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Abstract

Non-transparency both in the form of incomplete information disclosure and

in the form of coarse feedback disclosure is optimal in virtual all organizational

arrangements of interest. Speci�cally, in moral hazard interactions, some form of

non-transparency is always desirable, as soon as the dimensionality of the problem

exceeds the dimensionality of the action spaces of the various agents.

1 Introduction

A central question of organizational design is about how to make workers exert more

productive e¤ort in contexts in which e¤ort is not directly observable. Such situations

with non-observable actions also called moral hazard problems concern team interactions

as well as the conditions governing the productive e¤ort of isolated workers.

Workers in organizations are typically involved in many moral hazard problems, and

the exact conditions a¤ecting agents�incentives may vary from one moral hazard problem

to the next. For example, problems may di¤er in how costly it is to agents to exert various

types of e¤ort, or they may di¤er in the degree of complementarity of agents�e¤orts in

team interactions, or they may di¤er in the degree of congruence of interest both between
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the agents and the organization, or in what is being observed by the employer or in the

wage and bonus structures.

In this paper, I wish to explore whether it is in the interest of the organization that

the workers or agents be as informed as possible about the speci�cs of the various moral

hazard problems they are engaged in. Speci�cally, I ask myself whether the organizational

objective can be enhanced when the agents are not fully informed of these. I also ask, for

team interactions, whether it can be in the interest of the organization to let the agents

know only the aggregate distribution of other team members�actions over various team

problems as opposed to letting them know these distributions for each problem separately

(an information that is typically required if agents are assumed -as in a Nash equilibrium-

to play a best-response to the actions of their opponents in the various problems).

I say that some form of non-transparency is desirable in the organization either 1)

when it is in the interest of the organization not to let the agents have full information

on the characteristics of the moral hazard problem they are in or, in team interactions,

2) when it is in the interest of the organization that the agents know only other team

members�distributions of actions in aggregate over various team problems.

The main result of this paper is that when the space of moral hazard problems is

rich enough (i.e., it has dimension strictly larger than the dimensionality of each agent�s

action space), non-transparency is desirable both in the sense that keeping secret some

information on the speci�cs of the problems strictly enhances the organizational objective

and the organization would be strictly better o¤ if the agents were only informed of

the aggregate distribution of other team members�e¤orts in aggregate over several (well

chosen) team problems. The conclusion need not be the same if the dimensionality of the

space of moral hazard problems is lower, as I demonstrate through examples.

Observe that the analysis is not solely concerned with the issue of optimal design in

moral hazard interactions. Even if instruments such as bonuses or wages are set subop-

timally,1 the main result of this paper still holds and non-transparency in the two senses

de�ned above is always desirable.

1One can think of various constraints (for example legal ones) why these would not be optimally
adjusted.
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Related literature:

1) Myerson (1986) considers very general mechanisms including the possibility that a

central mediator sends recommendations as to which actions the agents should perform.

In such contexts, the optimal mechanism requires that the agents be just told what to do

and no more (as providing more information could only make the incentive constraints

potentially harder to satisfy). The result of this paper that the agents should not be

fully informed of the speci�c of the problems is of a di¤erent nature. First, it applies

beyond the framework of optimal organizational design and in particular to frameworks

in which no mediator can make recommendations as to which actions to perform.2 Second,

even if such mechanisms are feasible, it is not clear from Myerson�s analysis that non-full

disclosure of the speci�cs of the problems strictly enhance the organizational objective

(it only shows that the outcome of a mechanism in which such information is disclosed

can always be replicated by the recommendation mechanism in which the agents are only

told what to do).3 By contrast, in this paper, it is shown that non-full disclosure is

strictly optimal whenever the dimensionality of the moral hazard problem exceeds the

dimensionality of agents�actions. Third, the second form of non-transparency considered

in this paper, i.e. about coarse feedback disclosure in moral hazard team interactions,

has no counterpart in Myerson�s setup. As will be shown, by providing coarse feedback

about other workers�attitudes, one can strictly improve upon Myerson�s optimal design

whenever the dimensionality of the moral hazard problem is big enough.4

2) When formalizing the interaction of workers who would only be coarsely informed of

other workers�attitudes (in the various moral hazard problems), I follow the methodology

developed in Jehiel (2005) in which it is assumed that subjects adopt the simplest theory

consistent with the feedback they receive.5

3) There have been many other approaches to transparency in organizations. I mention

2It may be argued that in a number of real life organizations, such recommendation schemes would
be subjet to ex post manipulation and thus hard to implement in a credible way.

3See Rahman (2009) for a recent paper that shows how the use of mediators (à la Myerson) or secret
contracts can be bene�cial in moral hazard team interactions.

4Of course, this can be achieved because the solution concept governing the interaction is no longer
the Nash equilibrium in this case but the feedback equilibrium (see subsection 3.2 for formal de�nitions).

5It should be mentioned that the analog of the second question addressed in this paper in the context
of moral hazard in team interactions is analyzed in Jehiel (2009) in the context of private value auctions.
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here just a few to help locate the present contribution in the literature. In seminal

contributions, Holmström (1979-1982) show in static moral hazard problems that it is

always best that the principal be as informed as possible, as it allows her to better monitor

the agent(s). In subsequent works, (Crémer (1995), Dewatripont et al. (1999a) or Prat

(2005) to name just a few), dynamic considerations have been introduced, imposing some

limited commitment capabilities on the Principal�s side. There, less information for the

Principal may help the Principal, as it may alleviate her commitment problems. Note

that this line of research is more concerned about changing the information held by the

Principal whereas the focus of this paper is on the information held by the agents (as well

as the feedback transmitted to them).6

4) There is also, of course, a vast number of papers that analyze the e¤ect of changing

the information structure in strategic environments. These include, in particular, Milgrom

and Weber (1982) in the context of auction with a¢ liated signals in which it is shown

that providing more information to bidders increases revenues (an insight to be contrasted

with the �nding of this paper that non-full disclosure is always optimal in su¢ ciently rich

moral hazard interactions). It also includes the extensive literature interested in when

oligopolists should share their information so as to increase aggregate pro�ts (see Vives

(1984), Gal-Or (1985) or Raith (1996) to mention just a few). Again, none of these

papers seem to have highlighted the role of the dimensionality of the private information

in addressing these questions.

The rest of the paper is structured as follows. A general framework is presented in

Section 2. The main questions are formally stated in Section 3, which also contains

some preliminary examples. Section 4 contains the main results as well as a discussion of

these. Section 5 illustrates the key role played by the dimensionality in deriving the main

insights. A brief conclusion appears in Section 6.

