solve from the above
two equations that

p = p0

(

c0 − 1
2g

2(1 + w2
1)

c0 − 1
2u

2
0(1 + w2

0)

)

γ
γ−1

.

Note w0, w1 are small quantities and appeared as squares in the above expressions;
u0, p0 are known and are second order terms as shown in section 9. Thus we can use
similar methods as above to show the ill-posedness of problem (A).

Remark 11.1. All the above results may be surprising at first glance. However, a
deep consideration of the background solution suggests these results are natural, since
for the one-dimensional case, S, p, ρ,M, u have already been completely determined.
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