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1. Introduction. The present paper is concerned with the frequencies of free vibra-

tions of shallow spherical shells of constant thickness. It has been shown earlier that

for vibrations of shallow shells which are primarily transverse a considerable simpli-

fication of the problem can be effected by a justified neglect of longitudinal inertia in

comparison with transverse inertia [1].

Previous applications of this observation included a study of axi-symmetrical vibra-

tions of spherical shells [2], and a study of inextensional vibrations of general shallow

shells [3]. In the present paper we investigate vibrations of shallow spherical shells,

without axial symmetry. Appropriate solutions of the differential equations are obtained

and these are used to obtain the frequencies of free vibrations of a spherical shell segment

(or cap) with free edges, in their dependence on the curvature of the segment and on the

number of nodal circles and diameters.

We may summarize certain qualitative aspects of our results as follows. Let H be

the height of the apex of the spherical cap above the edge plane of the cap and let h be

the wall thickness of the shell. When H/h = 0 we have Kirchhoff's results for the flat

plate. When H/h tends to infinity the frequencies of free vibrations of the cap tend

either to a limiting frequency which may be called membrane frequency or they tend

to the'frequencies of inextensional vibrations which we have previously considered [3].

The membrane frequency is limiting frequency for all vibrations with one or more

nodal circles. Its value is independent of the number of nodal radii and of nodal circles

provided the latter is not zero. On the other hand, the frequencies of inextensional

vibrations are a function of the number of nodal radii and presuppose that the number

of nodal circles is zero.

2. Differential equations for free transverse vibrations of shallow spherical shells.

The differential equations which are to be solved are of the form

V2V2F - | V2w = 0, (2.1)

DV2V!tt + ~ V2F + ph = 0. (2.2)

The various quantities occurring in (2.1) and (2.2) have the following significance

w = transverse (axial) displacement,

F = Airy's stress function,

R = radius of middle surface of shell,

h = wall thickness of shell,

C = Eh, longitudinal stiffness factor,

E = modulus of elasticity,
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D = Eh3/12 (1 — v2), bending stiffness factor,

v — Poisson's ratio,

p = density of shell material,

V2 = ( )rr + r'1 ( )r + r~2 ( )ee , Laplace operator in polar coordinates r, 6.

Stress resultants and couples, in polar coordinate form, are given by the following

expressions.

,r d2F .T 1 dF , 1 d'F
N° ~ dr2 ' ' r dr + r2 dd2 '

n - A (i§l\
dr \r dd)

V = — D ^ W 4- - — — N
U dr ^ r dd R*T

y — —j) §YJ£ _i_ dMrt _r_-^
6 rdd + dr R r'.

„ , Id2W . v dw v d2w\

(2.3)

(2.4)

(2.5)

Equations (2.1) to (2.5), except for the inertia term phwt, , are the same as those for

problems of statics [4].

3. Solutions for simple harmonic motion. We consider solutions of the form

(w, F) = /C0S n(?N)K(r), Fn(r)K". (3.1)

\sin nO/

Substitution of (3.1) into the differential equations (2.1) and (2.2) leads to the ordinary

differential equations

L2F„ - | L„w„ = 0, (3.2)

DL2nwn - php2wn + ^ LnFn = 0, (3.3)

where the operator L„ is defined by

" dr2 r dr r2 ( • )

We may write the solutions of (3.2) and (3.3) as follows



1958] TRANSVERSE VIBRATIONS OF SHALLOW SPHERICAL SHELLS 369

Fn = (* + WW*)** + m? LnXn + " ^3'6)

In Eqs. (3.5) and (3.6) we have

x" [z> i1"*' ~ I)]'" (3-7)

and

^ = jCi.o + C'z.o l°gr, n = 0

[A.y + C2,nr-, 1 < n

(3.8)

K

^ = jC,.„ + C4.„logr, n = 0 (3Q)

\c3,nr" + Citnr~n, 1 < n

?Ci,or2 + iC2,0r-2(logr - 1), n = 0

fCi.ir3 + %C2Ar log r, n = 1

Cl'"4(n+1) +C2'n4(l-n) ' 2 ~ "

(3.10)

Xn = Ai.^CXr) + A2,nFn(Xr) + A3Jn(Xr) + A4,nif„(Xr). (3.11)

The functions Jn , Yn , In and K„ are Bessel functions and modified Bessel functions of

order n. We note that the argument of these functions is real, as long as the frequency

p is gfeater than a reference frequency which we denote by p„ and which is given by

*- - m- <3-12>

Alternatively, p„ may be written in terms of the rise II of the shell segment which, from

z = r*/2R, follows in the form II — a2/2R, where a is the base radius of the shell segment,

P«
= 2(E\1/2H. (3.12')

\p/ a

The solutions (3.5) and (3.6) involve eight arbitrary constants for each value of n.

