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In this paper, we introduced and studied (1,2,3)-�-open set, (1,2,3)-�-neighborhood system, (1,2,3)-�-derived, (1,2,3)-�-closure,
(1,2,3)-�-interior, (1,2,3)-�-exterior, (1,2,3)-�-boundary, (1,2,3)-�-convergence of nets, and (1,2,3)-�-convergence of filters in
fuzzifying tritopological spaces.

1. Introduction

	e fuzzy set is an important concept, which was introduced
for the first time in 1965 by Zadeh [1]; it was then used in
many studies in various fields. Here, we are interested in
fuzzy with topology. 	e fuzzy and fuzzifying topologies are
two branches of fuzzy mathematics. 	e basic concepts and
properties of fuzzy topologies were subedited and investi-
gated by Chang in 1968 [2] and Wong in 1974 [3]. A�er
that, so many works of literature have appeared for different
kinds of fuzzy topological spaces for, e.g., [4–8]. In 1991-
1993, Ying introduced a new approach for fuzzy topology
with fuzzy logic and established some properties in fuzzifying
topology [9–11]. Also, we are interested in the concept of �-
open set which was introduced by Njåstad in 1965 [12], and
the tritopological space which was first initiated by Kovar in
2000 [13]. In 2017, Tapi and Sharma introduced �-open sets
in tritopological spaces [14]. In 1999, Khedr et al. presented
semiopen sets and semicontinuity in fuzzifying topology [15].
In 2016, Allam and et al. studied semiopen sets in fuzzifying
bitopological spaces [16]. We will use in this paper Ying's
basic fuzzy logic formulas with appropriate set theoretical
notations from [9, 10].

	e following are some useful definitions and results that
will be used in the rest of the present work.

If � is the universe of discourse, and if � ∈ I(�(�))
satisfy the following three conditions:

(1) �(�) = 1 ��	 �(0) = 1;

(2) for any �,�, �(� ∩ �) ≥ �(�) ∧ �(�);
(3) for any {�� : � ∈ Λ}, �(⋃�∈Λ ��) ≥ ⋀�∈Λ�(��);
then � is a fuzzifying topology and (�, �) a fuzzifying

topological space [9].
	e family of fuzzifying closed sets is denoted by F and

defined as � ∈ F fl � ∼ � ∈ �, where � ∼ � is the
complement of � [9].

	e neighborhood system of � is denoted by �� ∈
I(�(�)) and defined as��(�) = sup�∈�⊆��(�) [9].

	e closure set of a set� ⊆ � is denoted by ��(�) ∈ I(�)
and defined as ��(�)(�) = 1 − ��(� ∼ �) [9].

	e fuzzifying interior set of a set � ⊆ � is denoted
by int(�) ∈ I(�) and defined as int(�)(�) = ��(�)
[10].

	e family of all fuzzifying �-open sets is denoted by ��
and defined as � ∈ �� fl ∀� (� ∈ � �→ � ∈ int(��(int(�))),
i.e., ��(�) = inf�∈�(int(��(int(�))))(�) [17].

	e family of all fuzzifying�-closed sets is denoted by�F
and defined as � ∈ �F fl � ∼ � ∈ �� [17].

	e fuzzifying �-interior set of a set � ⊆ � is denoted
by �int(�) ∈ I(�) and defined as follows: �int(�)(�) =
���(�), where ��� is �–neighborhood system of � defined
as ���(�) = sup�∈�⊆���(�) [17].

	e fuzzifying �-derived set of a set � ⊆ � is denoted
by �	(�) ∈ I(�) and defined as � ∈ �	(�) fl ∀� (� ∈
��� �→ �⋂(� ∼ {�}) ̸= 0)), i.e., �	(�)(�) =
inf�⋂(�∼{�})=0(1 − ���(�)) [18].
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	e �-closure set of a set � ⊆ � is denoted by ���(�) ∈
I(�) and defined as ���(�)(�) = inf�∉�,�⊆�(1 − �F(�))
[17].

2. (1, 2,3)-�-Open Sets in Fuzzifying
Tritopological Spaces

De�nition 1. If (�, �1, �2, �3) is a fuzzifying tritopological
space (FTTS), then we have the following:

(i) 	e family of all fuzzifying (1,2,3)-�-open sets is
denoted by ��(1,2,3) ∈ I(�(�)) and defined as � ∈
��(1,2,3) fl ∀� (� ∈ � �→ � ∈ int1(��2(int3(�)))), i.e.,
��(1,2,3)(�) = inf�∈�(int1(��2(int3(�))))(�).

(ii) 	e family of all fuzzifying (1,2,3)-�-closed sets is
denoted by �F(1,2,3) ∈ I(�(�)) and defined as � ∈
�F(1,2,3) fl � ∼ � ∈ ��(1,2,3).

Lemma 2. Let (�, �1, �2, �3) be a FTTS.
If [� ⊆ �] = 1, then ⊨ int1(��2(int3(�))) ⊆

int1(��2(int3(�))).

Proof. If [� ⊆ �] = 1, then int3(�) ⊆ int3(�)  ⇒
��2(int3(�)) ⊆ ��2(int3(�)) then int1(��2(int3(�))) ⊆
int1(��2(int3(�))).

Lemma 3. If (�, �1, �2, �3) is a FTTS and � ⊆ �. �en

(i) ⊨ � ∼ int1(��2(int3(�))) ≡ ��1(int2(��3(� ∼ �)));
(ii) ⊨ � ∼ ��1(int2(��3(�))) ≡ int1(��2(int3(� ∼ �))).

Proof. From	eorem 2.2-(5) in [10], we have

(i) � ∼ int1(��2(int3(�)))(�) = ��1(� ∼ ��2(int3(�)))(�)
= ��1(int2(� ∼ int3(�)))(�) = ��1(int2(��3(� ∼
�)))(�).

(ii) � ∼ ��1(int2(��3(�)))(�) = int1(� ∼ int2(��3(�)))(�)
= int1(��2(� ∼ ��3(�)))(�) = int1(��2(int3(� ∼
�)))(�).

�eorem 4. If (�, �1, �2, �3) is a FTTS, then
(i) ��(1,2,3)(�) = 1, ��(1,2,3)(0) = 1;
(ii) for any {�� : � ∈ Λ}, ��(1,2,3)(⋃�∈Λ ��) ≥

⋀�∈Λ��(1,2,3)(��);
(iii) �F(1,2,3)(�) = 1, �F(1,2,3)(0) = 1;
(iv) for any {�� : � ∈ Λ}, �F(1,2,3)(⋂�∈Λ ��) ≥

⋀�∈Λ�F(1,2,3)(��).

Proof.

(i) ��(1,2,3)(�) = inf�∈(int1(��2(int3(�))))(�) =
inf�∈(int1(��2(�)))(�) = inf�∈(int1(�))(�) =
inf�∈(�)(�) = 1.

��(1,2,3)(0) = inf�∈0(int1(��2(int3(0))))(�) =
inf�∈0(int1(��2(0)))(�) = inf�∈0(int1(0))(�) =
inf�∈0(0)(�) = 1.

