
On Trip Planning Queries in Spatial Databases

Feifei Li, Dihan Cheng, Marios Hadjieleftheriou,

George Kollios, and Shang-Hua Teng

Computer Science Department

Boston Universityflifeifei, dcheng, marioh, gkollios, stengg@cs.bu.edu
Abstract. In this paper we discuss a new type of query in Spatial Databases,

called the Trip Planning Query (TPQ). Given a set of points of interest P in

space, where each point belongs to a specific category, a starting point S and a

destination E, TPQ retrieves the best trip that starts at S, passes through at least

one point from each category, and ends atE. For example, a driver traveling from

Boston to Providence might want to stop to a gas station, a bank and a post office

on his way, and the goal is to provide him with the best possible route (in terms

of distance, traffic, road conditions, etc.). The difficulty of this query lies in the

existence of multiple choices per category. In this paper, we study fast approxi-

mation algorithms for TPQ in a metric space. We provide a number of approx-

imation algorithms with approximation ratios that depend on either the number

of categories, the maximum number of points per category or both. Therefore,

for different instances of the problem, we can choose the algorithm with the best

approximation ratio, since they all run in polynomial time. Furthermore, we use

some of the proposed algorithms to derive efficient heuristics for large datasets

stored in external memory. Finally, we give an experimental evaluation of the

proposed algorithms using both synthetic and real datasets.

1 Introduction

Spatial databases has been an active area of research in the last two decades and many

important results in data modeling, spatial indexing, and query processing techniques

have been reported [29, 17, 40, 37, 42, 26, 36, 4, 18, 27]. Despite these efforts, the queries

that have been considered so far concentrate on simple range and nearest neighbor

queries and their variants. However, with the increasing interest in intelligent transporta-

tion and modern spatial database systems, more complex and advanced query types

need to be supported.

In this paper we discuss a novel query in spatial databases, the Trip Planning Query

(TPQ). Assume that a database stores the locations of spatial objects that belong to

one or more categories from a fixed set of categories C. The user specifies two points

in space, a starting point S and a destination point E, and a subset of categories R,

This work was partially supported by NSF grants IIS-0133825, IIS-0308213, CCR-0311430,

and ITR CCR-0325630.

(R � C), and the goal is to find the best trip (route) that starts at S, passes through

at least one point from each category in R and ends at E. An example of a TPQ is

the following: A user plans to travel from Boston to Providence and wants to stop

at a supermarket, a bank, and a post office. Given this query, a database that stores

the locations of objects from the categories above (as well as other categories) should

compute efficiently a feasible trip that minimizes the total traveling distance. Another

possibility is to provide a trip that minimizes the total traveling time.

Efficient TPQ evaluation could become an important new feature of advanced nav-

igation systems and can prove useful for other geographic applications as has been

advocated in previous work [12]. For instance, state of the art mapping services like

MapQuest, Google Maps, and Microsoft Streets & Trips, currently support queries that

specify a starting point and only one destination, or a number of user specified desti-

nations. The functionality and usefulness of such systems can be greatly improved by

supporting more advanced query types, like TPQ. An example from Streets & Trips is

shown in Figure 1, where the user has explicitly chosen a route that includes an ATM, a

gas station and a Greek restaurant. Clearly, the system could not only optimize this route

by re-arranging the order in which these stops should be made, but it could also suggest

alternatives, based on other options available (e.g., from a large number of ATMs that

are shown on the map), that the user might not be aware of.

Fig. 1. A route from Boston University (1) to Boston downtown (5) that passes by a gas station

(2), an ATM (3), and a Greek restaurant (4) that have been explicitly specified by the user in that

order. Existing applications do not support route optimization, nor do they give suggestions of

more suitable routes, like the one presented to the right.

TPQ can be considered as a generalization of the Traveling Salesman problem (TSP)

[2, 1, 10] which is NP -hard. The reduction of TSP to TPQ is straightforward. By as-

suming that every point belongs to its own distinct category, any instance of TSP can

be reduced to an instance of TPQ. TPQ is also closely related to the group minimum

spanning/steiner tree problems [24, 20, 16], as we discuss later. From the current spa-

tial database queries, TPQ is mostly related to time parameterized and continuous NN

queries [5, 41, 36, 37], where we assume that the query point is moving with a constant

velocity and the goal is to incrementally report the nearest neighbors over time as the

query moves from an initial to a final location. However, none of the methods developed

to answer the above queries can be used to find a good solution for TPQ.

Contributions. This paper proposes a novel type of query in spatial databases and stud-

ies methods for answering this query efficiently. Approximation algorithms that achieve

various approximation ratios are presented, based on two important parameters: The to-

tal number of categories m and the maximum category cardinality �. In particular:

– We introduce four algorithms for answering TPQ queries, with various approxima-

tion ratios in terms of m and �. We give two practical, easy to implement solutions

better suited for external memory datasets, and two more theoretical in nature al-

gorithms that give tighter answers, better suited for main memory evaluation.

– We present various adaptations of these algorithms for practical scenarios, where

we exploit existing spatial index structures and transportation graphs to answer

TPQs.

– We perform an extensive experimental evaluation of the proposed techniques on

real transportation networks and points of interest, as well as on synthetic datasets

for completeness.

In parallel and independently with our work, Sharifzadeh et al. [31], addressed a

similar query called the Optimal Sequenced Route (OSR) Query. The main difference

between the TPQ and the OSR query is that in the latter, the user has to specify the

order of the groups that must be visited.

2 Preliminaries
This section defines formally the general TPQ problem and introduces the basic nota-

tion that will be used in the rest of the paper. Furthermore, a concise overview of related

work is presented.

2.1 Problem Formulation
We consider solutions for the TPQ problem on metric graphs. Given a connected graphG(V ; E) with n vertices V = fv1; : : : ; vng and s edges E = fe1; : : : ; esg, we denote

the cost of traversing a path vi; : : : ; vj with (vi; : : : ; vj) � 0.