However, for n = 0 and n = 1 only six of these have physical significance. The quantities

C3,0 and C3,i may be omitted as they do not enter into expressions for displacements

and stresses. Furthermore, in order that the displacements u and v in radial and cir-

cumferential direction be single valued we must have (see [4] for the case n = 0) the

relations

C2.o = 0, C2A = 0. (3.13)

We next write resultants and couples in a form which corresponds to (3.1), viz.,

Nr = ("""W, , etc. (3.14)
[sin n0J
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In this way we shall have in terms of the functions Fn and wn

K _ I vL p
N"• - r dr - r2 K '

75 (?)]-!

V,.. - =F (1 - >>»£(»)] "

ST r>rc^wn I "

-DlW + -rTr

(3.15)

(3.16)

(3.17)

4. Boundary conditions for spherical segment with free edge. In order that the edge

r = a be a free edge the following four conditions must be satisfied

Nr,n(a) = 0, Nre,n(a) = 0, (4.1)

MrM = 0, Vr,n(a) = 0. (4.2)

In terms of Fn and wn and indicating differentiation with respect to r by primes, these

conditions assume the following form

aF'n(a) - n'Fn(a\ = oj ^ ^

n[aF'n{a) - Fn(a)] = Oj'

a2w'n'(a) + avw'n{a) — m2wn(a) = Oj

a2[Lnw„(a)]' - n\ 1 - v)[aw'n(a) - u\{a)] = oj

Equations (4.3) may be simplified further, to read

F'0{a) = 0, aF[(a) = Fl{a) 1

Fiffl) = 0, Fn(a) =0; 2 < nj

(4.4)

(4.5)

In addition to boundary conditions for r = a we have regularity conditions for r = 0.

Inspection of (3.5) to (3.11) reveals that these regularity conditions require the vanishing

of four of the eight constants of integration in (3.5) and (3.6), namely

C2.11 = Ci.n ~ A2,n = -4.4,n = 0. (4.6)

This leaves us with the following expressions for wn and F„

W" = RD\* Cl "r" + A3iJn(\r), (4.7)



(5.1)

(5.2)
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Fn = (* + 4(n+ 1) + C^„rn + ^ [—A,.„J„(Xr) + A3,J„(Xr)]. (4.8)

An equation determining frequencies of free vibrations is now obtained by sub-

stituting the solutions (4.7) and (4.8) in the boundary conditions (4.4) and (4.5). In

doing this it is convenient to consider the cases n = 0, 1 separately from the general

and more complicated case 2 < n.

5. Rotationally symmetric vibrations and vibrations with one nodal diameter.

Substitution of (4.7) and (4.8) into (4.4) and (4.5) for n = 0 and n = 1 leads to the

following system of simultaneous homogeneous equations for the constants of integration

in (4.7) and (4.8)

^.i,o[m^o(m) + (1 — v)J'0(n)] — A3.0[m^o(m) — (1 — v)Iq(h)] = 0

-41, o«^o(m) A3:0Io(h) = 0

l[l+ flw]C'1,0 + £ + As'07°(")] = 0

i - v)(JM - nJ'M) - fi2Ji0<)]

+ A,tl[(1 - y)(/:(M) - m/Km)) + »IM] = 0

A,.,[( 1 - + mJKm)) + mVJ(m)]

+ ^3,i[(l — c)( —/i(m) + M^i'(m)) — M3^(/i)] = 0

+ 43. ,(/i0«) + m/:(m))] = o.

In these equations the quantity m is defined as

_ . _ rhpa* # _Ca^T/4 , .
" - Xa - L D p ~ £>fi2J ()

or, with the reference frequency p„ of Eq. (3.12)

M (P2 - P2)]I/4- (5.3')

It is noted that the systems (5.1) and (5.2) are such that in each case in order to

determine admissible values of n it is sufficient to consider the first two equations of

the system. These first two equations are the same as the corresponding equations for

vibrations of flat plates and accordingly the equation determining possible values of n

is the same as Kirchhoff's frequency equation for vibrations of circular plates with

free edge, with zero or one nodal diameter,

2 fcffe + = 1 ~ n = 0'L <5-4>
We note from (5.3') that values of p larger and smaller than are accounted for by

considering the following ranges of n.