(ii) From Lemma 2 , we have [�� ⊆ ⋃�∈Λ ��] = 1, then
⊨ int1(��2(int3(��))) ⊆ int1(��2(int3(⋃�∈Λ ��))),
��(1,2,3)(⋃�∈Λ ��) =
inf�∈⋃�∈Λ �� int1(��2(int3(⋃�∈Λ ��)))(�) =
inf�∈Λinf�∈�� int1(��2(int3(⋃�∈Λ ��)))(�) ≥
inf�∈Λinf�∈�� int1(��2(int3(��)))(�) =
⋀�∈Λ��(1,2,3)(��)(�).

(iii) and (iv) are obvious.

Lemma 5. If (�, �1, �2, �3) is a FTTS, then ⊨ �1 ≡ �3 �→ �1 ⊆
��(1,2,3).

Proof. From 	eorem (2.2)-(3) in [10] and Lemma (2.1) in
[15] , we have [(� ∈ �1) ∧ (� ∈ �3)] = [(� ≡ int1(�)) ∧ (� ≡
int3(�))] ≤ [� ≡ int3(�)] = [(� ⊆ int3(�)) ∧ (int3(�) ⊆
�)] ≤ [� ⊆ int3(�)] ≤ [��2(�) ⊆ ��2(int3(�))] ≤ [� ⊆
��2(int3(�))] ≤ [int1(�) ⊆ int1(��2(int3(�)))] = [� ⊆
int1(��2(int3(�)))] = [� ∈ ��(1,2,3)].

�eorem 6. If (�, �1, �2, �3) is a FTTS and F1, F2, and F3
are the families of closed sets with respect to �1, �2, and �3,
respectively, then

(i) ⊨ $ ∈ �1 ∧ $ ∈ F2 ∧ $ ∈ �3 �→ $ ≡
int1(��2(int3($)));

(ii) ⊨ $ ∈ F1 ∧ $ ∈ �2 ∧ $ ∈ F3 �→ $ ≡
��1(int2(��3($))).

Proof.

(i) From	eorem (2.2)-(3) in [10] and	eorem (5.2)-(3)
in [9], we have

[($ ∈ �1 ∧ $ ∈ F2 ∧ $ ∈ �3)] = [($ ≡ int1($)) ∧
($ ≡ ��2($)) ∧ ($ ≡ int3($))]= [(($ ⊆ int1($)) ∧
(�%1($) ⊆ $)) ∧ (($ ⊆ ��2($)) ∧ (��2($) ⊆ $)) ∧ (($ ⊆
int3($)) ∧ (int3($) ⊆ $))]= [($ ⊆ int1($)) ∧ ($ ⊆
��2($)) ∧ ($ ⊆ int3($)) ∧ (int1($) ⊆ $) ∧ (��2($) ⊆
$) ∧ (int3($) ⊆ $)] ≤ [($ ⊆ int1($)) ∧ ($ ⊆ ��2($)) ∧
(��2($) ⊆ ��2(int3($))) ∧ (int1($) ⊆ $) ∧ (��2($) ⊆
$) ∧ (��2(int3($)) ⊆ ��2($))] ≤ [($ ⊆ int1($)) ∧ ($ ⊆
��2(int3($))) ∧ (int1($) ⊆ $) ∧ (��2(int3($)) ⊆ $))] ≤
[($ ⊆ int1($)) ∧ (int1($) ⊆ int1(��2(int3($)))) ∧
(int1($) ⊆ $) ∧ (int1(��2(int3($))) ⊆ int1($))] ≤ [$ ⊆
int1(��2(int3($)))] ∧ [int1(��2(int3($))) ⊆ $] = [$ ≡
int1(��2(int3($)))].

(ii) It follows directly from (i).

Remark 7. 	e following example shows that
(i) ��1 ⊆ ��(1,2,3);
(ii) ��2 ⊆ ��(1,2,3);
(iii) ��3 ⊆ ��(1,2,3);
(iv) ��(1,2,3) = ��(3,2,1).
It may not be true for all FTTS (�, �1, �2, �3).
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Example 8. For � = {�, &, �} and ' = {�, &}. Let �1, �2, �3 be a
fuzzifying tritopological space � defined by

�1 (*) =
{{{{
{{{{
{

1 45 * ∈ {0, �, {�}} ,
3
4 45 * ∈ {{�} , {�, �}} ,
0 8%ℎ;<>4?;.

�2 (*) =
{{{{
{{{{
{

1 45 * ∈ {0, �} ,
1
4 45 * = {�} ,
0 8%ℎ;<>4?;.

�3 (*) =
{{{{
{{{{
{

1 45 * ∈ {0, �, {&} , {�, �}} ,
3
4 45 * ∈ {{�} , {&, �}} ,
0 45 * ∈ {{�} , {�, &}} .

(1)

Now, we have int1(')(�) = 1, int1(')(&) = 0,
int1(')(�) = 0, ��1(int1('))(�) = 1, ��1(int1('))(&) =
1, ��1(int1('))(�) = 1/4, int1(��1(int1(')))(�) = 1,
int1(��1(int1(')))(&) = 1/4, int1(��1(int1(')))(�) =
1/4,
 ⇒ ��1(') = inf�∈�(int1(��1(int1('))))(�) = 1/4.
and int2(')(�) = 0, int2(')(&) = 0, int2(')(�) = 0,
��2(int2('))(�) = 0, ��2(int2('))(&) = 0, ��2(int2('))(�)
= 0,
int2(��2(int2(')))(�) = 0, int2(��2(int2(')))(&) = 0,
int2(��2(int2(')))(�) = 0,
 ⇒ ��2(') = inf�∈�(int2(��2(int2('))))(�) = 0.
and int3(')(�) = 0, int3(')(&) = 1, int3(')(�) = 0,
��3(int3('))(�) = 0, ��3(int3('))(&) = 1, ��3(int3('))(�)
= 0,
int3(��3(int3(')))(�) = 0, int3(��2(int1(')))(&) = 1,
int3(��3(int3(')))(�) = 0,
 ⇒ ��3(') = inf�∈�(int3(��3(int3('))))(�) = 0.
and int3(')(�) = 0, int3(')(&) = 1, int3(')(�) = 0,
��2(int3('))(�) = 1, ��2(int3('))(&) = 1, ��2(int3('))(�)
= 3/4,
int1(��2(int3(')))(�) = 0, int1(��2(int3(')))(&) = 3/4,
int1(��2(int3(')))(�) = 3/4,
 ⇒ ��(1,2,3)(') = inf�∈�(int1(��2(int3('))))(�) = 3/4.
and int1(')(�) = 1, int1(')(&) = 0, int1(')(�) = 0,
��2(int1('))(�) = 1, ��2(int1('))(&) = 1, ��2(int1('))(�)
= 3/4,
int3(��2(int1(')))(�) = 3/4, int3(��2(int1(')))(&) = 1,
int3(��2(int1(')))(�) = 3/4,
 ⇒ ��(3,2,1)(') = inf�∈�(int3(��2(int1('))))(�) = 3/4.
∴ ��(1,2,3)(') = ��(3,2,1)('). 	erefore ��(1,2,3) =
��(3,2,1), ��1 ⊆ ��(1,2,3), ��2 ⊆ ��(1,2,3), and ��3 ⊆
��(1,2,3).

Lemma 9. If (�, �1, �2, �3) is a FTTS, then ⊨ �1 ≡ �3 �→
��(1,2,3) ≡ ��(3,2,1).

