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ABSTRACT 

A simple method is presented for approximating the behavior of a multiple 
genetic system under the action of selection and linkage. The effects of genetic 
drift and mutation are left out. It is found that the results are close to those ob- 
tained from a computer simulation of the same problem by FRANKLIN and 
LEWONTIN (1970). It is possible to  describe the system in terms of a correlation 
length on the chromosome which measures the degree to which the different 
parts are bound by linkage. There is also a brief discussion about the higher 
order correlation coefficients as a measure of the interaction effects. 

N recent years there has been increasing theoretical interest in multiple-locus I genetic systems in an effort to understand the structure of natural populations. 
The limitations of the single-locus theory are apparent, and the work of FRANK- 
LIN and LEWONTIN (1970) and LEWONTIN (1964a,b) among others has shown 
that the higher order interactions between loci, caused by epistasis and link- 
age, are important and the single-locus and even the two-locus theory are in- 
adequate predictors of the behavior of more complex systems. In order to un- 
derstand the fundamental problems of the maintenance of genetic variability 
within populations and possible rates of evolution of populations, such factors 
must be considered. The model described here is of the simplest multiple-locus 
system including the effects of selection and linkage, and as such is only a first 
step in understanding more complicated problems. However, what is shown is 
that it is possible to reduce the degrees of freedom of a multiple-locus system in a 
consistent and useful way without losing its essential properties. In addition, the 
method of approximation itself leads to a better understanding of the behavior of 
such systems. 

In  a recent paper, FRANKLIN and LEWONTIN (1970) described the results of 
some computer simulations of the effect of selection and linkage on multiple- 
locus genetic systems. They presented evidence for the fact that when there is a 
large number of loci, many properties of the system depend on general charac- 
teristics of the selection and linkage rather than on the exact number of loci 
present. In particular, for their simulation of a completely symmetric heterotic 
model with multiplicative fitness, as the number of loci increased the average 
correlation between pairs of loci depended only on the total map length of the 
chromosome and on the fitness of the multiple homozygote. This result suggests 
that there might be an analytic description of this system which would lead to 
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the same conclusions and which would illustrate its underlying simplicity. 
Before going into the details of the present model, I will describe some general 

properties of simple multiple-locus systems which will make it easier to interpret 
FRANKLIN and LEWONTIN’S result. If the two possible alleles at each of N loci 
are denoted by 1 and 0, then a gamete is represented by an ordered N-tuple 
(il, i,, . . . , iN) where each of the i’s have the value 1 or 0. The frequency of such 
a gamete is denoted by gil . . . iN . The frequency of the 1 allele at locus n, pny can 
be written as in, the average value of in taken over all of the gametes. For example, 
with N=2, 

We can take advantage further of the numerical description of the gametes to 
write the gametic frequencies in terms of average values. 

z, = pz  o~(goo+glo) + l.(gol+gll) = go1fg.11 

gll . . . = E ( & .  . . iN) 
g o 1  . . . 1 = E [  (I-i1)iz . . . i N 1  

etc., where E (  . ) means the average value of the quantity taken over the 
population. 

LEWONTIN and KOJIMA ( 1960) introduced the term “linkage disequilibrium” 
for the degree of non-random association between pairs of loci. They defined it as 

D = googii-giogoi ( 2 )  

(3)  

Writing this in terms of average values, we get 

D = E [  (1  -il) ( 1  -i2) ] E  ( iliz) - E[i l  (l-iz) ] E [ ; ,  (l-il) ] 
and by expanding and combining terms, the result is 

D = E ( iliz) --iliz = E [ ( il-il) ( i,--i2) ] 

Therefore D is the covariance and related to  the correlation coefficient of il and 
i, called p by FRANKLIN and LEWONTIN and defined as 

p = E [  (il-Z1) (i,-?,)]/[E( [i1-%3’).E( [ i z - i z ] ~ ) ] ~  ( 5 )  
In  systems with more loci, higher order interactions become important and we 
would like a description of the size of those effects. The obvious generalization 
of D to more loci is 

D 1 2 3  = E [ (il-zl) ( i 2 - 5 2 )  ( i 3 - Z 3 )  ] (6) 
D123, = E [ (il-il) ( i 2 - i ~ )  ( i 3 - Z 3 )  ( i 4 - i 4 )  ] 

etc., as the higher order disequilibrium constants. The D’s are the same as the 
correlation functions (Ln) introduced by BENNETT (1954). With this definition 
the gametic frequencies can be written in terms of the disequilibrium constants 
and the allelic frequencies by expanding ( 1 ) .  For example, 

_ -  
gll . . . = zlaz . . . Z N + D 1 , i 3  . . . iN+D&i4 . . . Zn + . . . + D l z S i 4  . . . zN+D1,4 i3 i ,  i N  + . 
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(7) 

- - I , ,  . . . N  

BENNETT (1954) obtained expressions similar to (7). 