Definition 1. G is a metric graph if it satisfies the following conditions:
1. (vi; vj) = 0 iff vi = vj
2. (vi; vj) = (vj ; vi)
3. The triangle inequality (vi; vk) + (vk; vj) � (vi; vj)

Given a set of m categories C = fC1; : : : ; Cmg (where m � n) and a mapping

function � : vi �! Cj that maps each vertex vi 2 V to a category Cj 2 C, the TPQ

problem can be defined as follows:

Definition 2. Given a set R � C (R = fR1; R2; : : : ; Rkg), a starting vertex S and an

ending vertex E, identify the vertex traversal T = fS; vt1 ; : : : ; vtk ; Eg (also called a

trip) from S toE that visits at least one vertex from each category inR (i.e.,[ki=1�(vti) =R) and has the minimum possible cost (T) (i.e., for any other feasible trip T 0 satisfy-

ing the condition above, (T) � (T 0)).
In the rest, the total number of vertices is denoted by n, the total number of cate-

gories by m, and the maximum cardinality of any category by �. For ease of exposition,

it will be assumed that R = C, thus k = m. Generalizations for R � C are straightfor-

ward (as will be discussed shortly).

2.2 Related Work

In the context of spatial databases, the TPQ problem has not been addressed before.

Most research has concentrated on traditional spatial queries and their variants, namely

range queries [18], nearest neighbors [15, 19, 29], continuous nearest neighbors [5, 37,

41], group nearest neighbors [26], reverse nearest neighbors [22], etc. All these queries

are fundamentally different from TPQ since they do not consider the computation of

optimal paths connecting a starting and an ending point, given a graph and intermediate

points.

Research in spatial databases also addresses applications in spatial networks rep-

resented by graphs, instead of the traditional Euclidean space. Recent papers that ex-

tend various types of queries to spatial networks are [27, 21, 30]. Most of the solutions

therein are based on traditional graph algorithms [10, 23]. Clustering in a road network

database has been studied in [43], where a very efficient data structure was proposed

based on the ideas of [32]. Likewise, here we study the TPQ problem on road networks,

as well.

The Traveling Salesman Problem (TSP) has received a lot of attention in the last

thirty years. A simple polynomial time 2-approximation algorithm for TSP on a metric

graph can be obtained using the Minimum Spanning Tree (MST) [10]. The best constant

approximation ratio for metric TSP is the 32 -approximation that can be derived by the

Christofides algorithm [9]. Recently, a polynomial time approximation scheme (PTAS)

for Euclidean TSP has been proposed by Arora [1]. For any fixed " > 0 and any n
nodes in R 2 the randomized version of the scheme can achieve a (1+")-approximation

in O(n logO(1" n) running time. Unfortunately, it seems that the TPQ does not admit a

PTAS. Furthermore, there are many approximation algorithms for variations of the TSP

problem, e.g., TSP with neighborhoods [11]. Nevertheless, the solutions to these prob-

lems cannot be applied directly to TPQ, since the problems are fundamentally different.

For more approximation algorithms for different versions of TSP, we refer to [2] and

the references therein. Finally, there are many practical heuristics for TSP [33], e.g., ge-

netic and greedy algorithms, that work well for some practical instances of the problem,

but no approximation bounds are known about them.

TPQ is also closely related to the Generalized Minimum Spanning Tree (GMST)

problem. The GMST is a generalized version of the MST problem where the vertices in

a graph G belong to m different categories. A tree T is a GMST of G if T contains at

least one vertex from each category and T has the minimum possible cost (total weight

or total length). Even though the MST problem is in P , it is known that the GMST is inNP . There are a few methods from the operational research and economics community

that propose heuristics for solving this problem [24] without providing a detailed anal-

ysis on the approximation bounds. The GMST problem is a special instance of an even

harder problem, the Group Steiner Tree (GST) problem [16, 20]. For example, poly-

logarithmic approximation algorithms have been proposed recently [14, 13]. Since the

GMST problem is a special instance of the GST problem, such bounds apply to GMST

as well.

3 Fast Approximation Algorithms

In this section we examine several approximation algorithms for answering the trip

planning query in main memory. For each solution we provide the approximation ratios

in terms of m and �. For simplicity, consider that we are given a complete graph G,
containing one edge per vertex pair vi; vj (1 � i; j � n) representing the cost of the

shortest path from vi to vj in the original graph G. Let Tk = fvt0 ; vt1 ; : : : ; vtkg denote

the partial trip that has visited k vertices, excluding S (where S = vt0). Trivially, it

can be shown that a trip Tk constructed on the induced graph G, has exactly the same

cost as in graph G, with the only difference being that a number of vertices visited

on the path from a given vertex to another are hidden. Hiding irrelevant vertices by

using the induced graph G guarantees that any trip T produced by a given algorithm

will be represented by exactly m significant vertices, which will simplify exposition

substantially in what follows. In addition, by removing from graph G all vertices that

do not belong to any of the m categories in R, we can reduce the size of the graph

and simplify the construction of the algorithms. Given a solution obtained using the

reduced graph and the complete shortest path information for graph G, the original

trip on graph G can always be acquired. In the following discussion, T Pa denotes an

approximation trip for problem P , while T Po denotes the optimal trip. When P is clear

from context the superscript is dropped. Furthermore, due to lack of space the proofs

for all theorems appear in the full version of this paper.

3.1 Approximation in Terms ofm
In this section we provide two greedy algorithms with tight approximation ratios with

respect to m.