Proof. From 	eorem (2.2)-(3) in [10], we have [(� ∈ �1) ∧
(� ∈ �3)] = [(� ≡ int1(�)) ∧ (� ≡ int3(�))]= [(� ⊆
int1(�)) ∧ (int1(�) ⊆ �) ∧ (� ⊆ int3(�)) ∧ (int3(�) ⊆ �)] ≤
[(� ⊆ int3(�)) ∧ (� ⊆ int1(�))] ≤ [(��2(�) ⊆ ��2(int3(�))) ∧
(��2(�) ⊆ ��2(int1(�)))] ≤ [(� ⊆ ��2(int3(�))) ∧ (� ⊆
��2(int1(�)))] ≤ [(int1(�) ⊆ int1(��2(int3(�)))) ∧ (int3(�) ⊆
int3(��2(int1(�))))] = [(� ⊆ int1(��2(int3(�)))) ∧ (� ⊆
int3(��2(int1(�))))]= [(� ∈ ��(1,2,3)) ∧ (� ∈ ��(3,2,1))].

	erefore ��(1,2,3) ≡ ��(3,2,1).

�eorem 10. If (�, �1, �2, �3) is a FTTS, then ⊨ � ∈ �F(1,2,3)
←→ ∀� (� ∈ ��1(int2(��3(�))) �→ � ∈ �).

Proof. From Lemma 3 -(ii), we have [∀� (� ∈
��1(int2(��3(�))) �→ � ∈ �))] = [∀� (� ∈ � ∼ �
�→ � ∈ � ∼ ��1(int2(��3(�)))]= inf�∈∼�(� ∼
��1(int2(��3(�))))(�) = inf�∈∼�(int1(��2(int3(� ∼ �))))(�)=
[� ∼ � ∈ ��(1,2,3)] = [� ∈ �F(1,2,3)].

Lemma 11. If (�, �1, �2, �3) is a FTTS, then
(i) ⊨ � ≡̇ ��2(int3(�)) ∧ � ∈ ��(1,2,3) �→ � ⊆ int1(�);
(ii) ⊨ � ≡̇ int2(��3(�)) ∧ � ∈ �F(1,2,3) �→ ��1(�) ⊆ �.

Proof.

(i) [(� ≡̇ ��2(int3(�))) ∧ (� ∈ ��(1,2,3))] = [(� ⊆
��2(int3(�)) f ��2(int3(�)) ⊆ �) ∧ (� ⊆
int1(��2(int3(�))))] ≤ [(��2(int3(�)) ⊆ �) ∧
(� ⊆ int1(��2(int3(�))))] ≤ [(int1(��2(int3(�))) ⊆
int1(�)) ∧ (� ⊆ int1(��2(int3(�))))] ≤ [� ⊆ int1(�)].

(ii) From	eorem 2.2-(5) in [10], we have

[(� ≡̇ int2(��3(�))) ∧ (� ∈ �F(1,2,3))] = [(� ⊆
int2(��3(�)) f int2(��3(�)) ⊆ �) ∧ (� ∼
� ∈ ��(1,2,3))] ≤ [(� ⊆ int2(��3(�)) ∧ (� ∼
� ⊆ int1(��2(int3(� ∼ �))))] ≤ [(��1(�) ⊆
��1(int2(��3(�)))∧(� ∼ � ⊆ � ∼ ��1(int2(��3(�))))] ≤
[(��1(�) ⊆ ��1(int2(��3(�))) ∧ (��1(int2(��3(�))) ⊆
�)] ≤ [��1(�) ⊆ �].

�eorem 12. If (�, �1, �2, �3) is a FTTS, then
(i) ⊨ ∃� (� ∈ �3 ∧ � ⊆ � ⊆ int1(��2(�))) �→ � ∈
��(1,2,3);

(ii) ⊨ ∃E (E ∈ F3 ∧ ��1(int2(E)) ⊆ � ⊆ E) �→ � ∈
�F(1,2,3).

Proof.

(i) From	eorem (2.2)-(3) in [10], we have

[∃� (� ∈ �3 ⋀ � ⊆ � ⊆ int1(��2(�)))] =
sup�∈�()([� ≡ int3(�)] ⋀ [� ⊆ �] ⋀ [�
⊆ int1(��2(�))]) ≤ sup�∈�()([(� ⊆ int3(�))
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∧(int3(�) ⊆ �)] ⋀ [int3(�) ⊆ int3(�)] ⋀ [� ⊆
int1(��2(�))]) ≤ sup�∈�()([� ⊆ int3(�)] ⋀
[int3(�) ⊆ int3(�)] ⋀ [� ⊆ int1(��2(�))]) ≤
sup�⊆�([� ⊆ int3(�)] ⋀ [� ⊆ int1(��2(�))]) ≤
sup�⊆�([� ⊆ int3(�)] ⋀ [� ⊆ int1(��2(�))]) ≤
sup�⊆�([��2(�) ⊆ ��2(int3(�))] ⋀ [� ⊆
int1(��2(�))]) ≤ sup�⊆�([int1(��2(�)) ⊆
int1(��2(int3(�)))] ⋀ [� ⊆ int1(��2(�))]) ≤
sup�⊆�[� ⊆ int1(��2(int3(�)))] = [� ∈ ��(1,2,3)].

(ii) From (i) above and	eorem (2.2)-(5) in [10].We have

[� ∈ �F(1,2,3)] = [� ∼ � ∈ ��(1,2,3)] ≥ [∃� (� ∈
�3 ⋀ � ⊆ � ∼ � ⊆ int1(��2(�)))]= [∃� (� ∈
�3 ⋀ � ∼ int1(��2(�)) ⊆ � ⊆ � ∼ �)] = [∃� ∼
� (� ∼ � ∈ F3 ⋀ ��1(int2(� ∼ �)) ⊆ � ⊆ � ∼
�)]= [∃E (E ∈ F3 ⋀ ��1(int2(E)) ⊆ � ⊆ E)].

3. (1, 2,3)-�–Neighborhood System in
Fuzzifying Tritopological Spaces

De�nition 13. If (�, �1, �2, �3) is a FTTS and � ∈ �.
	en ��(1,2,3)� ∈ I(�(�)) indicates the “(1,2,3)-�-neigh-
borhood system of �” and defined as � ∈ ��(1,2,3)� fl

∃� (� ∈ ��(1,2,3)⋀� ∈ � ⊆ �), i.e., ��(1,2,3)� (�) =
sup�∈�⊆���(1,2,3)(�).

�eorem 14. If (�, �1, �2, �3) is a FTTS, then ⊨ � ∈
��(1,2,3) ←→ ∀� (� ∈ � �→ ∃� (� ⊆ int1(��2(int3(�))) ∧
� ∈ � ⊆ �)).

Proof. [∀� (� ∈ � �→ ∃� (� ⊆ int1(��2(int3(�))) ∧
� ∈ � ⊆ �))] = inf�∈�sup�∈�⊆���(1,2,3)(�) =
inf�∈���(1,2,3)� (�)= ��(1,2,3)(�).

