On Tri- α-Open Sets in Fuzzifying Tritopological Spaces

Barah M. Sulaiman and Tahir H. Ismail (D)
Mathematics Department, College of Computer Science and Mathematics, University of Mosul 41002, Mosul 41001, Iraq
Correspondence should be addressed to Tahir H. Ismail; tahir_hs@yahoo.com

Received 14 November 2018; Revised 18 January 2019; Accepted 7 February 2019; Published 15 April 2019
Academic Editor: Patricia Melin
Copyright © 2019 Barah M. Sulaiman and Tahir H. Ismail. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we introduced and studied (1,2,3)- α-open set, (1,2,3)- α-neighborhood system, ($1,2,3$)- α-derived, ($1,2,3$)- α-closure, $(1,2,3)-\alpha$-interior, (1,2,3)- α-exterior, ($1,2,3$)- α-boundary, ($1,2,3$) - α-convergence of nets, and ($1,2,3$)- α-convergence of filters in fuzzifying tritopological spaces.

1. Introduction

The fuzzy set is an important concept, which was introduced for the first time in 1965 by Zadeh [1]; it was then used in many studies in various fields. Here, we are interested in fuzzy with topology. The fuzzy and fuzzifying topologies are two branches of fuzzy mathematics. The basic concepts and properties of fuzzy topologies were subedited and investigated by Chang in 1968 [2] and Wong in 1974 [3]. After that, so many works of literature have appeared for different kinds of fuzzy topological spaces for, e.g., [4-8]. In 19911993, Ying introduced a new approach for fuzzy topology with fuzzy logic and established some properties in fuzzifying topology [9-11]. Also, we are interested in the concept of α open set which was introduced by Njåstad in 1965 [12], and the tritopological space which was first initiated by Kovar in 2000 [13]. In 2017, Tapi and Sharma introduced α-open sets in tritopological spaces [14]. In 1999, Khedr et al. presented semiopen sets and semicontinuity in fuzzifying topology [15]. In 2016, Allam and et al. studied semiopen sets in fuzzifying bitopological spaces [16]. We will use in this paper Ying's basic fuzzy logic formulas with appropriate set theoretical notations from [9, 10].

The following are some useful definitions and results that will be used in the rest of the present work.

If X is the universe of discourse, and if $\tau \in \mathfrak{J}(P(X))$ satisfy the following three conditions:
(1) $\tau(X)=1$ and $\tau(\emptyset)=1$;
(2) for any $G, H, \tau(G \cap H) \geq \tau(G) \wedge \tau(H)$;
(3) for any $\left\{G_{\lambda}: \lambda \in \Lambda\right\}, \tau\left(\bigcup_{\lambda \in \Lambda} G_{\lambda}\right) \geq \bigwedge_{\lambda \in \Lambda} \tau\left(G_{\lambda}\right)$;
then τ is a fuzzifying topology and (X, τ) a fuzzifying topological space [9].

The family of fuzzifying closed sets is denoted by \mathscr{F} and defined as $G \in \mathscr{F}:=X \sim G \in \tau$, where $X \sim G$ is the complement of G [9].

The neighborhood system of x is denoted by $N_{x} \in$ $\mathfrak{J}(P(X))$ and defined as $N_{x}(G)=\sup _{x \in H \subseteq G} \tau(H)$ [9].

The closure set of a set $G \subseteq X$ is denoted by $\operatorname{cl}(G) \in \mathfrak{J}(X)$ and defined as $c l(G)(x)=1-N_{x}(X \sim G)$ [9].

The fuzzifying interior set of a set $G \subseteq X$ is denoted by $\operatorname{int}(G) \in \mathfrak{S}(X)$ and defined as $\operatorname{int}(G)(x)=N_{x}(G)$ [10].

The family of all fuzzifying α-open sets is denoted by $\alpha \tau$ and defined as $G \in \alpha \tau:=\forall x(x \in G \longrightarrow x \in \operatorname{int}(c l(\operatorname{int}(G)))$, i.e., $\alpha \tau(G)=\inf _{x \in G}(\operatorname{int}(c l(\operatorname{int}(G))))(x)$ [17].

The family of all fuzzifying α-closed sets is denoted by $\alpha \mathscr{F}$ and defined as $G \in \alpha \mathscr{F}:=X \sim G \in \alpha \tau[17]$.

The fuzzifying α-interior set of a set $G \subseteq X$ is denoted by $\alpha \operatorname{int}(G) \in \mathfrak{J}(X)$ and defined as follows: $\alpha \operatorname{int}(G)(x)=$ $\alpha N_{x}(G)$, where αN_{x} is α-neighborhood system of x defined as $\alpha N_{x}(G)=\sup _{x \in H \subseteq G} \alpha \tau(H)$ [17].

The fuzzifying α-derived set of a set $G \subseteq X$ is denoted by $\alpha d(G) \in \mathfrak{J}(X)$ and defined as $x \in \alpha d(G):=\forall H(H \in$ $\left.\alpha N_{x} \longrightarrow H \bigcap(G \sim\{x\}) \neq \emptyset\right)$), i.e., $\alpha d(G)(x)=$ $\inf _{H \cap(G \sim\{x\})=\emptyset}\left(1-\alpha N_{x}(H)\right)[18]$.

The α-closure set of a set $G \subseteq X$ is denoted by $\alpha c l(G) \in$ $\mathfrak{J}(X)$ and defined as $\alpha c l(G)(x)=\inf _{x \notin H, G \subseteq H}(1-\alpha \mathscr{F}(H))$ [17].

2. ($1,2,3$)- α-Open Sets in Fuzzifying Tritopological Spaces

Definition 1. If ($X, \tau_{1}, \tau_{2}, \tau_{3}$) is a fuzzifying tritopological space (FTTS), then we have the following:
(i) The family of all fuzzifying ($1,2,3$)- α-open sets is denoted by $\alpha \tau_{(1,2,3)} \in \mathfrak{J}(P(X))$ and defined as $G \in$ $\alpha \tau_{(1,2,3)}:=\forall x\left(x \in G \longrightarrow x \in \operatorname{int}_{1}\left(c l_{2}\left(\operatorname{int}_{3}(G)\right)\right)\right)$, i.e., $\alpha \tau_{(1,2,3)}(G)=\inf _{x \in G}\left(\operatorname{int}_{1}\left(\operatorname{cl}_{2}\left(\operatorname{int}_{3}(G)\right)\right)\right)(x)$.
(ii) The family of all fuzzifying ($1,2,3$)- α-closed sets is denoted by $\alpha \mathscr{F}_{(1,2,3)} \in \mathfrak{J}(P(X))$ and defined as $G \in$ $\alpha \mathscr{F}_{(1,2,3)}:=X \sim G \in \alpha \tau_{(1,2,3)}$.

Lemma 2. Let $\left(X, \tau_{1}, \tau_{2}, \tau_{3}\right)$ be a FTTS.
If $[G \subseteq H]=1$, then $\vDash \operatorname{int}_{1}\left(\operatorname{cl}_{2}\left(\operatorname{int}_{3}(G)\right)\right) \subseteq$ $\operatorname{int}_{1}\left(\operatorname{cl}_{2}\left(\operatorname{int}_{3}(H)\right)\right)$.

Proof. If $[G \subseteq H]=1$, then $\operatorname{int}_{3}(G) \subseteq \operatorname{int}_{3}(H) \Longrightarrow$ $c l_{2}\left(\operatorname{int}_{3}(G)\right) \subseteq c l_{2}\left(\operatorname{int}_{3}(H)\right)$ then $\operatorname{int}_{1}\left(c l_{2}\left(\operatorname{int}_{3}(G)\right)\right) \subseteq$ $\operatorname{int}_{1}\left(c_{2}\left(\operatorname{int}_{3}(H)\right)\right)$.

Lemma 3. If $\left(X, \tau_{1}, \tau_{2}, \tau_{3}\right)$ is a FTTS and $G \subseteq X$. Then
(i) $\vDash X \sim \operatorname{int}_{1}\left(c l_{2}\left(\operatorname{int}_{3}(G)\right)\right) \equiv \operatorname{cl}_{1}\left(\operatorname{int}_{2}\left(c l_{3}(X \sim G)\right)\right)$;
(ii) $\vDash X \sim c l_{1}\left(\operatorname{int}_{2}\left(c l_{3}(G)\right)\right) \equiv \operatorname{int}_{1}\left(c l_{2}\left(\operatorname{int}_{3}(X \sim G)\right)\right)$.

Proof. From Theorem 2.2-(5) in [10], we have
(i) $X \sim \operatorname{int}_{1}\left(c l_{2}\left(\operatorname{int}_{3}(G)\right)\right)(x)=c l_{1}\left(X \sim c l_{2}\left(\operatorname{int}_{3}(G)\right)\right)(x)$ $=c l_{1}\left(\operatorname{int}_{2}\left(X \sim \operatorname{int}_{3}(G)\right)\right)(x)=c l_{1}\left(\operatorname{int}_{2}\left(c l_{3}(X \sim\right.\right.$ $G))(x)$.
(ii) $X \sim l_{1}\left(\operatorname{int}_{2}\left(c l_{3}(G)\right)\right)(x)=\operatorname{int}_{1}\left(X \sim \operatorname{int}_{2}\left(c l_{3}(G)\right)\right)(x)$ $=\operatorname{int}_{1}\left(l_{2}\left(X \sim c l_{3}(G)\right)\right)(x)=\operatorname{int}_{1}\left(\operatorname{cl}_{2}\left(\operatorname{int}_{3}(X \sim\right.\right.$ $G))(x)$.

Theorem 4. If $\left(X, \tau_{1}, \tau_{2}, \tau_{3}\right)$ is a FTTS, then
(i) $\alpha \tau_{(1,2,3)}(X)=1, \alpha \tau_{(1,2,3)}(\emptyset)=1$;
(ii) for any $\left\{G_{\lambda}: \lambda \in \Lambda\right\}, \alpha \tau_{(1,2,3)}\left(\bigcup_{\lambda \in \Lambda} G_{\lambda}\right) \geq$ $\bigwedge_{\lambda \in \Lambda} \alpha \tau_{(1,2,3)}\left(G_{\lambda}\right) ;$
(iii) $\alpha \mathscr{F}_{(1,2,3)}(X)=1, \alpha \mathscr{F}_{(1,2,3)}(\emptyset)=1$;
(iv) for any $\left\{G_{\lambda}: \lambda \in \Lambda\right\}, \alpha \mathscr{F}_{(1,2,3)}\left(\bigcap_{\lambda \in \Lambda} G_{\lambda}\right) \geq$ $\bigwedge_{\lambda \in \Lambda} \alpha \mathscr{F}_{(1,2,3)}\left(G_{\lambda}\right)$.

Proof.
(i) $\alpha \tau_{(1,2,3)}(X)=\inf _{x \in X}\left(\operatorname{int}_{1}\left(c l_{2}\left(\operatorname{int}_{3}(X)\right)\right)\right)(x)=$ $\inf _{x \in X}\left(\operatorname{int}_{1}\left(c l_{2}(X)\right)\right)(x)=\inf _{x \in X}\left(\operatorname{int}_{1}(X)\right)(x)=$ $\inf _{x \in X}(X)(x)=1$.
$\alpha \tau_{(1,2,3)}(\emptyset)=\inf _{x \in \emptyset}\left(\operatorname{int}_{1}\left(c l_{2}\left(\operatorname{int}_{3}(\emptyset)\right)\right)\right)(x)=$ $\inf _{x \in \emptyset}\left(\operatorname{int}_{1}\left(c l_{2}(\emptyset)\right)\right)(x)=\inf _{x \in \emptyset}\left(\operatorname{int}_{1}(\emptyset)\right)(x)=$ $\inf _{x \in \emptyset}(\emptyset)(x)=1$.
(ii) From Lemma 2 , we have $\left[G_{\lambda} \subseteq \bigcup_{\lambda \in \Lambda} G_{\lambda}\right]=1$, then $\vDash \operatorname{int}_{1}\left(c l_{2}\left(\operatorname{int}_{3}\left(G_{\lambda}\right)\right)\right) \subseteq \operatorname{int}_{1}\left(c l_{2}\left(\operatorname{int}_{3}\left(\bigcup_{\lambda \in \Lambda} G_{\lambda}\right)\right)\right)$,
$\alpha \tau_{(1,2,3)}\left(\bigcup_{\lambda \in \Lambda} G_{\lambda}\right)=$
$\inf _{x \in \bigcup_{\lambda \in \Lambda} G_{\lambda}} \operatorname{int}_{1}\left(c l_{2}\left(\operatorname{int}_{3}\left(\bigcup_{\lambda \in \Lambda} G_{\lambda}\right)\right)\right)(x)=$
$\inf _{\lambda \in \Lambda} \inf _{x \in G_{\lambda}} \operatorname{int}_{1}\left(c l_{2}\left(\operatorname{int}_{3}\left(\bigcup_{\lambda \in \Lambda} G_{\lambda}\right)\right)\right)(x) \quad \geq$
$\inf _{\lambda \in \Lambda} \inf _{x \in G_{\lambda}} \operatorname{int}_{1}\left(\operatorname{ll}_{2}\left(\operatorname{int}_{3}\left(G_{\lambda}\right)\right)\right)(x)=$
$\Lambda_{\lambda \in \Lambda} \alpha \tau_{(1,2,3)}\left(G_{\lambda}\right)(x)$.
(iii) and (iv) are obvious.