Nearest Neighbor Algorithm The most intuitive algorithm for solving TPQ is to form

a trip by iteratively visiting the nearest neighbor of the last vertex added to the trip from

all vertices in the categories that have not been visited yet, starting from S. Formally,

given a partial trip Tk with k < m, Tk+1 is obtained by inserting the vertex vtk+1 which

is the nearest neighbor of vtk from the set of vertices in R belonging to categories that

have not been covered yet. In the end, the final trip is produced by connecting vtm toE. We call this algorithm ANN , which is shown in Algorithm 1.

Algorithm 1 ANN (G;R; S; E)
1: v = S, I = f1; : : : ;mg, Ta = fSg
2: for k = 1 to m do

3: v = the nearest NN(v;Ri) for all i 2 I
4: Ta fvg
5: I I � fig
6: end for

7: Ta fEg

Theorem 1. ANN gives a (2m+1 � 1)-approximation (with respect to the optimal so-

lution). In addition, this approximation bound is tight.

Minimum Distance Algorithm This section introduces a novel greedy algorithm,

called AMD, that achieves a much better approximation bound, in comparison with the

previous algorithm. The algorithm chooses a set of vertices fv1; : : : ; vmg, one vertex

per category in R, such that the sum of costs (S; vi) + (vi; E) per vi is the minimum

cost among all vertices belonging to the respective category Ri (i.e., this is the vertex

from category Ri with the minimum traveling distance from S to E). After the set of

vertices has been discovered, the algorithm creates a trip from S to E by traversing

these vertices in nearest neighbor order, i.e., by visiting the nearest neighbor of the last

vertex added to the trip, starting with S. The algorithm is shown in Algorithm 2.

Algorithm 2 AMD(G;R; S; E)
1: U = ;
2: for i = 1 to m do

3: U �(v) = Ri : (S; v) + (v;E) is minimized

4: v = S, Ta fSg
5: while U 6= ; do

6: v = NN(v; U)
7: Ta fvg
8: Remove v from U
9: end while

10: Ta fEg
Theorem 2. Ifm is odd (even) thenAMD gives anm-approximate (m+1-approximate)

solution. In addition this approximation bound is tight.

3.2 Approximation in Terms of �
In this section we consider an Integer Linear Programming approach for the TPQ prob-

lem which achieves a linear approximation bound w.r.t. �, i.e., the maximum category

cardinality. Consider an alternative formulation of the TPQ problem with the constraint

that S = E and denote this problem as Loop Trip Planning Query(LTPQ) problem.

Next we show how to obtain a 32�-approximation for LTPQ using Integer Linear Pro-

gramming.

Let A = (aji) be the m � (n+ 1) incidence matrix of G, where rows correspond

to the m categories, and columns represent the n+ 1 vertices (including v0 = S = E).A’s elements are arranged such that aji = 1 if �(vi) = Rj , aji = 0 otherwise. Clearly,� = maxjPi aji, i.e., each category contains at most � distinct vertices. Let indicator

variable y(v) = 1 if vertex v is in a given trip and 0 otherwise. Similarly, let x(e) = 1
if the edge e is in a given trip and 0 otherwise. For any S � V , let Æ(S) be the edges

contained in the cut (S;V n S). The integer programming formulation for the LTPQ

problem is the following:

Problem IPLTPQ = minimize
Pe2E (e)x(e), subject to:

1.
Pe2Æ(fvg) x(e) = 2y(v), for all v 2 V ,

2.
Pe2Æ(S) x(e) � 2y(v), for all S � V ; v0 =2 S, and all v 2 S,

3.
Pni=1 ajiy(vi) � 1, for all j = 1; : : : ;m,

4. y(v0) = 1,

5. y(vi) 2 f0; 1g, x(ei) 2 f0; 1g
Condition 1 guarantees that for every vertex in the trip there are exactly two edges

incident on it. Condition 2 prevents subtrips, that is the trip cannot consist of two dis-

joint subtrips. Condition 3 guarantees that the chosen vertices cover all categories inR. Condition 4 guarantees that v0 is in the trip. In order to simplify the problem we

can relax the above Integer Programming into LPLTPQ by relaxing Conditions 5 to:0 � y(v); x(e) � 1. Any efficient algorithm for solving Linear Programming could

now be applied to solve LPLTPQ [34]. In order to get a feasible solution for IPLTPQ,

we apply the randomized rounding scheme stated below:

Randomized Rounding: For solutions obtained by LPLTPQ, set y(vi) = 1 if y(vi) �1� . If the trip visits vertices from the same category more than once, randomly select

one to keep in the trip and set y(vj) = 0 for the rest.

Theorem 3. LPLTPQ together with the randomized rounding scheme above finds a32�-approximation for IPLTPQ, i.e., the integer programming approach is able to find

a 32�-approximation for the LTPQ problem.

We denote any algorithm for LTPQ as ALTPQ. A TPQ problem can be converted

into an LTPQ problem by creating a special category Cm+1 = E. The solution from

this converted LTPQ problem is guaranteed to pass through E. Using the result returned

by ALTPQ, a trip with constant distortion could be obtained for TPQ:

Lemma 1. A �-approximation algorithm for LTPQ implies a 3�-approximation algo-

rithm for TPQ.

Therefore, by combining Theorem 3 and Lemma 1:

Lemma 2. There is a polynomial time algorithm based on Integer Linear Programming

for the TPQ problem with a 92�-approximation.

3.3 Approximation in Terms ofm and �
In Section 2 we discussed the Generalized Minimum Spanning Tree (GMST) problem

which is closely related to the TPQ problem. Recall that the TSP problem is closely

related to the Minimum Spanning Tree (MST) problem, where a 2-approximation al-

gorithm can be obtained for TSP based on MST. In similar fashion, it is expected that

one can obtain an approximate algorithm for TPQ problem, based on an approximation

algorithm for GMST problem.