�eorem 15. If (�, �1, �2, �3) is a FTTS and � ∈ �(�), then
(i) ⊨ � ∈ ��(1,2,3) ←→ ∀� (� ∈ � �→ ∃� (� ∈
��(1,2,3)� ⋀ � ⊆ �)),

(ii) ⊨ �1 ≡ �3 �→ �(1)� (�) ≤ ��(1,2,3)� (�).

Proof.

(i) From 	eorem 14 we get

[∀� (� ∈ � �→ ∃� (� ∈ ��(1,2,3)� ⋀ � ⊆
�))] = inf�∈�sup�⊆���(1,2,3)� (�)=
inf�∈�sup�⊆�sup�∈�⊆���(1,2,3)(E) =
inf�∈�sup�∈�⊆���(1,2,3)(E) = ��(1,2,3)(�).

(ii) From Lemma 5 we get

��(1,2,3)� (�) = sup�∈�⊆���(1,2,3)(�) ≥
sup�∈�⊆��1(�) = �(1)� (�).

�eorem 16. If (�, �1, �2, �3) is a FTTS, the mapping

��(1,2,3) : � �→ I
�(�(�)), � F�→ ��(1,2)� , where I�(�(�))

is the set of all normal fuzzy subset of �(�), has the following
properties:

(i) ⊨ � ∈ ��(1,2,3)� �→ � ∈ �,
(ii) ⊨ � ⊆ � �→ (� ∈ ��(1,2,3)� �→ � ∈ ��(1,2,3)� ),
(iii) ⊨ � ∈ ��(1,2,3)� �→ ∃E (E ∈ ��(1,2,3)� ⋀ E ⊆

� ⋀ ∀G (G ∈ E �→ E ∈ ��(1,2,3)� ).

Proof.

(i) If [� ∈ ��(1,2,3)� ] = 0, then (i) is obtained. If [� ∈
��(1,2,3)� ] = sup�∈�⊆���(1,2,3)(�) > 0, then ∃�0 such
that � ∈ �0 ⊆ �. Now we have [� ∈ �] = 1.
	erefore [� ∈ ��(1,2,3)� ] ≤ [� ∈ �].

(ii) [� ∈ ��(1,2,3)� ] = sup�∈�⊆���(1,2,3)($) ≤
sup�∈�⊆���(1,2,3)($) = [� ∈ ��(1,2,3)� ].

(iii) [∃E (E ∈ ��(1,2,3)� ∧ E ⊆ �⋀∀G (G ∈
E �→ E ∈ ��(1,2,3)� )]= sup�⊆�(��(1,2,3)� ⋀
inf�∈���(1,2,3)� (E))= sup�⊆�(��(1,2,3)� ⋀ ��(1,2,3)(E)=
sup�⊆���(1,2,3)(E) ≥ sup�∈�⊆���(1,2,3)(E) =
��(1,2,3)� (�) = [� ∈ ��(1,2,3)� ].

4. (1, 2,3)-�-Derived Set and (1, 2,3)-�-Closure
Operator in Fuzzifying Tritopological Space

De�nition 17. If (�, �1, �2, �3) is a FTTS, then �	(1,2,3)(�)
indicates the “(1,2,3)-�-derived set of �” and defined as
follows: � ∈ �	(1,2,3)(�) fl ∀� (� ∈ ��(1,2,3)� �→ � ∩
(� ∼ {�}) ̸= 0), i.e., �	(1,2,3)(�)(�) = inf�∩(�∼{�})=0(1 −
��(1,2,3)� (�)).

Lemma 18. �	(1,2,3)(�)(�) = 1 − ��(1,2,3)� ((� ∼ �) ∪ {�}).

Proof. �	(1,2,3)(�)(�) = 1 − sup�∩(�∼{�})=0��(1,2,3)� (�) =
1 − sup�∩(�∼{�})=0sup�∈�⊆���(1,2,3)(E)= 1 −
sup�∈�⊆(∼�)∪{�}sup�∈�⊆���(1,2,3)(E) = 1 −
sup�∈�⊆(∼�)∪{�}��(1,2,3)(E)= 1−��(1,2,3)� ((� ∼ �)∪{�}).

�eorem 19. If (�, �1, �2, �3) is a FTTS and �,� ∈ �(�),
then

(i) ⊨ �	(1,2,3)(0) = 0;
(ii) ⊨ � ⊆ � �→ �	(1,2,3)(�) ⊆ �	(1,2,3)(�);
(iii) ⊨ � ∈ �F(1,2,3) ←→ �	(1,2,3)(�) ⊆ �;
(iv) ⊨ �1 ≡ �3 �→ �	(1,2,3)(�) ⊆ 	1(�), where 	1(�) is

the fuzzifying derived set of � with respect to �1.

Proof.

(i) From Lemma 18 we have
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�	(1,2,3)(0)(�) = 1 − ��(1,2,3)� ((� ∼ 0) ∪ {�}) = 1 −
��(1,2,3)� (�) = 1 − 1 = 0.

(ii) Let � ⊆ �, then from Lemma 18 and 	eorem 16
-(ii) we get

�	(1,2,3)(�)(�) = 1 − ��(1,2,3)� ((� ∼ �) ∪ {�}) ≤ 1 −
��(1,2,3)� ((� ∼ �) ∪ {�}) = �	(1,2,3)(�)(�)

(iii) From Lemma 18 and 	eorem 15 -(ii).We have

[�	(1,2,3)(�) ⊆ �] = inf�∈∼�(1 −
�	(1,2,3)(�)(�)) = inf�∈∼���(1,2,3)� ((� ∼
�) ∪ {�})= inf�∈∼���(1,2,3)� (� ∼ �) =
inf�∈∼�sup�∈�⊆∼���(1,2,3)(�) = ��(1,2,3)(� ∼ �)=
�F(1,2,3)(�) = [� ∈ �F(1,2,3)(�)].

(iv) From 	eorem 15 -(ii) and Lemma (5.1) in [9] we
have

�	(1,2,3)(�) = 1 − ��(1,2,3)� ((� ∼ �) ∪ {�}) ≤ 1 −
��(1)� ((� ∼ �) ∪ {�}) = 	1(�)(�).

De�nition 20. If (�, �1, �2, �3) is a FTTS, then ���(1,2,3)(�)
indicates the “(1,2,3)-�-closure set of �” and defined as � ∈
���(1,2,3)(�) fl ∀� (� ⊇ �) ∧ (� ∈ �F(1,2,3)) �→ � ∈ �),
i.e., ���(1,2,3)(�)(�) = inf�∉�⊇�(1 − �F(1,2,3)(�)).

�eorem 21. If (�, �1, �2, �3) is a FTTS, �,� ∈ �(�) and � ∈
�, then

(i) ���(1,2,3)(�)(�) = 1 − ��(1,2,3)� (� ∼ �);
(ii) ⊨ ���(1,2,3)(0) = 0;
(iii) ⊨ � ⊆ ���(1,2,3)(�);
(iv) ⊨ ���(1,2,3)(�) = �	(1,2,3)(�) ∪ �;
(v) ⊨ � ∈ ���(1,2,3)(�) ←→ ∀� (� ∈ ��(1,2,3)� �→ � ∩

� ̸= 0);
(vi) ⊨ � ≡ ���(1,2,3)(�) ←→ � ∈ �F(1,2,3)(�);
(vii) ⊨ � ⊆ � �→ ���(1,2,3)(�) ⊆ ���(1,2,3)(�);
(viii) ⊨ � ≡̇ ���(1,2,3)(�) �→ � ∈ �F(1,2,3).