In the completely symmetric, heterotic system, one of the equilibrium states 
is one for which all the allelic frequencies are 1/2. KARLIN and FELDMAN (1970) 
have shown that, for the two-locus system, there may be other equilibrium points 
but for the completely symmetric case (r=P, 6=a in their notation), none of the 
other equilibrium points is stable. This suggests but certainly does not prove that 
the same result is true for a larger number of loci. Here we will be concerned 
only with the symmetric equilibrium (il = i, = . . . = 1/2) which FRANKLIN and 
LEWONTIN’S simulations indicate is stable. Also, because of the symmetry, the 
gametes appear in complementary pairs and the frequency of a gamete is the 
same as the gamete obtained by changing all the 1’s to 0’s and vice versa (e.g., 
glolol=gololo). In the computation of the D’s with an odd number of subscripts, 
the contribution from a gametic type will be the negative of the contribution 
from the complementary gamete. Since, in the completely symmetric case, the 
complementary types occur in equal frequencies, all D’s with an odd number of 
subscripts are 0. Because the allelic frequencies are % and the effect of the alleles 
are the same, there are zN equivalent states of the population which can be 
obtained by relabeling the alleles at the different loci. Therefore, we can choose 
any one of them to analyze. When there is perfect linkage, two of the gametes 
will have frequency 1/2 and the rest 0. This can be any complementary pair but 
for convenience let us call them ( 1, . . . ,1 )  and (0, . . . ,0) . All of the nth order 
disequilibrium constants have the value l/n. We can compute gl...l using (7)  
to get - 

g 1 1 . .  . ,=‘( I+(;)+(:)+ ...+(,)) N =F 1 2 N  

and we see that the major contribution to this sum comes not from the pairwise 
disequilibrium constants but those of order N / 2 ,  because there are more of them. 
In other words the higher order interactions dominate and a consideration of two- 
locus effects would lead to an incorrect result. This suggests that the higher order 
disequilibrium constants will be important when there is some recombination 
introduced. 

The computations of LEWONTIN (1964a) and FRANKLIN and LEWONTIN 
(1970) indicate that when permanent linkage disequilibrium is maintained one 
complementary pair of gametes is most frequent. It is this observation that leads 
to the present method of analysis. The tables of gametic frequencies presented by 
FRANKLIN and LEWONTIN (1970) and LEWONTIN (1964a) show that, for these 
simulations, the populations consist almost entirely of the most common gametic 
pair and those gametes which can be obtained by a single crossing over. If the 
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most common type is (1, . . . ,1) and its complement (0, . . . ,O), then the next 
most common type has the form (1, .  . . ,1,0,. . . ,O) and its complement. For 
convenience we will call the first type A and the second B(i) where the change 
from 1 to 0 occurs between the ith and ( i f1)s t  locus. I t  seems possible that a care- 
ful description of the effect of selection and linkage on the frequencies of these 
two gametic types would be sufficient to model much of the behavior of this 
system. 

The approximation described above has to be carried out somewhat indirectly. 
We can write the probability of a change from a 1 to a 0 between locus i and i+l 
as we read along the gamete as ai. In other words, if a gamete is chosen at random, 
then ai is the probability that ii+,=O given that ii=l. In this symmetric model 
ai is also the probability of a change from 0 to 1 but this need not be true in 
general. The basic assumption is that the ai are independent of the state of the 
rest of the chromosome. This is not satisfied exactly but, as will be discussed 
below, it is equivalent to ignoring the gametes other than the A or B types. Since 
these other gametic types are relatively infrequent, except near linkage equi- 
librium (when all the g's are nearly s") this approximation may be useful. Once 
this assumption is made, the gametic frequencies can be written in terms of the ai. 