P>P~:n = Zeimr/2-, f>0, m = 0,1,2, ••• (5.5)
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V < P- : M = f>0, m = 1,3,5, ••• (5.6)

However, the characteristic equation (5.4) can be shown to possess no solutions of the

form (5.6). Also, the substitution of (5.5) into (5.4) leaves (5.4) unchanged so that it

suffices to consider only real positive values of n. We conclude that for n = 0, 1, the fre-

quency represents the lowest possible frequency of free vibration.

For given v Eq. (5.4) is satisfied by an infinite sequence of positive values n = fi„,k ,

fc = 1, 2, 3, • • • , where k is the number of nodal circles. Let p„,k be the corresponding

frequencies of free vibrations and pi",I the values of these frequencies for the case of flat

plates, for which pa — 0. According to (5.3') we have

- ^>(i<5-7)

and

We may write (5.8) in the form

pl* = P?,l2 + pi ■ (5.8)

Pn.k

v~

or with

^=["1 + fe)2n,k L

1/2

(5.9)

(2s.V = E ^ _L = 48(1 - v2) (H
Vn.V p a* D n*,k Mn.i \ h

^ r1+Mr
Vn.k L Mn.fc J

(5.10)

Known values of , for v — 1/3 and for k = 1, 2, 3, are given in Table 1. Values

of the frequency ratio pn,k/pi°l as a function of H/h may be found in Figs. 2 and 3.

These results are new only for n — 1, the case n = 0 having previously been considered

in [2]. We note that the modes with no nodal circles (fc = 0) correspond to rigid-body

translations and rotations.

We finally note that the frequency pn,k is equal to pa in the limiting case D = 0, or

H/h — oo. In this sense, the frequency may be designated as the membrane vibration

frequency of the shell.
6. Vibrations with two or more nodal radii. Introduction of the solutions (4.7) and

(4.8) into the boundary conditions (4.4) and (4.5) leads, when 2 < n, to the following

system of simultaneous equations.

(' + ?)
1 Cf.n + Ctn + \ + A3.n/,(M)] = o, (6.1)

4(n + 1) ' 3'n 1 m

[l + 4) C*." + nC*» + J = 0, (6.2)

(1 — v)n(n — 1) C?,„ + {[(1 — v)n2 — m2]-/»(m) — (1 —

+ {[(1 - v)n2 + M2]/n(M) - (1 ~ ^(m)}^3.„ = 0,

(6.3)
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.100 i— 1 , 1 

8 10

,Fia. 1. Curves m = m(«4) and v — v (**) when v = 1/3,. according to Eqs. (6.7) and (6.13).

Fig. 2. Values of ratio of shell frequency pn,k to plate frequency p'^X in dependence on ratio of shell

rise H to shell thickness h for various values of the number 2n of nodal radii and the number k of

nodal circles, for a value v = 1/3 of Poisson's ratio.
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Fig. 3. Enlarged version of part of Fig. 2.

4
K

(1 - ,)n2(l - ») ^ Cf,„ + {(1 - v)n2JM - [(1 - v)n*n + tx3]J„(n)}
M (.0.4;

+ {(1 - vWhip) - [(1 - pWh - M'TOJii... = 0.

The quantities C*,n and k are defined as follows.

Cl.n = Cf, , C3ln = C*,„ (6.5)

and

The vanishing of the determinant of the system (6.1) to (6.4) leads to the following

frequency equation

"■^"4-k§-'• <6-7)
where

SM = 4n2(n2 - 1)(1 - v)L[J.Wb) - ^W/,(m)]

+ (» + 1)(1 - ,)[/^(m) - ^/»(m)][/^) - * /„(m)]}

(6.8)

and

RM = {(1 - ,)[m^(m) - nV.W] + /.V„G.)}{(1 - vWlvUip) - /„(//)] - m3/:wi

- {(1 - ,)n2[P^(M) - J.G0] + m'^(m)}{(1 ~ v)W^) ~ n2IM] - SL(fi)\. (6.9)
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In order to account for values of p both larger and smaller than p„ we consider the

ranges of n given in (5.5) and (5.6). Equation (6.7) is unchanged by the substitution

(5.5) so that it will suffice to consider real positive values of n for the range p > p„ .

p > ; /i = (p2 - P«)] > 0. (6.10)

In contrast to the cases n = 0, 1, Eq. (6.7) does possess solutions of the form (5.6),

implying that values of p < are possible for n > 2. Equation (6.7) remains the same

for all fi of form (5.6) so that it is sufficient to consider the substitution

P < ; m = i3/2lh V > 0. (6.11)