Proof.

(i) ���(1,2,3)(�)(�) = inf�∉�⊇�(1 − �F(1,2,3)(�) =
inf�∉�⊇�(1 − ��(1,2,3)(� ∼ �))= 1 −
sup�∈∼�⊆∼���(1,2,3)(� ∼ �) = 1 − �(1,2,3)� (� ∼ �).

(ii) ���(1,2,3)(0)(�) = 1 − ��(1,2,3)� (� ∼ 0) = 1 −
��(1,2,3)� (�) = 1 − sup�∈�⊆��(1,2,3)(�) = 1 − 1 = 0.

(iii) If � ∈ �(�) and for any � ∈ � and if � ∉ �,
then [� ∈ �] ≤ [� ∈ ���(1,2,3)(�)]. If � ∈ �, then
���(1,2,3)(�)(�) = 1 − ��(1,2,3)� (� ∼ �) = 1 − 0 = 1.
	us [� ∈ �] ≤ [� ∈ ���(1,2,3)(�)]  ⇒ [� ⊆
���(1,2,3)(�)] = 1.

(iv) From Lemma 18 and (iii) above, for any � ∈ � we
have

[� ∈ (�	(1,2,3)(�) ∪ �)] = max((1 − ��(1,2,3)� (� ∼
�) ∪ {�}), �(�)). If � ∈ �, then [� ∈ (�	(1,2,3)(�) ∪
�)] = �(�) = 1 = [� ∈ ���(1,2,3)(�)]. If � ∉ �, then
[� ∈ (�	(1,2,3)(�)∪�)] = 1−��(1,2,3)� (� ∼ �) = [� ∈
���(1,2,3)(�)].

	us [���(1,2,3)(�)] = [�	(1,2,3)(�) ∪ �].

(v) [∀� (� ∈ ��(1,2,3)� �→ � ∩ � ̸= 0)] = inf�⊆∼�(1 −
��(1,2,3)� (�))= 1 − ��(1,2,3)� (� ∼ �) = [� ∈
���(1,2,3)(�)].

(vi) From 	eorem 19 -(iii), Lemma (8.2) in [15] and (iv)
above, since

[� ⊆ �	(1,2,3)(�) ∪ �] = 1, we get

�F(1,2,3)(�) = [�	(1,2,3)(�) ⊆ �] = [�	(1,2,3)(�)∪� ⊆
�] = [�	(1,2,3)(�)∪� ⊆ �] ⋀[� ⊆ �	(1,2,3)(�)∪�] =
[�	(1,2,3)(�) ∪ � ≡ �] = [� ≡ ���(1,2,3)(�)].

(vii) If � ⊆ �, then � ∼ � ⊆ � ∼ �. From (i) above and
	eorem 16 -(ii) we get

���(1,2,3)(�)(�) = 1 − ��(1,2,3)� (� ∼ �) ≤ 1 −
��(1,2,3)� (� ∼ �) = ���(1,2,3)(�)(�).

	us ���(1,2,3)(�) ⊆ ���(1,2,3)(�).

(viii) If [� ⊆ �] = 0, then [� ≡̇ ���(1,2,3)(�)] = 0. Assume
that

[� ⊆ �] = 1, then [� ⊆ ���(1,2,3)(�)] = 1 −
sup�∈�∼���(1,2,3)� (� ∼ �) and

[���(1,2,3)(�) ⊆ �] = inf�∈∼���(1,2,3)� (� ∼
�). 	erefore [� ≡̇ ���(1,2,3)(�)] =
max(0, inf�∈∼���(1,2,3)� (� ∼ �) −
sup�∈�∼���(1,2,3)� (� ∼ �)).

If [� ≡̇ ���(1,2,3)(�)] > �, then inf�∈∼���(1,2,3)� (� ∼
�) > � + sup�∈�∼���(1,2,3)� (� ∼ �).

For any � ∈ � ∼ �, we get ��(1,2,3)� (� ∼
�) > � + sup�∈�∼���(1,2,3)� (� ∼ �). 	us

sup�∈�⊆∼���(1,2,3)($) > � + sup�∈�∼���(1,2,3)� (� ∼
�), i.e., ∃$� such that � ∈ $� ⊆ � ∼ � and

��(1,2,3)($�) > �+sup�∈�∼���(1,2,3)� (� ∼ �). To prove
that $� ⊆ � ∼ �. If $� ̸⊆ � ∼ �, then ∃�� ∈ $� and
�� ∈ � ∼ �. Hence we get sup�∈�∼���(1,2,3)� (� ∼
�) ≥ ��(1,2,3)�� (� ∼ �) ≥ ��(1,2,3)($�) >
� + sup�∈�∼���(1,2,3)� (� ∼ �)  ⇒ Contradiction.
	erefore �F(1,2,3)(�) = ��(1,2,3)(� ∼ �) =
inf�∈∼���(1,2,3)� (� ∼ �) ≥ inf�∈∼���(1,2,3)($�) ≥
��(1,2,3)($�) > � + sup�∈�∼���(1,2,3)� (� ∼ �) > �,
since � is arbitrary; thus [� ≡̇ ���(1,2,3)(�)] ≤ [� ∈
�F(1,2,3)].



6 Advances in Fuzzy Systems

5. (1, 2,3)-�–Interior, (1, 2,3)-�-Exterior, and
(1, 2,3)-�-Boundary Operators in Fuzzifying
Tritopological Space

De�nition 22. If (�, �1, �2, �3) is a FTTS and � ∈ �(�), then
�int(1,2,3)(�) indicates the “(1,2,3)-�-interior set of�” defined
as �int(1,2,3)(�)(�) = ��(1,2,3)�
�eorem 23. If (�, �1, �2, �3) is a FTTS, �,� ∈ �(�) and
� ∈ �, then

(i) ⊨ �int(1,2,3)(�) ≡ �;
(ii) ⊨ �int(1,2,3)(�) ⊆ �;
(iii) ⊨ �1 ≡ �3 �→ int1(�) ⊆ �int(1,2,3)(�);
(iv) ⊨ � ∈ ��(1,2,3) ⋀ � ⊆ � �→ � ⊆ �int(1,2,3)(�);
(v) ⊨ � ≡ �int(1,2,3)(�) ←→ � ∈ ��(1,2,3);
(vi) ⊨ � ⊆ � �→ �int(1,2,3)(�) ⊆ �int(1,2,3)(�);
(vii) ⊨ �int(1,2,3)(�) ≡ � ∼ ���(1,2,3)(� ∼ �);
(viii) ⊨ �int(1,2,3)(�) ≡ � ∩ (� ∼ �	(1,2,3)(� ∼ �));
(ix) ⊨ � ≡̇ �int(1,2,3)(�) �→ � ∈ ��(1,2,3).

Proof.

(i) �int(1,2,3)(�)(�) = ��(1,2,3)� (�) = 1  ⇒ �int(1,2,3)(�)
≡ �

(ii) Let� ∈ �(�), � ∈ �. If � ∉ �, then �int(1,2,3)(�)(�) =
��(1,2,3)� = 0  ⇒ �int(1,2,3)(�) ⊆ �.