6In a context related to the literature just mentioned, Dewatripont et al. (1999b) analyze when
it can be good for the Principal to give fuzzy missions to the agent given the monitoring technology
available to the Principal. Note however that the infomation available to the agent is not being changed
in Dewatripont et al. (1999b). More generally, it seems that the literature on moral hazard interactions
has not considered the role of the dimensionality, which plays an essential role in the present analysis
(Battaglini (2006) is an exception but the questions addressed in his and this paper are completely
di¤erent).
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2 A general framework

I consider moral hazard problems with one or two agents parameterized by � 2 Rs.
The parameter � is assumed to be distributed according to a smooth (i.e., continuously

di¤erentiable) density p(�) that is strictly positive on some open subset of Rs. Extensions
to more than two agents raise no di¢ culties. In every moral hazard problem �, agent

i = 1, 2 chooses an action ai in Ai, an open subset of Rni. Agents choose their actions
simultaneously, that is, without observing the actions chosen by the other agent.

While the designer is assumed to know �, I consider various informational assumptions

regarding what the agents know about �. In addition, the designer may or may not

(depending on the application) be allowed to use instruments w = (w1; w2) 2 R!1 � R!2

that a¤ect agents 1 and 2�incentives respectively, and that are based on what the designer

can observe (typically actions ai are not observable to make the problem non-trivial).7

In problem �, agent i�s expected payo¤ is ui(a1; a2;w;�). The designer�s expected

payo¤ is �(a1; a2;w; �).

It should be mentioned that in the above formulation, agents�participation constraints

are not explicitly taken into account. Yet, when one of the actions in Ai ensures that

agent i gets at least what he can get outside the interaction (whatever aj), then agent

i�s participation constraint is automatically satis�ed. Participation constraints will be

further discussed later on after our main results are stated. Mechanisms allowing the use

of mediators (à la Myerson (1986)) will also be discussed then.

2.1 Applications

The framework covers lots of classic moral hazard problems. To mention, just a few:

Moral hazard in teams (à la Holmström, 1982)

Two risk-neutral agents 1 and 2 in a team simultaneously exert e¤ort a1 and a2 say

within the range [a; a]. With probability ep(a1; a2; �) = a1 + a2 + �a1a2 the team is

successful giving reward R to the organization where the parameter � 2
�
�; �

�
re�ects

7In Subsection 4.2 we will also consider the possibility that a mediator makes recommendations to the
agents, as in Myerson (1986).
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the degree of complementarity between the e¤ort levels chosen by the two agents.8

E¤orts are not directly observable, only success is. Agents must receive non-negative

wages in all events. The instruments available to the designer are the bonuses w1 and w2
given to agents 1 and 2 respectively in case of success (they optimally get 0 wage in case

of failure). Letting gi(ai) denote the cost to agent i of making e¤ort ai, this moral hazard

in team problem falls in the general framework just de�ned with:

ui(a1; a2;w;�) = ep(a1; a2; �)wi � gi(ai)
�(a1; a2;w;�) = ep(a1; a2; �)(R� w1 � w2)

Here, the team problem is parameterized by � = (�;R; g1; g2), the pro�le of complement-

arity, reward and cost parameters.

Multi-task and moral hazard (Holmström and Milgrom, 1991)

Even though the general framework admits several agents, it may obviously be partic-

ularized to one agent moral hazard problems (simply by freezing one of the two agents).

Given that no restrictions are being made on the dimensionality of the action space of the

agent, the framework covers the important application of multi-tasking. For example, a

single agent may consider exerting e¤ort ax; ay in two two tasks x and y with a correspond-

ing cost g(ax; ay). The expected output z = h(ax; ay) is a function of the e¤ort produced

in the two dimensions, and the designer only observes some signal q = r(ex; ey) + " where

" is the realization of a normal distribution with variance �2 and mean 0. The designer

may use a signal-dependent wage schedule w(q) as instrument. The objective of the de-

signer assumed to be risk neural writes z � E(w(q)) and the agent assumed to exhibit
constant absolute risk aversion gets an expected utility: �E exp[��(w(q)�g(ax; ay)]. The
multi-task problem is parameterized by � = (h; r; �; �; g).

Models of authority (Aghion and Tirole, 1997)

An agent 1 exerts e¤ort a1 to �nd out which project to adopt. The principal, agent

2, can exert e¤ort so as to improve upon the choice of the agent. A good project for

8We should assume that 2a+ �a < 1 so that p(a1; a2;�) 2 (0; 1) for all a1; a2 in [a; a].
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the agent gives him a private bene�t b and a good project for the principal gives her a

private bene�t B. The probability that a good project for the agent is also a good project

for the principal is 
 and the probability that a good project for the principal is a good

project for the agent is �. Identifying the e¤ort levels with the probability of �nding a

good project and letting g1(a1) and g2(a2) denote the costs of e¤orts made by the agent

and the principal, respectively, the expected utilities of the agent and the principal write:

u1(a1; a2;�) = a2�b+ (1� a2)a1b� g1(a1)
u2(a1; a2;�) = a2B + (1� a2)a1
b� g2(a2)

Here the designer�s objective coincides with 2�s objective �(a1; a2;�) = u2(a1; a2;�),

and the authority problem is parameterized by � = (�; 
; b; B; g1; g2), the pro�le of con-

gruence, private bene�t and cost parameters.9

3 Main questions

Within the framework described in Section 2, I ask the following two questions.

Question 1. Can it be bene�cial for the designer that at least one agent, say agent

1, be partially rather than fully informed of �?

Question 2. Can it be bene�cial for the designer to confuse agent 1 about agent 2�s

distribution of actions in the various team problems �?

The �rst question echoes familiar investigations in economic theory. For example, it is

similar to a question addressed by Milgrom and Weber (1982) in standard auctions with

a¢ liated information. There, in a context of one-dimensional adverse selection auction

models, Milgrom and Weber show that under a¢ liation, it is optimal for the seller to

release as much information as she can to the bidders. To the best of my knowledge, such

a question does not seem to have been addressed with much generality in the context

of moral hazard problems. Note that when addressing question 1, I simply perform

comparative statics varying the information structure of agent 1 (as Milgrom and Weber

do in the context of auctions). That is, I do not discuss the issue of how the information

9In Aghion-Tirole�s model, there are no monetary instruments.
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disclosure policy chosen by the designer would be interpreted by the agents so as to re�ne

their estimate of �. Such a view seems appropriate to deal with organizations in which

there is enough time to commit in advance (before the realization of � is known) to

whatever disclosure policy sounds best.

The second question is slightly less conventional. Yet, it seems relevant for a number of

practical organizational designs. Equilibrium conditions are generally more meaningfully

thought of as resulting from learning and/or adaptive processes. If agents manage to learn

the distribution of actions of other agents in every team problem (simply by analyzing the

data available from previous team problems), they can optimally adjust a best-response,

and a Nash equilibrium is then viewed as a plausible description of the interaction.

But, the designer can possibly hide somehow the conditions � that prevailed when

some action pro�le (a1; a2) was played in the past. In such a case, a Nash equilibrium

would be less likely to be played even in the limit as lots of data accumulate. I postulate

that faced with such a coarse feedback (to be made explicit below), agents would play an

analogy-based expectation equilibrium (as de�ned in Jehiel, 2005) in which the analogy

partition applying to each agent would be chosen by the designer (as in Jehiel, 2009 in

the context of private values auctions).

