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Abstract

A well-documented property of the Beveridge-Nelson trend-cycle de-
composition is the perfect negative correlation between trend and cycle
innovations. This paper gives a novel explanation for this negative cor-
relation originating from the Jacobs-van Norden (2011) data revision
model. Trend shocks may enter the equation for the cycle or cyclical
shocks may enter the trend equation. We discuss economic interpret-
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1 Introduction

Trend-cycle decompositions have a long history in macroeconometrics, with

many different methods proposed, including simple moving averages, fitted

linear trends and sophisticated linear filters such as the Hodrick-Prescott

filter and bandpass filters of Baxter and King (1999) and Christiano and

Fitzgerald (2003).1 Harvey (1989)’s Structural Time Series Analysis takes

a different route by modelling the components as uncorrelated Unobserved

Components (UC).2

The Beveridge-Nelson (1981; BN) decomposition was perhaps the first

method specifically designed for series with unit roots and consequently has

received much attention from macroeconomists.3 The BN approach decom-

poses nonstationary series into a deterministic trend, a random walk and a

cycle. Unlike the Structural Time Series approach, where shocks to trends

and cycles are typically assumed to be uncorrelated, the BN decomposition

assumes that these shocks are perfectly negatively correlated. Morley, Nel-

son and Zivot (2003) were the first to investigate the equivalence between

the UC and BN approaches.

This paper provides a novel interpretation of the negative correlation

between trend and cycle innovations which draws on recent contributions to

the literature modeling data revision and measurement error. The literature

1See Jacobs (1998) or Mills (2003) for overviews.
2For a recent description see Harvey (2006).
3Although Nelson (2008) notes that it was left on the shelf for nearly a decade.
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studying data revision, which began with Persons (1919), has seen many

recent contributions (Coushore (2011a,2011b) provides an introduction) and

has been influenced by questions of the predictability of data revisions; see

Mankiw, Runkle and Shapiro 1984, Croushore and Stark (2003), and recently

Aruoba (2008).

The BN trend-cycle decomposition and data revisions can both be cast

in state space form. Morley (2002) was first to provide this for the BN de-

composition. Recent examples of data revisions models in state-space form

are Jacobs and van Norden (2011; JvN), Kishor and Konig (2012) and Cun-

ningham et al. (2012). JvN show how the assumption of unforecastable

revisions (“news”) implies a negative correlation between the innovations to

“true” values and measurement errors. Here we show how this relates to the

assumption in BN models of a negative correlation between trend and cycle

innovations. We can also distinguish two cases: (i) shocks to the trend have

an impact on the cycle; (ii) shocks to the cycle affect the trend.

In addition to comparing the alternative interpretations of the above mod-

els, we consider their implications for Kalman filtering and smoothing. The

negative correlation between shocks to different components of the state vec-

tor can make smoothed estimates more volatile than filtered estimates and

observed series. This phenomenon, earlier documented by Proietti (2006),

Morley (2011) and Dungey et al. (2012), has important economic implica-

tions which may help to determine the most appropriate identification route,

based on the underlying economic concepts surrounding the decomposition.
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We investigate the sensitivity of this property to different parameter values

of the elements in the transition matrix and the size of the shocks to the

trend and the cycle.

The remainder of this paper is structured as follows. First, in Section 2

we use a deliberately simple model to illustrate different assumptions that

may be used in trend-cycle decompositions. We consider different interpret-

ations associated with these assumptions and suggest directions in which the

basic model may be generalized. The three sections thereafter flesh-out the

more general case. Section 3 discusses the Beveridge-Nelson decomposition

in some detail and its state space form. Section 4 introduces an alternative

to obtain negative correlation between trend and cycle innovations, and dis-

cussions economic implications. Having set out the general models, Section 5

investigates the Kalman filter/smoother properties of BN trend-cycle decom-

position, focusing on the cases considered in Morley et al. (2003). Section 6

concludes.

2 A simple model for decompositions with

multiple interpretations

First consider the decomposition

yt = ỹt + et,
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where yt is observable, ỹt is a latent variable, and et ≡ yt− ỹt. We will assume

that ỹt is a random walk —which is equivalent to ∆ỹt being i.i.d.—but we

will make no identifying assumptions about et for the moment.