(iii) From 	eorem 15 -(ii) we have

int1(�)(�) = �(1)� (�) ≤ ��(1,2,3)� (�) =
�int(1,2,3)(�)(�).	erefore int1(�)(�) ⊆ �int(1,2,3)(�).

(iv) If� ̸⊆ �, then the result holds.

If� ⊆ �, then
[� ⊆ �int(1,2,3)(�)] = inf�∈��int(1,2,3)(�)(�) =
inf�∈���(1,2,3)� (�) ≥ inf�∈���(1,2,3)� (�) =
��(1,2,3)(�)= [(� ∈ ��(1,2,3)) ⋀ (� ⊆ �)].

(v) [� ≡ �int(1,2,3)(�)]= min(inf�∈��int(1,2,3)(�)(�),
inf�∈∼�(1 − �int(1,2,3)(�)(�)))=
min(inf�∈���(1,2,3)� (�), inf�∈∼�(1 − ��(1,2,3)� (�)))=
inf�∈���(1,2,3)� (�) = ��(1,2,3)(�)= [� ∈ ��(1,2,3)]

(vi) From Definition 22 and 	eorem 16 -(ii) the proof
follows.

(vii) From 	eorem 21 -(i) we have (� ∼ ���(1,2,3)(� ∼
�))(�) = 1 − (1 − ��(1,2,3)� (�)) = ��(1,2,3)� (�) =
�int(1,2,3)(�)(�). 	erefore �int(1,2,3)(�) = � ∼
���(1,2,3)(� ∼ �).

(viii) From Lemma 18 we get

[� ∩ (� ∼ �	(1,2,3)(� ∼ �))] = min(�(�),
��(1,2,3)� (� ∪ {�})). If � ∉ �, then
[� ∩ (� ∼ �	(1,2,3)(� ∼ �))] = 0 = ��(1,2,3)� (�) =
�int(1,2,3)(�)(�). If � ∈ �, then

[� ∩ (� ∼ �	(1,2,3)(� ∼ �))] = ��(1,2,3)� (�) =
�int(1,2,3)(�)(�). 	erefore

�int(1,2,3)(�) = � ∩ (� ∼ �	(1,2,3)(� ∼ �)).
(ix) From 	eorem 21 -(ix) and (vii) above we get

[� ≡̇ �int(1,2,3)(�)] = [� ∼ � ≡̇���(1,2,3)(� ∼ �)] ≤
[� ∼ � ∈ �F(1,2,3)] = [� ∈ ��(1,2,3)].

De�nition 24. If (�,�1, �2, �3) is a FTTS and � ⊆ �. 	en
�ext(1,2,3)(�) indicates the “(1,2,3)-�-exterior set of �” and
defined as � ∈ �ext(1,2,3)(�) fl � ∈ �int(1,2,3)(� ∼ �), i.e.,
�ext(1,2,3)(�)(�) = �int(1,2,3)(� ∼ �)(�).

�eorem 25. If (�, �1, �2, �3) is a FTTS and � ⊆ �. �en

(i) ⊨ �ext(1,2,3)(0) ≡ �;
(ii) ⊨ �ext(1,2,3)(�) ⊆ � ∼ �;
(iii) ⊨ �1 ≡ �3 �→ �ext1(�) ⊆ �ext(1,2,3)(�);
(iv) ⊨ � ∈ �F(1,2,3) ←→ �ext(1,2,3)(�) ≡ � ∼ �;
(v) ⊨ � ∈ �F(1,2,3) ∧ � ⊆ � �→ � ∼ � ⊆ �ext(1,2,3)(�);
(vi) ⊨ � ⊆ � �→ �ext(1,2,3)(�) ⊆ �ext(1,2,3)(�);
(vii) ⊨ �ext(1,2,3)(�) ≡ (� ∼ �) ∩ (� ∼ �	(1,2,3)(�));
(viii) ⊨ �ext(1,2,3)(�) ≡ � ∼ ���(1,2,3)(�));
(ix) ⊨ � ∈ �ext(1,2,3)(�) ←→ ∃� (� ∈ � ∈ ��(1,2,3)

⋀ � ∩ � = 0).

Proof. 	e proofs of (i) - (vii) follow from 	eorem 23 .

(ix) [∃� (� ∈ � ∈ ��(1,2,3) ⋀ � ∩ � = 0)] =
sup�∈�⊆(∼�)��(1,2,3)(�) = ��(1,2,3)� (� ∼ �)=
�int(1,2,3)(� ∼ �)(�) = �ext(1,2,3)(�)(�). By
Definition 24

De�nition 26. If (�, �1, �2, �3) is a FTTS and � ⊆ �, then
�&(1,2,3)(�) indicates the “(1,2,3)-�-boundary of a set �” and
defined as � ∈ �&(1,2,3)(�) fl (� ∉ �int(1,2,3)(�)) ⋀ (� ∉
�int(1,2,3)(� ∼ �)), i.e., � ∈ �&(1,2,3)(�)(�) fl min(1 −
�int(1,2,3)(�)(�)) ⋀ (1 − �int(1,2,3)(� ∼ �)(�)).

Lemma 27. If (�, �1, �2, �3) is a FTTS, � ∈ �(�) and � ∈ �,
then ⊨ � ∈ �&(1,2,3)(*) ←→ ∀� (� ∈ ��(1,2,3)� �→ (� ∩ � ̸=
0) ⋀ (� ∩ (� ∼ �)) ̸= 0).

Proof. [∀� (� ∈ ��(1,2,3)� �→ (� ∩ � ̸= 0) ⋀ (� ∩
(� ∼ �)) ̸= 0)]=min(inf�⊆�(1 −��(1,2,3)� (�)), inf�⊆∼�(1 −
��(1,2,3)� (�))) = min(1 − ��(1,2,3)� (�), 1 − ��(1,2,3)� (� ∼ �))=
min(1 − �int(1,2,3)(�)(�), 1 − �int(1,2,3)(� ∼ �)(�)) = [� ∈
�&(1,2,3)(�)].

�eorem 28. If (�, �1, �2, �3) is a FTTS and � ∈ �(�), then
(i) ⊨ �&(1,2,3)(�) ≡ ���(1,2,3)(�) ∩ ���(1,2,3)(� ∼ �);
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(ii) ⊨ �&(1,2,3)(�) ≡ �&(1,2,3)(� ∼ �);
(iii) ⊨ � ∼ �&(1,2,3)(�) ≡ �int(1,2,3)(�) ∪ �int(1,2,3)(� ∼ �);
(iv) ⊨ ���(1,2,3)(�) ≡ � ∪ �&(1,2,3)(�);
(v) ⊨ �&(1,2,3)(�) ⊆ � ←→ � ∈ �F(1,2,3);
(vi) ⊨ �int(1,2,3)(�) ≡ � ∩ (� ∼ �&(1,2,3)(�));
(vii) ⊨ (�&(1,2,3)(�) ∩ � ≡ 0) ←→ A ∈ ��(1,2,3);
(viii) ⊨ �1 ≡ �3 �→ �&(1,2,3)(�) ⊆ &1(�);
(ix) ⊨ � ∼ �&(1,2,3)(�) ≡ �int(1,2,3)(�)∪�ext(1,2,3)(� ∼ �).

Proof.

