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ON TRANSVERSALLY HARMONIC MAPS OF

FOLIATED RIEMANNIAN MANIFOLDS

Min Joo Jung and Seoung Dal Jung

Abstract. Let (M,F) and (M ′,F ′) be two foliated Riemannian mani-
folds with M compact. If the transversal Ricci curvature of F is nonneg-
ative and the transversal sectional curvature of F ′ is nonpositive, then

any transversally harmonic map φ : (M,F) → (M ′,F ′) is transversally
totally geodesic. In addition, if the transversal Ricci curvature is positive
at some point, then φ is transversally constant.

1. Introduction

Transversally harmonic maps of foliated Riemannian manifolds were intro-
duced by Konderak and Wolak [6] in 2003. Let (M,F) and (M ′,F ′) be two
foliated Riemannian manifolds and let ϕ :M →M ′ be a smooth foliated map,
i.e., ϕ is a smooth leaf-preserving map. Then ϕ is said to be transversally

harmonic if the transversal tension field τb(ϕ) vanishes. See Section 3 and [6]
for details. Equivalently, it is a critical point of the transversal energy func-
tional on any compact domain of M , which is defined in Section 4 (cf. [7]).
Also, transversally harmonic maps are considered as harmonic maps between
the leaf spaces [6, 7]. So, for the point foliation, transversally harmonic maps
are harmonic maps. Therefore transversally harmonic maps are considered as
generalizations of harmonic maps. In this paper, we study transversally har-
monic maps and give some interesting facts relating to them. The paper is
organized as follows. In Section 2, we review the well-known facts on a foliated
Riemannian manifold. In Section 3, we review the properties of the transver-
sally harmonic map, which were studied in [7] and give some results. In Section
4, we give a new proof of the first normal variational formula for the transver-
sal energy EB(ϕ) (Theorem 4.1). In the last section, we study the generalized
Weitzenböck formula and give some applications (Theorem 5.3 and Theorem
5.4).
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c⃝2012 The Korean Mathematical Society

977



978 MIN JOO JUNG AND SEOUNG DAL JUNG

2. Preliminaries

Let (M, g,F) be a (p + q)-dimensional foliated Riemannian manifold with
a foliation F of codimension q and a bundle-like metric g with respect to F
[8, 13]. A foliated Riemannian manifold means a Riemannian manifold with
a Riemannian foliation. Let TM be the tangent bundle of M , L the tangent
bundle of F , and Q = TM/L the corresponding normal bundle of F . Then we
have an exact sequence of vector bundles

0 −→ L −→ TM
π

−→
←−
σ
Q −→ 0,(2.1)

where π : TM → Q is a projection and σ : Q→ L⊥ is a bundle map satisfying
π ◦ σ = id. Let gQ be the holonomy invariant metric on Q induced by g =
gL + gL⊥ ; that is,

(2.2) gQ(s, t) = g(σ(s), σ(t)) ∀ s, t ∈ ΓQ.

This means that θ(X)gQ = 0 for X ∈ ΓL, where θ(X) is the transverse Lie
derivative. So we have an identification L⊥ with Q via an isometric splitting
(Q, gQ) ∼= (L⊥, gL⊥). We denote by ∇Q the transverse Levi-Civita connection
on the normal bundle Q [13, 14]. The transversal curvature tensor RQ of
∇Q ≡ ∇ is defined by RQ(X,Y ) = [∇X ,∇Y ]−∇[X,Y ] for any X,Y ∈ ΓTM . It

is trivial that i(X)RQ = 0 for any X ∈ ΓL, where i(X) is the interior product.

Let KQ,RicQ and σQ be the transversal sectional curvature, transversal Ricci
operator and transversal scalar curvature with respect to ∇, respectively. The
foliation F is said to be minimal if κ = 0, where κ is the mean curvature form of
F [13]. Let ΩrB(F) be the space of all basic r-forms, i.e., ϕ ∈ ΩrB(F) if and only
if i(X)ϕ = 0 and θ(X)ϕ = 0 for any X ∈ ΓL. Then Ω∗(M) = Ω∗

B(F)⊕Ω∗

B(F)⊥

[1]. Let κB be the basic part of κ. Then κB is closed, i.e., dκB = 0 [1]. Now,
we define the basic Laplacian ∆B acting on Ω∗