Lemma 5. If $\left(X, \tau_{1}, \tau_{2}, \tau_{3}\right)$ is a FTTS, then $\vDash \tau_{1} \equiv \tau_{3} \longrightarrow \tau_{1} \subseteq$ $\alpha \tau_{(1,2,3)}$.

Proof. From Theorem (2.2)-(3) in [10] and Lemma (2.1) in [15] , we have $\left[\left(G \in \tau_{1}\right) \wedge\left(G \in \tau_{3}\right)\right]=\left[\left(G \equiv \operatorname{int}_{1}(G)\right) \wedge(G \equiv\right.$ $\left.\left.\operatorname{int}_{3}(G)\right)\right] \leq\left[G \equiv \operatorname{int}_{3}(G)\right]=\left[\left(G \subseteq \operatorname{int}_{3}(G)\right) \wedge\left(\operatorname{int}_{3}(G) \subseteq\right.\right.$
$G)] \leq\left[G \subseteq \operatorname{int}_{3}(G)\right] \leq\left[c l_{2}(G) \subseteq \operatorname{cl}_{2}\left(\operatorname{int}_{3}(G)\right)\right] \leq[G \subseteq$ $\left.c l_{2}\left(\operatorname{int}_{3}(G)\right)\right] \leq\left[\operatorname{int}_{1}(G) \subseteq \operatorname{int}_{1}\left(\operatorname{cl}_{2}\left(\operatorname{int}_{3}(G)\right)\right)\right]=[G \subseteq$ $\left.\operatorname{int}_{1}\left(c l_{2}\left(\operatorname{int}_{3}(G)\right)\right)\right]=\left[G \in \alpha \tau_{(1,2,3)}\right]$.

Theorem 6. If $\left(X, \tau_{1}, \tau_{2}, \tau_{3}\right)$ is a FTTS and $\mathscr{F}_{1}, \mathscr{F}_{2}$, and \mathscr{F}_{3} are the families of closed sets with respect to τ_{1}, τ_{2}, and τ_{3}, respectively, then
$(\mathrm{i}) \vDash E \in \tau_{1} \wedge E \in \mathscr{F}_{2} \wedge E \in \tau_{3} \longrightarrow E \equiv$ $\operatorname{int}_{1}\left(\operatorname{cl}_{2}\left(\operatorname{int}_{3}(E)\right)\right)$;
(ii) $\vDash E \in \mathscr{F}_{1} \wedge E \in \tau_{2} \wedge E \in \mathscr{F}_{3} \longrightarrow E \equiv$ $c l_{1}\left(\operatorname{int}_{2}\left(c l_{3}(E)\right)\right)$.

Proof.
(i) From Theorem (2.2)-(3) in [10] and Theorem (5.2)-(3) in [9], we have
$\left[\left(E \in \tau_{1} \wedge E \in \mathscr{F}_{2} \wedge E \in \tau_{3}\right)\right]=\left[\left(E \equiv \operatorname{int}_{1}(E)\right) \wedge\right.$ $\left.\left(E \equiv \operatorname{cl}_{2}(E)\right) \wedge\left(E \equiv \operatorname{int}_{3}(E)\right)\right]=\left[\left(\left(E \subseteq \operatorname{int}_{1}(E)\right) \wedge\right.\right.$ $\left.\left(n t_{1}(E) \subseteq E\right)\right) \wedge\left(\left(E \subseteq c l_{2}(E)\right) \wedge\left(c l_{2}(E) \subseteq E\right)\right) \wedge((E \subseteq$ $\left.\left.\left.\operatorname{int}_{3}(E)\right) \wedge\left(\operatorname{int}_{3}(E) \subseteq E\right)\right)\right]=\left[\left(E \subseteq \operatorname{int}_{1}(E)\right) \wedge(E \subseteq\right.$ $\left.c l_{2}(E)\right) \wedge\left(E \subseteq \operatorname{int}_{3}(E)\right) \wedge\left(\operatorname{int}_{1}(E) \subseteq E\right) \wedge\left(c l_{2}(E) \subseteq\right.$ $\left.E) \wedge\left(\operatorname{int}_{3}(E) \subseteq E\right)\right] \leq\left[\left(E \subseteq \operatorname{int}_{1}(E)\right) \wedge\left(E \subseteq c l_{2}(E)\right) \wedge\right.$ $\left(c l_{2}(E) \subseteq c l_{2}\left(\operatorname{int}_{3}(E)\right)\right) \wedge\left(\operatorname{int}_{1}(E) \subseteq E\right) \wedge\left(c l_{2}(E) \subseteq\right.$ $\left.E) \wedge\left(c l_{2}\left(\operatorname{int}_{3}(E)\right) \subseteq c l_{2}(E)\right)\right] \leq\left[\left(E \subseteq \operatorname{int}_{1}(E)\right) \wedge(E \subseteq\right.$ $\left.\left.\left.c l_{2}\left(\operatorname{int}_{3}(E)\right)\right) \wedge\left(\operatorname{int}_{1}(E) \subseteq E\right) \wedge\left(\operatorname{cl}_{2}\left(\operatorname{int}_{3}(E)\right) \subseteq E\right)\right)\right] \leq$ $\left[\left(E \subseteq \operatorname{int}_{1}(E)\right) \wedge\left(\operatorname{int}_{1}(E) \subseteq \operatorname{int}_{1}\left(\operatorname{cl}_{2}\left(\operatorname{int}_{3}(E)\right)\right)\right) \wedge\right.$ $\left.\left(\operatorname{int}_{1}(E) \subseteq E\right) \wedge\left(\operatorname{int}_{1}\left(c l_{2}\left(\operatorname{int}_{3}(E)\right)\right) \subseteq \operatorname{int}_{1}(E)\right)\right] \leq[E \subseteq$ $\left.\operatorname{int}_{1}\left(c l_{2}\left(\operatorname{int}_{3}(E)\right)\right)\right] \wedge\left[\operatorname{int}_{1}\left(c l_{2}\left(\operatorname{int}_{3}(E)\right)\right) \subseteq E\right]=[E \equiv$ $\left.\operatorname{int}_{1}\left(\operatorname{cl}_{2}\left(\operatorname{int}_{3}(E)\right)\right)\right]$.
(ii) It follows directly from (i).

Remark 7. The following example shows that
(i) $\alpha \tau_{1} \subseteq \alpha \tau_{(1,2,3)}$;
(ii) $\alpha \tau_{2} \subseteq \alpha \tau_{(1,2,3)}$;
(iii) $\alpha \tau_{3} \subseteq \alpha \tau_{(1,2,3)}$;
(iv) $\alpha \tau_{(1,2,3)}=\alpha \tau_{(3,2,1)}$.

It may not be true for all $\operatorname{FTTS}\left(X, \tau_{1}, \tau_{2}, \tau_{3}\right)$.

Example 8. For $X=\{a, b, c\}$ and $B=\{a, b\}$. Let $\tau_{1}, \tau_{2}, \tau_{3}$ be a fuzzifying tritopological space X defined by

$$
\begin{align*}
& \tau_{1}(A)= \begin{cases}1 & \text { if } A \in\{\emptyset, X,\{a\}\}, \\
\frac{3}{4} & \text { if } A \in\{\{c\},\{a, c\}\}, \\
0 & \text { Otherwise. }\end{cases} \\
& \tau_{2}(A)= \begin{cases}1 & \text { if } A \in\{\emptyset, X\}, \\
\frac{1}{4} & \text { if } A=\{c\}, \\
0 & \text { Otherwise. }\end{cases} \tag{1}\\
& \tau_{3}(A)= \begin{cases}1 & \text { if } A \in\{\emptyset, X,\{b\},\{a, c\}\}, \\
\frac{3}{4} & \text { if } A \in\{\{c\},\{b, c\}\}, \\
0 & \text { if } A \in\{\{a\},\{a, b\}\} .\end{cases}
\end{align*}
$$

Now, we have $\operatorname{int}_{1}(B)(a)=1, \operatorname{int}_{1}(B)(b)=0$, $\operatorname{int}_{1}(B)(c)=0, c l_{1}\left(\operatorname{int}_{1}(B)\right)(a)=1, c l_{1}\left(\operatorname{int}_{1}(B)\right)(b)=$ $1, c l_{1}\left(\operatorname{int}_{1}(B)\right)(c)=1 / 4, \operatorname{int}_{1}\left(c l_{1}\left(\operatorname{int}_{1}(B)\right)\right)(a)=1$, $\operatorname{int}_{1}\left(c l_{1}\left(\operatorname{int}_{1}(B)\right)\right)(b)=1 / 4, \operatorname{int}_{1}\left(c l_{1}\left(\operatorname{int}_{1}(B)\right)\right)(c)=$ 1/4,
$\Longrightarrow \alpha \tau_{1}(B)=\inf _{x \in B}\left(\operatorname{int}_{1}\left(c l_{1}\left(\operatorname{int}_{1}(B)\right)\right)\right)(x)=1 / 4$.
and $\operatorname{int}_{2}(B)(a)=0, \operatorname{int}_{2}(B)(b)=0, \operatorname{int}_{2}(B)(c)=0$, $c l_{2}\left(\operatorname{int}_{2}(B)\right)(a)=0, c l_{2}\left(\operatorname{int}_{2}(B)\right)(b)=0, c l_{2}\left(\operatorname{int}_{2}(B)\right)(c)$ $=0$,
$\operatorname{int}_{2}\left(c l_{2}\left(\operatorname{int}_{2}(B)\right)\right)(a)=0, \operatorname{int}_{2}\left(c l_{2}\left(\operatorname{int}_{2}(B)\right)\right)(b)=0$, $\operatorname{int}_{2}\left(c l_{2}\left(\operatorname{int}_{2}(B)\right)\right)(c)=0$,
$\Longrightarrow \alpha \tau_{2}(B)=\inf _{x \in B}\left(\operatorname{int}_{2}\left(c l_{2}\left(\operatorname{int}_{2}(B)\right)\right)\right)(x)=0$.
and $\operatorname{int}_{3}(B)(a)=0, \operatorname{int}_{3}(B)(b)=1, \operatorname{int}_{3}(B)(c)=0$, $c l_{3}\left(\operatorname{int}_{3}(B)\right)(a)=0, c l_{3}\left(\operatorname{int}_{3}(B)\right)(b)=1, c l_{3}\left(\operatorname{int}_{3}(B)\right)(c)$ $=0$,
$\operatorname{int}_{3}\left(c l_{3}\left(\operatorname{int}_{3}(B)\right)\right)(a)=0, \operatorname{int}_{3}\left(c l_{2}\left(\operatorname{int}_{1}(B)\right)\right)(b)=1$, $\operatorname{int}_{3}\left(c l_{3}\left(\operatorname{int}_{3}(B)\right)\right)(c)=0$,
$\Longrightarrow \alpha \tau_{3}(B)=\inf _{x \in B}\left(\operatorname{int}_{3}\left(c l_{3}\left(\operatorname{int}_{3}(B)\right)\right)\right)(x)=0$.
and $\operatorname{int}_{3}(B)(a)=0, \operatorname{int}_{3}(B)(b)=1, \operatorname{int}_{3}(B)(c)=0$, $c l_{2}\left(\operatorname{int}_{3}(B)\right)(a)=1, c l_{2}\left(\operatorname{int}_{3}(B)\right)(b)=1, c l_{2}\left(\operatorname{int}_{3}(B)\right)(c)$ $=3 / 4$,
$\operatorname{int}_{1}\left(c l_{2}\left(\operatorname{int}_{3}(B)\right)\right)(a)=0, \operatorname{int}_{1}\left(c l_{2}\left(\operatorname{int}_{3}(B)\right)\right)(b)=3 / 4$, $\operatorname{int}_{1}\left(c l_{2}\left(\operatorname{int}_{3}(B)\right)\right)(c)=3 / 4$,
$\Longrightarrow \alpha \tau_{(1,2,3)}(B)=\inf _{x \in B}\left(\operatorname{int}_{1}\left(c l_{2}\left(\operatorname{int}_{3}(B)\right)\right)\right)(x)=3 / 4$.
and $\operatorname{int}_{1}(B)(a)=1, \operatorname{int}_{1}(B)(b)=0, \operatorname{int}_{1}(B)(c)=0$, $c l_{2}\left(\operatorname{int}_{1}(B)\right)(a)=1, c l_{2}\left(\operatorname{int}_{1}(B)\right)(b)=1, c l_{2}\left(\operatorname{int}_{1}(B)\right)(c)$ $=3 / 4$,
$\operatorname{int}_{3}\left(c l_{2}\left(\operatorname{int}_{1}(B)\right)\right)(a)=3 / 4, \operatorname{int}_{3}\left(c l_{2}\left(\operatorname{int}_{1}(B)\right)\right)(b)=1$, $\operatorname{int}_{3}\left(c l_{2}\left(\operatorname{int}_{1}(B)\right)\right)(c)=3 / 4$,
$\Longrightarrow \alpha \tau_{(3,2,1)}(B)=\inf _{x \in B}\left(\operatorname{int}_{3}\left(c_{2}\left(\operatorname{int}_{1}(B)\right)\right)\right)(x)=3 / 4$.
$\therefore \alpha \tau_{(1,2,3)}(B)=\alpha \tau_{(3,2,1)}(B)$. Therefore $\alpha \tau_{(1,2,3)}=$ $\alpha \tau_{(3,2,1)}, \alpha \tau_{1} \subseteq \alpha \tau_{(1,2,3)}, \alpha \tau_{2} \subseteq \alpha \tau_{(1,2,3)}$, and $\alpha \tau_{3} \subseteq$ $\alpha \tau_{(1,2,3)}$.

