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The following is an exposition of a brilliant paper [1] of Bourgain. In this paper he improves
the known bounds in Roth’s Theorem on arithmetic progressions (APs) of length 3. Whilst the
improvement is not huge (and in fact not big enough to guarantee that the primes contain infinitely
many 3-term APs on density grounds alone) the argument is an exceedingly ingenious adaptation
of the Hardy-Littlewood “circle method” which is certainly worth knowing about.

Before we can even outline the approach taken by Bourgain in any meaningful way, it is necessary
to set up some nomenclature and to introduce a few technical preliminaries.

1 Local Structure of Sets

A very common type of argument in Bourgain’s paper is the following. One has finite sets A,B ⊆ Z,
and a function f : Z→ R for which, say,∑

n∈A
f(n) ≥ η|A|.

One then wishes to conclude that there is some translate B′ = B +m for which∑
n∈B′

f(n) ≥ (1− ε)η|B|

for some small ε. This section is devoted to an exploration of situations under which such a principle
holds. One feels that the principle is doomed to failure unless B is much “smaller” than A (unless
B equals A, of course). However one also needs A to “look like B locally” to avoid examples such
as A = {0, 5, 10, . . . , 5(n−1)}, B = {0, 1, 2, 3, 4}. In such an example the behaviour of f on A gives
very little information on the behaviour of f on translates of B.

After some thought the following definition seems natural.

Definition 1 Let

Q(n) = |{m ∈ A|n ∈ B +m}| = |(n−B) ∩A| .

Then we say that A looks κ-locally like B if∑
n

|Q(n)−A(n)|B|| ≤ κ|A||B|.

To relate this to Bourgain’s paper, we note that if α and β are the characteristic measures associated
to the sets A and B then A looks κ-locally like B precisely when

‖α ∗ β − α‖1 ≤ κ.

Let us now see how this definition relates to the type of averaging argument discussed above. Let
f : Z→ R be a function with ‖f‖∞ ≤ 1, and suppose that A looks κ-locally like B. Then∣∣∣∣∣∑

m∈A

∑
n∈B+m

f(n)− |B|
∑
n∈A

f(n)

∣∣∣∣∣ =

∣∣∣∣∣∑
n

(Q(n)− |B|A(n)) f(n)

∣∣∣∣∣
≤ κ|A||B|. (1)

Hence we have the following Lemma.
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Lemma 2 Suppose that f : Z→ R has ‖f‖∞ ≤ 1. Suppose that∣∣∣∣∣∑
n∈A

f(n)

∣∣∣∣∣ ≥ η|A|

and that A looks εη-locally like B. Then

(i) ∑
m∈A

∣∣∣∣∣ ∑
n∈B+m

f(n)

∣∣∣∣∣ ≥ (1− ε)η|A||B|

and

(ii) There is a translate B′ of B with∣∣∣∣∣∑
n∈B′

f(n)

∣∣∣∣∣ ≥ (1− ε)η|B|.

In the sequel we shall use Lemma 2 and also inequality (1) directly.

It turns out that in cases that will interest us, the notion of κ-local likeness allows one to give some
rather strong information about triples in Arithmetic Progression.

Lemma 3 Suppose that 0 ∈ A, 0 ∈ B and that A is symmetric about 0. Suppose that A is κ-locally
like 2B. Then there are at least (1− κ)|A||B| triples (n1, n2, n3) ∈ A×A×B with n1 + n2 = 2n3.

Proof The number N of such triples is∑
n2∈A

∑
n1

A(n1)2B(n1 + n2) =
∑
n2∈A

∑
n1

A(−n1)2B(n2 − n1)

=
∑
n2∈A

(A ∗ 2B)(n2).

Now ∑
m

|(A ∗ 2B)(m)−A(m)|B|| ≤ κ|A||B|

and so

|N − |A||B|| =

∣∣∣∣∣∣
∑
n2∈A

(A ∗ 2B)(n2)− |A||B|

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
n2∈A

{(A ∗ 2B)(n2)− |B|A(n2)}

∣∣∣∣∣∣
≤

∑
n2∈A

|(A ∗ 2B)(n2)− |B|A(n2)|

≤ κ|A||B|.

Hence N ≥ (1− κ)|A||B| as claimed. �.
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2 A First Sketch of the Argument

We start by recalling, very briefly, the usual approach taken in proving Roth’s Theorem. One takes
a set A of density δ in Z/NZ, and compares the number of length 3 Arithmetic Progressions in A
with 1

2δ
3N2. This is roughly the number of 3-term APs in a random subset of Z/NZ. The difference

D between these two quantities can be expressed using the Fourier Coefficients Â(r) of A. If D is
small then A contains a progression of length 3 becuase it approximates a random set. Otherwise D
is large, and we can deduce that some Â(r) is large for r 6= 0. This information in turn allows us to
deduce that A has increased density δ+cδ2 in some reasonably large Arithmetic Progression P . But
P is affinely equivalent to {1, . . . , N}, and so we can iterate the argument. However one can only
increment the density O(δ−1) times before it becomes greater than 1, which is clearly impossible.
Hence if A is large enough then it contains a 3-term AP.

Bourgain’s point of departure seems to be the following. Suppose that

Â(r) =
∑
n

A(n)e2πinr/N

is large. To show that A has increased density in some progression P , one has to somehow get
rid of the exponential terms appearing here. In the usual proof of Roth’s Theorem this is done by
splitting up Z/NZ into small progressions on which e2πinr/N is roughly constant as n varies. This,
however, is rather inefficient – rather a lot of small progressions are required. Suppose instead that
one forgets about progressions, and splits Z/NZ up into sets on which ‖nr/N‖ is roughly constant.
We could easily deduce that A has increased density on one of these sets. Unfortunately however
this information is not equivalent to the original hypothesis, since one of the new sets is not affinely
equivalent to {1, . . . , N}. Hence we have to strengthen the entire hypothesis that we are trying to
prove.

The “sets” that we are discussing here are of course just translates of Bohr Neighbourhoods. Hence
we shall try to prove something like the following.

Conjecture 4 Let A be a subset of some Bohr Neighbourhood Λ, such that |A| = δ|Λ|. Then for
fixed δ and “sufficiently large” Λ, A contains a three-term Arithmetic Progression.

Since Z/NZ is trivially a Bohr Neighbourhood, we might hope that this would imply Roth’s Theorem
with a better bound.

There are many difficulties to overcome in order to make the above idea work, as we shall discover.
These stem principally from three facts.

(i) If Λ is a Bohr Neighbourhood then it is rather difficult to say anything about the number of
3-term APs in Λ. In particular one does not seem to be able to say that it is anywhere near |Λ|2.
This means that comparing the number of APs in A with the number of APs in a random subset
of Λ with density δ does not give strong information.

(ii) If Λ′ ⊆ Λ are Bohr Neighbourhoods then it is not a priori at all obvious that Λ looks κ-locally
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like Λ′ for small κ, even when Λ′ is much smaller than Λ. Without this being the case, the many
averaging arguments used in the proof of Roth’s Theorem will not be available.

(iii) Bohr Neighbourhoods are further from being groups than intervals are. In the usual proof of
Roth’s Theorem it is a short step from {1, . . . , N} to Z/NZ, a group on which one can do Fourier
Analysis. With a Bohr Neighbourhood it is rather unnatural to embed in a cyclic group like this.

Problem (iii) is resolved by slightly changing our definition of what a Bohr Neighbourhood is, and
working all the time in the group Z. The Pontryagin Dual of Z is of course T, the circle group, and
so our Fourier Transforms will be defined on this. We contrast this with the situation in Roth’s
Theorem (at least in Gowers’ [3] version of the proof) in which both functions and their Fourier
Transforms are defined on Z/NZ (where N is a prime).

3 Bohr Neighbourhoods

3.1 Definitions and Elementary Properties

We begin by defining what we mean by a Bohr Neighbourhood from now on.

Definition 5 Let θ = {θ1, . . . , θd} ∈ Rd, and let ε and M be real numbers with ε < 1
2 . Then we

define the Bohr Neighbourhood Λθ,ε,M to be the set of all n ∈ Z such that |n| ≤ M and ‖nθj‖ ≤ ε
for j = 1, . . . , d.

This is clearly very similar to the “mod N” version of the same name. We take the opportunity to
record here some simple facts about Bohr Neighbourhoods which will be useful later.

Lemma 6 |Λθ,ε,M | ≥ εdM .

Proof Let Sd be the unit torus Rd/Zd. Consider the set of all Pn = (‖nθ1‖, . . . , ‖nθd‖) ∈ Sd for
integers n ∈ [1,M ]. This has size M , so some ε-cube B of Sd contains at least Mεd of the Pi (this
“obvious” averaging argument actually requires careful analysis its justification). Let C be the set
of all n ∈ [1,M ] for which Pn ∈ B. Then there is an injection

φ : C → Λθ,ε,M

defined by φ(n) = n− n0, where n0 ∈ C is arbitrary. �

Lemma 7 |Λθ,ε,M | < 8d+1|Λθ, ε
2
,M

2
|

Proof Divide Λθ,ε,M into sets Ai such that

(i) {(‖nθ1‖, . . . , ‖nθd‖)|n ∈ Ai} is contained in an ε
2 -cube in Sd;

(ii) Ai is contained in an interval of length M
2 .