B(F) by

(2.3) ∆B = dBδB + δBdB ,

where δB is the formal adjoint of dB = d|Ω∗
B
(F) [11]. Let {Ea}a=1,...,q be a local

orthonormal basic frame on Q. We define ∇∗
tr∇tr : Ω

r
B(F) → ΩrB(F) by

∇∗

tr∇tr = −
∑
a

∇2
Ea,Ea

+∇
κ
♯
B
,(2.4)

where ∇2
X,Y = ∇X∇Y − ∇∇M

X
Y for any X,Y ∈ ΓTM and ∇M denotes the

Levi-Civita connection of M . Then the operator ∇∗
tr∇tr is positive definite

and formally self adjoint on the space of basic forms [3]. Let V (F) be the
space of all transversal infinitesimal automorphisms Y of F , i.e., [Y, Z] ∈ ΓL
for all Z ∈ ΓL [5]. Let

(2.5) V̄ (F) = {Ȳ = π(Y ) | Y ∈ V (F)}.
Note that V̄ (F) ∼= Ω1

B(F) [10]. For later use, we recall the transversal diver-
gence theorem [16] on a foliated Riemannian manifold.
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Theorem 2.1 (Transversal divergence theorem). Let (M, gM ,F) be a closed,

oriented Riemannian manifold with a transversally oriented foliation F and a

bundle-like metric gM with respect to F . Then

(2.6)

∫
M

div∇ X̄ =

∫
M

gQ(X̄, κ
♯
B)

for all X ∈ V (F), where div∇X denotes the transversal divergence of X with

respect to the connection ∇.

Now we define the bundle map AY : ΛrQ∗ → ΛrQ∗ for any Y ∈ V (F) [5]
by

AY ϕ = θ(Y )ϕ−∇Y ϕ.(2.7)

It is well-known [5] that for any s ∈ ΓQ

AY s = −∇Ys
Ȳ ,(2.8)

where Ys is the vector field such that π(Ys) = s. So AY depends only on
Ȳ = π(Y ). Since θ(X)ϕ = ∇Xϕ for any X ∈ ΓL, AY preserves the basic forms
and depends only on Ȳ . Now, we recall the generalized Weitzenböck formula
on Ω∗

B(F).

Theorem 2.2 ([3]). On a foliated Riemannian manifold (M,F), we have

∆Bϕ = ∇∗

tr∇trϕ+ F (ϕ) +A
κ
♯
B
ϕ, ϕ ∈ ΩrB(F),(2.9)

where F (ϕ) =
∑
a,b θ

a∧i(Eb)R∇(Eb, Ea)ϕ. If ϕ is a basic 1-form, then F (ϕ)♯ =

RicQ(ϕ♯).

Now we recall a very important lemma for later use. From Proposition 4.1

in [11], it is well-known that ∆B − κ♯B on all basic functions is the restriction
of ∆ − κ♯ on all functions. Hence, by maximum and minimum principles, we
have the following lemma.

Lemma 2.3 ([4]). Let (M, g,F) be a compact Riemannian manifold with a

foliation F and a bundle-like metric g. If (∆B − κ♯B)f ≥ 0 (or ≤ 0) for any

basic function f , then f is constant.

3. Transversally harmonic maps

Let (M, g,F) and (M ′, g′,F ′) be two foliated Riemannian manifolds. Let

∇M and ∇M ′ be the Levi-Civita connections of M and M ′, respectively. Let
∇ and ∇′ be the transverse Levi-Civita connections on Q and Q′, respectively.
Let ϕ : (M, g,F) → (M ′, g′,F ′) be a smooth foliated map, i.e., dϕ(L) ⊂ L′.
Then we define dTϕ : Q→ Q′ by

dTϕ := π′ ◦ dϕ ◦ σ.(3.1)

Then dTϕ is a section inQ∗⊗ϕ−1Q′, where ϕ−1Q′ is the pull-back bundle onM .
Let ∇ϕ and ∇̃ be the connections on ϕ−1Q′ and Q∗⊗ϕ−1Q′, respectively. Then
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a foliated map ϕ : (M,F) → (M ′,F ′) is called transversally totally geodesic if
it satisfies

∇̃trdTϕ = 0,(3.2)

where (∇̃trdTϕ)(X,Y ) = (∇̃XdTϕ)(Y ) for any X,Y ∈ ΓQ. Note that if ϕ :
M → M ′ is transversally totally geodesic with dϕ(Q) ⊂ Q′, then, for any
transversal geodesic γ in M , ϕ ◦ γ is also transversal geodesic. The transversal

tension field of ϕ is defined by

τb(ϕ) = trQ∇̃dTϕ =

q∑
a=1

(∇̃Ea
dTϕ)(Ea),(3.3)

where {Ea} is a local orthonormal basic frame of Q. Trivially, the transversal
tension field τb(ϕ) is a section of ϕ−1Q′.

Definition 3.1. Let ϕ : (M, g,F) → (M ′, g′,F ′) be a smooth foliated map.
Then ϕ is said to be transversally harmonic if the transversal tension field of ϕ
vanishes, i.e., τb(ϕ) = 0.