Unlike the MST problem which is in P, GMST problem is in NP. Suppose we are

given an approximation algorithm for GMST problem, denoted AGMST . We can con-

struct an approximation algorithm for TPQ problem as shown in Algorithm 3.

Algorithm 3 APPROXIMATION ALGORITHM FOR TPQ BASED ON GMST

1: Compute a �-approximation TreeGMSTa for G rooted at S using AGMST .

2: Let LT be the list of vertices visited in a pre-order tree walk of TreeGMSTa .

3: Move E to the end of LT .

4: Return T TPQa as the ordered list of vertices in LT .

Lemma 3. If we use a �-approximation algorithm for GMST problem, then Algorithm

3 for TPQ problem is a 2�-approximation algorithm.

We can get a solution for TPQ by using Lemma 3 and any known approxima-

tion algorithm for GST, as GMST is a special instance of GST. For example, theO(log2 � logm) algorithm proposed in [14], which yields a solution to TPQ with the

same complexity.

4 Algorithm Implementations in Spatial Databases

In this section we discuss implementation issues of the proposed TPQ algorithms from

a practical perspective, given disk resident datasets and appropriate index structures.

We show how the index structures can be utilized to our benefit, for evaluating TPQs

efficiently. We opt at providing design details only for the greedy algorithms, ANN andAMD since they are simpler to implement in external memory, while the Integer Linear

Programming and GMST approaches are more appropriate for main memory and are

not easily applicable to external memory datasets.

4.1 Applications in Euclidean Space

First, we consider TPQs in a Euclidean space where a spatial dataset is indexed using

an R-tree [18]. We show how to adapt ANN and AMD in this scenario. For simplicity,

we analyze the case where a single R-tree stores spatial data from all categories.

Implementation of ANN . The implementation of ANN using an R-tree is straightfor-

ward. Suppose a partial trip Tk = fS; p1; : : : ; pkg has already been constructed and

let C(Tk) = [ki=1�(pi), denote the categories visited by Tk. By performing a near-

est neighbor query with origin pk, using any well known NN algorithm, until a new

point pk+1 is found, such that �(pk+1) =2 C(Tk), we iteratively extend the trip one

vertex at a time. After all categories in R have been covered, we connect the last vertex

to E and the complete trip is returned. The main advantage of ANN is its efficiency.

Nearest neighbor query in R-tree has been well studied. One could expect very fast

query performance for ANN . However, the main disadvantage of ANN is the prob-

lem of “searching without directions”. Consider the example shown in Figure 2. ANN
will find the trip T1 = fS ! A1 ! B1 ! C1 ! Eg instead of the optimal tripT2 = fS ! C2 ! A2 ! B2 ! Eg. In ANN , the search in every step greedily

expands the point that is closest to the last point in the partial trip without considering

the end destination, i.e., without considering the direction. The more intuitive approach

is to limit the search within a vicinity area defined by S and E. The next algorithm

addresses this problem.

E

S E

A B

C1

B1

A1

C2 A2
B2T1

T2

S

A1
A2

B1

B2

C1

C2

Fig. 2. Intuition of vicinity area

S(2.0)

p2(3.2)

p1(1.0)
p4(1.1)

p5(2.8)

p6(2.5)

n1

n2

n3

n4

n5

n6

4.0

5.0
4.0

3.0

6.0

4.2

3.5E(3.0)

p3(0.8)

Fig. 3. A simple road network.

Implementation of AMD. Next, we show how to implement AMD using an R-tree.

The main idea is to locate the m points, one from each category inR, that minimize the

Euclidean distanceD(S;E; p) = (S; p)+ (p;E) from S to E through p. We call this

the minimum distance query. This query meets our intuition that the trip planning query

should be limited within the vicinity area of the line segment defined by S;E (as in the

example in Figure 2). The minimum distance query can be answered by modifying the

NN search algorithm for R-trees [29], where instead of using the traditional MinDist
measure for sorting candidate distances, we use D. In that case, the vicinity area is an

ellipse and not a circle (Figure 2). Given S and E we run the modified NN search once

for locating all m points incrementally, and report the final trip.

All NN algorithms based on R-trees compute the nearest neighbors incrementally

using the tree structure to guide the search. An interesting problem that arises in this

case is how to geometrically compute the minimum possible distance D(S;E; p) be-

tween points S;E and any point p inside a given MBR M (similar to the MinDist
heuristic of the traditional search). This problem can be reduced to that of finding the

point p on line segmentAB (whereAB is a boundary ofM) that minimizesD(S;E; p),
which can then be used to find the minimum distance from M , by applying it on the

MBR boundaries lying closer to line segment SE. Point p can be computed by project-

ing the mirror image E0 of E, given AB. It can be proved that:

Lemma 4. Given line segments AB and SE, the point p that minimizes D(S;E; p) is:

Case A: If EE0 intersects AB, then p is the intersection of AB and SE0.
Case B: If EE0 and SE do not intersect AB, then p is either A or B.

Case C: If SE intersects AB, then p is the intersection of SE and AB.

Using the lemma, we can easily compute the minimum distances D(S;E;M) for ap-

propriately sorting the R-tree MBRs during the NN search. The details of the minimum

distance query algorithm is shown in Algorithm 4. For simplicity, here we show the

algorithm that searches for a point from one particular category only, which can eas-

ily be extended for multiple categories. In line 8 of the algorithm, if is a node thenD(S;E;) is calculated by applying Lemma 4 with line segments from the borders of

the MBR of ; if is a point thenD(S;E;) is the length jSj+jEj. Straightforwardly,

the algorithm can also be modified for returning the top k points.