This can be achieved with 8d+1 sets Ai. Each Ai injects to Λθ, ε
2
,M

2
by sending n to n − n0, where

n0 ∈ Ai is arbitrary. The result follows. �
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Bourgain’s Paper has a nice alternative derivation of these results using Fourier Analysis.

In view of the difficulties (i) and (ii) mentioned above, together with Lemma 3, we are clearly
going to be interested in finding out when a Bohr Neighbourhood Λ looks κ-locally like another
neighbourhood Λ′. We deal with this now.

3.2 Bohr Neighbourhoods and Local Likeness

We will be interested only in the following rather specific version of the question. Let A = Λθ,ε,M
and let B ⊆ Λθ,γε,γM . When does A look κ-locally like B? A crucial observation is that, because of
the structure of Bohr Neighbourhoods, the answer to this question depends on how A behaves near
its “edges”. To this end (and with hindsight) we make the following definition.

Definition 8 Fix θ ∈ Rd. Then we say that a pair (ε,M) is regular if

1− 100d|γ| ≤
|Λθ,(1+γ)ε,(1+γ)M |

|Λθ,ε,M |
≤ 1 + 100d|γ|

whenever |γ| ≤ 1
100d .

If (ε,M) is regular for some θ ∈ Rd then we also describe the Bohr Neighbourhood Λθ,ε,M as regular.
The reason for making the definition in exactly this way is that, as we shall show later, no pair
(ε,M) is very far from a regular pair. Before doing that, however, we show how regularity governs
questions of local-likeness.

Proposition 9 Suppose (ε,M) is regular. Let A = Λθ,ε,M , and let B ⊆ Λθ,γε,γM where γ ≤ 1
200d .

Then A looks 400dγ-locally like B.

Proof Let Q(n) = |{m ∈ A|n ∈ B +m}|. Suppose that n ∈ B + m for some m ∈ A. Then
n ∈ Λθ,(1+γ)ε,(1+γ)M . Therefore we have that Q(n) = 0 if n /∈ Λθ,(1+γ)ε,(1+γ)M . Suppose now that
n ∈ Λθ,(1−γ)ε,(1−γ)M . Then for all b ∈ B we have n− b ∈ A and so Q(n) = |B|. For all other values
of n, Q(n) lies between 0 and |B|. It follows that∑

n

|Q(n)−A(n)|B|| ≤ 2|B|
∣∣Λθ,(1+γ)ε,(1+γ)M \ Λθ,(1−γ)ε,(1−γ)M

∣∣
≤ 2|A||B| · ((1 + 100dγ)− (1− 100dγ))
≤ 400dγ|A||B|.

But this is precisely what it means for A to look 400dγ-locally like B. �

In general, local likeness is not preserved under passing to subsets. We leave it to the reader to
construct, for any κ > 0, sets A, B and C ⊆ B for which A looks κ-locally like B, but A does not
look 1

2 -locally like C ′ for any translate C ′ of C. The proof of Proposition 9 used some of the specific
structure of Bohr Neighbourhoods.

The following immediate corollary of Proposition 9 allows us, in view of Lemma 3, to discuss 3-term
APs in the context of Bohr Neighbourhoods.
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Corollary 10 Suppose (ε,M) is regular and let γ ≤ 1
400d . Then Λθ,ε,M looks 800dγ-locally like

2Λθ,γε,γM .

Proof Simply apply Proposition 9 and note that 2Λθ,γε,γM ⊆ Λθ,2γε,2γM . �

Combining this with Lemma 3 gives

Corollary 11 Suppose that (ε,M) is regular and let δ ≤ 1
400d . Let Λ = Λθ,ε,M and Λ′ = Λθ,γε,γM .

Then there are at least (1− 800dγ)|Λ||Λ′| triples (n1, n2, n3) ∈ Λ× Λ× Λ′ with n1 + n2 = 2n3.

3.3 Finding Regular Bohr Neighbourhoods

Of course everything that we proved in the last section is useless until we have said something about
regular pairs (ε,M) (for a fixed θ ∈ Rd). A pair (ε,M) is regular if |Λθ,(1+γ)ε,(1+γ)M | varies in a
controlled manner. Recall Definition 8 for the precise details. Let (ε,M) be a not-necessarily-regular
pair. We are going to show in Lemma 12 below that there is α ∈ [1

2 , 1] for which (αε, αM) is regular.
This is what we mean by saying that every pair is close to a regular one.

Set f(α) = |Λθ,αε,αM |. Then f(α) is a non-decreasing function on [1
2 , 1] and, by Lemma 7,

f(1) ≤ 8d+1f
(

1
2

)
(2)

. It turns out that these facts alone are enough to prove the following.

Lemma 12 n Let (ε,M) be a pair of positive real numbers with ε < 1. Then there is a real number
α ∈ [1

2 , 1] for which (αε, αM) is regular.

Proof It clearly suffices to show that there is α ∈ [1
2 , 1] such that

1− 100d|γ| ≤
∣∣∣∣f((1 + γ)α)

f(α)

∣∣∣∣ ≤ 1 + 100d|γ|

for all |γ| ≤ 1
100d . Suppose then that this is false. Observe that 1

1−x ≥ 1 + x when x ≥ 0; hence for
every α ∈ [1

2 , 1] there is tα ∈ [0, 1
100d ] such that∣∣∣∣f ((1 + tα)α)
f ((1− tα)α)

∣∣∣∣ ≥ 1 + 100dtα (3)

≥ e50dtα , (4)

the last step following because 1 + x ≥ e
1
2
x for x ≤ 1. At this point we pause to prove a small

covering lemma. This can be traced back at least as far as Croft [2] but probably ranks as “folklore”.

Lemma 13 Suppose a finite collection of closed intervals I1, . . . , Ik covers [0, 1]. Then we can pick
a subcollection Ii1 , . . . , Iim whose members are disjoint except possibly at their endpoints, with total
measure at least 1

2 .
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Proof Without loss of generality suppose that the collection I1, . . . , Ik is minimal in that if any Ij
is removed, the intervals no longer cover [0, 1]. It is then easy to see that no point x lies in three of
the Ij , because there are two intervals Ir and Is containing x such that any other It containing x
lies in Ir∪Is. But it is then easy to see what the intervals “look like”. Suppose that the Ij = [aj , bj ]
with a1 ≤ a2 ≤ . . . ≤ ak. Then

a1 ≤ a2 ≤ b1 ≤ a3 ≤ b2 ≤ a4 ≤ . . . ≤ bk−1 ≤ bk.

It follows that the two collections I1∪ I3∪ . . . and I2∪ I4∪ . . . contain disjoint intervals. The result
is now obvious. �

To apply Lemma 13, recall (3). By compactness we may take a finite set

{α1, . . . , αk} ⊆
[

1
2

+
1

100d
, 1− 1

100d

]
such that the intervals [(1− tαi)αi, (1 + tαi)αi] cover

[
1
2 + 1

100d , 1−
1

100d

]
. Since tαi ≤ 1

100d , all of
these intervals are contained in [1

2 , 1]. By Lemma 13, we can pick a disjoint subcollection of measure
at least 1

4

(
1− 1

100d

)
> 1

5 . Letting these intervals correspond to {α1, . . . , αl}, one has

2
l∑

i=1

αitαi >
1
5

and so

l∑
i=1

tαi >
1
10
.

Using this in (3) gives

l∏
i=1

∣∣∣∣f ((1 + tαi)αi)
f ((1− tαi)αi)

∣∣∣∣ ≥ e50d
∑
i tαi > e5d.

However the left hand side is at most f(1)

f( 1
2

)
, and hence by (2) we have

8d+1 > e5d.

This is a contradiction, and Lemma 12 is established. �

4 A Second Sketch of the Argument

Having dispensed with preliminaries, we can now outline the mode of attack. Let a set A be given,
such that A has density δ in some Bohr Neighbourhood Λ = Λθ,ε,M . Suppose for a contradiction
that A has no 3-term AP. We want to be able to say that A looks significantly different from a
random subset of Λ with density δ. Recall, however, that we could not give strong information
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about APs in Λ itself, and so it is at first sight not possible to proceed along these lines. However
suppose that (ε,M) is a regular pair, and that Λ′ = Λθ,cε,cM wih c small. Then, by Corollary 11,
the number of 3-term APs (n1, n2, n3) ∈ Λ× Λ× Λ′ is close to its maximum possible value |Λ||Λ′|.
Suppose that A′ = A ∩ Λ′ has density δ′ in Λ′. Then we can try to use the information that A
has no non-trivial 3-term APs to show that A×A×A′ looks significantly different from a random
subset of Λ × Λ × Λ′ of density δ × δ × δ′. Of course we would also have to interpret the last
(rather nonsensical) statement suitably. The problem with this is that we have very little control
over δ′. In fact (since the property of having a 3-term AP is translation invariant) one only needs
some translate of A to have density about δ on both Λ and Λ′. However even this might not be
achievable. We now explain the way around this, which is one of the less transparent complexities
of Bourgain’s Paper.