We can write one such very simple model in state-space form as

Measurement Equation yt =

[
1 1

]
·

ỹt
et


Transition Equation

ỹt
et

 =

1 0

0 0

 ·
ỹt−1
et−1

+

ση 0

0 σν

 ·
ηt
νt

 ,

where

[
ηt νt

]′
∼ i.i.d.N (0, I2). Note that since yt is just ỹt plus i.i.d. noise,

var (∆yt) > var (∆ỹt) , ∀σν > 0.

We can tweak this simple model in two different directions. First, the

model implies yt ∼ IMA(1, 1), which might not be realistic. In particular, if

yt is thought to contain cycles we can nest this possibility by allowing et to

follow an AR(2) process. Now the measurement equation becomes

yt =

[
1 1 0

]
·


ỹt

et

et−1


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with transition equation


ỹt

et

et−1

 =


1 0 0

0 φ1 φ2

0 1 0

 ·

ỹt−1

et−1

et−2

+


ση 0

0 σν

0 0

 ·
ηt
νt

 ,

where ηt is the ‘trend’ shock and νt is the ‘cycle’ shock.

We may think of this as a prototypical unobserved components model of

the business cycle with orthogonal shocks, i.e. the seminal model of Watson

(1986). However, orthogonality is not essential; we could instead assume that

shocks to the cycle and trend are perfectly correlated, which results in the

transition equation


ỹt

et

et−1

 =


1 0 0

0 φ1 φ2

0 1 0

 ·

ỹt−1

et−1

et−2

+


ση

σν

0

 · [ηt] ,

or allow for something in between, which yields


ỹt

et

et−1

 =


1 0 0

0 φ1 φ2

0 1 0

 ·

ỹt−1

et−1

et−2

+


ση 0

r σν

0 0

 ·
ηt
νt

 ,

where r is non-zero. These two alternatives are equivalent to the Beveridge-

Nelson trend as definition and Beveridge-Nelson trend as estimate proposals

5



in Morley (2011, Section 2).

The other tweak involves a change in interpretation. Rather than interpret

this model as a business cycle model that decomposes output yt into a latent

trend ỹt and a cycle et, we can think of our original model as a measurement

error model where et is just the measurement error in observing our object

of interest ỹt. Typical measurement error models assume that E (ỹt · et) = 0;

what we observe is the ‘truth’ + ‘noise’. However, we might prefer to think of

measurement error as ‘news’ rather than ‘noise’, so that E (yt · et) = 0. (This

would be more consistent with the idea of an “efficient” statistical agency

as suggested by Sargent (1989), for example.) In that case, the transition

equation of our original model becomes

ỹt
et

 =

1 0

0 0

 ·
ỹt−1
et−1

+

ση σν

0 −σν

 ·
ηt
νt

 .
If we wanted to allow for those measurement errors to be correlated across

time, we could write


ỹt

et

et−1

 =


1 0 0

0 φ1 φ2

0 1 0

 ·

ỹt−1

et−1

et−2

+


ση σν

0 −σν

0 0

 ·
ηt
νt

 ,

where now ηt is the ‘truth’ shock and νt is the ‘news’ shock.
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As we will see below, the different assumptions and interpretations just

described capture the essential differences between a number of import-

ant and much more general state-space models. The difference between

E (ỹt · et) = 0 and E (yt · et) = 0 captures the essential difference between

Structural Time Series Models (which use the former assumption) and the

BN decomposition (which uses the latter.) The BN decomposition interprets

the results as a stochastic trend and a cycle, while the JvN approach in-

terprets them as a “true value” contaminated by measurement error. All of

these models also have multivariate extensions that may play important roles

in the identification of the model; for example, see Morley (2011).

3 Beveridge-Nelson trend-cycle decomposition

Consider the case where yt is an I(1) variable with the Wold representation

∆yt = µ+ ψ(L)εt,

where ψ(L) is a polynominal in the lag operator L with roots outside the

unit circle. Using ψ(L) = ψ(1) + (1− L)ψ∗(L), we obtain

∆yt = µ+ ψ(1)εt + (1− L)ψ∗(L)εt,

or

yt =
µ

(1− L)
+ ψ(1)

εt
(1− L)

+ ψ∗(L)εt ≡ τ t + ct.
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Here the BN permanent component or ‘trend’ follows a random walk with

drift τ t = µ+ τ−1 +ψ(1)εt, while the BN transitory component or ‘cycle’ is a

zero mean stationary process which can be written as ct = φ∗p(L)ct+θ
∗
q(L)εt+

(1 − ψ(1))εt, assuming ct follows an ARMA(p, q) process. It is immediately

clear that

• if ψ(1) < 1, then innovations in trend and cycle will have perfect pos-

itive correlation and trend and cycle will share the variation in the

data

• if ψ(1) > 1, then innovations in trend and cycle will have perfect neg-

ative correlation, and τ t will be more volatile than ct.