For simplicity, we assume that a generation consists of two distinct parts: (1) 
mating and the production of offspring, and (2) selection on the resulting off- 
spring. In  order to calculate how the ai change during one generation we calcu- 
late the change for each of the two parts independently. In order to calculate the 
change in the ai under recombination, we must compute D for adjacent pairs of 
loci. Since Di,i+l does not depend on the relative frequencies at any but the ith 
and (i+l)st loci, it is sufficient to look at the two locus case. By definition 

Dl, = g11goo - glogol 

and in the completely symmetric case gll=goo and glO=go1, as pointed out above, so 

= -[ 1 1  --(I-&) --ai] 1 = - 1 (1-2ai) 
2 2  2 4 

or, in general 

(11) 
1 
4 

For future reference, we can calculate the D i j  for  all pairs of loci. Proceeding in 
a similar way for three loci. 

Di,i+l =- (1-2ai). 
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0 1 3  = (glll+glol) (g010+g000) - ( ~ O l l + ~ O O l )  (g110+g100) 
1 
2 = - (glll+glol-g011-g001) 

-- - I (1-2a1) ( 1 - 2 4  
4 

By induction, we have 

(13) 
1 
4 Dij = - (1-2ai) (1-2~2~+~)  . . . (1-2~2+~), i < i. 

GEIRINGER (1944) has shown that in the two-locus system D changes under 
recombination according to 

If we assume that the probability of crossing over between any adjacent pair of 
loci is independent of the rest of the chromosome, then we can use this result to 
compute this component of the change in the ai 

D + D( l-R) (14) 

or 

where Ri is the recombination fraction between the ith and (i+l)st loci. We 
know that the assumption of independence of crossing over is not strictly correct 
but we will use it as a first approximation and in order to compare the results 
obtained here with those of FRANKLIN and LEWONTIN’S simulations, in which 
the same assumption was made. 

Next we must calculate the change in the ai under selection. In the completely 
symmetric system, the fitness of a diploid individual depends only on the number 
of homozygous (or heterozygous) loci. We can write the fitness of an individual 
with i homozygous loci as Wi. From the two-locus calculation of KARLIN and 
FELDMAN, we expect that the equilibrium of such a system is stable only if the 
selection is heterotic so that the cases of interest are those for which Wi is 
monotonically decreasing from the fitness of the multiple heterozygote. We can 
arbitrarily set WO, the relative fitness of the complete heterozygote, to be 1. 

To calculate the change in ai under selection we use the fact that the change 
in the ratio of gametic frequencies is determined by the ratio of the marginal 
fitness of the two gametes. If we let F denote the marginal fitness, which is the 
average fitness of a gamete taken over the population, then 

(16) g A  F A  g A  --+-- 
gB(i) FB(O gB(i) 

after selection. Formula (1 6)  is exact in an infinite, randomly mating population 
and does not depend on the approximations used in this model. From (9) 
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e = ( n t  1 )  R 
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and it remains to describe the F’s in terms of the ai. If we define gc as the fre- 
quency of the remaining gametic types, we can write 

N-1 

i=l 
FA = (WO+WiV)gA + gB(i) (Wi+wN-i) ‘f g C  @ ( 1 8 )  

and 

where the effects of the crosses with all the other gametic types are included in 
the last term. 

At this point we can see the relationship between the assumption about the 
independence of the ai and the assumption that all of the gametic types other 
than the A and B types are unimportant. There are nearly enough of the ai, 
N-1, to exactly describe the frequencies of the N pairs of gametes of the A and 
B types. Once the ai are known and and gB(i) are calculated, the approximate 
frequencies of the other types can be computed directly. These will not be exact 

but if the sum of their frequencies is small compared to gA and .E gB(i), then 
the error made is unimportant and for our purposes the assumption of independ- 
of the a, is adequate. We approximate further on this basis by including the 
effects of the crosses with all other gametic types in a single term and assume 
that it is the same for the A and B types. The last term on the right hand sides 
of (1 8) and (19) is the total frequency of the remaining types, go, multiplied by 
an estimate of their average effect, W .  Since all terms in an exact computation 
of the marginal fitness would be of the form g . . . (Wj+WN-j), W should be 
nearly the average value of Wi. However, gametes with a more equal distribution 
of 1’s and 0’s will be more frequent, so a better value to use is a “triangular” 
average. 

n-1 

,=1 

- 
Y 

N N-i w= r = l  X 3=% E ,  W j / N ( N + l ) / 2  ( 2 0 )  - 
In  the practice the results are relatively insensitive to the exact choice for W .  
This supports the hypothesis that an exact treatment of the other gametes is not 
essential. 