5 Controlling Density on Smaller Bohr Neighbourhoods

Suppose that A has density δ on some Λ = Λθ,ε,M , where (ε,M) is regular. Suppose that A has no
non-trivial 3-term APs. Our aim is then to deduce that A has density δ+O(δ2) on some reasonably
large regular Bohr Neighbourhood Λ′. As in the usual proof of Roth’s Theorem, this will lead
to a proof of Conjecture 4 in the case Λ regular. This in turn will imply the traditional form of
Roth’s Theorem, because the set [−N,N ] is easily seen to be a regular Bohr Neighbourhood. Let
Λ1 = Λθ,c1ε,c1M and Λ2 = Λθ,c2ε,c2M be regular, with 1 � c1 � c2 such that Λ looks κ1-locally like
Λ1 and Λ1 looks κ2-locally like Λ2. The values of c1,c2, κ1 and κ2 will be specified later. We show
next that either there is already a density increment for some translate of A in either Λ1 or Λ2, or
else one can find some translate A′ = A+m which has density approximately δ on both Λ1 and Λ2.
In this latter case we really will get useful information by comparing (A∩Λ1)× (A∩Λ1)× (A∩Λ2)
with something like a random subset of Λ1 × Λ1 × Λ2 of the appropriate density.

Lemma 14 Let δ1(m) be the density of A+m on Λ1. Then∣∣∣∣∣∑
m∈Λ

(δ1(m)− δ)

∣∣∣∣∣ ≤ κ1|Λ|.

Proof We have

∑
m∈Λ

(δ1(m)− δ) =
1
|Λ1|

∑
m∈Λ

∑
n∈Λ1+m

A(n)− |Λ1|
∑
n∈Λ

A(n)

 .

Recalling that Λ looks κ1-locally like Λ1, the result follows immediately from (1). �

Lemma 15 Let δ1(m), δ2(m) be the densities of A + m on Λ1 and Λ2 respectively. Then either
there is m such that |δ−δ1(m)| ≤ 6κ1 and |δ−δ2(m)| ≤ 6κ1, or there is m such that δ1(m) ≥ δ+κ1,
or else there is m such that δ2(m) ≥ δ + κ1.

Proof We note that, since Λ2 ⊆ Λ1, it follows from Proposition 9 that Λ looks κ1-locally like
Λ2. Suppose now that the result is false. Then, for all m ∈ Λ, either |δ − δ1(m)| > 6κ1 or
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|δ− δ2(m)| > 6κ1. Without loss of generality assume that |δ− δ1(m)| > 6κ1 for at least 1
2 |Λ| values

of m ∈ Λ, so that ∑
m∈Λ

|δ − δ1(m)| > 3κ1|Λ|.

Since δ1(m) < δ + κ1 for all m, we have∑
m∈Λ

δ1(m)>δ

|δ − δ1(m)| ≤ κ1|Λ|.

Therefore ∑
m∈Λ

δ1(m)≤δ

(δ − δ1(m)) > 2κ1|Λ|,

and so ∣∣∣∣∣∑
m∈Λ

(δ1(m)− δ)

∣∣∣∣∣ ≥ ∑
m∈Λ

δ1(m)≤δ

(δ − δ1(m))−
∑
m∈Λ

δ1(m)>δ

|δ − δ1(m)|

> κ1|Λ|.

This contradicts Lemma 14. �

We shall require, it turns out, that κ1 ≤ 2−17δ2. What value of c1 will be required to achieve this?
From Proposition 9, we see that any c1 ≤ d−12−27δ2 will do. By Lemma 12, we can pick some

c1 ∈
[
d−12−28δ2, d−12−27δ2

]
(5)

such that (c1ε, c1M) is regular. We assume from now on that such a c1 has been chosen. The value
of c2 has yet to be specified, but provided c1 ≥ c2 we have the following conclusion.

Proposition 16 Let Λ1 = Λθ,c1ε,c1M and Λ2 = Λθ,c2ε,c2M be regular, with c1 satisfying

d−12−28δ2 ≤ c1 ≤ d−12−27δ2.

Let δi(m) denote the density of A+m on Λi. Then there is some m for which one of the following
is true.

(i) δ1(m) ≥ δ + 2−20δ2;

(ii) δ2(m) ≥ δ + 2−20δ2;

(iii) δ1(m) ≥ δ − 2−13δ2 and δ2(m) ≥ δ − 2−13δ2.
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Proof This is an easy consequence of Lemma 15 and Proposition 9. �

Until the very end of the argument we will work under the assumption that (iii) holds. Indeed (i)
and (ii) already represent density increments of precisely the type we are aiming for. The properties
of A on Λ itself will no longer concern us. Hence, replacing A by some translate A+m if necessary,
we assume henceforth that

δ1 ≥ δ − 2−13δ2 (6)

and

δ2 ≥ δ − 213δ2, (7)

where δi is the density of A on Λi = Λθ,ciε,ciM , c1 satisfies (5), and c2 ≤ c1. One further piece of
notation: we will write A1 = A ∩ Λ1 and A2 = A ∩ Λ2.

6 The Hardy-Littlewood Method

In this section we actually perform the comparison between A1 ×A1 ×A2 and a random subset of
Λ1×Λ1×Λ2 of density δ2

1δ2. We acknowledge that this is still a slightly nonsensical statement. Let
I1 be the number of 3-term APs in A1×A1×A2. Assuming that A contains no nontrivial APs, we
have that I1 = |A2|. For a function f : Z→ C define the Fourier Transform f̂ : T→ C by

f̂(x) =
∫ 1

0
f(x)e2πinx dx

as usual. Then it is not hard to see that

I1 =
∫ 1

0
Â1(x)2Â2(−2x) dx,

where we have identified the sets A1 and A2 with their characteristic functions. Let

I2 = δ2
1δ2

∫ 1

0
Λ̂1(x)2Λ̂2(−2x) dx.

This is supposed to be a guess at the number of 3-term APs in a random subset of Λ1 × Λ1 × Λ2

of density δ1 × δ1 × δ2. Indeed it is actually equal to δ2
1δ2 times the number of 3-term APs in

Λ1 × Λ1 × Λ2. Suppose that c2 is chosen so that Λ1 looks 1
5 -locally like 2Λ2. By Corollary 10, a

sufficient condition for this is that

c2 ≤ 2−13d−1c1. (8)

By Lemma 12 and (5), we can find c2 with

2−42d−2δ2 ≤ c2 ≤ 2−40d−2δ2 (9)

such that Λ2 = Λθ,c2ε,c2M is regular and (8) is satisfied.
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Now by Lemma 3 or Corollary 11 we have that

I2 ≥
4
5
δ2

1δ2|Λ1||Λ2|. (10)

For us to be able to derive useful information from the fact that I1 = |A2| (i.e. the fact that A2 has
no non-trivial 3-term AP) we will need, say, that I1 ≤ 1

5δ
2
1δ2|Λ1||Λ2|. This will certainly be true if

δ2
1 |Λ1| ≥ 5. (11)

When we come to iterate our entire argument, obtaining density increments δ′ = δ + O(δ2) in
successive Bohr Neighbourhoods, it will be (11) that finally determines the bound that we shall get.
Indeed the successive Bohr Neighbourhoods can never get smaller than the bound specified by (11).

Recalling from (5) and (6) that c1 ≥ d−12−28δ2 and δ1 ≥ δ
2 , we see using Lemma 6 that (11) will

certainly hold if

Mεd ≥
(

261d2

δ6

)d
. (12)

Here we have been rather crude in order to make the expression a little neater, but this slackness
makes almost no difference to the final bound.

Supposing then that (12) is satisfied, we have that

|I1 − I2| ≥
1
2
δ2

1δ2|Λ1||Λ2|. (13)

The next part of the argument consists of estimating |I1 − I2| in a different way, a way which will
eventually allow us to obtain the density increment that we have discussed so much. We have

|I1 − I2| =
∣∣∣∣∫ 1

0
Â1(x)2Â2(−2x) dx − δ2

1δ2

∫ 1

0
Λ̂1(x)2Λ̂2(−2x) dx

∣∣∣∣
≤

∣∣∣∣∫ 1

0
Â1(x)2

(
Â2(−2x)− δ2Λ̂2(−2x)

)
dx

∣∣∣∣ + δ2

∣∣∣∣∫ 1

0

(
Â1(x)2 − δ2

1Λ̂1(x)2
)

Λ̂2(−2x) dx
∣∣∣∣

≤ ‖Â2(−2x)− δ2Λ̂2(−2x)‖∞
∫ 1

0

∣∣∣Â1(x)
∣∣∣2 dx

+ δ2

∫ 1

0

∣∣∣Â1(x)2 − δ2
1Λ̂1(x)2

∣∣∣ ∣∣∣Λ̂2(−2x)
∣∣∣ dx. (14)

By (13), we see that either

‖Â2(−2x)− δ2Λ̂2(−2x)‖∞
∫ 1

0

∣∣∣Â1(x)
∣∣∣2 dx ≥ 1

4
δ2

1δ2|Λ1||Λ2| (15)

or ∫ 1

0

∣∣∣Â1(x)2 − δ2
1Λ̂1(x)2

∣∣∣ ∣∣∣Λ̂2(−2x)
∣∣∣ dx ≥ 1

4
δ2

1 |Λ1||Λ2|. (16)

12



If (15) holds then, by Parseval’s Theorem, one has

‖Â2 − δ2Λ̂2‖∞ ≥
1
4
δ1δ2|Λ2|. (17)

This statement is saying that A2 looks significantly unlike a random subset of Λ2 with density δ2.
This case, in fact, is rather similar to the argument followed in the usual proof of Roth’s Theorem.
We will show that, indeed, working with Bohr Neighbourhoods allows us to get a substantial (i.e.
O(δ2)) density increment on a reasonably large Λ3. This was our original motivation for working
with Bohr Neighbourhoods instead of progressions. The main difficulty comes from the fact that we
must also derive a density increment from (16) above. This proves to be much more difficult, and
is an unfortunate byproduct of the more complicated analysis that has been necessary in dealing
with Bohr Neighbourhoods. We shall obtain a density increment from (15) now: this is what we
call the First Case. The rest of the paper will be devoted to obtaining a density increment from
(16), which we call the Second Case.