Paraphrasing Morley et al. (2003), a positive shock to output can shift

the trend, leaving actual output below trend until it catches up – that is

trend shocks impact the cycle. This implies a negative contemporaneous

correlation, for this positive trend shock is associated with a negative shock

to the transitory component of output.

To cast the BN trend-cycle decomposition in state space form Morley et

al. (2003) write the measurement equation as

yt =

[
1 1 0

]
τ t

ct

ct−1

 , (1)

8



with state equation:


τ t

ct

ct−1

 =


µ

0

0

+


1 0 0

0 φ1 φ2

0 1 0



τ t−1

ct−1

ct−2

+


1 0

0 1

0 0


η∗t
ε∗t

 , (2)

where asterisks are used to denote that shocks η∗t and ε∗t do not have unit

variances. Allowing trend and cycle innovations to be correlated, we get

Q ≡ E(R∗η∗(η∗)′(R∗)′) =


σ2
η σηε 0

σηε σ2
ε 0

0 0 0


Alternatively, the single shock of error form of Anderson et al. (2006) has

measurement equation:

yt = µ+ τ t−1 + φ∗p(L)ct + θ∗q(L)εt + εt

and ‘transition’ equations:

τ t =µ+ τ t−1 + ψ(1)εt

ct =φ∗p(L)ct + θ∗q(L)εt + (1− ψ(1))εt.

9



In this case we have perfect correlation between trend and cycle innovations:

 ψ(1)

1− ψ(1)

[ψ(1) 1− ψ(1)

]
=

 (ψ(1))2 ψ(1)(1− ψ(1))

ψ(1)(1− ψ(1)) (1− ψ(1))2


and depending on the sign of (1−ψ(1)) we get positive or negative correlation.

4 Data revision and news

While the Beveridge-Nelson decomposition has primarily been presented and

used in the context of business cycles and related behaviour (such as con-

sumption or unemployment), a separate literature has examined the revision

of macroeconomic data. While this literature has been active for decades,

recent contributions (such as those mentioned above) have emphasized state-

space formulations in modeling the revision process.Of particular interest in

this literature is the case where revisions are “news” in the sense of Mankiw,

Runkle and Shapiro (1984): that is, where the expected revision conditional

on all available information is zero.

In this section, we explore the relationship between state-space models of

“news” and the Beveridge-Nelson decompositions of the previous section. To

do so, we focus on a simple special case of the JvN framework with only one

vintage and ‘news’ measure errors. In this case the measurement equation of

10



our state-space model is:

observed seriest = ‘truth’t + ‘news’t,

and the state equation:

‘truth’t

‘news’t

 = T

‘truth’t−1

‘news’t−1

+

‘truth’ shockt − ‘news’ shockt

‘news’ shock t

 .
The introduction of the ‘news’ shock in the equation for the ‘truth’ yields

negative correlation in the variance-covariance matrix of the state equation,

similar to the negative correlation in BN trend-cycle decomposition noted

above. See Dungey et al. (2012) for more details.

We can adopt a similar procedure in BN trend-cycle decomposition. Taking

measurement equation (1) and writing the state vector as in Section 3 as

α =

[
τ t ct ct−1

]′
and adding a drift term to the state equation of the

trend, we can distinguish two cases:

1. trend shocks enter the cycle equation. The state equation becomes:


τ t

ct

ct−1

 =


µ

0

0

+


1 0 0

0 φ1 φ2

0 1 0



τ t−1

ct−1

ct−2

+


ση 0

−ση σε

0 0


νη
νε

 , (3)
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where (νη, νε) ∼ N(0, I2). In this case the variance matrix of trend and

cycle innovations is given by

E



ση 0

−ση σε

0 0


νη
νε


νη
νε


′

ση 0

−ση σε

0 0


′ =


σ2
η −σ2

η 0

−σ2
η σ2

η + σ2
ε 0

0 0 0

 .

2. cycle shocks enter the trend equation, which yields the following state

equation:


τ t

ct

ct−1

 =


µ

0

0

+


1 0 0

0 φ1 φ2

0 1 0



τ t−1

ct−1

ct−2

+


ση −σε

0 σε

0 0


νη
νε

 . (4)

The variance matrix of the trend and cycle innovations is now given by

E



ση −σε

0 σε

0 0


νη
νε


νη
νε


′

ση −σε

0 σε

0 0


′ =


σ2
η + σ2

ε −σ2
ε 0

−σ2
ε σ2

ε 0

0 0 0

 .