Lemma 9. If $\left(X, \tau_{1}, \tau_{2}, \tau_{3}\right)$ is a FTTS, then $\vDash \tau_{1} \equiv \tau_{3} \longrightarrow$ $\alpha \tau_{(1,2,3)} \equiv \alpha \tau_{(3,2,1)}$.

Proof. From Theorem (2.2)-(3) in [10], we have $\left[\left(G \in \tau_{1}\right) \wedge\right.$ $\left.\left(G \in \tau_{3}\right)\right]=\left[\left(G \equiv \operatorname{int}_{1}(G)\right) \wedge\left(G \equiv \operatorname{int}_{3}(G)\right)\right]=[(G \subseteq$ $\left.\left.\operatorname{int}_{1}(G)\right) \wedge\left(\operatorname{int}_{1}(G) \subseteq G\right) \wedge\left(G \subseteq \operatorname{int}_{3}(G)\right) \wedge\left(\operatorname{int}_{3}(G) \subseteq G\right)\right] \leq$ $\left[\left(G \subseteq \operatorname{int}_{3}(G)\right) \wedge\left(G \subseteq \operatorname{int}_{1}(G)\right)\right] \leq\left[\left(c l_{2}(G) \subseteq c_{2}\left(\operatorname{int}_{3}(G)\right)\right) \wedge\right.$ $\left.\left(c l_{2}(G) \subseteq l_{2}\left(\operatorname{int}_{1}(G)\right)\right)\right] \leq\left[\left(G \subseteq l_{2}\left(\operatorname{int}_{3}(G)\right)\right) \wedge(G \subseteq\right.$ $\left.\left.c l_{2}\left(\operatorname{int}_{1}(G)\right)\right)\right] \leq\left[\left(\operatorname{int}_{1}(G) \subseteq \operatorname{int}_{1}\left(\operatorname{cl}_{2}\left(\operatorname{int}_{3}(G)\right)\right)\right) \wedge\left(\operatorname{int}_{3}(G) \subseteq\right.\right.$ $\left.\left.\operatorname{int}_{3}\left(c l_{2}\left(\operatorname{int}_{1}(G)\right)\right)\right)\right]=\left[\left(G \subseteq \operatorname{int}_{1}\left(\operatorname{cl}_{2}\left(\operatorname{int}_{3}(G)\right)\right)\right) \wedge(G \subseteq\right.$ $\left.\left.\operatorname{int}_{3}\left(\operatorname{cl}_{2}\left(\operatorname{int}_{1}(G)\right)\right)\right)\right]=\left[\left(G \in \alpha \tau_{(1,2,3)}\right) \wedge\left(G \in \alpha \tau_{(3,2,1)}\right)\right]$.

Therefore $\alpha \tau_{(1,2,3)} \equiv \alpha \tau_{(3,2,1)}$.
Theorem 10. If $\left(X, \tau_{1}, \tau_{2}, \tau_{3}\right)$ is a FTTS, then $\vDash G \in \alpha \mathscr{F}_{(1,2,3)}$ $\longleftrightarrow \forall x\left(x \in c l_{1}\left(\operatorname{int}_{2}\left(l_{3}(G)\right)\right) \longrightarrow x \in G\right)$.

Proof. From Lemma 3-(ii), we have $[\forall x(x \quad \in$ $\left.\left.\left.c l_{1}\left(\operatorname{int}_{2}\left(c l_{3}(G)\right)\right) \longrightarrow x \in G\right)\right)\right]=[\forall x(x \in X \sim G$ $\left.\longrightarrow x \in X \sim \operatorname{cl}_{1}\left(\operatorname{int}_{2}\left(c l_{3}(G)\right)\right)\right]=\inf _{x \in X \sim G}(X \sim$ $\left.c l_{1}\left(\operatorname{int}_{2}\left(c l_{3}(G)\right)\right)\right)(x)=\inf _{x \in X \sim G}\left(\operatorname{int}_{1}\left(c l_{2}\left(\operatorname{int}_{3}(X \sim G)\right)\right)\right)(x)=$ $\left[X \sim G \in \alpha \tau_{(1,2,3)}\right]=[G \in \alpha \mathscr{F}(1,2,3)]$.

Lemma 11. If $\left(X, \tau_{1}, \tau_{2}, \tau_{3}\right)$ is a FTTS, then
(i) $\vDash H \doteq c l_{2}\left(\operatorname{int}_{3}(G)\right) \wedge G \in \alpha \tau_{(1,2,3)} \longrightarrow G \subseteq \operatorname{int}_{1}(H)$;
(ii) $\vDash H \doteq \operatorname{int}_{2}\left(c l_{3}(G)\right) \wedge G \in \alpha \mathscr{F}_{(1,2,3)} \longrightarrow c l_{1}(H) \subseteq G$.

Proof.
(i) $\left[\left(H \doteq c_{2}\left(\operatorname{int}_{3}(G)\right)\right) \wedge\left(G \in \alpha \tau_{(1,2,3)}\right)\right]=[(H \subseteq$ $\left.c_{2}\left(\operatorname{int}_{3}(G)\right) \quad \wedge \quad l_{2}\left(\operatorname{int}_{3}(G)\right) \quad \subseteq H\right) \wedge(G \subseteq$ $\left.\left.\operatorname{int}_{1}\left(c l_{2}\left(\operatorname{int}_{3}(G)\right)\right)\right)\right] \leq\left[\left(c l_{2}\left(\operatorname{int}_{3}(G)\right) \subseteq H\right) \wedge\right.$ $\left.\left(G \subseteq \operatorname{int}_{1}\left(c l_{2}\left(\operatorname{int}_{3}(G)\right)\right)\right)\right] \leq\left[\left(\operatorname{int}_{1}\left(c l_{2}\left(\operatorname{int}_{3}(G)\right)\right) \subseteq\right.\right.$ $\left.\left.\operatorname{int}_{1}(H)\right) \wedge\left(G \subseteq \operatorname{int}_{1}\left(c l_{2}\left(\operatorname{int}_{3}(G)\right)\right)\right)\right] \leq\left[G \subseteq \operatorname{int}_{1}(H)\right]$.
(ii) From Theorem 2.2-(5) in [10], we have $\left[\left(H \equiv \operatorname{int}_{2}\left(c l_{3}(G)\right)\right) \wedge\left(G \in \alpha \mathscr{F}_{(1,2,3)}\right)\right]=[(H \subseteq$ $\left.\operatorname{int}_{2}\left(c l_{3}(G)\right) \wedge \quad \operatorname{int}_{2}\left(c l_{3}(G)\right) \subseteq H\right) \wedge(X \quad \sim$ $\left.\left.G \in \alpha \tau_{(1,2,3)}\right)\right] \leq\left[\left(H \subseteq \operatorname{int}_{2}\left(\operatorname{cl}_{3}(G)\right) \wedge(X \sim\right.\right.$ $\left.\left.G \subseteq \operatorname{int}_{1}\left(c l_{2}\left(\operatorname{int}_{3}(X \sim G)\right)\right)\right)\right] \leq\left[\left(c l_{1}(H) \subseteq\right.\right.$ $\left.c l_{1}\left(\operatorname{int}_{2}\left(c l_{3}(G)\right)\right) \wedge\left(X \sim G \subseteq X \sim c l_{1}\left(\operatorname{int}_{2}\left(l_{3}(G)\right)\right)\right)\right] \leq$ $\left[\left(c l_{1}(H) \subseteq c l_{1}\left(\operatorname{int}_{2}\left(c l_{3}(G)\right)\right) \wedge\left(c l_{1}\left(\operatorname{int}_{2}\left(c l_{3}(G)\right)\right) \subseteq\right.\right.\right.$ $G)] \leq\left[c l_{1}(H) \subseteq G\right]$.

Theorem 12. If $\left(X, \tau_{1}, \tau_{2}, \tau_{3}\right)$ is a FTTS, then
(i) $\vDash \exists H\left(H \in \tau_{3} \wedge H \subseteq G \subseteq \operatorname{int}_{1}\left(c l_{2}(H)\right)\right) \longrightarrow G \in$ $\alpha \tau_{(1,2,3)}$;
(ii) $\vDash \exists K\left(K \in \mathscr{F}_{3} \wedge c l_{1}\left(\operatorname{int}_{2}(K)\right) \subseteq G \subseteq K\right) \longrightarrow G \in$ $\alpha \mathscr{F}_{(1,2,3)}$.