Now we recall the O’Neill tensors A and T [9] on a foliated manifold (M,F),
which are defined by

AXY = π⊥(∇M
π(X)π(Y )) + π(∇M

π(X)π
⊥(Y )),(3.4)

TXY = π⊥(∇M
π⊥(X)π(Y )) + π(∇M

π⊥(X)π
⊥(Y ))(3.5)

for any X,Y ∈ ΓTM , where π⊥ : TM → L. It is well-known [9] that

Aπ(X)π(Y ) = π⊥[π(X), π(Y )](3.6)

for any vector fields X,Y on M . Then T ≡ 0 is equivalent to the property
that all leaves of F are totally geodesic submanifolds of (M, g) and A ≡ 0 is
equivalent to the integrability of Q.

Let {Ei}i=1,...,p be a local orthonormal basis of L and {Ea}a=1,...,q be a local
orthonormal basic frame on Q. Then we have the following.

Theorem 3.2. Let ϕ : (M, g,F) → (M ′, g′,F ′) be a smooth foliated map.

Then

τ(ϕ)= τ(ϕ|F ) + τb(ϕ)− dTϕ(κ
♯) + trgϕ

∗T ′ + trQϕ
∗A′

+
∑
a

{π⊥∇M ′

πdϕ(Ea)
π⊥dϕ(Ea)+π

⊥∇M ′

π⊥dϕ(Ea)
π⊥dϕ(Ea)−π⊥dϕ(∇Ea

Ea)}

+
∑
a

π∇M ′

π⊥dϕ(Ea)
πdϕ(Ea),

where τ(ϕ) is the tension field of ϕ and

τ(ϕ|F ) = π⊥
∑
i

(∇̃Ei
dϕ)(Ei).(3.7)
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Proof. Let {Ei, Ea}i=1,...,p;a=1,...,q be a local orthonormal frame of TM such
that Ei ∈ ΓL, Ea ∈ ΓQ. By the definition of the tension field, we have

τ(ϕ) =

p∑
i=1

(∇̃Ei
dϕ)(Ei) +

q∑
a=1

(∇̃Ea
dϕ)(Ea).(3.8)

Since ϕ is a foliated map, πdϕ(Ei) = 0 and π⊥dϕ(Ei) = dϕ(Ei). Therefore, we
have

p∑
i=1

(∇̃Ei
dϕ)(Ei) = τ(ϕ|F ) +

∑
i

{π∇M ′

dϕ(Ei)
dϕ(Ei)− πdϕ(∇M

Ei
Ei)}

and
q∑
a=1

(∇̃Ea
dϕ)(Ea)

= τb(ϕ) +
∑
a

{π⊥∇M ′

πdϕ(Ea)
πdϕ(Ea) +∇M ′

πdϕ(Ea)
π⊥dϕ(Ea)}

+
∑
a

{∇M ′

π⊥dϕ(Ea)
πdϕ(Ea) +∇M ′

π⊥dϕ(Ea)
π⊥dϕ(Ea)− π⊥dϕ(∇M

Ea
Ea)}.

From (3.6), we have π⊥∇M ′

πdϕ(Ea)
πdϕ(Ea) = π⊥∇M

Ea
Ea = 0. Hence, from (3.4)

and (3.5), we have

τ(ϕ) = τ(ϕ|F ) + τb(ϕ)− πdϕ(
∑
i

π(∇M
Ei
Ei)) +

∑
i

T ′
dϕ(Ei)dϕ(Ei)

+
∑
a

{T ′
dϕ(Ea)dϕ(Ea) +A′

dϕ(Ea)dϕ(Ea) + π∇M ′

π⊥dϕ(Ea)
πdϕ(Ea)}

+
∑
a

π⊥{∇M ′

π⊥dϕ(Ea)
π⊥dϕ(Ea) +∇M ′

πdϕ(Ea)
π⊥dϕ(Ea)− dϕ(π∇M

Ea
Ea)}.

Since
∑
i π(∇M

Ei
Ei) = κ♯, the proof is completed. □

Corollary 3.3 ([15]). Let ϕ : (M, g,F) → (M ′, g′,F ′) be a smooth foliated

map and dϕ(Q) ⊂ Q′. Then

τ(ϕ) = τ(ϕ|F ) + τb(ϕ)− dϕ(κ♯) + trLϕ
∗T ′,

where trLϕ
∗T ′ =

∑p
i=1 T ′

dϕ(Ei)dϕ(Ei).