We are now in a position to compute the equilibrium values for ai for different 
forms of the selection function and different map lengths. Despite the simplifying 
assumption which has been made, an analytic solution is still impossible in non- 
trivial cases. To test the validity of this approach, the results from this model are 
compared with the results from FRANKLIN and LEWONTIN’S paper (Figure 1 ) . 
In  these examples, a multiplicative fitness function is used 

Wi = (1-s ) ;  = e[i In(K,”)I K = (1-s)N (21 1 

FIGURE 1.-A comparison of the results from the approximate calculation with those from 
the simulation by FRANKLIN and LEWONTIN (1970). In each case the lowest curve is the result 
of the present calculation. (a) K = ,0225; (b)  .4832. (Redrawn from FRANKLIN and LEWONTIN 
[I9701 with permission of the authors.) 
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N=20 
K = .4832 

2 4 6 8 10 

N=20 
K = .0225 

2 4 6 8 10 

1 
FIGURE 2.-A plot of ai vs. i for different map lengths. By symmetry ai = U N - ~  
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and two choices for K are shown. The computations were carried by chsosing 
initial values for the ai and directly iterating equations (15) and (16) in turn, 
using (18) and (19) to calculate the marginal fitness, until an  equilibrium was 
reached. The calculation of p was done directly by averaging over the Dij for all 
pairs of i and i and using the fact that in this case p = 40. The computations 
were made for N=20 but selected cases were tested with more loci (N=40 and 
N=60) with no significant change in the curve. In  several cases, when different 
initial values of the ai were used for the same choice for the selection function 
and total map length, the same equilibrium values were obtained. The results 
from this model are consistently lower than those from the simulations. It is not 
clear at this time how much difference is due to drift induced by the finite popu- 
lation size in the simulation and how much is due to the inadequacy of the 
approximation. 

Figure 2 shows a plot of the ai as a function of i for different values of the 
parameters. In  all cases there is a significant “edge effect” where the loci at the 
two ends arc much less tightly bound then those in the middle. This result is not 
surprising and is consistent with the gametic frequencies given by FRANKLIN 
and LEWONTIN (1970). 11 is clear that a “circular” chromosome of the same total 
map length and with the same selection applied to it would be more tightly linked 
than a linear chmmosome. 

An equivalent although not necessarily better formulation of the system can 
be made in terms of continuous rather than discrete variables. A gamete is 
described by fields of 0’s and 1’s of different lengths and at different locations. 
If x is the length variable on the chromosome, then the probability of a change 
from 0 to 1 or 1 to 0 in (x ,z+dx)  is a(x)dz. Under recombination, a ( x )  goes 
into a(x)+R(x) where R ( x )  is the probability of recombination in the same 
region. In the limit as dx approaches 0, the effect of reverse recombination is 
negligible, as can be seen by proceeding directly from (15) replacing ai by 
a ( x )  dx. By direct analogy with the discrete model, we can calculate the change 
in a ( x )  under selection. After selection we have 

- 

0 

and where 

W ( x )  is the fitness of an individual with a fraction x of the chromosome pair 
homozygous. Although there is no analytic solution to this set of equations, there 
is a simple interpretation which makes i t  a useful description. We can calculate 
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D between any two locations x and y on the chromosome directly from (13) by 
replacing ai by a (z) dx. 

1 
4 D(x ,y )  =-rI(1-2a(z))dz 

If we define the average of a ( x )  between x and y as 
2 v  

y-x x 
Z(x,y)  =- J a(x)dx 

then we can write 
D (x y )  1 eG(x+ZI) 

Since a(.) has units l/length (it is the probability of a change from 0 to 1 or I to 
0 per unit length on the gamete), CZ has the same units. Therefore l/Z is a length 
which we can interpret as the "correlation length" on the gamete. If we define 
I,(z,y) = l /Z(x ,y) ,  then pairs of loci which are closer than I ,  are highly corre- 
lated (D - %) while loci which are further apart are uncorrelated (D - 0). It 
is possible for I ,  to be greater than the length of the chromosome, in which case 
we could say that the whole system is tightly bound and acting nearly as a unit. 
At least in the case of multiplicative fitness, selection acts to increase I ,  while 
recombination acts to decrease it. Equilibrium is reached when the amount of 
increase is balanced by the amount of decrease in each generation. Figure 3 
shows a plot of l, as a function of map length where 7, is the average of 1, (x,y) . 