Proof.
(i) From Theorem (2.2)-(3) in [10], we have
$\left[\exists H\left(H \in \tau_{3} \bigwedge H \subseteq G \subseteq \operatorname{int}_{1}\left(c l_{2}(H)\right)\right)\right]=$ $\sup _{H \in P(X)}\left(\left[H \equiv \operatorname{int}_{3}(H)\right] \bigwedge[H \subseteq G] \bigwedge[G\right.$ $\left.\left.\subseteq \operatorname{int}_{1}\left(c l_{2}(H)\right)\right]\right) \leq \sup _{H \in P(X)}\left(\left[\left(H \subseteq \operatorname{int}_{3}(H)\right)\right.\right.$
$\left.\wedge\left(\operatorname{int}_{3}(H) \subseteq H\right)\right] \bigwedge\left[\operatorname{int}_{3}(H) \subseteq \operatorname{int}_{3}(G)\right] \bigwedge[G \subseteq$ $\left.\left.\operatorname{int}_{1}\left(c l_{2}(H)\right)\right]\right) \leq \sup _{H \in P(X)}\left(\left[H \subseteq \operatorname{int}_{3}(H)\right] \bigwedge\right.$ $\left.\left[\operatorname{int}_{3}(H) \subseteq \operatorname{int}_{3}(G)\right] \bigwedge\left[G \subseteq \operatorname{int}_{1}\left(c l_{2}(H)\right)\right]\right) \leq$ $\sup _{H \subseteq G}\left(\left[H \subseteq \operatorname{int}_{3}(G)\right] \bigwedge\left[G \subseteq \operatorname{int}_{1}\left(c l_{2}(H)\right)\right]\right) \leq$ $\sup _{H \subseteq G}\left(\left[H \subseteq \operatorname{int}_{3}(G)\right] \bigwedge\left[G \subseteq \operatorname{int}_{1}\left(c l_{2}(H)\right)\right]\right) \leq$ $\sup _{H \subseteq G}\left(\left[\operatorname{cl}_{2}(H) \subseteq c l_{2}\left(\operatorname{int}_{3}(G)\right)\right] \bigwedge[G \subseteq\right.$ $\left.\left.\operatorname{int}_{1}\left(c l_{2}(H)\right)\right]\right) \leq \sup _{H \subseteq G}\left(\left[\operatorname{int}_{1}\left(c l_{2}(H)\right) \subseteq\right.\right.$ $\left.\left.\operatorname{int}_{1}\left(c l_{2}\left(\operatorname{int}_{3}(G)\right)\right)\right] \bigwedge\left[G \quad \subseteq \quad \operatorname{int}_{1}\left(c l_{2}(H)\right)\right]\right) \leq$ $\sup _{H \subseteq G}\left[G \subseteq \operatorname{int}_{1}\left(c l_{2}\left(\operatorname{int}_{3}(G)\right)\right)\right]=\left[G \in \alpha \tau_{(1,2,3)}\right]$.
(ii) From (i) above and Theorem (2.2)-(5) in [10]. We have $\left[G \in \alpha \mathscr{F}_{(1,2,3)}\right]=\left[X \sim G \in \alpha \tau_{(1,2,3)}\right] \geq[\exists H(H \in$ $\left.\left.\tau_{3} \bigwedge H \subseteq X \sim G \subseteq \operatorname{int}_{1}\left(c l_{2}(H)\right)\right)\right]=[\exists H(H \in$ $\left.\left.\tau_{3} \bigwedge X \sim \operatorname{int}_{1}\left(c l_{2}(H)\right) \subseteq G \subseteq X \sim H\right)\right]=[\exists X \sim$ $H\left(X \sim H \in \mathscr{F}_{3} \bigwedge c l_{1}\left(\operatorname{int}_{2}(X \sim H)\right) \subseteq G \subseteq X \sim\right.$ $H)]=\left[\exists K\left(K \in \mathscr{F}_{3} \bigwedge c l_{1}\left(\operatorname{int}_{2}(K)\right) \subseteq G \subseteq K\right)\right]$.

3. $(1,2,3)-\alpha$-Neighborhood System in Fuzzifying Tritopological Spaces

Definition 13. If $\left(X, \tau_{1}, \tau_{2}, \tau_{3}\right)$ is a FTTS and $x \in X$. Then $\alpha N_{x}^{(1,2,3)} \in \mathfrak{J}(P(X))$ indicates the "(1,2,3)- α-neighborhood system of x " and defined as $G \in \alpha N_{x}^{(1,2,3)}:=$ $\exists H\left(H \in \alpha \tau_{(1,2,3)} \wedge x \in H \subseteq G\right)$, i.e., $\alpha N_{x}^{(1,2,3)}(G)=$ $\sup _{x \in H \subseteq G} \alpha \tau_{(1,2,3)}(H)$.

Theorem 14. If $\left(X, \tau_{1}, \tau_{2}, \tau_{3}\right)$ is a FTTS, then $\vDash G \in$ $\alpha \tau_{(1,2,3)} \longleftrightarrow \forall x\left(x \in G \longrightarrow \exists H\left(H \subseteq \operatorname{int}_{1}\left(c l_{2}\left(\operatorname{int}_{3}(G)\right)\right) \wedge\right.\right.$ $x \in H \subseteq G)$).

Proof. $\left[\forall x\left(x \in G \longrightarrow \exists H\left(H \subseteq \operatorname{int}_{1}\left(c l_{2}\left(\operatorname{int}_{3}(G)\right)\right) \wedge\right.\right.\right.$ $x \in H \subseteq G))]=\inf _{x \in G} \sup _{x \in H \subseteq G} \alpha \tau_{(1,2,3)}(H)=$ $\inf _{x \in G} \alpha N_{x}^{(1,2,3)}(G)=\alpha \tau_{(1,2,3)}(G)$.

Theorem 15. If $\left(X, \tau_{1}, \tau_{2}, \tau_{3}\right)$ is a FTTS and $G \in P(X)$, then
(i) $\vDash G \in \alpha \tau_{(1,2,3)} \longleftrightarrow \forall x(x \in G \longrightarrow \exists H(H \in$ $\left.\left.\alpha N_{x}^{(1,2,3)} \bigwedge H \subseteq G\right)\right)$,
(ii) $\vDash \tau_{1} \equiv \tau_{3} \longrightarrow N_{x}^{(1)}(G) \leq \alpha N_{x}^{(1,2,3)}(G)$.

Proof.
(i) From Theorem 14 we get

$$
\left[\forall x \left(x \in G \longrightarrow \exists H \left(H \in \alpha N_{x}^{(1,2,3)} \bigwedge H \subseteq\right.\right.\right.
$$

$$
G))] \quad=\quad \inf _{x \in G} \sup _{H \subseteq G} \alpha N_{x}^{(1,2,3)}(H)=
$$

$$
\inf _{x \in G} \sup _{H \subseteq G} \sup _{x \in K \subseteq H} \alpha \tau_{(1,2,3)}(K)
$$

$$
\inf _{x \in G} \sup _{x \in K \subseteq G} \alpha \tau_{(1,2,3)}(K)=\alpha \tau_{(1,2,3)}(G)
$$

(ii) From Lemma 5 we get
$\alpha N_{x}^{(1,2,3)}(G) \quad=\quad \sup _{x \in H \subseteq G} \alpha \tau_{(1,2,3)}(H) \geq$ $\sup _{x \in H \subseteq G} \tau_{1}(H)=N_{x}^{(1)}(G)$.

Theorem 16. If $\left(X, \tau_{1}, \tau_{2}, \tau_{3}\right)$ is a FTTS, the mapping $\alpha N^{(1,2,3)}: X \longrightarrow \mathfrak{J}^{N}(P(X)), x \longmapsto \alpha N_{x}^{(1,2)}$, where $\mathfrak{J}^{N}(P(X))$
is the set of all normal fuzzy subset of $P(X)$, has the following properties:
(i) $\vDash G \in \alpha N_{x}^{(1,2,3)} \longrightarrow x \in G$,
(ii) $\vDash G \subseteq H \longrightarrow\left(G \in \alpha N_{x}^{(1,2,3)} \longrightarrow H \in \alpha N_{x}^{(1,2,3)}\right)$,
(iii) $\vDash G \in \alpha N_{x}^{(1,2,3)} \longrightarrow \exists K\left(K \in \alpha N_{x}^{(1,2,3)} \bigwedge K \subseteq\right.$ $G \bigwedge \forall y\left(y \in K \longrightarrow K \in \alpha N_{x}^{(1,2,3)}\right)$.

Proof.
(i) If $\left[G \in \alpha N_{x}^{(1,2,3)}\right]=0$, then (i) is obtained. If $[G \in$ $\left.\alpha N_{x}^{(1,2,3)}\right]=\sup _{x \in H \subseteq G} \alpha \tau_{(1,2,3)}(H)>0$, then $\exists H_{0}$ such that $x \in H_{0} \subseteq G$. Now we have $[x \in G]=1$.
Therefore $\left[G \in \alpha N_{x}^{(1,2,3)}\right] \leq[x \in G]$.
(ii) $\left[G \in \alpha N_{x}^{(1,2,3)}\right]=\sup _{x \in E \subseteq G} \alpha \tau_{(1,2,3)}(E) \leq$ $\sup _{x \in E \subseteq H} \alpha \tau_{(1,2,3)}(E)=\left[H \in \alpha N_{x}^{(1,2,3)}\right]$.
(iii) $\left[\exists K\left(K \in \alpha N_{x}^{(1,2,3)} \wedge K \subseteq G \bigwedge \forall y(y \in\right.\right.$ $\left.\left.K \longrightarrow K \in \alpha N_{y}^{(1,2,3)}\right)\right]=\sup _{K \subseteq G}\left(\alpha N_{x}^{(1,2,3)} \bigwedge\right.$ $\left.\inf _{y \in K} \alpha N_{y}^{(1,2,3)}(K)\right)=\sup _{K \subseteq G}\left(\alpha N_{x}^{(1,2,3)} \bigwedge \alpha \tau_{(1,2,3)}(K)=\right.$ $\sup _{K \subseteq G} \alpha \tau_{(1,2,3)}(K) \geq \sup _{x \in K \subseteq G} \alpha \tau_{(1,2,3)}(K)=$ $\alpha N_{x}^{(1,2,3)}(G)=\left[G \in \alpha N_{x}^{(1,2,3)}\right]$.

4. ($1,2,3$)- α-Derived Set and ($1,2,3$)- α-Closure Operator in Fuzzifying Tritopological Space

Definition 17. If $\left(X, \tau_{1}, \tau_{2}, \tau_{3}\right)$ is a FTTS, then $\alpha d_{(1,2,3)}(G)$ indicates the " $(1,2,3)-\alpha$-derived set of G " and defined as follows: $x \in \alpha d_{(1,2,3)}(G):=\forall H\left(H \in \alpha N_{x}^{(1,2,3)} \longrightarrow H \cap\right.$ $(G \sim\{x\}) \neq \emptyset)$, i.e., $\alpha d_{(1,2,3)}(G)(x)=\inf _{H \cap(G \sim\{x\})=\emptyset}(1-$ $\left.\alpha N_{x}^{(1,2,3)}(H)\right)$.

Lemma 18. $\alpha d_{(1,2,3)}(G)(x)=1-\alpha N_{x}^{(1,2,3)}((X \sim G) \cup\{x\})$.
Proof. $\alpha d_{(1,2,3)}(G)(x)=1-\sup _{H \cap(G \sim\{x\})=\emptyset} \alpha N_{x}^{(1,2,3)}(H)=$ $1-\sup _{H \cap(G \sim\{x\})=\emptyset} \sup _{x \in K \subseteq H} \alpha \tau_{(1,2,3)}(K)=1$ $\sup _{x \in K \subseteq(X \sim G) \cup\{x\}} \sup p_{x \in K \subseteq H} \alpha \tau_{(1,2,3)}(K)=1-$ $\sup _{x \in K \subseteq(X \sim G) \cup\{x\}} \alpha \tau_{(1,2,3)}(K)=1-\alpha N_{x}^{(1,2,3)}((X \sim G) \cup\{x\})$.

Theorem 19. If $\left(X, \tau_{1}, \tau_{2}, \tau_{3}\right)$ is a FTTS and $G, H \in P(X)$, then
(i) $\vDash \alpha d_{(1,2,3)}(\emptyset)=0$;
(ii) $\vDash G \subseteq H \longrightarrow \alpha d_{(1,2,3)}(G) \subseteq \alpha d_{(1,2,3)}(H)$;
(iii) $\vDash G \in \alpha \mathscr{F}_{(1,2,3)} \longleftrightarrow \alpha d_{(1,2,3)}(G) \subseteq G$;
(iv) $\vDash \tau_{1} \equiv \tau_{3} \longrightarrow \alpha d_{(1,2,3)}(G) \subseteq d_{1}(G)$, where $d_{1}(G)$ is the fuzzifying derived set of G with respect to τ_{1}.

Proof.
(i) From Lemma 18 we have
$\alpha d_{(1,2,3)}(\emptyset)(x)=1-\alpha N_{x}^{(1,2,3)}((X \sim \emptyset) \cup\{x\})=1-$ $\alpha N_{x}^{(1,2,3)}(X)=1-1=0$.
(ii) Let $G \subseteq H$, then from Lemma 18 and Theorem 16 -(ii) we get
$\alpha d_{(1,2,3)}(G)(x)=1-\alpha N_{x}^{(1,2,3)}((X \sim G) \cup\{x\}) \leq 1-$ $\alpha N_{x}^{(1,2,3)}((X \sim H) \cup\{x\})=\alpha d_{(1,2,3)}(H)(x)$
(iii) From Lemma 18 and Theorem 15 -(ii).We have
$\left[\alpha d_{(1,2,3)}(G) \subseteq G\right] \quad=\quad \inf _{x \in X \sim G}(1-$ $\left.\alpha d_{(1,2,3)}(G)(x)\right) \quad=\quad \inf _{x \in X \sim G} \alpha N_{x}^{(1,2,3)}((X \sim$ G) $\cup\{x\})=\inf _{x \in X \sim G} \alpha N_{x}^{(1,2,3)}(X \sim G)=$ $\inf _{x \in X \sim G} \sup _{x \in H \subseteq X \sim G} \alpha \tau_{(1,2,3)}(H)=\alpha \tau_{(1,2,3)}(X \sim G)=$ $\alpha \mathscr{F}_{(1,2,3)}(G)=\left[G \in \alpha \mathscr{F}_{(1,2,3)}(x)\right]$.
(iv) From Theorem 15 -(ii) and Lemma (5.1) in [9] we have
$\alpha d_{(1,2,3)}(G)=1-\alpha N_{x}^{(1,2,3)}((X \sim G) \cup\{x\}) \leq 1-$ $\alpha N_{x}^{(1)}((X \sim G) \cup\{x\})=d_{1}(G)(x)$.