7 Obtaining a Density Increment in the First Case

From (6) and (7) we have δ1 >
1
2δ and δ2 >

1
2δ. Hence, writing (17) out in full one gets∣∣∣∣∣∣

∑
n∈A2

(A(n)− δ2) e2πinx0

∣∣∣∣∣∣ ≥ δ2

16
|Λ2| (18)

for some x0 ∈ T. Suppose that Λ3 is a regular Bohr Neighbourhood on which e2πinx0 is roughly
constant. If Λ2 can be efficiently covered by translates of Λ3, then we can envisage showing that
some translate of A has increased density on Λ3 much as in the usual proof of Roth’s Theorem.
Such a Λ3 is given by Λ3 = Λθ′,γc2ε,γc2M where θ′ = θ ∪ {x0} (so that θ′ ∈ Rd+1) and γ is small, so
that Λ2 looks locally like Λ3. To this end recall from Proposition 9 that if γ ≤ 1

200d then Λ2 looks
400dγ-locally like Λ3. Applying Lemma 2 to (18) gives

∑
m∈Λ2

∣∣∣∣∣∣
∑

n∈Λ3+m

(A(n)− δ2) e2πinx0

∣∣∣∣∣∣ ≥
(
δ2

16
− 400dγ

)
|Λ2||Λ3|

and so ∑
m∈Λ2

∣∣∣∣∣∣
∑

n∈Λ3+m

(A(n)− δ2)

∣∣∣∣∣∣+
∑
m∈Λ2

∣∣∣∣∣∣
∑

n∈Λ3+m

(A(n)− δ2)
(
e2πimx0 − e2πinx0

)∣∣∣∣∣∣
≥
(
δ2

16
− 400dγ

)
|Λ2||Λ3|.

However∑
m∈Λ2

∣∣∣∣∣∣
∑

n∈Λ3+m

(A(n)− δ2)
(
e2πimx0 − e2πinx0

)∣∣∣∣∣∣ ≤ 2|Λ2||Λ3| sup
n∈Λ3+m

∣∣e2πimx0 − e2πinx0
∣∣

≤ 4πγc2ε|Λ2||Λ3|
≤ 4πγ|Λ2||Λ3|

13



and so

∑
m∈Λ2

∣∣∣∣∣∣
∑

n∈Λ3+m

(A(n)− δ2)

∣∣∣∣∣∣ ≥
(
δ2

16
− 420dγ

)
|Λ2||Λ3|.

However by (1) we have that∣∣∣∣∣∣
∑
m∈Λ2

∑
n∈Λ3+m

(A(n)− δ2)

∣∣∣∣∣∣ ≤ 400dγ|Λ2||Λ3|,

and so

∑
m∈Λ2

∣∣∣∣∣∣
∑

n∈Λ3+m

(A(n)− δ2)

∣∣∣∣∣∣+
∑

n∈Λ3+m

(A(n)− δ2)

 ≥ (
δ2

16
− 820dγ

)
|Λ2||Λ3|. (19)

Therefore, for some m, we have that∑
n∈Λ3+m

(A(n)− δ2) ≥
(
δ2

32
− 410dγ

)
|Λ3|.

If we take γ small enough then this gives the required density increment. Indeed with γ ≤ 2−16δ2d−1

one has

|A ∩ (Λ3 +m)| ≥
(
δ2 +

δ2

64

)
|Λ3|

≥
(
δ +

δ2

128

)
|Λ3|

by (7). The reader may care to observe how very similar all this is to the proof of Roth’s Theorem
given in Gowers [3], even down to the use of the trick in (19).

Recall that Λ3 = Λθ′,γc2ε,γc2M , where we required that γ ≤ 2−16δ2d−1. Let c3 = γc2. In order to
make the main loop of our argument work, we also require that Λ3 be regular. This can be achieved,
by Lemma 12, with some γ ≥ 2−17δ2d−1. Then we will have, by (9), that

2−59δ4d−3 ≤ c3 ≤ 2−56δ4d−3. (20)

This completes our analysis of the First Case: we have found a reasonably large Bohr Neighbourhood
Λ3 on which the density of A increases noticably. Our attention must now turn to the much more
difficult Second Case.

8 Obtaining a Density Increment in the Second Case, Part 1

Recall that in the Second Case one has (16) holding, namely∫ 1

0

∣∣∣Â1(x)2 − δ2
1Λ̂1(x)2

∣∣∣ ∣∣∣Λ̂2(−2x)
∣∣∣ dx ≥ 1

4
δ2

1 |Λ1||Λ2|.

14



We start by playing about with this a little. One has∫ 1

0

∣∣∣Â1(x)2 − δ2
1Λ̂1(x)2

∣∣∣ ∣∣∣Λ̂2(−2x)
∣∣∣ dx =

∫ 1

0

∣∣∣Â1(x) + δ1Λ̂1(x)
∣∣∣ ∣∣∣Λ̂2(−2x)

∣∣∣ ∣∣∣Â1(x)− δ1Λ̂1(x)
∣∣∣ dx

≤
∥∥∥Â1 + δ1Λ̂1

∥∥∥
2

∥∥∥∣∣∣Λ̂2(−2x)
∣∣∣ ∣∣∣Â1 − δ1Λ̂1

∣∣∣∥∥∥
2
,

this last step being an instance of the Cauchy-Schwarz inequality. But∥∥∥Â1 + δ1Λ̂1

∥∥∥
2
≤

∥∥∥Â1

∥∥∥
2

+ δ1

∥∥∥Λ̂1

∥∥∥
2

= |A1|1/2 + δ1|Λ1|1/2

≤ 2δ1/2
1 |Λ1|1/2, (21)

using Parseval’s Identity. Hence in the Second Case we have that∥∥∥∣∣∣Λ̂2(−2x)
∣∣∣ ∣∣∣Â1 − δ1Λ̂1

∣∣∣∥∥∥
2
≥ 1

8
δ

3/2
1 |Λ1|1/2|Λ2|. (22)

However we also have ∥∥∥Â1 − δ1Λ̂1

∥∥∥
2
≤ 2δ1/2

1 |Λ1|1/2

exactly as in (21). Let F be the subset of [0, 1] consisting of those x for which
∣∣∣Λ̂2(−2x)

∣∣∣ ≥ 1
32δ1|Λ2|.

Then we have, using Minkowski’s Inequality,∥∥∥∣∣∣Λ̂2(−2x)
∣∣∣ ∣∣∣Â1 − δ1Λ̂1

∣∣∣∥∥∥
2
≤

∥∥∥(Â1 − δ1Λ̂1

)
Λ̂2(−2x)χF

∥∥∥
2

+
∥∥∥(Â1 − δ1Λ̂1

)
Λ̂2(−2x)χ[0,1]\F

∥∥∥
2

≤ |Λ2|
∥∥∥(Â1 − δ1Λ̂1

)
χF

∥∥∥
2

+
1
32
δ1|Λ2|

∥∥∥Â1 − δ1Λ̂1

∥∥∥
2

≤ |Λ2|
∥∥∥(Â1 − δ1Λ̂1

)
χF

∥∥∥
2

+
1
16
δ

3/2
1 |Λ1|1/2|Λ2|.

Comparing this with (22) we see that∥∥∥(Â1 − δ1Λ̂1

)
χF

∥∥∥
2
≥ 1

16
δ

3/2
1 |Λ1|1/2. (23)

We now deem ourselves to have finished playing around, and set about the task of deriving a density
increment from (23).

9 The Structure of F
Perhaps the key insight of the whole paper is that the set F , the set of all x for which

∣∣∣Λ̂2(−2x)
∣∣∣ ≥

1
32δ1|Λ2|, can be described in a reasonably exact way. In my opinion it is slightly outrageous to
expect that this should be the case. As the reader may agree, the proof of this statement is also
rather outrageous. Or at least very clever.
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Theorem 17 Let Λ = Λθ,ε,M be a regular Bohr Neighbourhood, where θ ∈ Rd. Let x be a real

number for which
∣∣∣Λ̂(x)

∣∣∣ ≥ κ|Λ|. Then there is a vector k ∈ Zd for which

‖k‖∞ ≤
221d5

κ3

(
log

1
ε

)2 1
ε

and

|x+ k.θ| ≤ 221d5

κ3

(
log

1
ε

)2 1
M
.

It is quite easy to see that if x is close to k.θ for some reasonably small k then Λ̂(x) is likely to be
large. This result asserts that the converse is also true to some extent.