When the answer to either question 1 or 2 is positive, I say that some form of non-

transparency is optimal in the organization. While a positive answer to question 1 would

require that the agent be kept uninformed of the condition � of the team problem at

the time he must choose his action, a positive answer to question 2 would require that

the designer somehow hides some information from past experiences in the organization

but not the conditions prevailing in the team interaction of current interest. It may be

argued that in a number of cases the second type of non-transparency is slightly easier to

implement than the �rst one from a practical viewpoint (it may also be more e¢ cient as

well in some cases).

3.1 The solution concepts

In order to address questions 1 and 2, I need to describe how agents 1 and 2 would interact

under di¤erent information and feedback assumptions.
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3.1.1 Full information benchmark

In the benchmark scenario, agents 1 and 2 know � and in equilibrium they know each

other�s strategies. That is, given the instruments w, agents 1 and 2 play a Nash equilibrium

of the complete information game de�ned by the payo¤ ui(a1; a2;w; �) received by agent

i for every action pro�le a = (a1; a2) and the instrument(s) w.

In order to avoid technical complications, I will assume that ui is a concave function

of a that varies smoothly with w and �. Moreover, I will assume that whatever aj,w; �,

the function ai ! ui(a1; a2;w; �) is never maximized on the boundary of Ai.

Such assumptions guarantee that an interior pure strategy Nash equilibrium exists,

and that for almost all (w; �), Nash equilibria are locally unique and vary smoothly with

(w; �) (see MasColell et al. (1995)).

I will denote by aNEi (w;�) one such equilibrium and I will assume it is the one describ-

ing the interaction in our team problem. Thus, in the benchmark scenario, in problem �,

the designer sets the instruments w = w(�) (available to him) so as to maximize:

�(aNE1 (w; �); aNE2 (w; �);w; �):

I will be interested in situations in which the solution obtained is typically di¤erent

from the �rst-best solution the designer would choose if she could herself decide on a1,

a2 as well as w. This is typically the case in moral hazard problems with one or two

agents (unless agents�preferences are perfectly aligned with those of the designer and/or

the designer can observe agents�actions) and also more generally if transfers must be

bounded and/or agents are risk averse. Observe that in such cases, it is typically the

case that @
@a1
�(aNE1 (w; �); aNE2 (w; �);w; �) 6= 0. That is, even adjusting the instruments

w optimally, the marginal e¤ect of a1 in every direction need not be 0.

3.1.2 The coarse information case

To address question 1, I will consider situations in which agent 1 does not know whether

� = �x or �y while the designer and agent 2 do. In this case, the relevant solution

concept is the Nash Bayes equilibrium. The above concavity and smoothness assumptions

guarantee again the existence of an interior pure strategy equilibrium and that Nash
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equilibria (which are locally unique) inherit the smoothness properties of ui for almost all

w and �x or �y.

For each wx, wy, a Nash Bayes equilibrium is such that player 1 chooses action aCI1 in

both �x; �y and player 2 chooses actions aCI2;x and a
CI
2;y in �x and �y with

aCI2;x 2 argmax
a2
u2(a

CI
1 ; a2;wx; �x)

aCI2;y 2 argmax
a2
u2(a

CI
1 ; a2;wy; �y)

aCI1 2 argmax
a1
p(�x)u1(a1; a

CI
2;x;wx; �x) + p(�y)u1(a1; a

CI
2;y;wy; �y)

Letting aCI(w) denote the Nash Bayes equilibrium prevailing in the team problem,

the best choice of instruments w is then obtained by maximizing

p(�x)�(a
CI
1 (w); a

CI
2;x(w);wx; �x) + p(�y)�(a

CI
1 (w); a

CI
2;y(w);wy; �y):

In the analysis, I will assume that if aNE1 (wx; �x) = a
NE
1 (wy; �y) in the full information

benchmark, then in the game in which agent 1 does not know whether �x or �y, the play is

described by the complete information equilibrium strategy pro�le, as well. That is, such

a strategy pro�le is clearly a Nash Bayes equilibrium of the incomplete information game,

and the assumption just made ensures that the comparison between the two informational

scenarios is meaningful.10

A positive answer to question 1 is obtained when one can �nd �x and �y such that

max
w
p(�x)�(a

CI
1 (w); a

CI
2;x(w);wx; �x) + p(�y)�(a

CI
1 (w); a

CI
2;y(w);wy; �y)

is strictly larger than

p(�x)�(a
NE
1 (wx; �x); a

NE
2 (wx; �x);wx; �x) + p(�y)�(a

NE
1 (wy; �y); a

NE
2 (wy; �y);wy; �y)

for all w.11

10Alternatively, stronger conditions on ui and uj could be imposed that guarantee the uniqueness of
an equilibrium.
11For Theorem 1, it is enough to consider information sets consisting of two states.

10



3.2 The coarse feedback case

To address question 2, I will consider scenarios in which agent 1 is led (by the designer)

to confuse the distribution of actions of agent 2 in � = �x and �y while still knowing

whether � = �x or �y. I adopt the approach developed in Jehiel (2005-2009) to model

this.

Consider �x and �y and �x wx and wy. Agents 1 and 2 know whether � = �x or �y.

Agent 2 is rational as usually modeled. In problem � = �z he plays a best-response to

the actual action aCF1;z of player 1. Agent 1 in problems � = �x, �y is assumed to play

a best-response to the aggregate distribution of player 2�s actions over �x and �y. That

is, calling aCF2;x and aCF2;y the actions of player 2 in �x and �y respectively, agent 1 plays

a best response to the conjecture that agent 2 chooses aCI2;x with probability
p(�x)

p(�x)+p(�y)

and aCI2;y with probability
p(�y)

p(�x)+p(�y)
in each � = �x, �y. Or to put it more formally, for

z = x; y

aCF1;z 2 argmax
a1
p(�x)u1(a1; a

CI
2;x;wz; �z) + p(�y)u1(a1; a

CI
2;y;wz; �z)

Note that unless u1(�; �;wx; �x) = u1(�; �;wy; �y) this is typically di¤erent from the situ-

ation in which 1 does not know whether � = �x or �y, as, for example, it may lead agent

1 to pick di¤erent actions in �x and �y.

I call such a pro�le aCF a feedback equilibrium. A feedback equilibrium should be

interpreted as a steady state of a learning process involving in each round populations

of agents 1 and 2 engaged in problem �x with w = wx (in proportion
p(�x)

p(�x)+p(�y)
) and

problem �y with w = wy (in proportion
p(�y)

p(�x)+p(�y)
). While agents 2 would be told the

past empirical distribution of actions a1 in �x and �y separately, agents 1 would only be

told the aggregate empirical distribution of agents 2�s actions over �x and �y. If agents

1 adopt the simplest conjecture about agents 2 based on the feedback they receive and if

the distributions of play of agents 1 and 2 stabilize in �x and �y, a feedback equilibrium is

being played (see Jehiel (2005) for further elaborations on this concept and how it di¤ers

from Nash equilibrium in general).