Definition 20. If $\left(X, \tau_{1}, \tau_{2}, \tau_{3}\right)$ is a FTTS, then $\alpha c l_{(1,2,3)}(G)$ indicates the " $(1,2,3)$ - α-closure set of G " and defined as $x \in$ $\left.\alpha c l_{(1,2,3)}(G):=\forall H(H \supseteq G) \wedge\left(H \in \alpha \mathscr{F}_{(1,2,3)}\right) \longrightarrow x \in H\right)$, i.e., $\alpha c l_{(1,2,3)}(G)(x)=\inf _{x \notin H \supseteq G}\left(1-\alpha \mathscr{F}_{(1,2,3)}(H)\right)$.

Theorem 21. If $\left(X, \tau_{1}, \tau_{2}, \tau_{3}\right)$ is a FTTS, $G, H \in P(X)$ and $x \in$ X, then
(i) $\alpha c l_{(1,2,3)}(G)(x)=1-\alpha N_{x}^{(1,2,3)}(X \sim G)$;
(ii) $\vDash \operatorname{\alpha cl}_{(1,2,3)}(\emptyset)=0$;
(iii) $\vDash G \subseteq \alpha c l_{(1,2,3)}(G)$;
(iv) $\vDash \alpha c l_{(1,2,3)}(G)=\alpha d_{(1,2,3)}(G) \cup G$;
$(\mathrm{v}) \vDash x \in \alpha c l_{(1,2,3)}(G) \longleftrightarrow \forall H\left(H \in \alpha N_{x}^{(1,2,3)} \longrightarrow G \cap\right.$ $H \neq \emptyset)$;
(vi) $\vDash G \equiv \alpha c l_{(1,2,3)}(G) \longleftrightarrow G \in \alpha \mathscr{F}_{(1,2,3)}(G) ;$
(vii) $\vDash G \subseteq H \longrightarrow \alpha c l_{(1,2,3)}(G) \subseteq \alpha c l_{(1,2,3)}(H)$;
(viii) $\vDash H \doteq \alpha c l_{(1,2,3)}(G) \longrightarrow H \in \alpha \mathscr{F}_{(1,2,3)}$.

Proof.

(i) $\alpha c l_{(1,2,3)}(G)(x)=\inf _{x \notin H \supseteq G}\left(1-\alpha \mathscr{F}_{(1,2,3)}(H)=\right.$ $\inf _{x \notin H \supseteq G}\left(1-\alpha \tau_{(1,2,3)}(X \quad \sim H)\right)=1-$ $\sup _{x \in X \sim H \subseteq X \sim G} \alpha \tau_{(1,2,3)}(X \sim H)=1-N_{x}^{(1,2,3)}(X \sim G)$.
(ii) $\operatorname{\alpha cl}_{(1,2,3)}(\emptyset)(x)=1-\alpha N_{x}^{(1,2,3)}(X \sim \emptyset)=1-$ $\alpha N_{x}^{(1,2,3)}(X)=1-\sup _{x \in G \subseteq X} \alpha \tau_{(1,2,3)}(G)=1-1=0$.
(iii) If $G \in P(X)$ and for any $x \in X$ and if $x \notin G$, then $[x \in G] \leq\left[x \in \alpha c l_{(1,2,3)}(G)\right]$. If $x \in G$, then $\alpha c l_{(1,2,3)}(G)(x)=1-\alpha N_{x}^{(1,2,3)}(X \sim G)=1-0=1$. Thus $[x \in G] \leq\left[x \in \operatorname{\alpha cl}_{(1,2,3)}(G)\right] \Longrightarrow[G \subseteq$ $\left.\alpha c l_{(1,2,3)}(G)\right]=1$.
(iv) From Lemma 18 and (iii) above, for any $x \in X$ we have
$\left[x \in\left(\alpha d_{(1,2,3)}(G) \cup G\right)\right]=\max \left(\left(1-\alpha N_{x}^{(1,2,3)}(X \sim\right.\right.$ $G) \cup\{x\}), G(x))$. If $x \in G$, then $\left[x \in\left(\alpha d_{(1,2,3)}(G) \cup\right.\right.$ $G)]=G(x)=1=\left[x \in \alpha c l_{(1,2,3)}(G)\right]$. If $x \notin G$, then $\left[x \in\left(\alpha d_{(1,2,3)}(G) \cup G\right)\right]=1-\alpha N_{x}^{(1,2,3)}(X \sim G)=[x \in$ $\left.\alpha c l_{(1,2,3)}(G)\right]$.
Thus $\left[\alpha c l_{(1,2,3)}(G)\right]=\left[\alpha d_{(1,2,3)}(G) \cup G\right]$.
(v) $\left[\forall H\left(H \in \alpha N_{x}^{(1,2,3)} \longrightarrow G \cap H \neq \emptyset\right)\right]=\inf _{H \subseteq X \sim G}(1-$ $\left.\alpha N_{x}^{(1,2,3)}(H)\right)=1-\alpha N_{x}^{(1,2,3)}(X \sim G)=[x \in$ $\left.\alpha c l_{(1,2,3)}(G)\right]$.
(vi) From Theorem 19 -(iii), Lemma (8.2) in [15] and (iv) above, since
$\left[G \subseteq \alpha d_{(1,2,3)}(G) \cup G\right]=1$, we get
$\alpha \mathscr{F}_{(1,2,3)}(G)=\left[\alpha d_{(1,2,3)}(G) \subseteq G\right]=\left[\alpha d_{(1,2,3)}(G) \cup G \subseteq\right.$ $G]=\left[\alpha d_{(1,2,3)}(G) \cup G \subseteq G\right] \bigwedge\left[G \subseteq \alpha d_{(1,2,3)}(G) \cup G\right]=$ $\left[\alpha d_{(1,2,3)}(G) \cup G \equiv G\right]=\left[G \equiv \operatorname{\alpha cl}_{(1,2,3)}(G)\right]$.
(vii) If $G \subseteq H$, then $X \sim H \subseteq X \sim G$. From (i) above and Theorem 16 -(ii) we get

$$
\begin{aligned}
& \alpha c l_{(1,2,3)}(G)(x)=1-\alpha N_{x}^{(1,2,3)}(X \sim H) \leq 1- \\
& \alpha N_{x}^{(1,2,3)}(X \sim H)=\operatorname{\alpha cl}_{(1,2,3)}(H)(x)
\end{aligned}
$$

Thus $\alpha c l_{(1,2,3)}(G) \subseteq \alpha c l_{(1,2,3)}(H)$.
(viii) If $[G \subseteq H]=0$, then $\left[H \equiv \alpha c l_{(1,2,3)}(G)\right]=0$. Assume that
$[G \subseteq H]=1$, then $\left[H \subseteq \operatorname{\alpha cl}_{(1,2,3)}(G)\right]=1-$ $\sup _{x \in H \sim G} \alpha N_{x}^{(1,2,3)}(X \sim G)$ and
$\left[\alpha c l_{(1,2,3)}(G) \subseteq H\right]=\inf _{x \in X \sim H} \alpha N_{x}^{(1,2,3)}(X \sim$ $G)$. Therefore $\left[H \equiv \operatorname{\alpha cl}_{(1,2,3)}(G)\right] \quad=$ $\max \left(0, \inf _{x \in X \sim H} \alpha N_{x}^{(1,2,3)}(X\right.$
G) $\left.\sup _{x \in H \sim G} \alpha N_{x}^{(1,2,3)}(X \sim G)\right)$.

If $\left[H \equiv \alpha c l_{(1,2,3)}(G)\right]>c$, then $\inf _{x \in X \sim H} \alpha N_{x}^{(1,2,3)}(X \sim$ $G)>c+\sup _{x \in H \sim G} \alpha N_{x}^{(1,2,3)}(X \sim G)$.
For any $x \in X \sim H$, we get $\alpha N_{x}^{(1,2,3)}(X \sim$ $G)>c+\sup _{x \in H \sim G} \alpha N_{x}^{(1,2,3)}(X \sim G)$. Thus $\sup _{x \in E \subseteq X \sim G} \alpha \tau_{(1,2,3)}(E)>c+\sup _{x \in H \sim G} \alpha N_{x}^{(1,2,3)}(X \sim$ $G)$, i.e., $\exists E_{x}$ such that $x \in E_{x} \subseteq X \sim G$ and $\alpha \tau_{(1,2,3)}\left(E_{x}\right)>c+\sup _{x \in H \sim G} \alpha N_{x}^{(1,2,3)}(X \sim G)$. To prove that $E_{x} \subseteq X \sim H$. If $E_{x} \nsubseteq X \sim H$, then $\exists x^{\prime} \in E_{x}$ and $x^{\prime} \in X \sim H$. Hence we get $\sup _{x \in H \sim G} \alpha N_{x}^{(1,2,3)}(X \sim$ $G) \geq \alpha N_{x^{\prime}}^{(1,2,3)}(X \sim G) \geq \alpha \tau_{(1,2,3)}\left(E_{x}\right)>$ $c+\sup _{x \in H \sim G} \alpha N_{x}^{(1,2,3)}(X \sim H) \Longrightarrow$ Contradiction. Therefore $\alpha \mathscr{F}_{(1,2,3)}(H)=\alpha \tau_{(1,2,3)}(X \sim H)=$ $\inf _{x \in X \sim H} \alpha N_{x}^{(1,2,3)}(X \sim H) \geq \inf _{x \in X \sim H} \alpha \tau_{(1,2,3)}\left(E_{x}\right) \geq$ $\alpha \tau_{(1,2,3)}\left(E_{x}\right)>c+\sup _{x \in H \sim G} \alpha N_{x}^{(1,2,3)}(X \sim G)>c$, since c is arbitrary; thus $\left[H \equiv \alpha c l_{(1,2,3)}(G)\right] \leq[H \in$ $\left.\alpha \mathscr{F}_{(1,2,3)}\right]$.
5. (1,2,3)- α-Interior, (1,2,3)- α-Exterior, and $(1,2,3)-\alpha$-Boundary Operators in Fuzzifying Tritopological Space

Definition 22. If $\left(X, \tau_{1}, \tau_{2}, \tau_{3}\right)$ is a FTTS and $G \in P(X)$, then $\alpha \operatorname{int}_{(1,2,3)}(G)$ indicates the " $(1,2,3)-\alpha$-interior set of G " defined as $\alpha \operatorname{int}_{(1,2,3)}(G)(x)=\alpha N_{x}^{(1,2,3)}$

Theorem 23. If $\left(X, \tau_{1}, \tau_{2}, \tau_{3}\right)$ is a FTTS, $G, H \in P(X)$ and $x \in X$, then
(i) $\vDash \operatorname{int}_{(1,2,3)}(X) \equiv X$;
(ii) $\vDash \alpha \operatorname{int}_{(1,2,3)}(G) \subseteq G$;
(iii) $\vDash \tau_{1} \equiv \tau_{3} \longrightarrow \operatorname{int}_{1}(G) \subseteq \alpha \operatorname{int}_{(1,2,3)}(G)$;
(iv) $\vDash H \in \alpha \tau_{(1,2,3)} \bigwedge H \subseteq G \longrightarrow H \subseteq \alpha \operatorname{int}_{(1,2,3)}(G)$;
(v) $\vDash G \equiv \alpha \operatorname{int}_{(1,2,3)}(G) \longleftrightarrow G \in \alpha \tau_{(1,2,3)}$;
(vi) $\vDash G \subseteq H \longrightarrow \alpha \operatorname{int}_{(1,2,3)}(G) \subseteq \alpha \operatorname{int}_{(1,2,3)}(H)$;
(vii) $\vDash \operatorname{dint}_{(1,2,3)}(G) \equiv X \sim \alpha c l_{(1,2,3)}(X \sim G)$;
(viii) $\vDash \alpha \operatorname{int}_{(1,2,3)}(G) \equiv G \cap\left(X \sim \alpha d_{(1,2,3)}(X \sim G)\right)$;
$(\mathrm{ix}) \vDash H \equiv \alpha \operatorname{int}_{(1,2,3)}(G) \longrightarrow H \in \alpha \tau_{(1,2,3)}$.