There are some properties of the system which can be derived from this model 
without detailed calculations. In order for there to be a balance between recombi- 
nation and selection, selection must act to decrease a ( x )  (or the ai), since recom- 
bination always increases a ( x ) .  For this to occur FB(x) < F A  for all x. In  other 
words, the marginal fitness of the most common gamete must be greater than the 
marginal fitness of all of the less common types. Since the assignment of the 1's 

I 

.-;\ I 

'r K= .4832 

a a = (  n+l )R  

FIGURE 3.-A plot of 5, vs. I for the two strengths of selection. 
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and 0’s is arbitrary, this means that the A’s have the advantage only because 
they are most frequent. Therefore the gain in fitness from the crosses between 
the most common types must be greater than the gain in fitness from the crosses 
of the B types with the A’s. To illustrate this, let us consider three possible forms 
for “(5). If W ( x )  is linear in x, W ( s )  = I-cs (or Wi = 1-ic/N in the discrete 
model), then the average fitness of a cross of a gamete with a complementary 
pair is always the same because 

(27) 
1 
2 - [W(x)+W(l-s)]  = 1 - c/2 

Since all contributions to the marginal fitness are of the above form, F A  = F B ( x )  

for all x and the most common types do not have the advantage under selection. 
In this case permanent linkage disequilibrium is not possible as has been shown 
for the two locus model by LEWONTIN and KOJIMA (1960). 

For a fitness function which is convex upward (curve (2) in Figure 4), the 
average fitness of the crosses betweeen the A types [W(O) +W( 1)]/2 is always 
less than the average of a cross of a B type with a pair of A’s [ W (s) + W (1  -s) ] /2 
so that F A  < FIB($)  for all x. Therefore a(s) is increased by selection and perma- 
nent linkage disequilibrium cannot be maintained. It is only in the case where 
W ( x )  is concave upward (curve (3) in Figure 4) that the proper condition is 
satisfied. The average fitnesses of the crosses between the two A types [ W (0) -I- 

W 

I 
FIGURE 4.-A graph of the three types of heterotic selection functions for a completely sym- 

metric model. 
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W(1)]/2 is greater than that for any other crosses [W(x)+W(I--z)]/2 so that 
the most common type has the advantage and can be maintained by selection. 
This above argument does not depend on the particular representation of the 
population or on the assumptions here, but only on the fact that at equilibrium 
the gametes come in complementary pairs in this special symmetric model. 

In conclusion, the basic properties of the symmetric multiple-locus system can 
be described rather simply in terms of higher order disequilibrium constants or 
the correlation lengths, I, (x , y )  . In either description, it is clear that when perma- 
nent linkage disequilibrium is maintained in a population, the higher order 
interactions are important and the chromosome tends to act as a unit. The degree 
to which this is true in any given system is a measure of whether the gene or the 
chromosome is the unit of selection, or, more accurately, what parts of the genome 
can be said to be acting in unison. Further work on this problem will have to be 
directed at the effect of relaxing some of the symmetry conditions imposed on 
the present model. The equality of frequency of complementary gametes depends 
on the equality of effect of the two alleles. When this condition is changed, some 
of the simplicity of the present description is lost but it is possible that by intro- 
ducing a different probability of a change from a 1 to a 0 on a gamete (say b $ ) ,  
that the same general technique could be used. The calculations of LEWONTIN 
(1964a) indicate that such a system is not fundamentally different from the 
completely symmetric one. When the loci have unequal effects but the two alleles 
a t  each locus are equivalent, then the complementary gametes have the same 
frequency but the computation of the marginal fitness is much more complicated. 
Still more general systems will probably require a more detailed description than 
can be provided by this technique. 

I wish to thank RIcHmn LEWONTIN of the University of Chicago for help and encouragement 
at every stage of this work and CURTIS STROBECK and JESSE KRAKAUER for critically reading the 
manuscript. 
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