4.2 Applications in Road Networks

An interesting application of TPQs is on road network databases. Given a graph N
representing a road network and a separate set P representing points of interest (gas

Algorithm 4 ALGORITHM MINIMUM DISTANCE QUERY FOR R-TREES

Require: Points S, E, Category Ri, R-tree rtree

1: PriorityQueue QR = ;, QS = f(rtree:root; 0)g; B =1
2: while QS not empty do

3: n = QS:top;

4: if n:dist � B then

5: return QR:top
6: for all children of n do

7: dist = D(S;E;)
8: if n is an index node then

9: QS (; dist)
10: else if �(M) = Ri then . (is a point)

11: QR (; dist)
12: if dist � B then B = dist
stations, hotels, restaurants, etc.) located at fixed coordinates on the edges of the graph,

we would like to develop appropriate index structures in order to answer efficiently

trip planning queries for visiting points of interest in P using the underlying networkN . Figure 3 shows an example road network, along with various points of interest

belonging to four different categories.

For our purposes we represent the road network using techniques from [32, 43, 27].

In summary, the adjacency list of N and set P are stored as two separate flat files

indexed by B+-trees. For that purpose, the location of any point p 2 P is represented

as an offset from the road network node with the smallest identifier that is incident on

the edge containing p. For example, point p4 is 1.1 units away from node n3.

Implementation ofANN . Nearest neighbor queries on road networks have been studied

in [27], where a simple extension of the well known Dijkstra algorithm [10] for the

single-source shortest-path problem on weighted graphs is utilized to locate the nearest

point of interest to a given query point. As with the R-tree case, straightforwardly, we

can utilize the algorithm of [27] to incrementally locate the nearest neighbor of the

last stop added to the trip, that belongs to a category that has not been visited yet. The

algorithm starts from point S and when at least one stop from each category has been

added to the trip, the shortest path from the last discovered stop to E is computed.

Implementation of AMD. Similarly to the R-tree approach, the idea is to first locate

the m points from categories inR that minimize the network distance (S; pi; E) using

the underlying graphN , and then create a trip that traverses all pi in a nearest neighbor

order, from S to E. It is easy to show with a counter example that simply finding a pointp that first minimizes cost (S; p) and then traverses the shortest path from p to E, does

not necessarily minimize cost (S; p; E). Thus, Dijkstra’s algorithm cannot be directly

applied to solve this problem. Alternatively, we propose an algorithm for identifying

such points of interest. The procedure is shown in Algorithm 5.

The algorithm locates a point of interest p : �(p) 2 Ri (given Ri) such that the

distance (S; p; E) is minimized. The search begins from S and incrementally expands

all possible paths from S to E through all points p. Whenever such a path is computed

and all other partial trips have cost smaller than the tentative best cost, the search stops.

The key idea of the algorithm is to separate partial trips into two categories: one that

contains only paths that have not discovered a point of interest yet, and one that contains

paths that have. Paths in the first category compete to find the shortest possible route

from S to any p. Paths in the second category compete to find the shortest path from

their respective p to E. The overall best path is the one that minimizes the sum of both

costs.

Algorithm 5 ALGORITHM Minimum Distance Query FOR ROAD NETWORKS

Require: GraphN , Points of interest P , Points S, E, Category Ri
1: For each ni 2 N : ni:p = ni::p =1
2: PriorityQueue PQ = fSg, B =1, TB = ;
3: while PQ not empty do

4: T = PQ:top
5: if T : � B then return TB
6: for each node n adjacent to T :last do

7: T 0 = T . (create a copy)

8: if T 0 does not contain a p then

9: if 9p : p 2 P; �(p) = Ri on edge (T 0:last; n) then

10: T 0:+ = (T 0:last; p)
11: T 0 p, PQ T 0
12: else

13: T 0:+ = (T 0:last; n), T 0 n
14: if n::p > T 0: then

15: n::p = T 0:, PQ T 0
16: else

17: if edge (T 0; n) contains E then

18: T 0:+ = (T 0:last; E), T 0 E
19: Update B and TB accordingly

20: else

21: T 0:+ = (T 0:last; n), T 0 n
22: if n:p > T 0: then

23: n:p = T 0:, PQ T 0
24: endif

25: endfor

26: endwhile

The algorithm proceeds greedily by expanding at every step the trip with the small-

est current cost. Furthermore, in order to be able to prune trips that are not promising,

based on already discovered trips, the algorithm maintains two partial best costs per

node n 2 N . Cost n:p (n::p) represents the partial cost of the best trip that passes

through this node and that has (has not) discovered an interesting point yet. After all k
points(one from each category Ri 2 R) have been discovered by iteratively calling this

algorithm, an approximate trip for TPQ can be produced. It is also possible to design

an incremental algorithm that discovers all points from categories inR concurrently.

S E

p1 p2

p3

candidate p search region SR
F1 F2C

r1 r2

2a

2c

2b

Fig. 4. The search region of a minimum distance query

5 Extensions

5.1 I/O Analysis for the Minimum Distance Query

In this section we study the I/O bounds for the minimum distance query in Euclidean

space, i.e., the expected number of I/Os when we try to find the point p that minimizesD(S;E; p) from a point set indexed with an R-tree. By carefully examining Algorithm

4 and Lemma 4, we can claim the following:

Claim. The lower bound of I/Os for minimum distance queries is the number of MBRs

that intersect with line segment SE.