It should be mentioned that, as for the coarse information approach, the concavity

and smoothness of u guarantee the existence of feedback equilibria in pure strategies that
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are locally unique and that vary smoothly (almost everywhere) with w and �x, �y.

Letting aCF (w) denote the feedback equilibrium prevailing in the team problem, the

best choice of instruments w is then obtained by maximizing:

p(�x)�(a
CF
1;x (w); a

CI
2;x(w);wx; �x) + p(�y)�(a

CF
1;y (w); a

CI
2;y(w);wy; �y):

In the analysis, I will assume that if aNE2 (wx; �x) = a
NE
2 (wy; �y) in the full information

benchmark, then in the game in which agent 1 is being confused about agent 2�s actions

in �x and �y, the play is described by this same strategy pro�le. This is again to make

the comparison with the full information benchmark meaningful.

A positive answer to question 2 is obtained when one can �nd �x and �y such that12

max
w
p(�x)�(a

CF
1;x (w); a

CI
2;x(w);wx; �x) + p(�y)�(a

CF
1;y (w); a

CI
2;y(w);wy; �y)

is strictly larger than

p(�x)�(a
NE
1 (wx; �x); a

NE
2 (wx; �x);wx; �x) + p(�y)�(a

NE
1 (wy; �y); a

NE
2 (wy; �y);wy; �y)

for all w.

3.3 Preliminary examples

Before stating the main results, I �rst provide simple examples in which the answers to

questions 1 and 2 are positive.

3.3.1 When coarse information is good

Consider two one-agent moral hazard problems �x; �y in which the agent must perform

two tasks ax; ay 2 [0; 1]. The cost incurred by the agent is c(ax; ay) = h(ax) + h(ay) both
in �x and �y where h(0) = h0(0) = 0 and h(�) is assumed to be increasing:
The output exhibits complementarities between the two tasks and it is given by z =

axay + " where " is the realization of some normal distribution centered around 0.

12For Theorem 2, it is enough to consider feedback classes involving two states.
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Output is not assumed to be observable (at least within a reasonable amount of time).

In situation �x, only qx = ax + "x is observed by the principal and similarly in situation

�y, only qy = ay + "y is observed by the principal where "x and "y are the realizations of

independent normal distributions centered around 0. Let p(�1) = p(�2) = 1
2
.

I assume that wages must be non-negative. The principal�s instrument thus boils

down to o¤ering bonus schemes wx(qx) � 0 in �x or wy(qy) � 0 in �y. The agent and the
principal are assumed to be risk neutral. The agent gets a payo¤ equal to w � c(ax; ay)
when he earns w and exerts e¤ort a = (ax; ay); the principal gets an expected payo¤ equal

to axay � w under the same circumstances.
It is rather easy to see the advantage of not letting the agent know whether �x or

�y in this problem. Assume that the agent knows �x. Then clearly, the agent will pick

ay = 0 whatever wx(�) (this is because ay does not a¤ect qx and any ay > 0 would induce
strictly positive extra cost). Thus, expected output is 0 in the full information case (and

wx and wy are optimally set at 0).

By contrast, consider the case in which the agent does not know whether �x or �y.

It is fairly easy to induce ax > 0 and ay > 0 through the choice of strictly increasing

wx(�); wy(�) because now the agent chooses (ax; ay) so as to maximize:

1

2
E(wx(ax + "x)) +

1

2
E(wy(ay + "y))� c(ax; ay):

More precisely, one can establish that the full information benchmark is dominated by

the coarse information case whenever h00(0) < 1
2
(by considering schemes of the form

w(q) = max(0; !q) for su¢ ciently small !).

In more intuitive terms, not letting the agent know whether �x or �y makes it easier to

let the agent exert e¤ort on both tasks because he does not know which one will be used

as a performance measure to reward him. By contrast, when the agent knows that he will

be assessed only on the basis of ax (which is a consequence of the monitoring technology

in �x) he has no incentive to exert e¤ort on ay, which when the two tasks are su¢ ciently

complement, is very detrimental to the output. A related intuition appears in a recent

paper by Ederer et al. (2008) who consider mixed moral hazard Principal-agent problems

in which the agent has superior information.

Of course, the above example should not be interpreted to mean that coarse inform-
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ation is always good. An obvious potential disadvantage of coarse information is that

the agent can no longer adjust his e¤ort decision to the exact conditions governing the

moral hazard interaction. In general, coarse information has the advantage of easing the

incentive constraints (because it aggregates several incentive constraints into a single one,

thus easier to satisfy), and it has the disadvantage of making the strategy less sensitive to

the environment (the strategy must be measurable with respect to a coarser information

partition). The trade-o¤between these two forces can go either way in general, but as will

be seen, in a rich environment space case, one can always �nd a coarse information struc-

ture that strictly enhances the designer�s objective as compared with the full information

benchmark.

3.3.2 When coarse feedback is good

Consider the following family of moral hazard in team problems. Each agent i = 1, 2 must

simultaneously exert an e¤ort ai 2 R+. The outcome of the team interaction is either

successful with probability p(a1; a2; �) or it is not successful. Assume that p(a1; a2; �) =

a1+a2+�a1a2. Assume further that wages must be non-negative so that the instruments

boil down to picking a bonus wi � 0 for agent i = 1; 2 in case of success. The cost of

e¤ort ai is g(ai) = 1
2

 (ai)

2 to agent i. Agents are risk neutral so that agent i�s payo¤

writes: ui(a1; a2;�) = p(a1; a2; �)wi � g(ai).
The output is R in case of success; it is 0 otherwise. The principal is risk neutral and

her payo¤ thus writes: �(a1; a2;w; �) = p(a1; a2; �)(R� w1 � w2):
Two such problems are considered: �x in which �x = 0 and 
x = 
 and �y in which

�y > 0 and 
y = 
 with 
 > 
. Both problems are assumed to be equally likely:

p(�1) = p(�2) =
1
2
.

I claim that for 
 large enough, providing coarse feedback to agent 1 about agent 2�s

e¤ort over �x and �y (with e¤ects as described in Section 3) is good for the principal.

To see this, consider the full information benchmark and the corresponding optimal

w1;z, w2;z in �z for z = x; y. Clearly, for 
 large enough, it holds that a2;x > a2;y in Nash

equilibrium. Consider such 
.

Consider now the coarse feedback scenario in which agent 1 is led to aggregate agent

2�s actions over �x and �y (and agent 2 is fully rational). Agent 1�s expectation about
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agent 2�s e¤ort is that agent 2 exerts e¤ort aCF2;x with probability
1
2
and e¤ort aCF2;y with

probability 1
2
(where aCF2;z denotes agent 2 action in �z).