Proof. Since dϕ(Q) ⊂ Q′, π⊥dϕ(Ea) = 0 for all a. Moreover, from (3.5) and
(3.6), A′

XX = 0 and T ′
XY = 0 for any X,Y ∈ ΓQ′. From Theorem 3.2, the

desired result follows. □

Corollary 3.4 ([7]). Let ϕ : (M, g,F) → (M ′, g′,F ′) be a smooth foliated map

and dϕ(Q) ⊂ Q′. Assume that F is minimal and F ′ is totally geodesic. Then ϕ
is harmonic if and only if ϕ is transversally harmonic and leaf-wise harmonic,

i.e., τ(ϕ|F ) = 0.
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Proof. Since F is minimal and F ′ is totally geodesic, i.e, κ = 0 and T ′ = 0, by
Corollary 3.3, we have

τ(ϕ) = τ(ϕ|F ) + τb(ϕ),

which yields the results. □

Corollary 3.5. Let ϕ : (M, g,F) → (M ′, g′,F ′) be a smooth foliated map and

dϕ(Q) ⊂ Q′. Then ϕ is a transversally harmonic map if and only if

π(τ(ϕ)) = trLϕ
∗T ′ − dϕ(κ♯).

Now, let F be a Riemannian flow defined by a unit vector field V on a
Riemannian manifold (Mn+1, g). Then

κ♯ = π(∇M
V V ) = ∇M

V V.(3.9)

In fact, ∇M
V V is already orthogonal to the leaves since g(∇M

V V, V ) = 0. More-
over, it is trivial that F is totally geodesic if and only if F is minimal, i.e.,
T = 0 if and only if κ♯ = 0. Let F and F ′ be two Riemannian flows defined
by unit vector fields V and V ′ on Riemannian manifolds (M, g) and (M ′, g′),
respectively. Let ϕ : (M,F) → (M ′,F ′) be a smooth foliated map. Then

τ(ϕ|F ) = V (λ)V ′ − π⊥dϕ(κ♯), λ = (ϕ∗ω′)(V ),(3.10)

where ω′ is a dual 1-form of V ′. Hence if dϕ(Q) ⊂ Q′, then ϕ is leaf-wise
harmonic if and only if λ is basic, i.e., V (λ) = 0. Hence we have the following
corollary.

Corollary 3.6. Let F and F ′ be two Riemannian flows defined by a unit

vector fields V and V ′ on a Riemannian manifolds M and M ′, respectively.

Assume that F and F ′ are minimal. Let ϕ : (M, g,F) → (M ′, g′,F ′) be a

smooth foliated map and dϕ(Q) ⊂ Q′. Then ϕ is harmonic if and only if ϕ is

transversally harmonic and ϕ∗(ω′)(V ) is basic.

Proof. Since F is minimal, from (3.10)

τ(ϕ|F ) = V (λ)V ′, λ = (ϕ∗ω′)(V ).

Hence the proof follows from Corollary 3.4. □

Let ϕ : (M,F) → (M ′,F ′) and ψ : (M ′,F ′) → (M ′′,F ′′) be smooth foliated
maps. Then the composition ψ ◦ ϕ : (M,F) → (M ′′,F ′′) is a smooth foliated
map. Moreover, we have

dT (ψ ◦ ϕ) = dTψ ◦ dTϕ.(3.11)

Hence we have the following proposition.

Proposition 3.7. Let ϕ : (M,F) → (M ′,F ′) and ψ : (M ′,F ′) → (M ′′,F ′′)
be smooth foliated maps. Then

∇̃trdT (ψ ◦ ϕ) = dTψ(∇̃trdTϕ) + ϕ∗∇̃trdTψ,(3.12)
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where

(ϕ∗∇̃trdTψ)(X,Y ) = (∇̃dTϕ(X)dTψ)(dTϕ(Y ))

for any X,Y ∈ ΓQ.

Proof. From (3.11), we have that, for any X,Y ∈ ΓQ,

(∇̃trdT (ψ ◦ ϕ))(X,Y ) = ∇ψ◦ϕ
X dT (ψ ◦ ϕ)(Y )− dT (ψ ◦ ϕ)(∇XY )

= (∇̃dTϕ(X)dTψ)(dTϕ(Y )) + dTψ((∇̃XdTϕ)(Y ))

= (ϕ∗∇̃trdTψ)(X,Y ) + dTψ(∇̃trdTϕ)(X,Y ),

which proves (3.12). □

Corollary 3.8. Let ϕ : (M,F) → (M ′,F ′) and ψ : (M ′,F ′) → (M ′′,F ′′) be

smooth foliated maps. Then the transversal tension field of the composition is

given by

τb(ψ ◦ ϕ) = dTψ(τb(ϕ)) + trQϕ
∗∇̃trdTψ,(3.13)

where

trQϕ
∗∇̃trdTψ =

q∑
a=1

(∇̃dTϕ(Ea)dTψ)(dTϕ(Ea)).