Introducing Kelvin functions of order n by the relations

Jn(?/2vj = ber„7? + ibeinri

I»(i3/2v) = exp ^j(ber„7j - ibeinri)

we write Eq. (6.7) in the form

V < P~ ; 7 = + 1. (6.13)

where

Un(rj) = 2(1 - v)n(n - 1)|23/2n?/(ber^bei„?7 - ber^bei^)

(6.12)

)[n
Lv

+ 21/2(1 - v)n{n + 1) ^ (ber2, + bei2„) (6.14)

}

(6.15)

 (ber'i? + bei*7j)' + (ber^)2 + (bei 'nt]f
V

and

TJLrd = [(1 - *)W - 1) ~ »?4]21/2ij(berB'7jbeini7 - ber^bei^)

+ 21/2(1 - .)7,4|n2[i (ber2, + bei2,)]' - (ber^)2 - (bei^)2}.

Equations (6.7) and (6.13) assume the same limiting form when p = p„ , that is

when n and 77, respectively, are zero, namely

p = ; k4 = (1 - p)(3 + v)n\n2 - l)[l + 1(1 ~ ")(n ~ 2)
L (6.16)

n2(n — 1)(1 — v)(4n + 9 —

16(n + 2)2(n + 3) if.
7. Solution of frequency equations for n = 2. As the character of the frequency

calculations is the same for all cases n > 2 we limit ourselves here to the case n = 2.

According to (6.10) and (6.11) we have that the frequency p is given in the form

p>p~; = + (7.1)
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V < ; V2 = - ^4 V*• (7.2)

The quantities n and 77 are determined as functions of k4 = 48 (1 — v2) (H/h)2 by solving

Eqs. (6.7) and (6.13). We carry out this solution by finding k4 as a function of n and 77.

Considering first Eq. (6.7) we find that k4 has a value slightly above 25 when = 0

which decreases to zero when ju = m2,0 = 2.30. For larger values of /u, from n = /i2i0 to

M = Ma.i we have k4 negative which means that this part of the curve has no physical

significance. From m = M2.1 to M = M2,i the values of k4 are again positive. The next

branch of the curve for positive k4 lies between the values 7*2,2 and y.2,2 . The pattern

repeats itself with increasing values of m (see Fig. 1).

We note that the values 1*2,0 , 1x2,1 , H2.2 > etc., are roots of Eq. (6.7) for k4 = 0, that

is roots of the corresponding flat-plate frequency equation

R*(n) = 0. (7.3)

The values m£,i > > etc., are roots of (6.7) for k4 = 00(that is roots of the equation

SM - RM = 0. (7.4)

We note that for fc = 1, 2, • • • the values of n2,k and of v'2 Jt are so nearly the same that

for the purpose of frequency calculations we may disregard their difference. This means

that for n = 2 and k > 1 (and by implication for n > 2) we may take for practical

purposes n from the flat-plate frequency equation, just as for the cases n — 0 and n — 1.

However, in addition to the regime in which this is possible we now have the regime

k = 0 where this is not possible. Numerical values of n22ik are given in Table 1.

We now turn to Eq. (6.13) and determine 57 as a function of k4. We find a curve which

gives k somewhat greater than 25 for 17 = 0, with increasing values of k as 17 increases.

It is apparent that the 77(k4)-curve represents a continuation of the /n(/<4)-curve for k — 0.

The common point of these two branches for m = 77 = 0 is, as it should be, given by Eq.

(6.16).
On the basis of the data contained in Fig. 1 we have calculated the frequency curves

n = 2, k = 0, 1, 2 as contained in Figs. 2 and 3. It is apparent that there is an essential

difference between the case k = 0 where we have no nodal circles and the cases k > 1

where we have one or more nodal circles. For k = 0 the influence of shell curvature

remains insignificant, the frequency being very nearly equal to the corresponding flat-

plate frequency. For k > 1 the influence of shell curvature is qualitatively significant.

Table 1. nn.k jor v = 1/3.

— 9.076 38.52 87.82
— 20.52 59.86 119.0

5.251 35.24 84.38 153.34
12.23 52.91 112.0 190.70
21.49 73.9 142.5 231.03
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8. Frequencies of membrane vibrations. The differential equations of membrane

theory follow from (2.1) to (2.5) by setting in them

D = 0. (8.1)

If this is done the differential equations (2.1) and (2.2) may be reduced to the following

form

V*[ph ̂ + J* W] = °' (8"2)

|V*F=-p^. (8.3)

Equation (8.2), with w = J cosn^l Wn(r)eis satisfied either when

[sin nd I

= (8"4)

or, when

wn = Anrn + Bnr~n, 1 < n, (8.5)

w0 = A0 + B0 log r. (8.6)

In either case Fn is found in terms of wn by integrating the relation

LnFn = phRp2wn . (8.7)

Since D = 0 only the first two of the four boundary conditions (4.1) and (4.2) need to

be considered. Appropriate substitution of (8.5) to (8.7) shows that these'equations

are satisfied only when p — 0.