As compared with the full information benchmark, such a confusion has no e¤ect in

agent 1�s e¤ort choice in �x because agent 1 does not care about agent 2�s e¤ort in this case

(�x = 0). In �y, however, the upward shift of agent 1�s expectation moves a1;y upwards

(due to strategic complementarity, �y > 0). Such a confusion leads to an improvement of

the principal�s objective because it allows her to obtain the same levels of e¤orts of both

agents with a lower bonus w1;y to agent 1 in �y.13

4 Main Results

In this Section, the main results about transparency are stated. To this end, I �rst de�ne

the notion of genericity employed here. Let X = Rn1 � Rn2 � R!1+!2 � Rs denote the
domain of the pro�t functions �. Consider functions � 2 C2(X). The set � of C2(X)
pro�t functions is endowed with a Whitney C2 topology by letting a sequence �n 2 �
converge to � if and only if �n � � as well as the Jacobian of �n � � and the matrix of
second derivative of �n�� converge uniformly to zero in the space of continuous functions
with euclidean norm. The usual de�nition of genericity is:

De�nition. A set � � � is generic in � if it contains a set that is open and dense in
�.

The main results are:

Theorem 1 Suppose the dimensionality of � is strictly bigger than the dimensionality

of a1, that is, s > n1. Then for generic functions �, some non-full disclosure of � to

agent 1 strictly enhances the designer�s objective as compared with the full information

benchmark.

Theorem 2 Suppose the dimensionality of � is strictly bigger than the dimensionality of

a2, that is, s > n2. Then for generic functions �, some non-full disclosure to agent 1

13As in the case of coarse information, the above example should not be interpreted to mean that
coarse feedback is always good, as for example in some cases it may be better that agent 1 knows more
precisely the e¤ort made by agent 2.
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about agent 2�s e¤ort strictly enhances the designer�s objective as compared with the full

information benchmark.

Before getting into the formal arguments, observe that the conditions of Theorems

1 and 2 are naturally met given that the parameter � characterizing the team problem

should be thought of as containing at least information on the structure of the marginal

cost incurred by each agent i along the various dimensions of his e¤ort ai (this has di-

mension no less than ni), together with say information on the e¤ect of the action pro�les

on the designer�s objective. Thus, the dimension of the team problem s should in general

be thought of to be strictly larger than n1 + n2 � max(n1; n2), thereby ensuring that the
conditions of both Theorems 1 and 2 hold.

4.1 The main arguments

Theorem 1 will �rst be established in the special case in which the principal has no

instrument w, there is a single agent who has to choose a one-dimensional action, and

the problem varies along two dimensions. It will then be explained how the same type of

arguments can be used to extend the result to general multi-agent settings with arbitrary

instruments for the designer and arbitrary dimensions n1, n2 whenever s > n1. Finally,

it will be explained how similar arguments can be made to prove Theorem 2.

Consider a setting with one agent whose action is a 2 R, and � 2 R2 parameterizes
the agent�s payo¤ function u(a;�). The complete information solution a(�) satis�es:
@
@a
u(a;�) = 0.

Consider �0 in the interior of the �-space, and letA(�0) = f� such that a(�) = a(�0)g.
For smooth u and generic �0 this is a smooth (i.e. locally di¤erentiable) manifold of di-

mension 1, which (locally around �0) lies in the interior of the �-space (this is the key

place where s > n1 is being used). Let �1 2 A(�0), �1 6= �0 be in the interior of the

�-space.

Starting from �1, consider a direction � in the � space in which �1+"� is not in A(�0)

for " small enough and such that @2u
@a@��

(a0;�1) 6= 0. (Such a direction exists for generic
u. For example, such a direction may be one in which the marginal e¤ect of a on u is

modi�ed in proportion to a.)
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Consider the problems � = �0 and �1 + "� for " either positive or negative but small

(remember �1 lies in the interior of the �-space). The idea is to compare the aggregate

expected e¤ect on the objective � of letting the agent know whether � = �0 or �1 + "�

and letting the agent ignore whether � = �0 or �1 + "�.

Clearly for " = 0, the two cases generate the same aggregate � by de�nition of A(�0).14

But, for " 6= 0, the two solutions will not in general lead to the same aggregate e¤ect on
�. I will now compute the �rst order e¤ect in " of this di¤erence and show that it is

generically di¤erent from 0, thereby allowing me to conclude that a coarse information

of the above type either for " > 0 and small or " < 0 and small dominates the complete

information case.

Let a0 = a(�0) and a1(") = a(�1 + "�). They satisfy

@

@a
u(a0;�0) = 0 (1)

@

@a
u(a1(");�1 + "�) = 0

Let aCI(") denote the action when the agent does not know whether � = �0 or �1+"�.

It satis�es:

p(�0)
@

@a
u(aCI(");�0) + p(�1 + "�)

@

@a
u(aCI(");�1 + "�) = 0: (2)

I wish to sign �(") de�ned as

p(�0)[�(a0;�0)� �(aCI(");�0)] + p(�1 + "�)[�(a1(");�1 + "�)� �(aCI(");�1 + "�)]:

Clearly, if �(") < 0, it is strictly better that the agent does not know whether � = �0 or

�1 + "�.

I now expand �(") at the �rst order in ". Since aCI(0) = a1(0) = a0, �(") writes at

the �rst order:

p(�0)
@�

@a
(a0;�0)[a0 � aCI(")] + p(�1)

@�

@a
(a0;�1)[a1(")� aCI(")] + o(")

14In the general multi-agent extension, the selection hypothesis for Nash Bayes equilibria of games of
incomplete information is being used as well.
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where o(") denotes a function such that o(")
"
goes to 0 as " goes to 0.

Moreover from (1) and (2) (and using that @
2u
@a2

< 0 is di¤erent from 0), we have that:

a1(")� a0 =
� @2u
@a@��

(�1)
@2u
@a2
(�1)

"+ o(")

aCI(")� a0 =
�p(�1) @2u

@a@��
(�1)

p(�0)
@2u
@a2
(�0) + p(�1)

@2u
@a2
(�1)

"+ o(")

where @h=@�� denotes the derivative of h with respect to the direction �� and all

functions are taken at a = a0.

After multiplying�(") by @2u
@a2
(�1)[p(�0)

@2u
@a2
(�0)+p(�1)

@2u
@a2
(�1)] and dividing by p(�0)p(�1)

(which are both strictly positive) we get that �(") has the same sign as�
@�

@a
(�0)

@2u

@a2
(�1)�

@�

@a
(�1)

@2u

@a2
(�0)

�
@2u

@a@��
(�1)"+ o(")

Three cases may a priori occur.

1)
h
@�
@a
(�0)

@2u
@a2
(�1)� @�

@a
(�1)

@2u
@a2
(�0)

i
@2u
@a@��

(�1) < 0. Then taking " > 0 and su¢ ciently

small, we can infer from the above that not letting the agent know whether � = �0 or

�1 + "� strictly dominates the complete information benchmark.