Proof.
(i) $\operatorname{\alpha int}_{(1,2,3)}(X)(x)=\alpha N_{x}^{(1,2,3)}(X)=1 \Longrightarrow \alpha \operatorname{int}_{(1,2,3)}(X)$
$\equiv X$
(ii) Let $G \in P(X), x \in X$. If $x \notin G$, then $\alpha \operatorname{int}_{(1,2,3)}(G)(x)=$ $\alpha N_{x}^{(1,2,3)}=0 \Longrightarrow \alpha \operatorname{int}_{(1,2,3)}(G) \subseteq G$.
(iii) From Theorem 15 -(ii) we have
$\operatorname{int}_{1}(G)(x)=N_{x}^{(1)}(G) \leq \alpha N_{x}^{(1,2,3)}(G)=$ $\alpha \operatorname{int}_{(1,2,3)}(G)(x)$. Therefore $\operatorname{int}_{1}(G)(x) \subseteq \alpha \operatorname{int}_{(1,2,3)}(G)$.
(iv) If $H \nsubseteq G$, then the result holds.

If $H \subseteq G$, then
$\left[H \subseteq \alpha \operatorname{int}_{(1,2,3)}(G)\right]=\inf _{x \in H} \alpha \operatorname{int}_{(1,2,3)}(G)(x)=$ $\inf _{x \in H} \alpha N_{x}^{(1,2,3)}(G) \geq \inf _{x \in H} \alpha N_{x}^{(1,2,3)}(H)=$ $\alpha \tau_{(1,2,3)}(H)=\left[\left(H \in \alpha \tau_{(1,2,3)}\right) \wedge(H \subseteq G)\right]$.
(v) $\left[G \equiv \alpha \operatorname{int}_{(1,2,3)}(G)\right]=\min \left(\inf _{x \in G} \alpha \operatorname{int}_{(1,2,3)}(G)(x)\right.$, $\left.\inf _{x \in X \sim G}\left(1 \quad-\quad \alpha \operatorname{int}_{(1,2,3)}(G)(x)\right)\right)=$ $\min \left(\inf _{x \in G} \alpha N_{x}^{(1,2,3)}(G), \inf _{x \in X \sim G}\left(1-\alpha N_{x}^{(1,2,3)}(G)\right)\right)=$ $\inf _{x \in G} \alpha N_{x}^{(1,2,3)}(G)=\alpha \tau_{(1,2,3)}(G)=\left[G \in \alpha \tau_{(1,2,3)}\right]$
(vi) From Definition 22 and Theorem 16 -(ii) the proof follows.
(vii) From Theorem 21 -(i) we have $\left(X \sim \operatorname{\alpha cl}_{(1,2,3)}(X \sim\right.$ $G))(x)=1-\left(1-\alpha N_{x}^{(1,2,3)}(G)\right)=\alpha N_{x}^{(1,2,3)}(G)=$ $\alpha \operatorname{int}_{(1,2,3)}(G)(x)$. Therefore $\alpha \operatorname{int}_{(1,2,3)}(G)=X \sim$ $\alpha_{(1,2,3)}(X \sim G)$.
(viii) From Lemma 18 we get
$\left[G \cap\left(X \sim \alpha d_{(1,2,3)}(X \sim G)\right)\right]=\min (G(x)$, $\left.\alpha N_{x}^{(1,2,3)}(G \cup\{x\})\right)$. If $x \notin G$, then
$\left[G \cap\left(X \sim \alpha d_{(1,2,3)}(X \sim G)\right)\right]=0=\alpha N_{x}^{(1,2,3)}(G)=$ $\alpha \operatorname{int}_{(1,2,3)}(G)(x)$. If $x \in G$, then
$\left[G \cap\left(X \sim \alpha d_{(1,2,3)}(X \sim G)\right)\right]=\alpha N_{x}^{(1,2,3)}(G)=$ $\alpha \operatorname{int}_{(1,2,3)}(G)(x)$. Therefore

$$
\alpha \operatorname{int}_{(1,2,3)}(G)=G \cap\left(X \sim \alpha d_{(1,2,3)}(X \sim G)\right) .
$$

(ix) From Theorem 21 -(ix) and (vii) above we get

$$
\begin{aligned}
& {\left[H \doteq \operatorname{int}_{(1,2,3)}(G)\right]=\left[X \sim H \doteq \alpha c l_{(1,2,3)}(X \sim G)\right] \leq} \\
& {\left[X \sim H \in \alpha \mathscr{F}_{(1,2,3)}\right]=\left[H \in \alpha \tau_{(1,2,3)}\right] .}
\end{aligned}
$$

Definition 24. If $\left(X, \tau_{1}, \tau_{2}, \tau_{3}\right)$ is a FTTS and $G \subseteq X$. Then $\alpha \operatorname{ext}_{(1,2,3)}(G)$ indicates the " $(1,2,3)-\alpha$-exterior set of G " and defined as $x \in \operatorname{ext}_{(1,2,3)}(G):=x \in \alpha \operatorname{int}_{(1,2,3)}(X \sim G)$, i.e., $\operatorname{\alpha ext}_{(1,2,3)}(G)(x)=\operatorname{dint}_{(1,2,3)}(X \sim G)(x)$.

Theorem 25. If $\left(X, \tau_{1}, \tau_{2}, \tau_{3}\right)$ is a FTTS and $G \subseteq X$. Then
(i) $\vDash \operatorname{dext}_{(1,2,3)}(\emptyset) \equiv X$;
(ii) $\vDash \operatorname{ext}_{(1,2,3)}(G) \subseteq X \sim G$;
(iii) $\vDash \tau_{1} \equiv \tau_{3} \longrightarrow \operatorname{ext}_{1}(G) \subseteq \operatorname{ext}_{(1,2,3)}(G)$;
(iv) $\vDash G \in \alpha \mathscr{F}_{(1,2,3)} \longleftrightarrow \operatorname{ext}_{(1,2,3)}(G) \equiv X \sim G$;
(v) $\vDash H \in \alpha \mathscr{F}_{(1,2,3)} \wedge G \subseteq H \longrightarrow X \sim H \subseteq \alpha \operatorname{ext}_{(1,2,3)}(G)$;
(vi) $\vDash H \subseteq G \longrightarrow \operatorname{ext}_{(1,2,3)}(H) \subseteq \alpha \operatorname{ext}_{(1,2,3)}(G)$;
(vii) $\vDash \operatorname{ext}_{(1,2,3)}(G) \equiv(X \sim G) \cap\left(X \sim \alpha d_{(1,2,3)}(G)\right)$;
(viii) $\left.\vDash \operatorname{ext}_{(1,2,3)}(G) \equiv X \sim \alpha c l_{(1,2,3)}(G)\right)$;
(ix) $\vDash x \in \operatorname{ext}_{(1,2,3)}(G) \longleftrightarrow \exists H\left(x \in H \in \alpha \tau_{(1,2,3)}\right.$ $\bigwedge H \cap G=\emptyset)$.

Proof. The proofs of (i) - (vii) follow from Theorem 23.
(ix) $\left[\exists H\left(x \in H \in \alpha \tau_{(1,2,3)} \wedge H \cap G=\emptyset\right)\right]=$ $\sup _{x \in H \subseteq(X \sim G)} \alpha \tau_{(1,2,3)}(H)=\alpha N_{x}^{(1,2,3)}(X \sim G)=$ $\alpha \operatorname{int}_{(1,2,3)}\left(X \sim{ }^{\sim} G\right)(x)=\alpha \operatorname{ext}_{(1,2,3)}(G)(x)$. By Definition 24

Definition 26. If $\left(X, \tau_{1}, \tau_{2}, \tau_{3}\right)$ is a FTTS and $G \subseteq X$, then $\alpha b_{(1,2,3)}(G)$ indicates the " $(1,2,3)-\alpha$-boundary of a set G " and defined as $x \in \alpha b_{(1,2,3)}(G):=\left(x \notin \alpha \operatorname{int}_{(1,2,3)}(G)\right) \bigwedge(x \notin$ $\left.\alpha \operatorname{int}_{(1,2,3)}(X \sim G)\right)$, i.e., $x \in \alpha b_{(1,2,3)}(G)(x):=\min (1-$ $\left.\alpha \operatorname{int}_{(1,2,3)}(G)(x)\right) \bigwedge\left(1-\alpha \operatorname{int}_{(1,2,3)}(X \sim G)(x)\right)$.

Lemma 27. If $\left(X, \tau_{1}, \tau_{2}, \tau_{3}\right)$ is a FTTS, $G \in P(X)$ and $x \in X$, then $\vDash x \in \alpha b_{(1,2,3)}(A) \longleftrightarrow \forall H\left(H \in \alpha N_{x}^{(1,2,3)} \longrightarrow(H \cap G \neq\right.$ Ø) $\bigwedge(H \cap(X \sim G)) \neq \emptyset)$.

Proof. $\left[\forall H\left(H \in \alpha N_{x}^{(1,2,3)} \longrightarrow(H \cap G \neq \emptyset) \bigwedge(H \cap\right.\right.$ $(X \sim G)) \neq \emptyset)]=\min \left(\inf _{H \subseteq G}\left(1-\alpha N_{x}^{(1,2,3)}(H)\right), \inf _{H \subseteq X \sim G}(1-\right.$ $\left.\left.\alpha N_{x}^{(1,2,3)}(H)\right)\right)=\min \left(1-\alpha N_{x}^{(1,2,3)}(G), 1-\alpha N_{x}^{(1,2,3)}(X \sim G)\right)=$ $\min \left(1-\alpha \operatorname{int}_{(1,2,3)}(G)(x), 1-\alpha \operatorname{int}_{(1,2,3)}(X \sim G)(x)\right)=[x \in$ $\left.\alpha b_{(1,2,3)}(G)\right]$.

Theorem 28. If $\left(X, \tau_{1}, \tau_{2}, \tau_{3}\right)$ is a FTTS and $G \in P(X)$, then
(i) $\vDash \alpha b_{(1,2,3)}(G) \equiv \alpha c l_{(1,2,3)}(G) \cap \alpha c l_{(1,2,3)}(X \sim G)$;
(ii) $\vDash \alpha b_{(1,2,3)}(G) \equiv \alpha b_{(1,2,3)}(X \sim G)$;
(iii) $\vDash x \sim \alpha b_{(1,2,3)}(G) \equiv \alpha \operatorname{int}_{(1,2,3)}(G) \cup \alpha \operatorname{int}_{(1,2,3)}(X \sim G)$;
(iv) $\vDash \alpha c l_{(1,2,3)}(G) \equiv G \cup \alpha b_{(1,2,3)}(G)$;
(v) $\vDash \alpha b_{(1,2,3)}(G) \subseteq G \longleftrightarrow G \in \alpha \mathscr{F}_{(1,2,3)}$;
(vi) $\vDash \alpha \operatorname{int}_{(1,2,3)}(G) \equiv G \cap\left(X \sim \alpha b_{(1,2,3)}(G)\right)$;
(vii) $\vDash\left(\alpha b_{(1,2,3)}(G) \cap G \equiv \emptyset\right) \longleftrightarrow \mathrm{A} \in \alpha \tau_{(1,2,3)} ;$
(viii) $\vDash \tau_{1} \equiv \tau_{3} \longrightarrow \alpha b_{(1,2,3)}(G) \subseteq b_{1}(G)$;
(ix) $\vDash X \sim \alpha b_{(1,2,3)}(G) \equiv \alpha \operatorname{int}_{(1,2,3)}(G) \cup \alpha \operatorname{ext}_{(1,2,3)}(X \sim G)$.