Comparing these two forms of the BN model with the JvN model of news,

several things should be noted.

• Both the BN models as well as the JvN news model yield negative

correlation between trend and cycle innovations.
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• The size of the negative correlation is driven by the relative sizes of ση

and σε.

• The news model implies that the “truth” will have a greater innovation

variance than the observed series (so long the revision error is non-zero).

Hence in the BN model, innovations in the trend will be more volatile

than those in the cycle when cycle shocks enter the trend; when trend

shocks enter the cycle, innovations in the cycle will be more volatile

than those in the trend.

This last point has implications for the correspondence between the JvN

and BN models. The truth in the BN model may correspond to the trend

in the BN model when cycle shocks enter the trend, or it may correspond to

the cycle in the BN model trend shocks enter the cycle.

In addition to comparing the alternative interpretations of the above

models, we consider their implications for Kalman filtering and smoothing.

The negative correlation between shocks to different components of the state

vector can make smoothed estimates more volatile than filtered estimates

and observed series. This phenomenon has important economic implications

which may help to determine the most appropriate identification route, based

on the underlying economic concepts surrounding the decomposition. Below

we investigate the sensitivity of this property to different parameter values of

the elements in the transition matrix and the size of the shocks to the trend

and the cycle.

13



It has been noted (see Harvey and Koopman (2000)) that negative correl-

ations between the shocks in univariate state-space systems skew the weights

of the Kalman smoother towards future values of the observed series while

positive correlations skew them towards the past. They further note some

parameter values may result in weights that alternate in sign, a result they

find strongly counter-intuitive and leads them to recommend the use of un-

correlated shocks in most applications. However, Morley, Nelson and Zivot

(2003) argue that business cycle data are better fit by models with negative

correlations than conventional models with uncorrelated shocks, a conclusion

shared by Oh, Zivot and Creal (2008), Sinclair (2009), Morley (2011), and

Jun et al. (2011).4 Nelson (2008) also finds that models with negatively

correlated shocks do as well or better at forecasting cyclic movements than

models with uncorrelated shocks. Proietti (2006) considers the effects of such

negative correlations; he notes that the high weights assigned to future ob-

servations by the Kalman smoother imply that revisions to filtered estimates

of cycles will typically be large, that cycles will typically be grossly underes-

timated by filtered estimates and that smoothed estimates of cycles may be

much more variable (but have lower MSE) than filtered estimates.

We think the perspective of “news” models provide a simpler intuitive

framework for understanding these results. By itself, the observation of ac-

tual output provides relatively little information about the current cycle-

4Perron and Wada (2009) take a completely different view, and blame it all on the 2003
break.
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trend decomposition. However, as trend movements are more persistent,

future observations will help to distinguish the two. Filtered estimates of the

cycle, containing relatively little information, will stay close to their uncon-

ditional mean of zero. Over time, the arrival of “news” about the decompos-

ition of contemporary output allows us to reduce the MSE of our estimates

and increase their variability. By showing a formal link between the standard

intuition of rational expectations and data revision on the one hand and the

problem of modeling and estimating business cycles on the other, we think

news models help make the theoretical case for modeling business cycles with

negatively correlated components.

As noted above, such negative correlations can make smoothed estimates

more volatile than filtered estimates and observed series. In Section 5 we

investigate the sensitivity of this property to different parameter values of

the elements in the transition matrix and the size of the shocks to the trend

and the cycle.

Economic interpretation

Our approach generalizes two ‘classic’ workhorses in business cycle research:

(i) the propagation-impulse framework of Frisch (1933) in which separate

explanations are given for the way shocks are passed on in the economy

(propagation mechanism) and for the origins of the shocks (impulse mechan-

ism); and (ii) the decomposition into that of permanent effects and transitory

effects, with permanent (transitory) shocks having permanent (transitory)
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effects. See e.g. Blanchard and Fisher (1989, pp. 7–11). The propagation-

impulse framework is maintained, for example, by Arnold (2002) to describe

business cycle theories. Pagan (1997) however argues that it is just as useful

to work with the latter.

In our framework, the propagation mechanisms stay the same, but the

source of the shock is more flexible. Shocks to the trend equation may enter

the cycle equation (Equation (3)), or the other way round (Equation (4)).