2) Likewise, if
h
@�
@a
(�0)

@2u
@a2
(�1)� @�

@a
(�1)

@2u
@a2
(�0)

i
@2u
@a@��

(�1) > 0, then taking " < 0 and

su¢ ciently small, not letting the agent know whether � = �0 or �1+"� strictly dominates

the complete information benchmark (remember than since �1 is in the interior of the

�-space, one can move in any direction from �1).

3) The only case in which one cannot conclude is when�
@�

@a
(�0)

@2u

@a2
(�1)�

@�

@a
(�1)

@2u

@a2
(�0)

�
@2u

@a@��
(�1) = 0

or
@�

@a
(�0)

@2u

@a2
(�1)�

@�

@a
(�1)

@2u

@a2
(�0) = 0 (3)

But, this condition is not satis�ed for generic � functions (observe that changing �

does not a¤ect the expressions of a1("), aCI(")).
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To see this, consider the family of �� functions ��(a;�) = �(a;�) + �a k � � �0 k2

where � 2 R and k ���0 k denotes the euclidean distance between � and �1. Obviously,
if � satis�es (3), then for � 6= 0, �� does not satisfy (3) from which one can conclude that
the set of � for which (3) does not hold is dense. Moreover, this set is also clearly open

given the continuity of the mapping � ! @�
@a
(�0)

@2u
@a2
(�1)� @�

@a
(�1)

@2u
@a2
(�0) according to the

Whitney C2 topology.

I now sketch how the argument extends to the general case considered in Theorem 1.

1) Adding instruments w.

Suppose the designer can now (optimally) choose instrument(s) w still assuming that

there is a single agent. To �x ideas, take the above setting and assume that the designer

can set w 2 R. For any �, there is an optimal w, say w(�). This function is locally a
smooth function of � for generic � and u. It is implicitly de�ned by

�@�
@a

@2u
@a@w
@2u
@a2

+
@�

@w
= 0

De�ne �(a;�) = �(a; w(�);�) and apply the argument developed above when there

were no instruments assuming � is the designer�s objective. Clearly, if not letting the agent

know whether � = �0 or �1 + "� strictly dominates the complete information benchmark

for this case, then in the case when the designer can choose w, it also strictly dominates

(because the designer always has the option to set w to be w(�) in problem �).

It remains to show that generically it is not the case that

@�

@a
(�0)

@2u

@a2
(�1)�

@�

@a
(�1)

@2u

@a2
(�0) = 0 (4)

To see this, consider the family of �� functions

��(a;�) = �(a;�) + � k �� �0 k2 (a�
@2u=@a@w

@2u=@a2
(a1; w(�1);�1)w)

where � 2 R. For such a family, w(�) are the same at � = �0 (resp. �1) whatever � so
that @��

@a
(�) = @�

@a
+ � k � � �0 k2 for � = �0 and �1. Thus, if � satis�es (4), for any

� 6= 0, �� does not, and one can conclude as before.
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2) Having more than one player.

Roughly, this consists in extending the above di¤erential arguments that were de-

rived from one agent optimization conditions to a system of simultaneous optimization

conditions as derived from the Nash equilibrium conditions.

Speci�cally, consider the case in which there is no instrument w. The FOC for NE

(full information) write: (
@u1
@a1
(a1; a2;�) = 0

@u2
@a2
(a1; a2;�) = 0

which de�nes implicitly a1(�) and a2(�). Given that � has higher dimension than a1 one

can de�ne (for generic u1 and u2) a manifold of dimension s� n1 � 1 in the � space such
that a1(�) = a1(�0), i.e. A(�0) = f� s.t. a1(�) = a1(�0)g.
Consider �1 2 A(�0) and a direction � in the � space so that �1 + "� is known not to

be in A(�0): If agent 1 does not know whether �0 or �1 + "�:

8>><>>:
@u2
@a2
(ac1("); a

c
2;0(");�0) = 0

@u2
@a2
(ac1("); a

c
2;1(");�1 + "�) = 0

p(�0)
@u1
@a1
(ac1("); a

c
2;0(");�0) + p(�1 + "�)

@u1
@a1
(ac1("); a

c
2;1(");�1 + "�) = 0

And if there is full information:8>>>><>>>>:
@u2
@a2
(a1;0; a2;0;�0) = 0

@u2
@a2
(a1;1("); a2;1(");�1 + "�) = 0

@u1
@a1
(a1;0; a2;0;�0) = 0

@u1
@a1
(a1;1("); a2;1(");�1 + "�) = 0

I expand at order 1 in " (the di¤. of � in coarse vs full info)
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�(") = p(�0)[�(a
c
1("); a

c
2;0(");�0)� �(a1;0; a2;0;�0)] +

p(�1 + "�)[�(a
c
1("); a

c
2;1(");�1 + "�)]� �(a1;1("); a2;1(");�1 + "�)]

Similarly to the one agent case if �0(0) 6= 0, then it implies that not letting agent 1
know whether �0 or �1 + "d with " > 0 or " < 0 but small strictly improves over the

full information benchmark and �0(0) = 0 can be shown to be non-generic by considering

perturbations of the form ��(a1; a2;�) = �(a1; a2;�) + �a1 k �� �0 k2.

3) Feedback manipulation (Theorem 2).

Theorem 2 is proven in the same way now considering �1 2 B(�0)

B(�0) = f� s.t. a2(�) = a2(�0)g

B(�0) is generically a smooth manifold of dimension s�n2. Clearly, inducing confusion
between �0 and �1 does not a¤ect the outcome and one may as before consider the e¤ect

of inducing confusion between �0 and �1 + "� yielding generically a strict improvement

either for " > 0 or " < 0 but small.

4.2 Discussion

1) The above argument for Theorem 1 shows that one can gain by not letting agent 1

know whether � = �0 or �1(�0) (�1(�0) = �1+"� in the above notation). By considering

a positive mass neighborhood of N(�0) and the corresponding �1(�) for almost all � 2
N(�0), one can in fact show that the gains of not letting agent 1 know whether � 2
N(�0) or �1(�) are strictly positive in expected terms. The same comment applies to the

manipulation in Theorem 2.

2) Getting back to the trade-o¤ (resulting from coarsening the information partition)

between relaxing the incentive constraints (through aggregation) and constraining the

strategy (through measurability constraints), Theorem 1 shows that one can always �nd an

information partition such that the former e¤ect dominates the latter. Yet, the argument

used to prove this is not to show that the latter e¤ect can be made of second order as
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compared with the former e¤ect. In the construction, when agent 1 does not know whether

� = �0 or �1 + "�, both e¤ects are of the same order. The result follows because, it is

generically the case that for either " > 0 or " < 0 but small the former e¤ect dominates

the latter e¤ect.

3) In the above analysis, I have implicitly ignored agents�participation constraints.

This is �ne to the extent that the participation constraints are not binding.15 For ex-

ample, in contexts with limited liability, agents typically receive a positive rent in moral

hazard problems and the participation constraints are not binding. In the absence of lim-

ited liability constraints though, the designer would typically adjust the instruments w so

that agents get their outside option payo¤ in pure moral hazard problems (see Holmström

(1979-1982) or Holmström-Milgrom (1991) in the context of risk-averse agents without

limited liability constraints). It should be noted however that if in addition to the moral

hazard problem, agents were assumed to possess some private information then most

"types" of agents would receive positive rent even in the absence of limited liability con-

straints. Theorems 1 and 2 could then be applied to such settings.