Proof.
(i) From Theorem 23 -(vii), we have
$\left(\alpha c l_{(1,2,3)}(G) \cap \operatorname{\alpha cl}_{(1,2,3)}(X \sim G)(x)\right)=$ $\min \left(\alpha c l_{(1,2,3)}(G)(x), \alpha c l_{(1,2,3)}(X \quad \sim G)(x)\right)=\min (1$ $\left.-\alpha \operatorname{int}_{(1,2,3)}(G)(x), 1-\operatorname{dint}_{(1,2,3)}(X \sim G)(x)\right)=$ $\alpha b_{(1,2,3)}(G)(x)$.
(ii) Since $\alpha b_{(1,2,3)}(G)(x)=\min \left(1-\alpha N_{x}^{(1,2,3)}(G)(x), 1-\right.$ $\left.\alpha N_{x}^{(1,2,3)}(X \sim G)(x)\right)=\min \left(1-\alpha N_{x}^{(1,2,3)}(X \quad \sim\right.$ $\left.G)(x), 1-\alpha N_{x}^{(1,2,3)}(G)(x)\right)=\alpha b_{(1,2,3)}(X \sim G)(x)$.
(iii) From (i) above and Theorem 23 -(vii), we get
$X \sim \alpha b_{(1,2,3)}(G) \equiv X \sim\left(\alpha c l_{(1,2,3)}(G) \cap \alpha c l_{(1,2,3)}(X \sim\right.$ $G))=\left(X \underset{\sim}{\sim} \alpha l_{(1,2,3)}(G)\right) \cup\left(X \sim \alpha c l_{(1,2,3)}(X \sim G)=\right.$ $\alpha \operatorname{int}_{(1,2,3)}(X \sim G) \cup \alpha \operatorname{int}_{(1,2,3)}(G)$.
(iv) If $x \in G$, then $\alpha_{c l}^{(1,2,3)}(G)(x)=1=(G \cup$ $\left.\alpha b_{(1,2,3)}(G)\right)(x)$. If $x \notin G$, then $\left(G \cup \alpha b_{(1,2,3)}(G)\right)(x)=$ $\alpha b_{(1,2,3)}(G)(x)=\min \left(1-\operatorname{int}_{(1,2,3)}(G)(x), 1-\right.$ $\left.\operatorname{dint}_{(1,2,3)}(X \sim G)(x)\right)=1-\operatorname{dint}_{(1,2,3)}(X \sim G)(x)=$ $\alpha c l_{(1,2,3)}(G)(x)$.
(v) From Theorem 19 -(iii), Theorem 21 -(v), Lemma (8.2) in [15] and (iv) above, we get
$G \in \alpha \mathscr{F}_{(1,2,3)} \longleftrightarrow \alpha d_{(1,2,3)}(G) \subseteq G \longleftrightarrow G \cup$ $\alpha d_{(1,2,3)}(G) \subseteq G \longleftrightarrow \alpha c l_{(1,2,3)}(G) \subseteq G \longleftrightarrow G \cup$ $\alpha b_{(1,2,3)}(G) \subseteq G \longleftrightarrow \alpha b_{(1,2,3)}(G) \subseteq G$
(vi) From Theorem 23 -(vii) and (vi) above, we get
$\alpha \operatorname{int}_{(1,2,3)}(G) \equiv X \sim \alpha^{c} l_{(1,2,3)}(X \sim G) \equiv X \sim((X \sim$ G) $\left.\cup \alpha b_{(1,2,3)}(X \sim G)\right) \equiv G \cap\left(X \sim \alpha b_{(1,2,3)}(X \sim G)\right) \equiv$ $G \cap\left(X \sim \alpha b_{(1,2,3)}(G)\right)$.
(vii) From Theorem 23 -(v) and (vi) above, we have $\left(\alpha b_{(1,2,3)}(G) \cap G \equiv \emptyset\right) \longleftrightarrow\left(X \sim \alpha b_{(1,2,3)}(G)\right) \cup(X \sim$ $G)) \equiv X \longleftrightarrow G \subseteq X \sim \alpha b_{(1,2,3)}(G) \longleftrightarrow G \cap(X \sim$ $\left.\alpha b_{(1,2,3)}(G)\right) \equiv G \longleftrightarrow \alpha \operatorname{int}_{(1,2,3)}(G) \equiv G \longleftrightarrow G \in$ $\alpha \tau_{(1,2,3)}$.
(viii) From Theorem 23 -(iii), we get $\alpha b_{(1,2,3)}(G)(x)=$ $\min \left(1-\alpha \operatorname{int}_{(1,2,3)}(G)(x), 1-\alpha \operatorname{int}_{(1,2,3)}(X \sim G)(x)\right) \leq$ $\min \left(1-\operatorname{int}_{1}(G)(x), 1-\operatorname{int}_{1}(G)(X \sim G)(x)=\alpha b_{1}(G)\right.$ $\alpha b_{(1,2,3)}(G) \subseteq b_{1}(G)(x)$.
(ix) From (iii) above, we have
$X \sim \alpha b_{(1,2,3)}(G) \equiv \alpha \operatorname{int}_{(1,2,3)}(G) \cup \alpha \operatorname{int}_{(1,2,3)}(X \sim G) \equiv$ $\alpha \operatorname{int}_{(1,2,3)}(G) \cup \alpha \operatorname{ext}_{(1,2,3)}(G)$.

6. (1,2,3)- α-Convergence of Nets in Fuzzifying Tritopological Spaces

Definition 29. If $\left(X, \tau_{1}, \tau_{2}, \tau_{3}\right)$ is a FTTS, then the class of all nets in X is defined as $N(X)=\{S$ such that $S: D \longrightarrow X$, where (D, \geq) is a directed set $\}$.

Definition 30. If ($X, \tau_{1}, \tau_{2}, \tau_{3}$) is a FTTS, then the binary fuzzy predicates $\triangleright_{(1,2,3)(1,2,3)}^{\alpha}, \propto_{(1,2,3)}^{\alpha} \in \mathfrak{J}(N(X) \times X)$, are defined as

$$
\begin{aligned}
& S \triangleright_{(1,2,3)}^{\alpha} x:=\forall G\left(G \in \alpha N_{x}^{(1,2,3)} \longrightarrow S \underset{\sim}{\subseteq} G\right), \\
& S \propto_{(1,2,3)}^{\alpha} x:=\forall G\left(G \in \alpha N_{x}^{(1,2,3)} \longrightarrow S \underset{\sim}{\check{L}} G\right), S \in \\
& N(X),
\end{aligned}
$$

where $S \triangleright_{(1,2,3)}^{\alpha} x$ stand for " S is $(1,2,3)-\alpha$-convergence to x " and $S \alpha_{(1,2,3)}^{\alpha} x$ stand for " x is (1,2,3)- α-accumulation point of S ". Also, the binary crisp predicate $\underset{\sim}{~}$ is "almost in" and $\underset{\sim}{\square}$ is "often in".

Definition 31. Let $T \in N(X)$. One has the following fuzzy sets: $\lim _{(1,2,3)}^{\alpha} T(x)=\left[T \triangleright_{(1,2,3)}^{\alpha} x\right]$ is $(1,2,3)-\alpha$-limit of T;
$a d h_{(1,2,3)}^{\alpha, 2} T(x)=\left[T \propto_{(1,2,3)}^{\alpha} x\right]$ is $(1,2,3)-\alpha$-adherence of T.
Theorem 32. If $\left(X, \tau_{1}, \tau_{2}, \tau_{3}\right)$ is a FTTS $x \in X, G \in P(X)$, and $S \in N(X)$, then
(i) $\vDash \exists S\left((S \subseteq G \sim\{x\}) \wedge\left(S \triangleright_{(1,2,3)}^{\alpha} x\right)\right) \longrightarrow x \in$ $\alpha d_{(1,2,3)}(G)$;
(ii) $\vDash \exists S\left((S \subseteq G) \bigwedge\left(S \triangleright_{(1,2,3)}^{\alpha} x\right)\right) \longrightarrow x \in \alpha c l_{(1,2,3)}(G)$;
(iii) $\vDash G \in \alpha \mathscr{F}_{(1,2,3)} \longrightarrow \forall S\left(S \subseteq G \longrightarrow \lim _{(1,2,3)}^{\alpha} S \subseteq G\right)$;
(iv) $\vDash \exists T\left((T<S) \bigwedge\left(T \triangleright_{(1,2,3)}^{\alpha} x\right)\right) \longrightarrow S \propto_{(1,2,3)}^{\alpha} x$, where $T<S$ standing for " T is a subnet of S ".

Proof.
(i) $\left[\exists S\left((S \subseteq G \sim\{x\}) \bigwedge\left(S \triangleright_{(1,2,3)}^{\alpha} x\right)\right)\right]=$ $\sup _{S \subseteq G \sim\{x\}} \inf _{S \not \subset G}\left(1-\alpha N_{x}^{(1,2,3)}(H)\right)$. Now, since $S \subseteq$ $G \sim\{x\}$, then $S \nsubseteq(X \sim G) \cup\{x\}$ and this implies $S \underset{\sim}{\not}(X \sim G) \cup\{x\}$. Therefore
$\inf _{S \notin G}\left(1-\alpha N_{x}^{(1,2,3)}(H)\right) \leq 1-\alpha N_{x}^{(1,2,3)}((X \sim G) \cup$ $\{x\})=\left[x \in \alpha d_{(1,2,3)}(G)\right]$.
(ii) If $x \in G$, then from Theorem 21 -(i) and (i) above we have
$\left[\exists S\left((S \subseteq G) \bigwedge\left(S \triangleright_{(1,2,3)}^{\alpha} x\right)\right)\right]=\sup _{S \subseteq G} \inf _{S \nsubseteq G}(1-$ $\left.\alpha N_{x}^{(1,2,3)}(H)\right) \leq 1-\alpha N_{x}^{(1,2,3)}(X \sim G)=\widetilde{[x} \in$ $\left.\alpha c l_{(1,2,3)}(G)\right]$.
If $x \notin G$, then $G \sim\{x\}=G$. From Theorem 21 -(i) and (i) above we have
$\left[\exists S\left((S \subseteq G) \bigwedge\left(S \triangleright_{(1,2,3)}^{\alpha} x\right)\right)\right]=[\exists S((S \subseteq G \sim$ $\left.\left.\{x\}) \wedge\left(S \triangleright_{(1,2,3)}^{\alpha} x\right)\right)\right] \leq 1-\alpha N_{x}^{(1,2,3)}(X \sim G)=$ $\left.\alpha c l_{(1,2,3)}(G) \stackrel{(1,2,3}{=} x \in \alpha c l_{(1,2,3)}(G)\right]$.
(iii) From Theorem 21 -(vi) and (ii) above, we get
$\left[G \in \alpha \mathscr{F}_{(1,2,3)}\right]=\left[G \equiv \operatorname{ccl}_{(1,2,3)}(G)\right]=$ $\left[G \subseteq \alpha c l_{(1,2,3)}(G)\right] \bigwedge\left[\operatorname{\alpha cl}_{(1,2,3)}(G) \underset{(1,2,3}{\subseteq} G\right] \leq$ $\left[\alpha_{c l} l_{(1,2,3)}(G) \subseteq G\right]=\left[X \sim G \subseteq X \sim \operatorname{\alpha cl}_{(1,2,3)}(G)\right]=$ $\inf _{x \in X \sim G}\left(1-\alpha c l_{(1,2,3)}(G)(x)\right) \leq \inf _{x \in X \sim G}(1-$ $\left.\sup _{S \subseteq G} \inf _{S \nsubseteq H}\left(1-\alpha N_{x}^{(1,2,3)}(H)\right)\right)=\inf _{x \notin G} \inf _{S \subseteq G}(1-$ $\left.\inf _{S \nsubseteq H}\left(1-\alpha N_{x}^{(1,2,3)}(H)\right)\right)=[\forall S(S \subseteq G \longrightarrow$ $\left.\left.\lim _{(1,2,3)}^{\alpha} S \subseteq G\right)\right]$.
(iv) We have if $S \not \subset G$, then $S \not \subset G$, for any $S \in N(X)$ and any $G \subseteq X$. Therefore

$$
\begin{aligned}
& {\left[\exists T\left((T<S) \wedge\left(T \triangleright_{(1,2,3)}^{\alpha} x\right)\right)\right]=\sup _{T<S} \inf _{T \nsubseteq G}(1-} \\
& \left.\alpha N_{x}^{(1,2,3)}(G)\right)=\inf _{T \nsubseteq G}\left(1-\inf _{T<S} \alpha N_{x}^{(1,2,3)}(G)\right) \leq \\
& \inf _{T \nsubseteq G}\left(1-\alpha N_{x}^{(1,2,3)}(G)\right) \leq \inf _{S \nsubseteq G}\left(1-\alpha N_{x}^{(1,2,3)}(G)\right)= \\
& \inf _{S \not \subset G}\left(1-\alpha N_{x}^{(1,2,3)}(G)\right)=\left[S \propto_{(1,2,3)}^{\alpha} x\right] .
\end{aligned}
$$

Theorem 33. If $\left(X, \tau_{1}, \tau_{2}, \tau_{3}\right)$ is a FTTS and T is a universal net, then $\vDash \lim _{(1,2,3)}^{\alpha} T=a d h_{(1,2,3)}^{\alpha} T$.