Corollary 3.9. Let ϕ : (M,F) → (M ′,F ′) be a transversally harmonic map

and let ψ : (M ′,F ′) → (M ′′,F ′′) be a transversally totally geodesic map. Then

ψ ◦ ϕ : (M,F) → (M ′′,F ′′) is a transversally harmonic map.

4. The first normal variational formula

Let ϕ : (M, g,F) → (M ′, g′,F ′) be a smooth foliated map. Let Ω be a
compact domain of M . Then the transversal energy of ϕ on Ω ⊂M is defined
by

EB(ϕ; Ω) =
1

2

∫
Ω

|dTϕ|2µM ,(4.1)

where |dTϕ|2 =
∑
a gQ′(dTϕ(Ea), dTϕ(Ea)) and µM is the volume element of

M .
Let V ∈ ϕ−1Q′. Obviously, V may be considered as a vector field on Q′

along ϕ. Then there is a 1-parameter family of foliated maps ϕt with ϕ0 = ϕ
and dϕt

dt
|t=0 = V . The family {ϕt} is said to be a foliated variation of ϕ with

the normal variation vector field V . Then we have the first normal variational
formula(cf. [7]).

Theorem 4.1. (The first normal variational formula) Let ϕ : (M,F) →
(M ′,F ′) be a smooth foliated map. Let {ϕt} be a smooth foliated variation

of ϕ supported in a compact domain Ω. Then

d

dt
EB(ϕt,Ω)|t=0 = −

∫
Ω

⟨V, τb(ϕ)− dTϕ(κ
♯
B)⟩µM ,(4.2)
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where V = dϕt

dt
|t=0 is the normal variation vector field of {ϕt} and ⟨·, ·⟩ is the

pull-back metric on ϕ−1Q′.

Proof. Let Ω be a compact domain of M and let {ϕt} be a foliated variation
of ϕ supported in Ω with the normal variation vector field V ∈ ϕ−1Q′. Choose
a local orthonormal basic frame {Ea} on Q such that (∇Ea)(x) = 0. Define
Φ : M × (−ϵ, ϵ) → M ′ by Φ(x, t) = ϕt(x) and set E = Φ−1Q′. Let ∇Φ

denote the pull-back connection on E. Obviously, dTΦ(Ea) = dTϕt(Ea) and

dΦ( ∂
∂t
) = dϕt

dt
. Moreover, we have ∇Φ

∂
∂t

∂
∂t

= ∇Φ
∂
∂t

Ea = ∇Φ
Ea

∂
∂t

= 0. Hence we

have

d

dt
EB(ϕt,Ω) =

∫
Ω

∑
a

⟨∇Φ
∂
∂t

dTΦ(Ea), dTΦ(Ea)⟩µM

=

∫
Ω

∑
a

⟨∇Φ
Ea
dΦ(

∂

∂t
), dTΦ(Ea)⟩µM

=

∫
Ω

∑
a

{Ea⟨
dϕt
dt
, dTϕt(Ea)⟩ − ⟨dϕt

dt
,∇ϕt

Ea
dTϕt(Ea)⟩}µM

=

∫
Ω

∑
a

Ea⟨
dϕt
dt
, dTϕt(Ea)⟩µM −

∫
Ω

⟨dϕt
dt
, τb(ϕt)⟩µM

Now we define a normal vector field Wt by

Wt =
∑
a

⟨dϕt
dt
, dTϕt(Ea)⟩Ea.

Then we have

div∇Wt =
∑
a

Ea⟨
dϕt
dt
, dTϕt(Ea)⟩.

By the transversal divergence theorem (Theorem 2.1), we have

d

dt
EB(ϕt,Ω) =

∫
Ω

div∇WtµM −
∫
Ω

⟨dϕt
dt
, τb(ϕt)⟩µM

=

∫
Ω

⟨Wt, κ
♯
B⟩µM −

∫
Ω

⟨dϕt
dt
, τb(ϕt)⟩µM

= −
∫
Ω

⟨dϕt
dt
, τb(ϕt)− dTϕ(κ

♯
B)⟩µM ,

which proves (4.2). □

Corollary 4.2. Let ϕ : (M,F) → (M ′,F ′) be a smooth foliated map. Assume

that F is minimal. Then ϕ is transversally harmonic if and only if ϕ is a

critical point of the trasnversal energy of ϕ supported in a compact domain.
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5. A generalized Weitzenböck type formula and its applications

Let (M, g,F) and (M ′, g′,F ′) be two foliated Riemannian manifolds and let
ϕ : (M,F) → (M ′,F ′) be a smooth foliated map. Note that |dTϕ|2 ∈ Ω0