4) In the above framework, I have not allowed for mechanisms in which a mediator

could make recommendations to agents as to which actions to choose. If such mechan-

isms are allowed and full rationality of players is assumed, one can always implement the

optimal mechanism by having agents be only informed of what to do (action ai for agent

i) (see Myerson, 1986). From that perspective, what Theorem 1 shows is the stronger

property that when the dimension of � is larger than the dimension of agents�actions it

cannot be optimal to let the agents know �. A natural question one may wish to address is

whether it is possible to improve the organizational objective upon the best recommend-

ation mechanism by providing agent 1 with coarse feedback as to how agent 2 behaves.

I now illustrate (though a simple example) why one should expect such improvements to

be possible.

Speci�cally, consider the following scenario. Agent 1 is assumed not to be informed

of � 2 
 which contains a manifold of dimension at least s � n1 (remember that in the
15If the participation constraints are binding both at � = �0 and �1+"� in the main argument used to

prove Theorem 1 when w is set at w(�) in problem �, one has to worry that the agent gets no less than
his outside option payo¤ when the agent does not know whether � = �0 or �1 + "�, which may require
increasing the burden to the designer.
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optimal recommendation mechanism the agent is only told what to do and the set of �

such that a1(�) = a1(�0) thus contains at least a manifold of dimension s�n1). Moreover,
assume that independently of how w is set and how agent 1 behaves the behavior of agent

2 in problem � is given by a2(�) where a2(�) is a smooth function of � that is not locally

constant (agent 2�s behavior can be rationalized by assuming that a2 6= a2(�) in problem
� would result in a huge cost for agent 2). To �x ideas, assume also that n1 = 1 and

that at the optimal recommendation mechanism, a1 ! E�2
�(a1; a2(�);w(�); �) is an

increasing function of a1 for a1 close to the action a�1 performed by agent 1 when this

mechanism is in place.

Consider a small neighborhood N � 
 of �0 2 
. For each � 2 N , one can consider
the set B(�) = f
 2 
 such that a2(
) = a2(�)g. For generic �, B(�) is a manifold

of dimension at least s � n1 � n2 that intersects 
 n B(�). Call ��(�) an element of

 nB(�). Because a2(�) is not locally constant, one can always �nd a direction � tangent
to 
 at ��(�) such that a2(�) does not remain locally constant along that dimension.
Besides, for generic functions u1 one can �nd ��(�; ") 2 
 close to ��(�), such that

a2(�
�(�; ")) 6= a2(�0) and16

@

@a1
[p(�)u1(a1; �) + p(�

�(�; "))u1(a1; �
�(�; "))] j a�1

>

@

@a1
[p(�)u1(a1; �) + p(�

�(�; "))u1(a1; �
�(�; "))] j a�1

where

u1(a1; 
) = u1(a1; a2(
);w(
); 
)

u1(a1; 
) =
p(�)u1(a1; a2(�);w(
); 
) + p(�

�(�; "))u1(a1; a2(�
�(�; "));w(
); 
)

p(�) + p(��(�; "))

The idea then is for each � 2 N to bundle � and ��(�; ") into one feedback class,17

and have all other � forming singleton feedback classes. By integrating over all � 2 
, it
16Generically, the two partial derivatives will be di¤erent. If the comparison goes in the wrong way, one

can always picks a value of 
 symmetrically located on the other side of ��(�) for which the comparison
will be right.
17I am implicitly assuming that ��(�; ") are all di¤erent as � varies in B, which can easily be ensured

by playing on the choice of ��(�) in B(�).
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is readily veri�ed that in the coarse feedback case agent 1 will choose a level a1 larger but

close to a�1,
18 which is bene�cial to the organization given that E�2
�(a1; a2(�);w(�); �)

is locally increasing in a1.

5) In the context of Theorem 1, only the information structure of agent 1 was varied

(as agent 2 was assumed to have complete information). If one further imposes that the

information (about �) should be public among agents 1 and 2, then the same kind of

non-transparency result as in Theorem 1 prevails as long as the dimensionality of � is

bigger than the sum of the dimensions of both agents�actions, i.e. s > n1 + n2. The idea

is now to work with the manifold

C(�0) = f� s.t. a1(�) = a1(�0) and a2(�) = a2(�0)g

= A(�0) \B(�0)

which for generic �0 has dimension s� (n1 + n2).

5 Disclosure policy in low dimensional cases

In the previous section we have seen that when the dimension of � is bigger than the

dimension of a1 or of a2, some form of non-transparency is always good for the organiz-

ation. While I think this is the most relevant case for practical problems, I now consider

cases in which this is not so and in which full transparency may be the best design for

the organization.

18This is because in the coarse feedback case, we have that a1 is perceived to giveZ
�2N

[p(�)u1(a1; �) + p(�
�(�; "))u1(a1; �

�(�; "))] d�

+

Z

 =2N and 
 6=��(�;"), �2N

p(
)u1(a1; 
)d


whose derivative at a1 = a�1 is strictly positive (yet small) by construction (if one replaces u1 by u1 in the
above expression, the derivative is nul given that agent 1 should �nd optimal to play a�1 in the original
recommendation mechanism).
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5.1 When complete information disclosure is best

Consider the authority model of Aghion and Tirole (1997):

u1(a1; a2;�) = a2�b+ (1� a2)a1b� g1(a1)

u2(a1; a2;�) = a2B + (1� a2)a1
b� g2(a2)

in which the sole source of heterogeneity is the parameter 
 of congruence and in which

b = B; � = 1 and g1(a) = g2(a) = a2

2
.

I show that no matter what 
1 < 
2 < ::: < 
n are, the principal (agent 2) is better

o¤ when the agent (agent 1) knows which 
 is prevailing rather than when he does not

know whether 
 = 
1, 
2::: or 
n.

Routine calculations yield

aNE1 (
) =
B(1�B)
1� 
B2

aNE2 (
) =
B(1� 
B)
1� 
B2

and when the agent does not know whether 
 = 
1.... or 
n (while the principal does):

aCI1 =
B(1�B)
1� E(
)B2

aCI2 (
i) = B[1� 
i
B(1�B)
1� E(
)B2 ]

where E(
) is the expected value of 
.