Proof. $\lim _{(1,2,3)}^{\alpha} T(x)=\inf _{T \nsubseteq G}\left(1-\alpha N_{x}^{(1,2,3)}(G)\right)=\inf _{T \notin G}(1-$ $\left.\alpha N_{x}^{(1,2,3)}(G)\right)=a d h_{(1,2,3)}^{\alpha} T(x)$.

Lemma 34. If $\left(X, \tau_{1}, \tau_{2}, \tau_{3}\right)$ is a FTTS, then $\left.\vDash\left(T \triangleright_{(1,2,3)}^{\alpha} x\right)\right)$ $\longleftrightarrow \forall G\left(x \in G \in \alpha \tau_{(1,2,3)} \longrightarrow T \subseteq G\right)$.

Proof. If $H \subseteq G$ and $T \underset{\sim}{\not \subset} G$, then $T \underset{\sim}{\nsubseteq} H$.

$$
\left.\left[T \triangleright_{(1,2,3)}^{\alpha} x\right)\right]=\tilde{\inf }_{T \nsubseteq G}\left(1-\alpha N_{x}^{(1,2,3)}(G)\right)=1-
$$

$\sup _{T \nsubseteq G} \sup _{x \in H \subseteq G} \alpha \tau_{(1,2,3)}(H) \geq 1-\sup _{T \nsubseteq H, x \in H} \alpha \tau_{(1,2,3)}(H)=$ $\inf _{T \nsubseteq H, x \in H}\left(1-\alpha \tau_{(1,2,3)}(H)\right)=\left[\forall G\left(x \in G \in \alpha \tau_{(1,2,3)} \longrightarrow\right.\right.$ $T \subsetneq \tilde{G}]$.

Conversely,
$\left[\forall G\left(x \in G \in \alpha \tau_{(1,2,3)} \longrightarrow T \underset{\sim}{\subseteq} G\right)\right]=\inf _{T \nsubseteq G, x \in G}(1-$ $\left.\alpha \tau_{(1,2,3)}(G)\right)=\inf _{T \nsubseteq G, x \in G}\left(1-\inf _{x \in G} \sup _{H \subseteq G} \alpha N_{x}^{(1,2,3)}(H)\right) \geq$ $1-\sup _{T \nsubseteq G, x \in G} \alpha N_{x}^{(1,2,3)}(H)=\inf _{T \nsubseteq G, x \in G}\left(1-\alpha N_{x}^{(1,2,3)}(H)\right)=$ $\left[T \triangleright_{(1,2,3)}^{\alpha} \tilde{x}\right]$.

7. (1,2,3)- α-Convergence of Filters in Fuzzifying Tritopological Spaces

Definition 35. If $\left(X, \tau_{1}, \tau_{2}, \tau_{3}\right)$ is a FTTS and $F(X)$ is the set of all filters on X, then the binary fuzzy predicates $\triangleright_{(1,2,3)}^{\alpha}$, $\propto_{(1,2,3)}^{\alpha} \in \mathfrak{J}(F(X) \times X)$ are defined as

$$
K \triangleright_{(1,2,3)}^{\alpha} x:=\forall G\left(G \in \alpha N_{x}^{(1,2,3)} \longrightarrow G \in K\right)
$$

$K \propto_{(1,2,3)}^{\alpha, 2,3} x:=\forall G\left(G \in K \longrightarrow x \in \alpha c l_{(1,2,3)}(G)\right)$, where $K \in F(X)$.

Definition 36. The fuzzy sets

$\lim _{(1,2,3)}^{\alpha} K(x)=\left[K \triangleright_{(1,2,3)}^{\alpha} x\right]$ are $(1,2,3)$ - α-limit of K;
$\operatorname{adh}_{((1,2,3)}^{\alpha} K(x)=\left[K \propto_{(1,2,3)}^{\alpha} x\right]$ are (1,2,3)- α-adherence of K.

Theorem 37. If $\left(X, \tau_{1}, \tau_{2}, \tau_{3}\right)$ is a FTTS, then we have the following.
(1) If $T \in N(X)$ and K^{T} is the filter corresponding to T, i.e., $K^{T}=\{G: T \subseteq G\}$, then
(i) $\vDash \lim _{(1,2,3)}^{\alpha} K^{T}=\lim _{(1,2,3)}^{\alpha} T$;
(ii) $\vDash a d h_{(1,2,3)}^{\alpha} K^{T}=a d h_{(1,2,3)}^{\alpha} T$.
(2) If $K \in F(X)$ and T^{K} is the net corresponding to K, i.e., $T^{K}: D \longrightarrow X,(x, G) \longmapsto x,(x, G) \in D$, where $D=\{(x, G): x \in G \in K\},(x, G) \geq(y, H)$ iff $G \subseteq H$, then

$$
\begin{aligned}
& \text { (i) } \vDash \lim _{(1,2,3)}^{\alpha} T^{K}=\lim _{(1,2,3)}^{\alpha} K \\
& \text { (ii) } \vDash \operatorname{adh}_{(1,2,3)}^{\alpha} T^{K}=\operatorname{adh}_{(1,2,3)}^{\alpha} K .
\end{aligned}
$$

Proof.

(1)
(i) $\lim _{(1,2,3)}^{\alpha} K^{T}(x)=\inf _{G \notin K^{T}}\left(1-\alpha N_{x}^{(1,2,3)}(G)\right)=$ $\inf _{T \nsubseteq G}\left(1-\alpha N_{x}^{(1,2,3)}(G)\right)=\lim _{(1,2,3)}^{\alpha} T$.
(ii) $a d h_{(1,2,3)}^{\alpha} K^{T}=\inf _{G \in K^{T}} \alpha c l_{(1,2,3)}(G)(x)=$ $\inf _{T \subset G}\left(1-\alpha N_{x}^{(1,2,3)}(X \sim G)\right)=\inf _{T \nsubseteq X \sim G}(1-$ $\left.\alpha N_{x}^{(\tilde{1}, 2,3)}(X \sim G)\right)=\inf _{T \not \subset X \sim G}\left(1-\alpha N_{x}^{(\tilde{1}, 2,3)}(X \sim\right.$ $G)=a d h_{(1,2,3)}^{\alpha} T$.
(2) Similar to (i) above
(i) $\lim _{(1,2,3)}^{\alpha} T^{K}=\left[T^{K} \triangleright_{(1,2,3)}^{\alpha} x\right]=\inf _{T^{K} \notin G}(1-$ $\left.\alpha N_{x}^{(1,2,3)}(G)\right)=\inf _{G \notin K}\left(1-\alpha N_{x}^{(1,2, \tilde{3})}(G)\right)=$
$\lim _{x}^{\alpha}, ~$ $\lim _{(1,2,3)}^{\alpha,} K$.
(ii) $\operatorname{adh}_{(1,2,3)}^{\alpha} T^{K}(x)=\left[T^{K} \propto_{(1,2,3)}^{\alpha} x\right]=\inf _{T^{K} \notin G}(1-$ $\left.\alpha N_{x}^{(1,2,3)}(G)\right)=\inf _{X \sim G \in K} \alpha c l_{(1,2,3)}(X \sim G)=$ $\operatorname{adh}_{(1,2,3)}^{\alpha} K$.

8. Conclusion

The main contribution of the present paper is to give characterization of tri- α-open sets in fuzzifying tritopological space. We also define the concepts of tri- α-closed sets, tri-α-neighborhood system, tri- α-interior, tri- α-closure, tri- α-derived, tri- α-boundary, tri- α-exterior, and tri- α convergence in fuzzifying tritopological spaces and some basics of such spaces. We present some problems for future study.
(1) Study the results of the present paper by considering the quad- α-open sets in fuzzifying quad-topological spaces.
(2) Investigate relations between fuzzifying quad-topology, tritopology, bitopology and fuzzifying topology.
(3) Study of quad- α-separation axioms in fuzzifying quad-topological spaces.
(4) Generalize the results in the present work to soft fuzzifying topology.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] L. A. Zadeh, "Fuzzy sets," Information and Computation, vol. 8, pp. 338-353, 1965.
[2] C. L. Chang, "Fuzzy topological spaces," Journal of Mathematical Analysis and Applications, vol. 24, no. 1, pp. 182-190, 1968.
[3] C. K. Wong, "Fuzzy topology: product and quotient theorems," Journal of Mathematical Analysis and Applications, vol. 45, pp. 512-521, 1974.
[4] R. Lowen, "Fuzzy topological spaces and fuzzy compactness," Journal of Mathematical Analysis and Applications, vol. 56, no. 3, pp. 621-633, 1976.
[5] B. Hutton, "Uniformities on fuzzy topological spaces," Journal of Mathematical Analysis and Applications, vol. 58, no. 3, pp. 559571, 1977.
[6] B. Hutton, "Products of fuzzy topological spaces," Topology and Its Applications, vol. 11, no. 1, pp. 59-67, 1980.
[7] S. E. Rodabaugh, "Fuzzy addition in the L-fuzzy real line," Fuzzy Sets and Systems, vol. 8, no. 1, pp. 39-52, 1982.
[8] A. P. Šostak, "A fuzzy modification of the category of linearly ordered spaces," Commentationes Mathematicae Universitatis Carolinae, vol. 26, no. 3, pp. 421-442, 1985.
[9] M.-S. Ying, "A new approach for fuzzy topology (I)," Fuzzy Sets and Systems, vol. 39, no. 3, pp. 303-321, 1991.
[10] M.-S. Ying, "A new approach for fuzzy topology (II)," Fuzzy Sets and Systems, vol. 47, no. 2, pp. 221-232, 1992.
[11] M. S. Ying, "A new approach for fuzzy topology (III)," Fuzzy Sets and Systems, vol. 55, no. 2, pp. 193-207, 1993.
[12] O. Njåstad, "On some classes of nearly open sets," Pacific Journal of Mathematics, vol. 15, no. 3, pp. 961-970, 1965.
[13] M. Kovar, "On 3-topological version of θ-reularity," International Journal of Mathematics and Mathematical, vol. 23, no. 6, pp. 393-398, 2000.
[14] U. D. Tapi and R. Sharma, " α T -open sets in tritopological space," in Proceedings of the International Conference on Recent Trends in civil Engineering, Science and Management, Guru Gobind Singh College of Engineering and Research Center, Nashik, India, 2017.
[15] F. H. Khedr, F. M. Zeyada, and O. R. Sayed, "Fuzzy semicontinuity and fuzzy csemi-continuity in fuzzifying topology," Journal of Fuzzy Mathematics, vol. 7, no. 1, pp. 105-124, 1999.
[16] A. A. Allam, A. M. Zahran, A. K. Mousa, and H. M. Binshahnah, "Some results on semi open sets in fuzzifying bitopological spaces," Journal of New Theory, no. 13, pp. 59-75, 2016.
[17] F. H. Khedr, F. M. Zeyada, and O. R. Sayed, " α-continuity and $\mathrm{c} \alpha$-continuity in fuzzifying topology," Fuzzy Sets and Systems, vol. 116, no. 3, pp. 325-337, 2000.
[18] O. R. Sayed, " α-separation axioms based on Łukasiewicz logic," Hacettepe Journal of Mathematics and Statistics, vol. 43, no. 2, pp. 259-277, 2014.

The Scientific World Journal

Mathematical Problems in Engineering

Enfineering

Advances in

Multimedia

Modelling \& Simulation in Engineering

Hindawi

Submit your manuscripts at
www.hindawi.com

Computer Networks and Communications

Artificial Intelligence