(i) From 	eorem 23 -(vii), we have

(���(1,2,3)(�) ∩ ���(1,2,3)(� ∼ �)(�)) =
min(���(1,2,3)(�)(�), ���(1,2,3)(� ∼ �)(�))= min(1
−�int(1,2,3)(�)(�), 1 − �int(1,2,3)(� ∼ �)(�)) =
�&(1,2,3)(�)(�).

(ii) Since �&(1,2,3)(�)(�) = min(1 − ��(1,2,3)� (�)(�), 1 −
��(1,2,3)� (� ∼ �)(�)) =min(1 − ��(1,2,3)� (� ∼
�)(�), 1 − ��(1,2,3)� (�)(�)) = �&(1,2,3)(� ∼ �)(�).

(iii) From (i) above and 	eorem 23 -(vii), we get

� ∼ �&(1,2,3)(�) ≡ � ∼ (���(1,2,3)(�) ∩ ���(1,2,3)(� ∼
�))= (� ∼ ���(1,2,3)(�)) ∪ (� ∼ ���(1,2,3)(� ∼ �)=
�int(1,2,3)(� ∼ �) ∪ �int(1,2,3)(�).

(iv) If � ∈ �, then ���(1,2,3)(�)(�) = 1 = (� ∪
�&(1,2,3)(�))(�). If � ∉ �, then (� ∪ �&(1,2,3)(�))(�) =
�&(1,2,3)(�)(�) = min(1 − �int(1,2,3)(�)(�), 1 −
�int(1,2,3)(� ∼ �)(�))= 1 − �int(1,2,3)(� ∼ �)(�) =
���(1,2,3)(�)(�).

(v) From 	eorem 19 -(iii), 	eorem 21 -(v), Lemma
(8.2) in [15] and (iv) above, we get

� ∈ �F(1,2,3) ←→ �	(1,2,3)(�) ⊆ � ←→ � ∪
�	(1,2,3)(�) ⊆ � ←→ ���(1,2,3)(�) ⊆ � ←→ � ∪
�&(1,2,3)(�) ⊆ � ←→ �&(1,2,3)(�) ⊆ �

(vi) From 	eorem 23 -(vii) and (vi) above, we get

�int(1,2,3)(�) ≡ � ∼ ���(1,2,3)(� ∼ �) ≡ � ∼ ((� ∼
�) ∪ �&(1,2,3)(� ∼ �)) ≡ � ∩ (� ∼ �&(1,2,3)(� ∼ �)) ≡
� ∩ (� ∼ �&(1,2,3)(�)).

(vii) From 	eorem 23 -(v) and (vi) above, we have
(�&(1,2,3)(�) ∩ � ≡ 0) ←→ (� ∼ �&(1,2,3)(�)) ∪ (� ∼
�)) ≡ � ←→ � ⊆ � ∼ �&(1,2,3)(�) ←→ � ∩ (� ∼
�&(1,2,3)(�)) ≡ � ←→ �int(1,2,3)(�) ≡ � ←→ � ∈
��(1,2,3).

(viii) From 	eorem 23 -(iii), we get �&(1,2,3)(�)(�) =
min(1 − �int(1,2,3)(�)(�), 1 − �int(1,2,3)(� ∼ �)(�)) ≤
min(1 − int1(�)(�), 1 − int1(�)(� ∼ �)(�) = �&1(�)
�&(1,2,3)(�) ⊆ &1(�)(�).

(ix) From (iii) above, we have

� ∼ �&(1,2,3)(�) ≡ �int(1,2,3)(�) ∪ �int(1,2,3)(� ∼ �) ≡
�int(1,2,3)(�) ∪ �ext(1,2,3)(�).

6. (1, 2,3)-�-Convergence of Nets in Fuzzifying
Tritopological Spaces

De�nition 29. If (�, �1, �2, �3) is a FTTS, then the class of all
nets in � is defined as �(�) = {M ?N�ℎ %ℎ�% M : O �→ �,
where (O, ≥) is a directed set}.

De�nition 30. If (�, �1, �2, �3) is a FTTS, then the binary fuzzy
predicates ⊳�(1,2,3)(1,2,3),∝�(1,2,3) ∈ I(�(�)×�), are defined as

M ⊳�(1,2,3) � fl ∀� (� ∈ ��(1,2,3)� �→ M⊂
̃
�),

M ∝�(1,2,3) � fl ∀� (� ∈ ��(1,2,3)� �→ M⊏
̃
�), M ∈

�(�),
where M ⊳�(1,2,3) � stand for “M is (1,2,3)-�-convergence to �”
and M∝�(1,2,3) � stand for “� is (1,2,3)-�-accumulation point
of M”. Also, the binary crisp predicate ⊂

̃
is “almost in” and ⊏

̃is “o�en in”.

De�nition 31. LetU ∈ �(�). One has the following fuzzy sets:
lim�(1,2,3)U(�) = [U ⊳�(1,2,3) �] is (1,2,3)-�-limit of U;
�	ℎ�(1,2,3)U(�) = [U∝�(1,2,3) �] is (1,2,3)-�-adherence of U.

�eorem 32. If (�, �1, �2, �3) is a FTTS � ∈ �, � ∈ �(�),
and M ∈ �(�), then

(i) ⊨ ∃M ((M ⊆ � ∼ {�}) ∧ (M⊳�(1,2,3) �)) �→ � ∈
�	(1,2,3)(�);

(ii) ⊨ ∃M ((M ⊆ �) ⋀ (M ⊳�(1,2,3) �)) �→ � ∈ ���(1,2,3)(�);
(iii) ⊨ � ∈ �F(1,2,3) �→ ∀M (M ⊆ � �→ lim�(1,2,3)M ⊆ �);
(iv) ⊨ ∃U ((U < M) ⋀ (U⊳�(1,2,3) �)) �→ M∝�(1,2,3) �, where

U < M standing for “U is a subnet of M”.

Proof.

(i) [∃M ((M ⊆ � ∼ {�}) ⋀ (M ⊳�(1,2,3) �))] =
sup�⊆�∼{�}inf� ̸⊂

̃
�(1 − ��(1,2,3)� (�)). Now, since M ⊆

� ∼ {�}, then M ̸⊆ (� ∼ �) ∪ {�} and this implies
M ̸⊂
̃
(� ∼ �) ∪ {�}. 	erefore

inf� ̸⊂
̃
�(1 − ��(1,2,3)� (�)) ≤ 1 − ��(1,2,3)� ((� ∼ �) ∪

{�}) = [� ∈ �	(1,2,3)(�)].
(ii) If � ∈ �, then from 	eorem 21 -(i) and (i) above we

have

[∃M ((M ⊆ �) ⋀ (M ⊳�(1,2,3) �))] = sup�⊆�inf� ̸⊂
̃
�(1 −

��(1,2,3)� (�)) ≤ 1 − ��(1,2,3)� (� ∼ �) = [� ∈
���(1,2,3)(�)].
If � ∉ �, then � ∼ {�} = �. From 	eorem 21 -(i)
and (i) above we have

[∃M ((M ⊆ �) ⋀ (M ⊳�(1,2,3) �))] = [∃M ((M ⊆ � ∼
{�}) ⋀ (M ⊳�(1,2,3) �))] ≤ 1 − ��(1,2,3)� (� ∼ �) =
���(1,2,3)(�) = [� ∈ ���(1,2,3)(�)].