Given the convexity of 
 ! B(1�B)
1�
B2 , it is readily veri�ed thatE(a

NE
1 (
)) > aNE1 (E(
)) =

aCI1 . Furthermore, as common sense suggests, agent 2�s e¤ort decreases with the de-

gree of congruence in the coarse information case aCI2 (
1) > aCI2 (
2):::: > aCI2 (
n), and

agent 1�s e¤ort increases with the degree of congruence 
 in the full information case

aNE2 (
1) < a
NE
2 (
2):::: < a

NE
2 (
n):

The di¤erence of agent 2�s expected payo¤ in the coarse information case and the
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complete information case writes:

X
i

p(
i)max
a2
[Ba2 +B(1� a2)
iaNE1 (
i)� g2(a2)]�X

i

p(
i)max
a2
[Ba2 +B(1� a2)
iaCI1 � g2(a2)]

It is no smaller than
P

i p(
i)B(1 � aCI2 (
i))
i(aNE1 (
i) � aCI1 ) (because in the max
appearing in the �rst summation on can always pick a2 = aCI2 (
i) when 
 = 
i, i.e. the

argument for the corresponding max in the second summation). This is itself no smaller

than X
i

p(
i)B(1� aCI2 (
i))
i(aNE1 (
i)� E(aNE1 (
))

which is strictly positive given that 
 ! (1�aCI2 (
))
 and 
 ! aNE1 (
) are both increasing

with 
.

To summarize,

Proposition 1 In the optimal delegation problem with quadratic cost of e¤ort, when the

sole heterogeneity is on the congruence parameter 
, full disclosure of 
 is always the best

policy for the principal.

The intuition for this result is as follows. Not letting the agent know 
 leads him to

pick his e¤ort level as a best-response to a mixed distribution of Principal�s e¤ort. This

in turn leads the agent to make less e¤ort than in the complete information case when the

congruence parameter 
 is bigger and more e¤ort when it is smaller. But, the Principal

would prefer the bias to be the other way round given the implication of the congruence

parameter, thereby explaining why full information disclosure is preferable in this case.

Several remarks are in order regarding this proposition. First, it is not in contradiction

with Theorem 1 above because the setup analyzed here is one in which the dimensionality

of � is the same as the dimensionality of the e¤ort of the agent (so that there is no

manifold of strictly positive dimension in the � space in which at the Nash equilibrium,

the agent performs the same e¤ort level).19 Second, even though the result was presented

19Reproducing the argument for Theorem 1 with �1 = �0 would yield that �(") is of the same order
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in the context of coarse information, in this case it can equivalently be presented in terms

of confusing the agent about the e¤ort level of the principal (agent 2) as in Theorem 2.

The reason is that agent 1�s payo¤ function does not directly depend on 
. Thus, in the

incomplete information case, agent 1 best-responds to the aggregate distribution of a2
irrespective of 
, and this is the same outcome as in the feedback equilibrium with the

corresponding feedback partition.

5.2 When complete feedback disclosure is best

Consider the following moral hazard in team problem in which agent i = 1; 2�s payo¤ is

ui(a1; a2; �) = (a1 + a2 + �a1a2)w �
(ai)

2

2

and the corresponding pro�t is

�(a1; a2; �) = (a1 + a2 + �a1a2) (R� 2w):

Assume that the sole degree of heterogeneity is the complementarity parameter � 2
�
�; �

�
.

I simplify the analysis by assuming that the bonus w is not an instrument of the designer

and that it is set independently of � and satis�es w < R=2.20

Given the symmetry between agents 1 and 2, I consider symmetric feedback policies

for the two agents. Speci�cally, let �1 < �2:::: < �n and let pk denote the probability

of �k. Consider both the case of complete feedback disclosure policy (thereby relying on

the Nash equilibrium concept with complete information) and the case of coarse feedback

disclosure policy in which every agent i = 1 or 2 receives feedback only about the aggregate

distribution of e¤ort of agent �i = 2 or 1 over �1; ::::�n, and thus in every problem �k

agents choose their e¤ort level as a best-response to this aggregate e¤ort distribution.

Proposition 2 The coarse feedback disclosure policy always generates less expected pro�t

to the designer than the complete feedback disclosure policy.

as "2, and thus one would not be able to conclude from the argument given there.
20Such an assumption would �t if we have in mind that the bonus w is negotiated after a success is

being obtained and the two agents have the same bargaining power.

27



The intuition for this result is as follows. Confusing the agents about which � prevails

when the e¤ort level is being made leads agents to make comparatively more e¤ort when

the complementarity parameter is low and less e¤ort when it is large. This is bad for

the overall pro�t because the marginal e¤ect of e¤ort is larger when the complementarity

parameter is larger, thereby explaining why the complete feedback disclosure policy dom-

inates in this case. The detailed proof of Proposition 2 appears in Appendix. Observe

again that this result is not in contradiction with the insight of Theorem 2 given that here

the dimensionality of the problem is equal to the dimensionality of the e¤ort level.21

6 Conclusion

In this paper, we have shown that non-transparency both in the form of incomplete

information disclosure and in the form of coarse feedback disclosure is optimal in virtual

all organizational arrangements of interest. Open questions left for future research are

about the optimal form of non-transparency in organizations and when it is more e¤ective

to rely on coarse information disclosure or coarse feedback disclosure.

21I also expect to get the same type of insights in the case in which agents can be incentivized through
an optimally adjusted w.
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Appendix

Proof of Proposition 2.

Routine calculations yield that in the full disclosure case agents choose aNE(�) = w
1��w

when the complementarity parameter is �. In the coarse disclosure case, agents choose

aCF (�) = w(1 + �a) where aCF = E(aCF (�)) denotes the expected value of the e¤ort

level in this case. Thus,

aCF =
w

1� E(�)w

where E(�) denotes the expected value of �. Given the convexity of � ! w
1��w , it follows

by Jensen�s inequality that

aCF < E(aNE(�)). (5)

The di¤erence of expected pro�t in the complete disclosure case and in the coarse disclos-

ure case writes:

�=(R� 2w) =
X

i
pi(2aNE(�i) + �i(aNE(�i))2 � 2aCF (�i) + �i(aCF (�i))2)

= 2
X

i
pi(aNE(�i)� aCF (�i)) +

X
i
pi�i((aNE(�i))2 � (aCF (�i))2)

We have that
P

i p
i(aNE(�i)� aCF (�i)) > 0 by (5).

Moreover, let i� = argmini
�
i such that aNE(�i) � aCF

	
. Given the monotonicity of

i ! aNE(�i), we have that for i � i�, aNE(�i) � aCF (�i) and for i < i�, aNE(�i) �
aCF (�i). Writing (aNE(�i))2 � (aCF (�i))2 as (aNE(�i) + aCF (�i))(aNE(�i) � aCF (�i)),
making use of the monotonicity of i! �i

�
aNE(�i) + aCF (�i)

�
, and of the change of sign

of aNE(�i)� aCF (�i) at i = i�, we get that for all i

�i
�
(aNE(�i))2 � (aCF (�i))2

�
� �i�(aNE(�i�) + aCF (�i�))(aNE(�i)� aCF (�i))

In turn, this implies that

X
i
pi�i((aNE(�i))2 � (aCF (�i))2)

� �i
�
(aNE(�i

�
) + aCF (�i

�
))
X

i
pi(aNE(�i)� aCF (�i))
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which again is strictly positive by (5). Q. E. D.
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