B(F)
[6]. Let ΩrB(E) = ΩrB(F) ⊗ E be the space of E-valued basic r-forms, where

E = ϕ−1Q′. We define d∇ : ΩrB(E) → Ωr+1
B (E) by

d∇(ω ⊗ s) = (−1)rω ∧∇ϕs+ dBω ⊗ s(5.1)

for any s ∈ ΓE and ω ∈ ΩrB(F). Let δ∇ be a formal adjoint of d∇. Then we
have the following.

d∇ =
∑
a

θa ∧ ∇̃Ea
, δ∇ = −

∑
a

i(Ea)∇̃Ea
+ i(κ♯B),(5.2)

where i(X)(ω ⊗ s) = i(X)ω ⊗ s for any X ∈ ΓTM . Then the Laplacian ∆ on
Ω∗

B(E) is defined by

∆ = d∇δ∇ + δ∇d∇.(5.3)

Moreover, the operators AX and θ(X) are extended to ΩrB(E) as follows:

AX(ω ⊗ s) = AXω ⊗ s,(5.4)

θ(X)(ω ⊗ s) = θ(X)ω ⊗ s+ ω ⊗∇ϕ
Xs(5.5)

for any ω ⊗ s ∈ ΩrB(E) and X ∈ ΓTM . Then θ(X) = d∇i(X) + i(X)d∇ for
any X ∈ ΓTM . Hence Φ ∈ Ω∗

B(E) if and only if i(X)Φ = 0 and θ(X)Φ = 0 for
all X ∈ ΓL. Then the generalized Weitzenböck type formula (2.9) is extended
to Ω∗

B(E) as follows:

∆Φ = ∇̃∗

tr∇̃trΦ+ F (Φ) +A
κ
♯
B
Φ, ∀Φ ∈ ΩrB(E),(5.6)

where F (Φ) =
∑q
a,b=1 θ

a ∧ i(Eb)R̃(Eb, Ea)Φ. Note that dTϕ ∈ Ω1
B(E). Then

we have the following.

Theorem 5.1. Let ϕ : (M, g,F) → (M ′, g′,F ′) be a smooth foliated map.

Then the generalized Weitzenböck type formula is given by

1

2
∆B |dTϕ|2 = ⟨∆dTϕ, dTϕ⟩ − |∇̃trdTϕ|2 − ⟨A

κ
♯
B
dTϕ, dTϕ⟩ − ⟨F (dTϕ), dTϕ⟩,

where

⟨F (dTϕ), dTϕ⟩(5.7)

=
∑
a

gQ′(dTϕ(Ric
Q(Ea)), dTϕ(Ea))

−
∑
a,b

gQ′(R
Q′(dTϕ(Eb), dTϕ(Ea))dTϕ(Ea), dTϕ(Eb)).
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Proof. Let {Ea}(a = 1, . . . , q) be a local orthonormal basic frame such that at
x ∈M , (∇Ea)x = 0. Then, at x, we have from (2.4)

1

2
∆B |dTϕ|2 = ⟨∇̃∗

tr∇̃trdTϕ, dTϕ⟩ − |∇̃trdTϕ|2.(5.8)

From (5.6) and (5.8), we have

1

2
∆B |dTϕ|2 = ⟨∆dTϕ, dTϕ⟩ − |∇̃trdTϕ|2 − ⟨A

κ
♯
B
dTϕ, dTϕ⟩ − ⟨F (dTϕ), dTϕ⟩.

Now, we compute ⟨F (dTϕ), dTϕ⟩. Let {Vα}(α = 1, . . . , q′) be a local orthonor-
mal basic frame of Q′ and ωα be its dual coframe field. Let fα = ϕ∗ωα. Then
dTϕ is expressed by

dTϕ =

q′∑
α=1

fα ⊗ Vα,(5.9)

where Vα(x) ≡ Vα(ϕ(x)). By a direct calculation, we have

R̃(Ea, Eb)dTϕ =
∑
α

RQ(Ea, Eb)f
α ⊗ Vα +

∑
α

fα ⊗RE(Ea, Eb)Vα,(5.10)

where RE(Ea, Eb)Vα = RQ
′

(dTϕ(Ea), dTϕ(Eb))Vα. From (5.10), we have

⟨F (dTϕ), dTϕ⟩ = ⟨
∑
a,b

θa ∧ i(Eb)R̃(Eb, Ea)dTϕ, dTϕ⟩

=
∑

a,b,α,β

⟨θa ∧ i(Eb)RQ(Eb, Ea)fα ⊗ Vα, f
β ⊗ Vβ⟩

+
∑

a,b,α,β

gQ(θ
a ∧ i(Eb)fα, fβ)gQ(RE(Ea, Eb)Vα, Vβ).