(iii) From 	eorem 21 -(vi) and (ii) above, we get
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[� ∈ �F(1,2,3)] = [� ≡ ���(1,2,3)(�)] =
[� ⊆ ���(1,2,3)(�)] ⋀ [���(1,2,3)(�) ⊆ �] ≤
[���(1,2,3)(�) ⊆ �]= [� ∼ � ⊆ � ∼ ���(1,2,3)(�)] =
inf�∈∼�(1 − ���(1,2,3)(�)(�)) ≤ inf�∈∼�(1 −
sup�⊆�inf� ̸⊂

̃
�(1 − ��(1,2,3)� (�)))= inf�∉�inf�⊆�(1 −

inf� ̸⊂
̃
�(1 − ��(1,2,3)� (�))) = [∀M (M ⊆ � �→

lim�(1,2,3)M ⊆ �)].

(iv) We have if M ̸⊂
̃
�, then M �⊏̃

�, for any M ∈ �(�) and
any � ⊆ �. 	erefore

[∃U ((U < M) ∧ (U⊳�(1,2,3) �))] = sup�<�inf� ̸⊂
̃
�(1 −

��(1,2,3)� (�)) = inf� ̸⊂
̃
�(1 − inf�<���(1,2,3)� (�)) ≤

inf� ̸⊂
̃
�(1 − ��(1,2,3)� (�)) ≤ inf� ̸⊂

̃
�(1 − ��(1,2,3)� (�)) =

inf��⊏̃
�(1 − ��(1,2,3)� (�)) = [M∝�(1,2,3) �].

�eorem 33. If (�, �1, �2, �3) is a FTTS and U is a universal
net, then ⊨ lim�(1,2,3)U = �	ℎ�(1,2,3)U.

Proof. lim�(1,2,3)U(�) = inf� ̸⊂
̃
�(1−��(1,2,3)� (�)) = inf��⊏̃

�(1−
��(1,2,3)� (�)) = �	ℎ�(1,2,3)U(�).

Lemma 34. If (�, �1, �2, �3) is a FTTS, then ⊨ (U ⊳�(1,2,3) �))
←→ ∀� (� ∈ � ∈ ��(1,2,3) �→ U⊂

̃
�).

Proof. If� ⊆ � and U ̸⊂
̃
�, then U ̸⊂

̃
�.

[U ⊳�(1,2,3) �)] = inf� ̸⊂
̃
�(1 − ��(1,2,3)� (�)) = 1 −

sup� ̸⊂
̃
�sup�∈�⊆���(1,2,3)(�) ≥ 1 − sup� ̸⊂

̃
�,�∈���(1,2,3)(�) =

inf� ̸⊂
̃
�,�∈�(1 − ��(1,2,3)(�))= [∀� (� ∈ � ∈ ��(1,2,3) �→

U⊂
̃
�].
Conversely,
[∀� (� ∈ � ∈ ��(1,2,3) �→ U⊂

̃
�)] = inf� ̸⊂

̃
�,�∈�(1 −

��(1,2,3)(�))= inf� ̸⊂
̃
�,�∈�(1 − inf�∈�sup�⊆���(1,2,3)� (�)) ≥

1 − sup� ̸⊂
̃
�,�∈���(1,2,3)� (�)= inf� ̸⊂

̃
�,�∈�(1 − ��(1,2,3)� (�)) =

[U⊳�(1,2,3) �].

7. (1, 2,3)-�-Convergence of Filters in
Fuzzifying Tritopological Spaces

De�nition 35. If (�, �1, �2, �3) is a FTTS and W(�) is the set
of all filters on �, then the binary fuzzy predicates ⊳�(1,2,3),
∝�(1,2,3) ∈ I(W(�) × �) are defined as

E⊳�(1,2,3) � fl ∀� (� ∈ ��(1,2,3)� �→ � ∈ E);
E∝�(1,2,3) � fl ∀� (� ∈ E �→ � ∈ ���(1,2,3)(�)), where

E ∈ W(�).

De�nition 36. 	e fuzzy sets
lim�(1,2,3)E(�) = [E⊳�(1,2,3) �] are (1,2,3)-�-limit of E;
�	ℎ�((1,2,3)E(�) = [E∝�(1,2,3) �] are (1,2,3)-�-adherence of

E.

�eorem 37. If (�, �1, �2, �3) is a FTTS, then we have the
following.

(1) If U ∈ �(�) and E� is the �lter corresponding to U,
i.e.,E� = {� : U ⊂

̃
�}, then

(i) ⊨ lim�(1,2,3)E� = lim�(1,2,3)U;
(ii) ⊨ �	ℎ�(1,2,3)E� = �	ℎ�(1,2,3)U.

(2) If E ∈ W(�) and U� is the net corresponding to E,
i.e., U� : O �→ �, (�, �) F�→ �, (�, �) ∈ O, where
O = {(�, �) : � ∈ � ∈ E}, (�, �) ≥ (G,�) i� � ⊆ �,
then

(i) ⊨ lim�(1,2,3)U� = lim�(1,2,3)E;
(ii) ⊨ �	ℎ�(1,2,3)U� = �	ℎ�(1,2,3)E.

Proof.

(1)

(i) lim�(1,2,3)E�(�) = inf�∉��(1 − ��(1,2,3)� (�)) =
inf� ̸⊂
̃
�(1 − ��(1,2,3)� (�)) = lim�(1,2,3)U.

(ii) �	ℎ�(1,2,3)E� = inf�∈�����(1,2,3)(�)(�) =
inf�⊂
̃
�(1 − ��(1,2,3)� (� ∼ �))= inf� ̸⊂

̃
∼�(1 −

��(1,2,3)� (� ∼ �)) = inf��⊏̃
∼�(1 − ��(1,2,3)� (� ∼

�))= �	ℎ�(1,2,3)U.

(2) Similar to (i) above

(i) lim�(1,2,3)U� = [U� ⊳�(1,2,3) �] = inf�� ̸⊂
̃
�(1 −

��(1,2,3)� (�)) = inf�∉�(1 − ��(1,2,3)� (�))=
lim�(1,2,3)E.

(ii) �	ℎ�(1,2,3)U�(�) = [U�∝�(1,2,3)�] = inf���⊏̃
�(1 −

��(1,2,3)� (�)) = inf∼�∈����(1,2,3)(� ∼ �)=
�	ℎ�(1,2,3)E.

8. Conclusion

	e main contribution of the present paper is to give
characterization of tri-�-open sets in fuzzifying tritopological
space. We also define the concepts of tri-�-closed sets, tri-
�-neighborhood system, tri-�-interior, tri-�-closure,
tri-�-derived, tri-�-boundary, tri-�-exterior, and tri-�-
convergence in fuzzifying tritopological spaces and some
basics of such spaces. We present some problems for future
study.

(1) Study the results of the present paper by considering
the quad-�-open sets in fuzzifying quad-topological
spaces.
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(2) Investigate relations between fuzzifying quad-topol-
ogy, tritopology, bitopology and fuzzifying topology.

(3) Study of quad-�-separation axioms in fuzzifying
quad-topological spaces.

(4) Generalize the results in the present work to so�
fuzzifying topology.
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