We now embark on the quite lengthy process of proving Theorem 17. Let χ denote the characteristic
function of the interval [−ε, ε]. Then the Fourier Coefficient Λ̂(x) can be written as

Λ̂(x) =
∑
|n|≤M

 d∏
j=1

χ(nθj)

 e2πinx. (24)

After some thought it is not unnatural to consider writing χ(t) as a Fourier Expansion χ(t) =∑
r χ̂(r)e2πirt. Suppressing our worries about the validity of such an expansion, we then have

Λ̂(x) =
∑
k∈Zd

 d∏
j=1

χ̂(kj)

 ∑
|n|≤M

e2πin(x+k.θ). (25)

Now ∣∣∣∣∣∣
∑
|n|≤M

e2πin(x+k.θ)

∣∣∣∣∣∣ < 2
‖x+ k.θ‖

and χ̂(r)→ 0 as r →∞. These are the sort of inequalities that might enable us to deduce a result
like Theorem 17, namely that ‖x + k.θ‖ is small for some small k, from (25). However they are
far to weak to get any result of that kind, let alone one strong enough for our purposes. The way
in which we improve on them is an extremely ingeneous “smoothing” technique. In this technique
one replaces the characteristic function χ by a function which is very similar to it, but which has a
Fourier Transform which decays hugely more quickly. Rather luckily the regularity of Λ is exactly
what allows us to make this replacement. The construction of the smooth approximation to χ is
relegated to an appendix as to give it here would interrupt the flow of the argument. We simply
state for now the results that will be proved.

Theorem 18 Let 0 < δ ≤ 1
16 , and let L be a positive real number. Then there is a function

τ = τL,δ : R → R with the following properties. Firstly, σ approximates the characteristic function
of the interval [−L,L] in that 0 ≤ τ ≤ 1 and

τ(x) =
{

0 (|x| > (1 + δ)L)
1 (|x| < (1− δ)L).
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Secondly, τ has a rapidly decaying Fourier Transform. Specifically,

|τ̂(t)| ≤ 16Le−(δL|t|)1/2

for all real t.

This Theorem has a rather non-trivial Corollary. This is derived from it using the Poisson Summa-
tion Formula, and again the details are relegated to an appendix.

Theorem 19 Let 0 < δ ≤ 1
16 and let N ≥ 1

δ . Then there is a function σ = σN,δ : Z → Z with the
following properties. Firstly, τ approximates the characteristic function of the set {−N, . . . , N} in
that 0 ≤ σ ≤ 1 and

σ(x) =
{

0 (|x| > (1 + δ)N)
1 (|x| < (1− δ)N).

Secondly, σ has a rapidly decaying Fourier Transform. Specifically,

|σ̂(t)| ≤ 29Ne−(δN‖t‖)1/2

for all t ∈ T.

The subtle differences between these two results should be carefully noted. In particular the Fourier
Transform is a different object in the two different theorems. Indeed

τ̂(t) =
∫ ∞
−∞

τ(x)eitx dx,

whilst

σ̂(t) =
∑
m∈Z

σ(m)e2πimt.

Let us now try and replace χ by τ = τε,δ in (24) where δ will be chosen later. For good measure
(and because it turns out to be crucial) we also replace the characteristic function [−M,M ], hardly
noticeable in (24), by σ = σM,δ. It is trivial to check that the condition M ≥ 1

δ required by Theorem
19 is satisfied provided that (12) is satisfied, which we assume is always the case. One has∣∣∣∣∣∣Λ̂(x)−

∑
n

 d∏
j=1

τ(nθj)

σ(n)e2πinx

∣∣∣∣∣∣ ≤
∑
n

∣∣∣∣∣∣Λ(n)−
∑
n

 d∏
j=1

τ(nθj)

σ(n)

∣∣∣∣∣∣
≤

∣∣Λθ,(1+δ)ε,(1+δ)M \ Λθ,(1−δ)ε,(1−δ)M
∣∣ . (26)

Recalling that Λθ,ε,M is regular, we have that∣∣Λθ,(1+δ)ε,(1+δ)M \ Λθ,(1−δ)ε,(1−δ)M
∣∣ ≤ ((1 + 100dδ)− (1− 100dδ)) |Λ|
≤ 200dδ|Λ|

≤ κ

2
|Λ| (27)
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provided that δ ≤ κ
400d . Note that the condition |δ| ≤ 1

100d required by the definition of regularity
is satisfied automatically here. Hence if δ ≤ κ

400d then we have, from (26), (27) and the hypothesis
that |Λ̂(x)| ≥ κ|Λ|, ∣∣∣∣∣∣

∑
n

 d∏
j=1

τ(nθj)

σ(n)e2πixn

∣∣∣∣∣∣ ≥ κ

2
|Λ|.

≥ κ

2
Mεd.

For this last step we used Lemma 6. The left hand side of this expression can be rewritten as
follows. ∣∣∣∣∣∣

∑
n

 d∏
j=1

τ(nθj)

σ(n)e2πixn

∣∣∣∣∣∣ =
∑
k∈Zd

 d∏
j=1

|τ̂(kj)|

∣∣∣∣∣∑
n

σ(n)e2πin(x+k.θ)

∣∣∣∣∣
=

∑
k∈Zd

 d∏
j=1

|τ̂(kj)|

 |σ̂ (‖x+ k.θ‖)| .

Therefore we have

∑
k∈Zd

 d∏
j=1

|τ̂(kj)|

 |σ̂ (‖x+ k.θ‖)| ≥ κ

2
Mεd. (28)

where of course τ = τε,δ, σ = σM,δ and δ ≤ κ
400d . Now τ and σ were chosen, in Theorems 18 and

19, to have very rapidly decaying Fourier Transforms. Combining (28) with the estimates for these
transforms one gets

∑
k∈Zd

exp−

δ1/2M1/2‖x+ k.θ‖1/2 +
d∑
j=1

(δε)1/2|kj |1/2
 ≥ κ

24d+10
.

Recall that (28) was valid for any δ ≤ κ
400d . Taking δ to be as large as possible gives

∑
k∈Zd

exp−

( κM

400d

)1/2

‖x+ k.θ‖1/2 +
( κε

400d

)1/2
d∑
j=1

|kj |1/2
 ≥ κ

24d+10
. (29)

We will now derive Theorem 17 from (29) in the “obvious” way. Namely we will show that for
smallish k0 the contribution to the sum in (29) from those k with |k| ≥ k0 is small. This will imply
that the sum over those k with |k| ≤ k0 is largeish. From this we will derive Theorem 17, which
says that there is k with both |k| and ‖x+ k.θ‖ small, in quantitative form.
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For brevity let us write γ = κε
400d . Then, for any k0, we have

∑
|k|≥k0

exp−

( κM

400d

)1/2

‖x+ k.θ‖1/2 + γ1/2
d∑
j=1

|kj |1/2


≤
∑
|k|≥k0

e−γ
1/2
∑d
j=1 |kj |1/2

=
∑
|k|≥k0

 d∏
j=1

e−(γ|kj |)1/2


≤ d

( ∞∑
m=1

e−(γm)1/2

)d−1
 ∞∑
m=k0+1

e−(γm)1/2

 . (30)

At this point we stop for a quick estimate.

Lemma 20 Let c be a non-negative real number. Then

∞∑
m=c+1

e−(γm)1/2 ≤
2
(
1 + (γc)1/2

)
e−(γc)1/2

γ
.

Proof We use the estimate
∞∑

m=c+1

e−(γm)1/2 ≤
∫ ∞
c

e−(γx)1/2
dx.

Surprisingly the integral here can be evaluated explicitly as the expression claimed in the statement
of the Lemma. �

Returning to (30), we use Lemma 20 twice to get

∑
|k|≥k0

exp−

( κM

400d

)1/2

‖x+ k.θ‖1/2 + γ1/2
d∑
j=1

|kj |1/2
 ≤ 2d+1d

(
400d
κε

)d
e
− 1

2

(
κεk0
400d

)1/2

.

In view of (29) our aim now must be to pick k0 as small as possible so that the right hand side of
this last equation is at most κ

24d+11 . Recalling that ε ≤ 1, κ ≤ 1 and d ≥ 1 it can be checked (with
a little work) that this is true provided that

k0 ≥
213d3

κε

(
log

400d
κε

)2

. (31)

Suppose from now on that k0 is chosen to equal the value on the right hand side in (31). Then, as
we have remarked, it follows from (29) that

∑
|k|≤k0

exp−

( κM

400d

)1/2

‖x+ k.θ‖1/2 +
( κε

400d

)1/2
d∑
j=1

|kj |1/2
 ≥ κ

24d+11
. (32)
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But

∑
|k|≤k0

exp−

( κM

400d

)1/2

‖x+ k.θ‖1/2 +
( κε

400d

)1/2
d∑
j=1

|kj |1/2


≤ exp−

((
κM

400d

)1/2

min
|k|≤k0

‖x+ k.θ‖1/2
)(∑

m∈Z
e−( κεm400d)

)d

≤ exp−

((
κM

400d

)1/2

min
|k|≤k0

‖x+ k.θ‖1/2
)
· 2d

(
400d
κε

)d
,

the last step following by another application of Lemma 20. Hence from (32) we have that, for some
k with |k| ≤ k0,

exp−
(
κM

400d
‖x+ k.θ‖

)1/2

≥ κ

25d+11

( κε

400d

)d
≥

( κε

400d

)4d
.

Hence, for this k,

‖x+ k.θ‖ ≤ 212d3

κM

(
log
(

400d
κε

))2

.