Note that dTϕ(Ea) =
∑
α f

α(Ea)Vα. Then we have∑
a,b,α

gQ(θ
a ∧ i(Eb)RQ(Eb, Ea)fα, fα)(5.11)

=
∑
a

gQ′(dT (Ric
Q(Ea)), dTϕ(Ea)).

From (5.11), we have

⟨F (dTϕ), dTϕ⟩ =
∑
a

gQ′(dTϕ(Ric
Q(Ea)), dTϕ(Ea))

−
∑
a,b

gQ′(R
Q′(dTϕ(Ea), dTϕ(Eb))dTϕ(Eb), dTϕ(Ea)),

which completes the proof. □

Remark. (1) Let ϕ : (M,F) → (M ′,F ′) be a smooth foliated map. Then

d∇(dTϕ) = 0, δ∇dTϕ = −τb(ϕ) + i(κ♯B)dTϕ.(5.12)
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(2) If a foliated map ϕ : (M,F) → (M ′,F ′) is transversally harmonic, then

∆dTϕ = d∇i(κ
♯
B)dTϕ.(5.13)

Corollary 5.2. Let ϕ : (M, g,F) → (M ′, g′,F ′) be a transversally harmonic

map. Then

1

2
∆B |dTϕ|2 = −|∇̃trdTϕ|2 − ⟨F (dTϕ), dTϕ⟩+

1

2
κ♯B(|dTϕ|2).(5.14)

Proof. Since d∇(dTϕ) = 0, we have

AXdTϕ = −∇̃XdTϕ+ d∇i(X)dTϕ, ∀X ∈ ΓQ.(5.15)

Hence (5.14) follows from (5.13) and (5.15). □

As applications of the generalized Weitzenböck formula, we have the follow-
ing theorems.

Theorem 5.3. Let (M, g,F) be a compact foliated Riemannian manifold of

nonnegative transversal Ricci curvature, and let (M ′, g′,F ′) be a foliated Rie-

mannian manifold of nonpositive transversal sectional curvature. If ϕ : (M,F)
→ (M ′,F ′) is transversally harmonic, then ϕ is transversally totally geodesic,

i.e., ∇trdTϕ = 0. Furthermore,

(1) If the transversal Ricci curvature RicQ of F is positive somewhere, then

ϕ is transversally constant, i.e., the induced map between leaf spaces is

constant.

(2) If the transversal sectional curvature KQ′ of F ′ is negative, then ϕ is

either transversally constant or ϕ(M) is a transversally geodesic closed

curve.

Proof. Let ϕ : (M,F) → (M ′,F ′) be a transversally harmonic map. Then,
from (5.14), we have

1

2
(∆B − κ♯B)|dTϕ|2 = −|∇̃trdTϕ|2 − ⟨F (dTϕ), dTϕ⟩.(5.16)

Since RicQ ≥ 0 and KQ′ ≤ 0, from (5.7) we have

⟨F (dTϕ), dTϕ⟩ ≥ 0.(5.17)

Hence (∆B−κ♯B)|dTϕ|2 ≤ 0. From Lemma 2.3, |dTϕ| is constant. Hence again,
we have from (5.16)

|∇̃trdTϕ|2 + ⟨F (dTϕ), dTϕ⟩ = 0.(5.18)

Hence ∇̃trdTϕ = 0 and by assumptions

gQ′(dTϕ(Ric
Q(Ea), dTϕ(Ea)) = 0,(5.19)

gQ′(R
Q′(dTϕ(Ea), dTϕ(Eb))dTϕ(Ea), dTϕ(Eb)) = 0(5.20)
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for any indices a and b. Therefore ϕ is transversally totally geodesic. Moreover,
from (5.19), if RicQ is positive at some point, then dTϕ = 0, i.e., ϕ is transver-
sally constant, which proves (1). For the proof of (2), if there exists a point
x ∈M such that at least two vectors in {dTϕ(Ea)} are linearly independent at
ϕ(x), say, dTϕ(E1) and dTϕ(E2), then from the hypothesis,

gQ′(R
Q′(dTϕ(E1), dTϕ(E2))dTϕ(E2), dTϕ(E1)) < 0,

which contradicts (5.20). Hence the rank of dTϕ < 2, that is, the rank of dTϕ
is zero or one everywhere. If the rank of dTϕ is zero, then ϕ is transversally
constant. If the rank of dTϕ is one, then ϕ(M) is closed transversally geodesic.

□

Next, we extend Theorem 5.3 under the weaker transversal sectional curva-
ture of F ′. Let rankT (ϕ) be the rank of dTϕ.