There remains the frequency p = which is associated with arbitrary functions

wn , insofar as the differential equation (8.2) is concerned. We have already seen in Sec.

5 that the frequency p„ is the limiting solution for all modes n — 0,1, and k > 1, as

D —» 0, or equivalently as H/h —+ °o. For n > 2 inspection of the solutions (4.7) and

(4.8) and of Eqs. (6.1) to (6.4) reveals that the conditions

D —> 0, k4 —> oo (8.8)

are equivalent. Furthermore, for any given mode k > 1, n as given by (6.7) remains

finite as «4 oo. Equation (7.1) indicates, therefore, that for modes with one or more

nodal circles,

lim p —> , k > 1. (8.9)
D-0

However, since the one root of (6.13) tends to infinity at the same time that k —» oo

we have that the frequency pn,0 given by (7.2) associated with no nodal circles does not

tend to the frequency In the above sense we consider the frequency as the mem-
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brane vibration frequency of the shallow spherical shell. Figure 4 which represents values

of p»/p».* as functions of H/h illustrates the way in which the membrane frequency

is approached.

i.o

Fig. 4. Relation between shell frequency pn,k and membrane frequency when v = 1/3.

9. Frequencies of inextensional vibrations. The differential equations for inexten-

sional vibrations are obtained from (2.1) and (2.2) by setting in these equations

£ = 0. (9.1)

It has been shown earlier [3] that inextensional vibrations of shallow spherical shells

with free edge can occur only for the modes fc = 0, n > 2, with frequency p„ given by

1/2

(9.2)E-n - fJL) *
h ~ ' Vn \phaV /in 0

!>»• p. - (^)'V - - 1)»T. (9.3)

In order to see to what extent these results are contained as limiting cases in our present

calculation we note that 1/C = 0 is equivalent, just as D = 0 is, to

k = 0° (9.4)

provided H is different from zero.

Since when k —► co we have p —> p«, for k = 1, 2, • • • it remains to consider what

happens when k = 0. According to Fig. 1 the frequency equation in this case for suf-

ficiently large values of k is Eq. (6.13). As k tends to infinity i? also tends to infinity.

We find by means of the asymptotic expansions for Kelvin functions that (6.13) assumes
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the following limiting form for large t),

k* ~ + 4(1 - „)(n2 - 1 )n\ (9.5)

Substitution of (9.5) into (7.2) reduces (7.2) to the following form

p2-i?4(1 ~v)(n2 ~ 1)n' (9'6)

which shows that when k = 0, H ^ 0 then when A —> 0 we have p —» pn as given by

(9.3).
On the other hand, for k = 0, h ^ 0, letting H —> 0 in (7.1) results in p —» pn as

given by (9.2).

The foregoing considerations indicate that our frequency formula, for k = 0, contains

as limiting cases both the appropriate flat-plate frequency formula and the frequency

formula for inextensional vibrations of shallow shells. The way in which the transition

from one of these formulas to the other takes place is clearly seen by means of the curve

which in Figs. 2 and 3 is labeled n = 2, k = 0.

10. The energy of stretching and the energy of bending. Qualitatively, in vibrations

which are approximately membrane vibrations the strain energy of stretching will be

large compared with the strain energy of bending. On the other hand, for vibrations

which are approximately inextensional the strain energy of bending will be large com-

pared with the strain energy of stretching.

We consider in this section the quantitative aspects of the foregoing statement by

calculating the ratio

V,

Vh+V.'

where V, is the strain energy of stretching and Vh is the strain energy of bending. For

shallow shells these quantities are given by the following expressions:

D)'v--r +2(1+

(rf + ?dJ?)\d*dr-

(10.1)

(10.2)

d2W

dr2

We omit the details of the lengthy calculations involved in the evaluation of (10.1)

and (10.2). The results of these calculations are incorporated in Fig. 5 which shows how,

for k > 1, the transition from plate to shell is associated with a transfer of strain energy

from bending to stretching and how, for fc = 0, we start with bending energy, encounter

a certain amount of stretching energy for moderately curved shells, which, with in-

creasing curvature, goes over into bending energy.
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i.o

Fig. 5. Ratio of stretching component of strain energy to sum of stretching component and bending

component as function of n, k and H/h, when v = 1/3.
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