Since ε < 1/2 a short computation gives that

log
(

400d
κε

)
≤ 12d

κ
log

1
ε
.

A little tidying up gives, at last, Theorem 17.

It is perhaps worth remarking at this point that the key feature of Theorem 17 seems to be that(
log 1

ε

)2 grows more slowly than any power of 1
ε as ε→ 0. If this were not the case then we would

get a substantially weaker bound for the final result. The key feature of the proof that enables us
to obtain such sub-powerlike dependence seems to be that the Fourier Transforms of the functions
in Theorems 18 and 19 decay exponentially.

10 Obtaining a Density Increment in the Second Case, Part 2

Recall that we are working under the assumption (23) that∥∥∥(Â1 − δ1Λ̂1

)
χF

∥∥∥
2
≥ 1

16
δ

3/2
1 |Λ1|1/2, (33)

where F is the set of all x ∈ [0, 1] for which∣∣∣Λ̂2(−2x)
∣∣∣ ≥ δ1

32
|Λ2|. (34)
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With a little technical manipulation we can apply Theorem 17, recalling that Λ2 = Λθ,c2ε,c2M where
c2 satisfies (9), to assert the following. There is k ∈ Zd with

‖k‖∞ ≤
2165d11

δ9

(
log

1
ε

)2 1
ε

(35)

such that

|−2x+ k.θ| ≤ 2165d11

δ9

(
log

1
ε

)2 1
M
. (36)

In deriving these estimates we have used the facts that ε ≤ 1/2 and δ1 >
1
2δ.

Let η, κ be positive real numbers to be chosen later. If Λ4 = Λ θ
2
,c4ε,c4M

for c4 sufficiently small then
Λ1 looks η-locally like Λ4. More importantly for n ∈ Λ4 and x ∈ F we will have ‖nx‖ ≤ κ and so∣∣e2πinx − 1

∣∣ ≤ 2πκ. We will explain these statements in the following fully quantitative Proposition.

Proposition 21 (a) If c4 ≤ d−22−39δ2η then Λ1 looks η-locally like Λ4.

(b) If

c4 ≤ d−122−166δ9

(
log

1
ε

)−2

κ

then ‖nx‖ ≤ κ for all n ∈ Λ4 and x ∈ F .

Proof (a) Recall from (5) that Λ1 = Λθ,c1ε,c1M where c1 ≥ d−12−28δ2. We have

Λ4 = Λ θ
2
,c4ε,c4M

⊆ Λθ,2c4ε,2c4M .

Therefore, by Proposition 9, Λ1 will look η-locally like Λ4 if 2c4 ≤ c1η
400d . This is certainly true if the

stated condition holds.

(b) Take k so that (35) and (36) are satisfied. Then for any n

|−2nx+ nk.θ| ≤ 2165d11|n|
δ9

(
log

1
ε

)2 1
M
.

Hence if n ∈ Λ4 then ∣∣∣∣∣∣nx−
d∑
j=1

kj
nθj
2

∣∣∣∣∣∣ ≤ 2164d11|n|
δ9

(
log

1
ε

)2 1
M

≤ 2164d11c4

δ9

(
log

1
ε

)2

.
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But ∥∥∥∥∥∥
d∑
j=1

kj
nθj
2

∥∥∥∥∥∥ ≤ c4ε

d∑
j=1

|kj |

≤ c4
2165d12

δ9

(
log

1
ε

)2

and therefore

‖nx‖ ≤ 2166d12c4

δ9

(
log

1
ε

)2

,

from which the result follows. �

Now we saw in our analysis of the First Case that we can turn a statement about a Fourier Coefficient
being large into a density increment by averaging over sets on which suitable exponentials e2πinx are
nearly constant. In that case we had a single value x = x0 to worry about. Here however we have, in
(33), a statement about a whole family of Fourier Coefficients being on average large. The beauty
of Theorem 17, and of the deductions (35) and (36) that we have made from it, is that we can pick
a Bohr Neighbourhood Λ4 on which all the exponentials e2πinx of interest are roughly constant. We
can use this to derive a density increment from (33) in a manner which is, philosophically at least,
the same as our deduction in the First Case.

To carry out this deduction we simply have to “follow our nose”. We know that we want to take the
expression Â1(x) − δ1Λ̂1(x), take some kind of average over translates of Λ4 and then use the fact
that certain exponentials are roughly constant on Λ4. We begin by illustrating this qualitatively
(i.e. without any κ’s or η’s). For x ∈ F we have∑

n∈Λ1

A(n)e2πinx ≈ 1
|Λ4|

∑
m∈Λ1

∑
n∈Λ4+m

A(n)e2πinx

≈ 1
|Λ4|

∑
m∈Λ1

e2πimx
∑

n∈Λ4+m

A(n)

=
1
|Λ4|

∑
m∈Λ1

|(A−m) ∩ Λ4| e2πimx.

Thus

Â1(x)− δ1Λ̂1(x) ≈
∑
m∈Λ1

(δ(m)− δ1) e2πimx, (37)

where here and below we use δ(m) to denote the density

|(A−m) ∩ Λ4|
|Λ4|

.
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The plan of the rest of this section is to derive an exact form of (37), and then to derive a density
increment from it using our assuption (33) and Parseval’s Identity.

Following our qualitative analysis above it is natural to write down the expression

Â1(x)− δ1Λ̂1(x) =

∑
n∈Λ1

A(n)e2πinx − 1
|Λ4|

∑
m∈Λ1

∑
n∈Λ4+m

A(n)e2πinx


+

 1
|Λ4|

∑
m∈Λ1

∑
n∈Λ4+m

A(n)
(
e2πinx − e2πimx

)
+

 1
|Λ4|

∑
m∈Λ1

e2πimx
∑

n∈Λ4+m

A(n) − δ1

∑
m∈Λ1

e2πimx

 (38)

We will refer to the three bracketed expressions here as E1(x), E2(x) and E3(x) respectively. By
(33), (38) and Minkowski’s Inequality we have

1
16
δ

3/2
1 |Λ1|1/2 ≤ ‖E1(x)χF‖2 + ‖E2(x)χF‖2 + ‖E3(x)χF‖2. (39)

We now proceed to estimate the three quantities on the right hand side.

To estimate ‖E1(x)χF‖2 we use the fact that Λ1 looks η-locally like Λ4. For this part of the analysis
the presence of F is irrelevant, and we show that ‖E1(x)‖2 is small. Now we have

E1(x) =
∑
n

1
|Λ4|

e2πinx (|Λ4| −Q(n))A(n),

where

Q(n) = |{m ∈ Λ1|n−m ∈ Λ4}| .

Hence, by Parseval’s Identity,

‖E1‖2 =
1
|Λ4|

(∑
n∈A

(|Λ4| −Q(n))2

)1/2

. (40)

However Λ1 looks η-locally like Λ4, and so (by definition)∑
n

|Q(n)− Λ1(n)|Λ4|| ≤ η|Λ1||Λ4|.

This implies that ∑
n∈A
|Q(n)− |Λ4|| ≤

∑
n∈Λ1

|Q(n)− Λ1(n)|Λ4||

≤ η|Λ1||Λ4|.
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Hence, by (40),

‖E1‖2 =
1
|Λ4|

(∑
n∈A

(|Λ4| −Q(n))2

)1/2

≤ 1
|Λ4|

(∑
n∈A
|Q(n)− |Λ4||

)1/2(
sup
n
|Q(n)− |Λ4||

)1/2

≤ 1
|Λ4|

· η1/2|Λ1|1/2|Λ4|1/2 · (2|Λ4|)1/2

≤ 2η1/2|Λ1|1/2. (41)

To estimate ‖E2(x)χF‖2 we really do need F . Recall that, for n ∈ Λ4 and x ∈ F , we have∣∣e2πinx − 1
∣∣ ≤ 2πκ.

Hence we have

E2(x)χF (x) =

 1
|Λ4|

∑
m∈Λ1

∑
n∈Λ4+m

A(n)e2πinx − 1
|Λ4|

∑
m∈Λ1

∑
n′∈Λ4

(A−m)(n′)e2πimx

χF (x)

=
1
|Λ4|

∑
n∈Λ4

(
e2πin′x − 1

) ∑
m∈Λ1

e2πimx(A−m)(n′)χF (x)

and so

|E2(x)χF (x)| ≤ 1
|Λ4|

· 2πκ ·
∑
n∈Λ4

∣∣∣∣∣∣
∑
m∈Λ1

e2πimx(A−m)(n)

∣∣∣∣∣∣χF (x)

≤ 2πκ
|Λ4|

∑
n∈Λ4

∣∣∣∣∣∣
∑
m∈Λ1

e2πimx(A−m)(n)

∣∣∣∣∣∣ .
Taking L2-norms gives

‖E2(x)χF (x)‖22 ≤ (2πκ)2 · 1
|Λ4|

·
∑
n∈Λ4

∥∥∥∥∥∥
∑
m∈Λ1

e2πimx(A−m)(n)

∥∥∥∥∥∥
2

2

=
(2πκ)2

|Λ4|
∑
n∈Λ4

∑
m∈Λ1

(A−m)(n)

≤ (2πκ)2|Λ1|,

and so

‖E2(x)χF (x)‖2 ≤ 2πκ|Λ1|1/2. (42)
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Finally we turn to the estimation of ‖E3(x)χF‖2. This is another case in which the F serves no
purpose, and we have in fact

‖E3(x)‖2 =

∑
m∈Λ1

(δ(m)− δ1)2

1/2

. (43)

Putting together (39), (41), (42) and (43) gives∑
m∈Λ1

(δ(m)− δ1)2

1/2

≥
(

1
16
δ

3/2
1 − 2η1/2 − 2πκ

)
|Λ1|1/2.