Theorem 5.4. Let (M, g,F) be a compact foliated Riemannian manifold and

let (M ′, g′,F ′) be a foliated Riemannian manifold. Assume that RicQ ≥ λ

id. and KQ′ ≤ µ for any positive constants λ and µ. Let ϕ : (M,F) →
(M ′,F ′) be a transversally harmonic map with max{rankT (ϕ)} ≤ C, where

C ≥ 2 is constant. If |dTϕ|2 ≤ λC
µ(C−1) , then ϕ is transversally constant or

ϕ is transversally totally geodesic. In particular, if |dTϕ|2 ≤ λ
µ
, then ϕ is

transversally constant.

Proof. Let {Ea} be a local orthonormal basic frame of Q. From (5.7), we have

⟨F (dTϕ), dTϕ⟩(5.21)

=
∑
a

gQ′(dTϕ(Ric
Q(Ea)), dTϕ(Ea))

−
∑
a,b

{|dTϕ(Ea)|2|dTϕ(Eb)|2−gQ′(dTϕ(Ea), dTϕ(Eb))2}KQ′

ab ,

where

KQ′

ab = gQ′(R
Q′(dTϕ(Ea), dTϕ(Eb))dTϕ(Eb), dTϕ(Ea))

is the transversal sectional curvature spanned by dTϕ(Ea) and dTϕ(Eb). Let
rankT (ϕ) = r ≤ C. Now, we choose a local orthonormal basic frame {Ea} such
that gQ′(dT (Ea), dT (Eb))|x = λaδab and λ1 ≥ λ2 ≥ · · · ≥ λr > 0. Then, from
(5.14) and (5.21), we have

1

2
∆B |dTϕ|2

= − |∇̃trdTϕ|2 +
1

2
κ♯B(|dTϕ|2)−

∑
a

gQ′(dTϕ(Ric
Q(Ea)), dTϕ(Ea))

+
∑
a,b

{|dTϕ(Ea)|2|dTϕ(Eb)|2 − gQ′(dTϕ(Ea), dTϕ(Eb))
2}KQ′

ab
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≤ − |∇̃trdTϕ|2 +
1

2
κ♯B(|dTϕ|2)− λ|dTϕ|2 + µ{|dTϕ|4 −

r∑
a=1

λ2a}.

Using the Schwarz’s inequality, we have

|dTϕ|4 =
r∑
a,b

λaλb ≤
1

2

r∑
a,b=1

(λ2a + λ2b)(5.22)

= r

r∑
a=1

λ2a ≤ C

r∑
a=1

λ2a.

From (5.22), we have

|dTϕ|4 −
r∑
a=1

λ2a ≤ C − 1

C
|dTϕ|4.(5.23)

From (5.23), we have

1

2
∆B |dTϕ|2(5.24)

≤ − |∇̃trdTϕ|2 +
1

2
κ♯B(|dTϕ|2)− |dTϕ|2{λ− (C − 1)µ

C
|dTϕ|2}

≤ 1

2
κ♯B(|dTϕ|2).

Hence, from Lemma 2.3, |dTϕ| is constant and then

|∇̃trdTϕ|2 + |dTϕ|2{λ− (C − 1)µ

C
|dTϕ|2} = 0.(5.25)

Therefore ∇̃trdTϕ = 0 and |dTϕ|2{λ− (C−1)µ
C

|dTϕ|2} = 0. Hence ϕ is transver-
sally totally geodesic. If dTϕ = 0, then ϕ is transversally constant. If dTϕ ̸= 0,
then |dTϕ|2 = λC

µ(C−1) and ϕ is transversally totally geodesic. In particular, if

|dTϕ|2 ≤ λ
µ
, then ϕ is transversally constant. □

Remark. For the point foliation, Theorem 5.3 and Theorem 5.4 are found in
[2, page 124] and [12], respectively.

Example. Let T 2 be the flat 2-torus parametrized by the angles (u, v) with
0 ≤ u, v < 2π. Let ϕ̄ : T 2 → S3 be defined by

ϕ̄(u, v) = (cosu, sinu, cos v, sin v)/
√
2,

considered as a point in R
4. Then ϕ̄ is harmonic but not totally geodesic [2,

page 132]. Now let (F, h) and (F ′, h′) be Riemannian manifolds. Consider
the foliations on T 2 × F and S3 × F ′ given by the projections on the first
component π1 : T 2 × F → T 2, π2 : S3 × F ′ → S3, respectively. Then the
projections πi(i = 1, 2) are Riemannian fibrations, and so the foliations are
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Riemannian. Let ϕ : T 2 × F → S3 × F ′ be a foliated smooth map, which is
given by

ϕ((u, v), x) = (ϕ̄(u, v), f(u, v, x))

for any x ∈ F , where f : T 2 × F → F ′ is smooth. Then ϕ is transversally
harmonic because ϕ̄ is harmonic. But ϕ is not totally geodesic because ϕ̄ is not
totally geodesic [6, Theorem 3.1].
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