By this, a permanent shock can effect the cycle, and a transitory shock may

have a permanent impact.

The implications of the alternative assumptions are non-trivial. For ex-

ample, Nelson (2008) makes the point that the lack of forecastability of the

GDP cycle indicates the strong influence of unpredictable trend shocks, as-

sociated with productivity changes in the usual BN decomposition. Morley

(2001) further notes that the degree of correlation between the trend and

cycle shocks determines the presence of short or long term forecastability

in GDP. Evans and Reichlin (1994) note that multivariate BN decomposi-

tions typically find greater forecastability, which they attribute to a better

information set, and has the direct consequence of greater variability in the

cycle shocks (although they directly examine only the ratio of volatilty of the

extracted trend and cycles themselves).

Most authors are agreed that shocks to GDP are predominantly perman-

ent and negatively correlated. Recently, Sinclair (2009) has found the same

for unemployment, and indeed noted the importance of this commonality
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between GDP and unemployment for Okun’s law. In contrast, the CPI and

inventories have been found to have a more volatile smoothed component

than the observed data, suggesting that cyclical shocks are dominant for

these indicator; see Bradley, Jansen and Sinclair (2009) for CPI and Knetsch

(2005) for inventories.

5 Filtering and smoothing

In this section a series of 206 observations is simulated using the estim-

ates reported in Morley et al. (2003).5 We discuss how Kalman filtering

and smoothing properties change under different assumptions of correlations

between trend and cycle shocks, and parameter values of the transition mat-

rix. All computations are done in Oxmetrics 6.20, using the SsfPack libraries

of Koopman, Shephard and Doornik (1999, 2008).

Figure 1 shows the smoothed and filtered trend and cycle based on an

uncorrelated Unobserved Component model. Appendix A describes our pro-

cedure. Although the filtered and smoothed components are quantitatively

similar, the filtered trend, presented in the top panel, is slightly more volatile

than the smoothed trend, while in the bottom panel, the smoothed cycle is

slightly higher in amplitude than the filtered cycle except for the first few

observations.

[Figure 1 about here.]

5We ignore the drift term, as typically done in the literature on correlated components,
see e.g. Harvey and Koopman (2000, Section 2) or Proietti (2006, Section 2).
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Allowing non-zero correlation between trend and cycle shocks (the cov-

ariance equals −0.8391 as in Morley et. al. (2003)), we estimate the trend

and the cycle using the Kalman filter and smoother based on the Unobserved

Component model that is equivalent to BN trend-cycle decomposition. Fig-

ure 2 presents the resulting filtered and smoothed estimates. The bottom

panel shows that the smoothed cycle has a much higher amplitude than the

filtered cycle. Note that comparison of Figure 1 and Figure 2 shows that

the estimated trend and cycle under the uncorrelated UC model are more

persistent, implying a longer estimated cycle.

[Figure 2 about here.]

The next two figures show filtered and smoothed estimates for the two

cases of interest in this paper. Figure 3 assumes that trend shocks enter the

cycle equation , while Figure 4 assumes that cycle shocks enter the equation

for the trend. In both cases, the overall dynamics of the estimated changes

in trends (upper panels) and estimated cycles (lower panels) are similar.

When cycle shocks enter the equation for the trend (Figure 4), we observe

that both filtered and smoothed estimates of the cycle have greater amplitude

and innovations in the trend appear to be more variable. Differences between

the filtered and smoothed estimates appear to be larger in Figure 4, implying

that revisions to estimated trends and cycles tend to be larger in the case

where cycle shocks enter the trend equation.

[Figure 3 about here.]
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[Figure 4 about here.]

The final two figures show how the patterns in the volatility of smoothed

and filtered estimates are affected by changes to the unit root assumption in

the trend equation and the cycle to trend shock ratio. Figure 5 corresponds to

the case when trend shocks enter the cycle equation, while Figure 6 assumes

cycle shocks enter the trend equation. We let the AR parameter vary between

0.05 and 1. The standard deviation of cycle shocks is at 0.7487 as in Morley

et. al. (2003), and we vary the standard deviation of trend shocks so that

the cycle to trend shock ratio σε
ση

ranges between around 0.3 to 2.