Hence if we take c4 so small that η ≤ 2−14δ3
1 and κ ≤ 2−9δ

3/2
1 we will have∑

m∈Λ1

|δ(m)− δ1|2 ≥ 2−10δ3
1 |Λ1|. (44)

Applying Proposition 21 and recalling that δ1 >
δ
2 , it is very easy to see that any c4 with

c4 ≤ δ112−177d−12

(
log

1
ε

)−2

(45)

will do. Observe that getting κ small enough is the overriding constraint. By Lemma 12 we can
choose some c4 with

c4 ≥ δ112−178d−12

(
log

1
ε

)−2

(46)

to satisfy (45) and so that the resulting Λ4 is regular.

From (44) we are almost home – indeed we can immediately guarantee the existence of an m for
which |δ(m)− δ1| ≥ 2−5δ3/2. What we need, however, is a positive density increment. For this we
recall Lemma 14 which, when applied in the present context, gives∣∣∣∣∣∣

∑
m∈Λ1

(δ(m)− δ1)

∣∣∣∣∣∣ ≤ η|Λ1| ≤ 2−14δ3
1 |Λ1|. (47)

Now from (44) we have

max
m∈Λ1

|δ(m)− δ1|
∑
m∈Λ1

|δ(m)− δ1| ≥ 2−10δ3
1 |Λ1|.

Hence either δ(m) ≥ 2δ1 for some m (representing a quite vast density increment) or else∑
m∈Λ1

|δ(m)− δ1| ≥ 2−10δ2
1 |Λ1|.
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In this eventuality we use the classic trick that we have alreay seen – by (47) one has∑
m∈Λ1

(|δ(m)− δ1|+ δ(m)− δ1) ≥
(
2−10δ2

1 − 2−14δ3
1

)
|Λ1|

≥ 2−11δ2
1 |Λ1|.

It follows that, for some m, we have a density increment

δ(m) ≥ δ1 + 2−12δ2
1 .

Recalling from (6) that δ1 ≥ δ − 2−13δ2, a short calculation gives at last a density increment

δ(m) ≥ δ + 2−14δ2 (48)

in the Second Case.

11 Conclusion

Let us now summarise what we have proved in the entire paper so far in the form of a Theorem.

Theorem 22 Let Λ = Λθ,ε,M , where θ ∈ Rd, be a regular Bohr Neighbourhood. Suppose A ⊆ Z has
density δ in Λ. then one of the following alternatives holds:

(i) A contains a nontrivial 3-term AP;

(ii) (Proposition 16 cases (i) and (ii)) There is a regular Bohr Neighbourhood Λ′ = Λθ,cε,cM with
c ≥ d−12−28δ2 on which some translate of A has density at least δ + 2−20δ2;

(iii) (The First Case) There is a regular Bohr Neighbourhood Λ′ = Λθ′,cε,cM with c ≥ d−32−59δ4 and
θ′ ∈ Rd+1, on which some translate of A has density at least δ + 2−7δ2;

(iv) (The Second Case) There is a regular Bohr Neighbourhood Λ′ = Λ θ
2
,cε,cM with

c ≥ δ11d−122−178

(
log

1
ε

)−2

on which some translate of A has density at least δ + 2−14δ2;

(v) (Failure of (12))

Mεd ≤
(

261d2

δ6

)d
.

This may be summarised more briefly (although less precisely) as follows.

Corollary 23 Let Λ = Λθ,ε,M be a regular Bohr Neighbourhood with θ ∈ Rd, and let A ⊆ Z have
density δ on Λ. If A does not contain a nontrivial 3-term AP then one of the following must hold:
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(i) There is a regular Bohr Neighbourhood Λ′ = Λθ′,ε′,M ′ on which some translate of A has density
at least δ + 2−20δ2, where θ′ ∈ Rd′ and

d′ ≤ d+ 1 ;

ε′ ≥ δ11d−122−178

(
log

1
ε

)−2

ε and

M ′ ≥ δ11d−122−178

(
log

1
ε

)−2

M ;

(ii)

Mεd ≤
(

261d2

δ6

)d
.

Finally we are ready for

Theorem 24 (Effective Version of Roth’s Theorem) Suppose that A ⊆ {−N, . . . , N} is a set
of density δ. If

δ ≥ 228

(
log logN

logN

)1/2

then A contains a nontrivial 3-term AP.

Proof As we have pointed out the set

Λ1 = [−N,N ] = Λ1, 1
2
,N

is a regular Bohr Neighbourhood. Indeed∣∣∣Λ
1,

(1+γ)
2

,(1+γ)N

∣∣∣ = 2 b(1 + γ)Nc+ 1,

from which it follows easily that Λ1 is regular. Assume that A does not contain a nontrivial 3-term
AP. If N is large enough then, applying Corollary 23 repeatedly, we get a sequence

{
Λj = Λθj,εj ,Mj

}
of regular Bohr Neighbourhoods with the following properties:

(i)

θj ∈ Rd(j) where d(j) ≤ j ;

(ii)

εj ≥ δ11d−122−178

(
log

1
εj−1

)−2

εj−1 ;

(iii)

Mj ≥ δ11d−122−178

(
log

1
εj−1

)−2

Mj−1 ;
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(iv) Some translate of A has density at least δj on Λj , where the sequence {δj} satisfies

δj ≥ δj−1 + 2−20δ2
j−1.

We want N to be large enough so that we can carry on the above process for long enough that
δj > 1, which will be a clear contradiction. Let us then examine the sequence δj . Clearly δj will

reach 2δ after
⌈

220

δ

⌉
steps, then 4δ after a further

⌈
220

2δ

⌉
steps, and so on. Therefore δj will be

greater than 1 for some j satisfying

j ≤ 220

(
1
δ

+
1
2δ

+ . . .

)
+ log

(
1
δ

)
≤ 222

δ
.

Now if j ≤ 222δ−1 then

εj ≥ 2−500δ23

(
1
εj−1

)−2

εj−1 and

Mj ≥ 2−500δ23

(
1
εj−1

)−2

Mj−1.

Now ε1 = 1
2 and M1 = N . It is easy to check inductively that, for j ≤ 222δ−1, we have

εj ≥ 2−600jδ27j and

Mj ≥ 2−600jδ27jN.

Now we know that δj > 1 for some j ≤ 222

δ . For such a j we will have Λj = Λθ,ε,M where

ε ≥
(
δ

2

)232δ−1

and

M ≥
(
δ

2

)232δ−1

N.

This is a contradiction provided that N is sufficiently large that alternative (ii) of Corollary 23 does
not hold, i.e. provided that

Mεj ≥
(

261j2

δ6

)j
.

A short calculation shows that this is the case if

N ≥
(

2
δ

)256δ−2

.

This concludes the proof. �
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12 Appendix – Smoothly Approximating Intervals

In this appendix we prove Theorems 18 and 19. We repeat their statements now.

Theorem 25 Let 0 < δ ≤ 1
16 , and let L be a positive real number. Then there is a function

τ = τL,δ : R → R with the following properties. Firstly, τ approximates the characteristic function
of the interval [−L,L] in that 0 ≤ τ ≤ 1 and

τ(x) =
{

0 (|x| > (1 + δ)L)
1 (|x| < (1− δ)L).

Secondly, τ has a rapidly decaying Fourier Transform. Specifically,

|τ̂(t)| ≤ 16Le−(δL|t|)1/2

for all real t.

Theorem 26 Let 0 < δ ≤ 1
16 and let N ≥ 1

δ . Then there is a function σ = σN,δ : Z → Z with the
following properties. Firstly, τ approximates the characteristic function of the set {−N, . . . , N} in
that 0 ≤ σ ≤ 1 and

σ(x) =
{

0 (|x| > (1 + δ)N)
1 (|x| < (1− δ)N).

Secondly, σ has a rapidly decaying Fourier Transform. Specifically,

|σ̂(t)| ≤ 29Ne−(δN‖t‖)1/2

for all t ∈ T.

We start by constructing a smooth bump function. This construction is presumably standard,
but the author has not located it in the literature. It seems rather more natural than the usual
construction of smooth bump functions via the pathological function f(x) = e−

1
x2 . Furthermore

it is possible to quantify the smoothness of our function by giving a very strong estimate for its
Fourier Transform.

Proposition 27 There is a non-negative function F : R→ R with Supp(F ) ⊆ [−1, 1] and ‖F‖1 = 1
whose Fourier Transform satisfies the decay estimate |F̂ (τ)| ≤ 28|τ |1/2e−|τ |1/2 for |τ | ≥ 4.