For the average case, the classical cost models for nearest neighbor queries can be

used [39, 7, 6, 28, 38]. On average the I/O for any type of queries on R-trees is given by

the expected node access: NA = Ph�1i=0 niPNAi where h is the height of the tree, ni
is the number of nodes in level i and PNAi is the probability that a node at level i is

accessed. The only peculiarity of minimum distance queries is that their search region

SR, i.e., the area of the data space that may contain candidate results, forms an ellipse

with focii the points S;E. It follows immediately that, on average, in order to answer

a minimum distance query we have to visit all MBRs that intersect with its respective

SR. Thus, if we quantify the size of SR we can estimate PNAi .
Consider the example in Figure 4, and suppose p1 is currently the point that mini-

mizes D(S;E; p1). Then the ellipse defined by S;E; p1 will be the region that contains

possible better candidates, e.g., p in this example. This is true due to the property of

the ellipse that r1 + r2 = 2a, i.e., any point p0 on the border of the ellipse satisfiesD(S;E; p0) = 2a. Therefore, to estimate the I/O cost of the query all we need to

do is estimate quantity a. Assuming uniformity and a unit square universe, we haveAreaSR = k=jP j. We also know that AreaSR = Areaellipse = 2�=p4a� b2 =2�=p4a� (a2 � 2). Hence, a = 2+q52 � (2�jP jk)2
With S, E, = jSEj=2, and a, we could determine the search region for a k min-

imum distance query. With the search region being identified, one could derive the

probability of any node of the R-tree being accessed. Then, the standard cost model

analysis in [7, 6, 28, 38] can be straightforwardly be applied, hence the details are omit-

ted. Generalizations for non-uniform distributions can also be addressed similarly to the

analysis presented in [38], where few modifications are required given the ellipsoidal

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

-125 -124 -123 -122 -121 -120 -119 -118 -117 -116 -115 -114

L
a
ti
tu

d
e

Longitude

(a) Collection of California’s points of

interests

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

-125 -124 -123 -122 -121 -120 -119 -118 -117 -116 -115 -114

L
a
ti
tu

d
e

Longitude

(b) Road network of Califor-

nia(21048,22830)

Fig. 5. Real dataset from California

shape of the search regions. The I/O estimation for queries on road networks is much

harder to analyze and heavily depends on the particular data structures used, therefore

it is left as future work.

5.2 Hybrid Approach

We also consider a hybrid approach to the trip planning query for disk based datasets

(in both Euclidean space and road networks). Instead of evaluating the queries using

the proposed algorithms, the basic idea is to first select a sufficient number of good

candidates from disk, and then process those in main memory. We apply the minimum

distance query to locate the top k points from each respective category and then, assum-

ing that the query visits a total of m categories, the k �m points are processed in main

memory using any of the strategies discussed in Section 3. In addition, an exhaustive

search is also possible. In this case, there are mk number of instances to be checked. Ifmk is large, a subset can be randomly selected for further processing, or the value of k
is reduced. Clearly, the hybrid approach will find a solution at least as good as algorithmAMD. In particular, since the larger the value of k the closer the solution will be to the

optimal answer, with a hybrid approach the user can tune the accuracy of the results,

according to the cost she is willing to pay.

6 Experimental Evaluation

This section presents a comprehensive performance evaluation of the proposed tech-

niques for TPQ in spatial databases. We used both synthetic datasets generated on real

road networks and real datasets from the state of California. All experiments were run

on a Linux machine with an Intel Pentium 4 2.0GHz CPU.

Experimental Setup. To generate synthetic datasets we obtained two real road net-

works, the city of Oldenburg(OL) with 6105 nodes and 7035 edges and San Joaquin

county(TG) with 18263 nodes and 23874 edges, from [8]. For each dataset, we gener-

ated uniformly at random a number of points of interest on the edges of the network.

Datasets with varying number of categories, as well as varying densities of points per

category were generated. The total number of categories is in the range m 2 [5; 30℄,
while the category density is in the range of � 2 [0:01N; 0:25N ℄, where N is the total

number of edges in the network. For Euclidean datasets, points of interest are generated

using the road networks, but the distances are computed as direct Euclidean distances

between points, without the network constraints. Our synthetic dataset has the flexibil-

ity of controlling different densities and number of categories, however it is based on

uniform distribution on road network (not necessarily uniform in the Euclidean space).

To study the general distribution of different categories, we also obtain a real dataset

for our experiments. First we get a collection of points of interests that fall into differ-

ent categories for the state of California from [35] as shown in Figure 5(a), then we

obtain the road network for the same state from [25] as shown in Figure 5(b). Both

of them represent the locations in a longitude/latitude space, which makes the merg-

ing step straightforward. The California dataset has 63 different categories, including

airports, hospitals, bars, etc., and altogether more than 100; 000 points. Different cate-

gories exhibit very different densities and distributions. The road network in California

has 21; 048 nodes and 22; 830 edges. For all experiments, we generate 100 queries with

randomly chosen S and E.

Road Network Datasets. In this part we study the performance of the two algorithms

for road networks. First, we study the effects of m and �. Due to lack of space we

present the results for the OL based datasets only. The results for the TG datasets were

similar. Figure 6(a) plots the results for the average trip length as a function of m, for� = 0:01N . Figure 6(b) plots the average trip length as a function of �, for m = 30. In

both cases, clearly AMD outperforms ANN . In general, AMD gives a trip that is 20%-

40% better (in terms of trip length) than the one obtained from ANN . It is interesting

to note that with the increase of m and the decrease of � the performance gap between

the two algorithms increases.ANN is greatly affected by the relative locations of points

as it greedily follows the nearest point from the remaining categories irrespective of its

direction with respect to the destination E. With the increase of m, the probability thatANN wanders off the correct direction increases. With the decrease of �, the probability

that the next nearest neighbor is close enough decreases, which in turn increases the

chance that the algorithm will move far away from E. However, for both casesAMD is

not affected.

We also study the query cost of the two algorithms measured by the average running

time of one query. Figure 7(a) plots the results as a function of density, and m = 15. In

general, ANN has smaller runtime. The reason is that the AMD query in the road net-

work is much more complex and needs to visit an increased number of nodes multiple

times.