The top two panels in Figure 5 show that the smoothed trend is more

volatile than the filtered trend, and this is particularly evident when the

values of the autoregressive parameter and the cycle to trend shock ratio

are both low. Under the unit root assumption in the trend equation, the

smoothed trend is more volatile than the filtered trend only when the cycle

shock size is much smaller than the trend shock size. These two observations

can also be seen in the bottom two panels which show the variance of the

smoothed and filtered cycles. If the cycle to trend shock ratio is much smaller

than 1, smoothed and filtered cycle estimates become more volatile than the

simulated data at a relatively high value of the autoregressive parameter

for trend. However, the volatilities drop when the persistent level of trend

increases further towards a unit root process.

[Figure 5 about here.]
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In Figure 6, where cycle shocks enter the trend equation, the smoothed

trend is more volatile than the filtered trend only when the autoregressive

parameter in the trend equation is low and the cycle to trend shock ratio is

high. However, at given levels of the autoregressive parameter and the cycle

to trend shock ratio, smoothed cycles are more volatile than filtered cycles.

When the autoregressive parameter is high, but lower than 1, and cycle

shocks are larger than trend shocks, smoothed cycles can be more volatile

than the simulated data.

[Figure 6 about here.]

6 Conclusion

This paper has three contributions. First, it reveals the correspondence

between the state-space formulations of the univariate Beveridge-Nelson trend-

cycle decomposition and the univariate Jacobs-van Norden data revision

model with ‘news’. Second, it provides a novel explanation for negative cor-

relation between trend and cycle innovations in Beveridge-Nelson trend-cycle

decompositions, with interesting economic implications. Third, it shows the

negative correlation between trend and cycle innovations, or more general

state equation covariance matrices with negative off-diagonal elements, can

make smoothed estimates more volatile than filtered estimates and observed

series.
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Future research will deal with establishing necessary and sufficient con-

ditions for the property that the smoothed truth may be more volatile than

the filtered truth or the observed series as a result, including the impact of

random walk drift term. In addition, we will study more general identifica-

tion schemes for the shocks in the state equation and multivariate trend-cycle

decompositions.

Finally, going beyond the BN-JvN interpretation, the state space form

we introduced in Section 4 has great potention in (empirical) macroeconom-

ics. Many other economic models can be cast in this framework, varying

from models with stationary and non-stationary variables like the Struc-

tural Vector AutoRegressive (SVAR) model of Blanchard and Quah (1999)

and “common features” of Engle and Kosicki (1993) and Vahid and Engle

(1993), to New-Keynesian Phillips curves (Gaĺı and Gertler (1999); Lee and

Nelson (2007)) and recent explanations for the growth-employment puzzle

(see e.g. Elsby and Shapiro 2012)). Extending our framework for use in

multivariate analysis, and particularly for use in determining the most ap-

propriate identification assumptions based on economic theory is scope for

future research.
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Appendix A

To produce Figure 1, we use a uncorrelated unobserved component model

yt =

[
1 1 0

]
τ t

ct

ct−1

 ,

with state equation:


τ t

ct

ct−1

 =


1 0 0

0 φ1 φ2

0 1 0



τ t−1

ct−1

ct−2

+


ση 0

0 σε

0 0


νη
νε

 ,

where φ1 = 1.5303, φ2 = −0.6098, ση = 0.6893 and σε = 0.6199.

The correlated unobserved component model that is used to produce Fig-

ure 2 is specified as

yt =

[
1 1 0

]
τ t

ct

ct−1

 ,
with state equation:


τ t

ct

ct−1

 =


1 0 0

0 φ1 φ2

0 1 0



τ t−1

ct−1

ct−2

+


1 0

0 1

0 0


η∗t
ε∗t

 ,
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and the variance matrix of trend and cycle innovations is given by

Q ≡ E(R∗η∗(η∗)′(R∗)′) =


σ2
η σηε 0

σηε σ2
ε 0

0 0 0

 .

Here we set parameters φ1 = 1.3418, φ2 = −0.7059, ση = 1.2368, σε = 0.7487

and σηε = −0.8391.

We then respecify the state equation as equation (3) and (4) to produce

Figure 3 and 4 respectively. Both simulations use the following parameter

setup: φ1 = 1.3418, φ2 = −0.7059, ση = 1.2368, and σε = 0.7487.
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Figure 1: Uncorrelated UC model
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Figure 2: Correlated UC model ≡ BN trend-cycle decomposition
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Figure 3: Trend shocks enter the cycle equation
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Figure 4: Cycle shocks in the trend equation
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Figure 5: Sensitivity analysis of variances of trend and cycle estimates: Trend
shocks enter the cycle equation
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Figure 6: Sensitivity analysis of variances of trend and cycle estimates: Cycle
shocks enter the trend equation
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