Proof Let Ij =
[
− 1

4j2
, 1

4j2

]
and let fj be the characteristic function of Ij weighted so that its

integral is 1, i.e. fj = 2j2χIj . Let gk = f1 ∗ · · · ∗ fk be the convolution of the first k functions fj .
We have immediately that

‖gk‖1 =
k∏
j=1

‖fj‖1 = 1.
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Furthermore we can compute

f̂j(τ) =
4j2

τ
sin
(
τ

4j2

)
,

and hence

ĝk(τ) =
k∏
j=1

4j2

τ
sin
(
τ

4j2

)
. (49)

Here, as is natural, we have interpreted the value of sinx
x at x = 0 to be 1.

Now if |x| ≤ 1 then ∣∣∣∣sinxx − 1
∣∣∣∣ =

∣∣∣∣x2

3!
− x4

5!
+ . . .

∣∣∣∣
≤ |x|2.

Therefore
k∏
j=1

4j2

τ
sin
(
τ

4j2

)
=

k∏
j=1

(1 + εj)

where

|εj | ≤
τ2

16j4
.

Since
∑

j |εj | <∞, the product in (49) converges absolutely and ĝk(τ)→ h(τ) for some function h.

Let us now split the product for ĝk and write, for any m ≤ k,

|ĝk(τ)| =

∣∣∣∣∣∣
∏

1≤j<m

4j2

τ
sin
(
τ

4j2

)∣∣∣∣∣∣
∣∣∣∣∣∣
∏

m≤j≤k

4j2

τ
sin
(
τ

4j2

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∏

1≤j<m

4j2

τ
sin
(
τ

4j2

)∣∣∣∣∣∣
≤

(
4
|τ |

)m
(m!)2. (50)

Also, rather more trivially, |ĝk(τ)| ≤ 1 for all τ .

By putting m = 2 in (50) we see that the functions |ĝk(τ)| for k ≥ 2 are simultaneously dominated
by an integrable function. It follows from the Bounded Convergence Theorem that∫ ∞

−∞
ĝk(τ)eiτx dτ −→

∫ ∞
−∞

h(τ)eiτx dτ (51)
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for all real x. However, by a suitable version of the Fourier Inversion Theorem (see, for example,
Körner [4]), we have that ∫ ∞

−∞
ĝk(τ)eiτx dτ = 2πgk(x)

and so (51) tells us that

gk(x) −→ 1
2π
ĥ(−x)

for all real x.

What we have shown so far is that our functions gk, which we suspect by (50) to have rather rapidly
decaying Fourier Transforms for large k, tend pointwise to some function F (x) = 1

2π ĥ(−x). This
function, then, would seem to be a natural candidate for our smooth bump function. We prove that
it is such a function in two Lemmas.

Lemma 28 The function F just constructed is non-negative, supported in [−1, 1] and has ‖F‖1 = 1.

Proof Non-negativity is clear. It is easy to see that gk is supported in [−ηk, ηk], where

ηk =
1
4

(
1 +

1
22

+ · · ·+ 1
k2

)
≤ 1.

Hence F is supported in [−1, 1] as claimed. Finally we have

gk(x) = f1 ∗ (f2 ∗ · · · ∗ fk)

=
∫ ∞
−∞

f1(x− y)(f2 ∗ · · · ∗ fk)(y) dy

≤ ‖f1‖∞‖f2 ∗ · · · ∗ fk‖1
= 2

for all real x. Since each gk is supported in [−1, 1] it follows from the Bounded Convergence Theorem
that ‖gk‖1 → ‖F‖1. Therefore ‖F‖1 = 1. �

During the proof of the last Lemma we saw that the sum of the lengths of the intervals Ij was
at most 2. It turns out that one gets the smoothest bump functions by making

∑
j |Ij | converge

as slowly as possible. We have tried to do reasonably well, whilst retaining simplicity, by taking
|Ij | = 2

j2
.

Lemma 29 The Fourier Transform of F satisfies the decay estimate

|F̂ (τ)| ≤ 28|τ |1/2e−|τ |1/2

for all |τ | ≥ 4.
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Proof It follows immediately from the Bounded Convergence Theorem that ĝk(τ) → F̂ (τ) point-
wise. Therefore we have, from (50), that

|F̂ (τ)| ≤
(

4
|τ |

)m
(m!)2 (52)

for any positive integer m = m(τ) we care to choose. A crude version of Sterling’s Formula gives
the inequality

m! ≤ 8mm+ 1
2 e−m.

Substituting this into (52) yields

|F̂ (τ)| ≤ 64m
(

4m2

e2|τ |

)m
(53)

for any positive integer m. Supposing that |τ | ≥ 4, take m =
⌊

1
2 |τ |

1/2
⌋
. Writing m = 1

2 |τ |
1/2 − η,

where 0 ≤ η ≤ 1, we get

|F̂ (τ)| ≤ 64 · 1
2
|τ |1/2 ·

(
4

e2|τ |

)( 1
2
|τ |1/2−η)(1

4
|τ |
)( 1

2
|τ |1/2−η)

= 32|τ |1/2 · e2η · e−|τ |1/2

≤ 28|τ |1/2e−|τ |1/2 .

Proposition 27 is proved. �

Most of the hard work has now been done and we can prove Theorem 25 relatively quickly. First
of all define the function Gδ by G = Fδ ∗ χ[−1,1], where Fδ(x) = 1

δF
(
x
δ

)
. We have F̂δ(τ) = F̂ (δτ)

and χ̂[−1,1](τ) = 2 sin τ
τ . Therefore if δ|τ | ≥ 4 we have

|Ĝδ(τ)| = |F̂ (δτ)|
∣∣∣∣2 sin τ

τ

∣∣∣∣
≤ 29

(
δ

|τ |

)1/2

e−(δ|τ |)1/2

≤ 28δe−(δ|τ |)1/2

≤ 16e−(δ|τ |)1/2
, (54)

the last step following from the assumption that δ ≤ 1
16 . Since trivially |Ĝδ(τ)| ≤ 2 for all τ , it is

easy to see that the bound in (54) is actually valid for all real τ . Now set τδ,L(x) = Gδ
(
x
L

)
to finish

off the proof of Theorem 25. �

Finally we turn to the proof of Theorem 26. It turns out that we have essentially constructed
σ = σδ,N already. Define σ as a function on Z by σ(n) = Gδ

(
n
N

)
, and extend it to a function ρ on
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R in the obvious way by defining ρ(x) = Gδ
(
x
N

)
. The Fourier Transform σ̂ lives on T and is defined

by

σ̂(τ) =
∑
n

σ(n)e2πinτ .

This certainly looks like some sort of discrete approximation to the Fourier Transform of ρ, namely

ρ̂(τ) =
∫ ∞
−∞

σ(x)e2πixτ dx.

We know from earlier investigations that this is rapidly decaying. However it still seems rather
unreasonable to me that such a vague comparison can be made completely explicit, as we now
show using the Poisson Summation Formula. Let us start by recalling the version of the Poisson
Summation Formula given in [4].

Theorem 30 [Poisson Summation Formula] Let f : R −→ R be a continuous function for which∑∞
m=−∞ |f̂(m)| converges and

∑∞
n=−∞ |f(2πn+ x)| converges uniformly on [−π, π]. Then for any

real x we have ∑
m∈Z

f̂(m)eimx = 2π
∑
n∈Z

f(2πn+ x).

The proof of this result is not hard, and essentially consists of checking that both sides of the
claimed equation have the same Fourier Coefficients when considered as functions on T. The Poisson
Summation Formula can be better understood in a fully general context in which arbitrary locally
compact abelian groups are considered (as opposed to the rather simple group R, with its discrete
subgroup Z, as appear here).

Let us apply the Poisson Summation Formula with f = ρ̂. By the Fourier Inversion Formula we
have

ˆ̂ρ(x) = 2πρ(−x) = 2πρ(x).

This and our earlier estimates make it clear that the conditions Theorem 30 are satisfied in this
case. Applying it, and recalling that σ = ρ on Z, we have

σ̂(x) =
∑
m∈Z

σ(m)e2πimx

=
∑
m∈Z

ρ(m)e2πimx

=
1

2π

∑
m∈Z

ˆ̂ρ(m)e2πimx

=
∑
n∈Z

ρ̂ (2π(n+ x))

= N
∑
n∈Z

Ĝδ (2πN(n+ x))

= N
∑
n∈Z

Ĝδ (2πN(n+ ‖x‖)) . (55)
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We know that ρ̂ is rapidly decaying, and so the dominant terms are those with with |n| ≤ 1. The
sum of these terms outweighs the sum of all the other terms. We conclude our exposition by working
out the details. From (55) and our estimates for Ĝδ we have

|σ̂(x)| = N
∑

n∈BbbZ
Ĝδ (2πN(n+ ‖x‖))

≤ 16N
∑
n∈Z

e−(2πδN |n+‖x‖|)1/2

≤ 16N
∑
n∈Z

e−(δN |n+‖x‖|)1/2

≤ 16N

5e−(δN‖x‖)1/2

+ 2
∑
m≥2

e−(δNm)1/2

 . (56)

Now from Lemma 20 we have, if γ ≥ 1, that

∑
m≥2

e−(γm)1/2 ≤ 2(1 + γ1/2)e−γ
1/2

γ

≤ 8e−
3
4
γ1/2

≤ 8e(γ‖x‖)1/2

for any real number x. Now we assumed that N ≥ 1
δ and so we may combine this with (56) to get

that

|σ̂(x)| ≤ 29Ne−(δN‖x‖)1/2

for all x. This concludes the proof of Theorem 26. �
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