Euclidean Datasets. Due to lack of space we omit the plots for Euclidean datasets. In

general, the results and conclusions were the same as for the road network datasets. A

small difference is that the performance of the two algorithms is measured with respect

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 0 5 10 15 20 25 30 35

A
ve

ra
ge

 T
rip

 L
en

gt
h

Number of Categories (Density=0.01N)

 NN
 MD

(a) Number of cate-

gories

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 0 0.05 0.1 0.15 0.2 0.25 0.3

A
ve

ra
ge

 T
rip

 L
en

gt
h

Densities (Num of Categories=30)

 NN
 MD

(b) Category Density

 5200

 5400

 5600

 5800

 6000

 6200

 6400

 6600

 6800

 4 6 8 10 12 14 16 18

A
ve

ra
ge

 T
rip

 L
en

gt
h

Number of Query Categories

 NN
 MD

(c) General

Fig. 6. Average trip length of ANN and AMD

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

A
ve

ra
ge

 R
un

ni
ng

 T
im

e
in

 S
ec

on
ds

(p
er

 Q
ue

ry
)

Densities (Num of Categories=15)

 NN
 MD

(a) Runtime

 0

 4

 8

 12

 16

 20

 0 0.05 0.1 0.15 0.2 0.25 0.3

A
ve

ra
ge

 I/
O

s
in

 R
-t

re
e(

pe
r

Q
ue

ry
)

Densities (Num of Categories=15)

 NN
 MD

(b) I/O

Fig. 7. Query cost

to the total number of R-tree I/Os. In this case, ANN was more efficient than AMD,

especially for higher densities as shown in Figure 7(b).

General Datasets and Query Workloads. In the previous experiments datasets had a

fixed density for all categories. Furthermore, queries had to visit all categories. Here,

we examine a more general setting where the density for different categories is not

fixed and queries need to visit a subsetR of all categories. Figure 6(c) summarizes the

results. We set m = 20 and � uniformly distributed in [0:01N; 0:20N ℄. We experiment

with subsets of varying cardinalities per query and measure the average trip length

returned by both algorithms. AMD outperforms ANN by 15% in the worst case. With

the increase of the cardinality ofR, the performance gain on AMD increases.

Real Datasets. So far we have tested our algorithm on synthetic datasets To compare

the performance of the algorithms in a real setting, we apply ANN and AMD on the

real dataset from California. There are 63 different categories in this dataset, hence

we show the query workload that requires visits to a subset of categories (up to 30
randomly selected categories). Figure 8(a) compares the average trip length obtained

by ANN and AMD in the road network case. In this case, we simply use longitude

and latitude as the point coordinates and calculate the distance based on that. So the

absolute value for the distance is small. As we have noticed, AMD still outperformsANN in terms of trip length, however, with the price of a higher query cost as indicated

 13

 15

 17

 19

 21

 23

 25

 27

 29

 31

 33

 0 5 10 15 20 25 30 35

A
ve

ra
ge

 T
rip

 L
en

gt
h

Number of Categories

 NN
 MD

 Hybrid

(a) Road network

 3

 3.3

 3.6

 3.9

 4.2

 4.5

 4.8

 5.1

 5.4

 5.7

 6

 0 5 10 15 20 25 30 35

A
ve

ra
ge

 R
un

ni
ng

 T
im

e
in

 S
ec

on
ds

(p
er

 Q
ue

ry
)

Num of Categories

 NN
 MD

(b) Running Time

Fig. 8. Experiments with real dataset

in Figure 8(b). Notice that the running time in this experiment is much higher than

the one in Figure 7(a) as we are dealing with a much larger network as well as more

data points. Similar results have been observed for the same dataset in Euclidean space

(where the cost is measured in I/Os) and they are omitted. It is interesting to note that the

trip length is increasing w.r.t. the number of categories in a non-linear fashion (e.g., from

25 categories to 30 categories), as compared to the same experiment on the synthetic

dataset shown in Figure 6(a). This could be explained by the non-uniformity property

and skewness of the real dataset. For example, there are more than 900 airports and only

about 50 harbors. So when a query category for harbors is included, one expect to see a

steep increase in the trip length.

Study of the Hybrid Approach. We also investigate the effectiveness of the hybrid ap-

proach as suggested in Section 5.2. Our experiments on synthetic datasets show that

the hybrid approach improves results over AMD by a small margin (Figure 8(a)). This

is expected due to the uniformity of the underlying datasets. With the real dataset, as

we can see in Figure 8(a), there is a noticeable improvement with the hybrid approach

over AMD (we set m = 5). This is mainly due to the skewed distribution in different

categories in the real dataset. The hybrid approach incurs additional computational cost

in main memory (i.e., cpu time) but identifies better trips. We omit the running time

of hybrid approach from Figure 8(b) as it exhibits exponential increase(O(mk)) with

the number of categories. However, when the number of categories is small, the run-

ning time of hybrid approach is comparable to ANN and AMD, e.g., when m = 5 its

running time is about 3:8 seconds for one query, on average.

7 Conclusions and Future Work

We introduced a novel query for spatial databases, namely the Trip Planning Query.

First, we argued that this problem is NP-Hard, and then we developed four polyno-

mial time approximation algorithms, with efficient running time and varying worst case

guarantees. We also showed how to apply these algorithms in practical scenarios, both

for Euclidean spaces and Road Networks. Finally, we presented a comprehensive ex-

perimental evaluation. For future work we plan to extend our algorithms to support

trips with user defined constraints. Examples include visiting a certain category during

a specified time period [3], visiting categories in a given order, and more.

References

1. S. Arora. Polynomial time approximation schemes for euclidean tsp and other geometric

problems. In FOCS, page 2, 1996.

2. S. Arora. Approximation schemes for NP-hard geometric optimization problems: A survey.

Mathematical Programming, 2003.

3. N. Bansal, A. Blum, S. Chawla, and A. Meyerson. Approximation algorithms for deadline-

tsp and vehicle routing with time-windows. In STOC, pages 166–174, 2004.

4. N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An efficient and robust

access method for points and rectangles. In SIGMOD, pages 220–231, 1990.

5. R. Benetis, C. S. Jensen, G. Karciauskas, and S. Saltenis. Nearest neighbor and reverse

nearest neighbor queries for moving objects. In IDEAS, pages 44–53, 2002.

6. S. Berchtold, C. Böhm, D. A. Keim, and H.-P. Kriegel. A cost model for nearest neighbor

search in high-dimensional data space. In PODS, pages 78–86, 1997.

7. C. Böhm. A cost model for query processing in high dimensional data spaces. TODS,

25(2):129–178, 2000.

8. T. Brinkhoff. A framework for generating network-based moving objects. GeoInformatica,

6(2):153–180, 2002.

9. N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem.

Technical report, Computer Science Department,Carnegie Mellon University, 1976.

10. T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms. The MIT

Press, 1997.

11. A. Dumitrescu and J. S. B. Mitchell. Approximation algorithms for tsp with neighborhoods

in the plane. In SODA, pages 38–46, 2001.

12. Max J. Egenhofer. What’s special about spatial?: database requirements for vehicle naviga-

tion in geographic space. In SIGMOD, pages 398–402, 1993.

13. G. Even and G. Kortsarz. An approximation algorithm for the group steiner problem. In

SODA, pages 49–58, 2002.

14. J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary metrics

by tree metrics. Journal of Computer and System Sciences, 69(3):485–497, 2004.

15. H. Ferhatosmanoglu, I. Stanoi, D. Agrawal, and A. E. Abbadi. Constrained nearest neighbor

queries. In SSTD, pages 257–278, 2001.

16. N. Garg, G. Konjevod, and R. Ravi. A polylogarithmic approximation algorithm for the

group steiner tree problem. Journal of Algorithms, 37(1):66–84, 2000.

17. R. Hartmut Guting, M. H. Bohlen, M. Erwig, C. S. Jensen, N. A. Lorentzos, M. Schneider,

and M. Vazirgiannis. A foundation for representing and querying moving objects. TODS,

25(1):1–42, 2000.

18. A. Guttman. R-trees: A dynamic index structure for spatial searching. In SIGMOD, pages

47–57, 1984.

19. G. Hjaltason and H. Samet. Distance Browsing in Spatial Databases. TODS, 24(2):265–318,

1999.

20. E. Ihler. Bounds on the Quality of Approximate Solutions to the Group Steiner Problem.

Technical report, Institut fur Informatik,Uiversity Freiburg, 1990.

21. M. R. Kolahdouzan and C. Shahabi. Voronoi-based k nearest neighbor search for spatial

network databases. In VLDB, pages 840–851, 2004.

22. F. Korn and S. Muthukrishnan. Influence sets based on reverse nearest neighbor queries. In

SIGMOD, pages 201–212, 2000.

23. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

24. Y. S. Myung, C. H. Lee, and D. W. Tcha. On the Generalized Minimum Spanning Tree

Problem. Networks, 26:231–241, 1995.

25. Digital Chart of the World Server. http://www.maproom.psu.edu/dcw/.

26. D. Papadias, Q. Shen, Y. Tao, and K. Mouratidis. Group nearest neighbor queries. In ICDE,

pages 301–312, 2004.

27. D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query processing in spatial network

databases. In VLDB, pages 802–813, 2003.

28. A. Papadopoulos and Y. Manolopoulos. Performance of nearest neighbor queries in r-trees.

In ICDT, pages 394–408, 1997.

29. N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. In SIGMOD, pages

71–79, 1995.

30. C. Shahabi, M. R. Kolahdouzan, and M. Sharifzadeh. A road network embedding technique

for k-nearest neighbor search in moving object databases. In GIS, pages 94–100, 2002.

31. M. Sharifzadeh, M. Kolahdouzan, and C. Shahabi. The Optimal Sequenced Route Query.

Technical report, Computer Science Department, University of Southern California, 2005.

32. S. Shekhar and D.-R. Liu. Ccam: A connectivity-clustered access method for networks and

network computations. TKDE, 9(1):102–119, 1997.

33. TSP Home Web Site. http://www.tsp.gatech.edu/.

34. D. A. Spielman and S.-H. Teng. Smoothed analysis of algorithms: why the simplex algorithm

usually takes polynomial time. In STOC, pages 296–305, 2001.

35. U.S. Geological Survey. http://www.usgs.gov/.

36. Y. Tao and D. Papadias. Time-parameterized queries in spatio-temporal databases. In SIG-

MOD, pages 334–345, 2002.

37. Y. Tao, D. Papadias, and Q. Shen. Continuous nearest neighbor search. In VLDB, pages

287–298, 2002.

38. Y. Tao, J. Zhang, D. Papadias, and N. Mamoulis. An Efficient Cost Model for Optimization

of Nearest Neighbor Search in Low and Medium Dimensional Spaces. TKDE, 16(10):1169–

1184, 2004.

39. Y. Theodoridis, E. Stefanakis, and T. Sellis. Efficient cost models for spatial queries using

r-trees. TKDE, 12(1):19–32, 2000.

40. M. Vazirgiannis and O. Wolfson. A spatiotemporal model and language for moving objects

on road networks. In SSTD, pages 20–35, 2001.

41. X. Xiong, M. F. Mokbel, and W. G. Aref. Sea-cnn: Scalable processing of continuous k-

nearest neighbor queries in spatio-temporal databases. In ICDE, pages 643–654, 2005.

42. X. Xiong, M. F. Mokbel, W. G. Aref, S. E. Hambrusch, and S. Prabhakar. Scalable spatio-

temporal continuous query processing for location-aware services. In SSDBM, pages 317–

327, 2004.

43. M. L. Yiu and N. Mamoulis. Clustering objects on a spatial network. In SIGMOD, pages

443–454, 2004.

