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1. Introduction

It is well known that explicit expressions for probability

characteristics of stochastic models can be found only in

a few special cases. In view of this, the study of the

rate of convergence as time t → ∞ to the steady state

of a process is one of two main problems for obtaining

the limiting behaviour of the process. If the model is

Markovian and stationary in time, then the stationary

limiting characteristics usually give usually, sufficient or

almost sufficient information about the model. On the

other hand, if we deal with an inhomogeneous Markovian

model, then we must approximately calculate, in addition

to that, the limiting probability characteristics of the

process. The problem of existence and construction of

limiting characteristics for inhomogeneous (in time) birth

and death processes is important for queueing applications

(see, e.g., Di Crescenzo and Nobile, 1995; Di Crescenzo

et al., 2003; 2012; Granovsky and Zeifman, 2004;

Mandelbaum and Massey, 1995; Massey and Whitt, 1994;

Massey and Pender, 2013; Olwal et al., 2012; Tan et

al., 2013; Zeifman et al., 2006). This is the second

main problem. A general approach and related bounds

for the study on the convergence rate was considered by

Zeifman (1995a), who also first mentioned computation of

the limiting characteristics for the process via truncations

(Zeifman, 1988), and later considered it in detail (Zeifman

et al., 2006). The first results for more general Markovian

queueing models have been obtained recently by Zeifman

et al. (2014).

About two decades ago Vladimir V. Kalashnikov

suggested that in some cases one can obtain uniform (in

time) error bounds of truncation. Here we prove this

conjecture.

The paper is organized as follows. Basic notions

are recalled below in Section 1. Auxiliary statements are

considered in Section 2. The main result is proved in
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Section 3. In Section 4 we consider application of our

bounds for the Mt/Mt/S queueing model. Finally, in

Section 5 we consider a specific queueing example.

Let X = X(t), t ≥ 0 be a Birth and Death

Process (BDP) with birth and death rates λn(t), µn(t),
respectively. Let pij(s, t) = Pr {X(t) = j |X(s) = i}
for i, j ≥ 0, 0 ≤ s ≤ t, be the transition probability

functions of the process X = X(t), and let pi(t) =
Pr {X(t) = i} be the state probabilities.

We assume throughout the paper that

Pr (X (t + h) = j/X (t) = i)

=

⎧

⎨

⎩

qij (t) h + αij (t, h) if j �= i,

1 −
∑

k �=i

qik (t)h + αi (t, h) if j = i, (1)

where all αi(t, h) are o(h) uniformly in i, i.e.,

supi |αi(t, h)| = o(h). Here all qi,i+1 (t) = λi(t),
qi,i−1 (t) = µi(t) for any i > 0, and all other qij(t) ≡ 0.

The probabilistic dynamics of the process are

represented by the forward Kolmogorov system of

differential equations:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

dp0

dt
= −λ0(t)p0 + µ1(t)p1,

dpk

dt
= λk−1(t)pk−1 − (λk(t) + µk(t)) pk

+µk+1(t)pk+1, k ≥ 1.

(2)

By p(t) = (p0(t), p1(t), . . . )
T

, t ≥ 0, we denote

the column vector of state probabilities and by A(t) =
(aij(t)) , t ≥ 0, the matrix related to (2). One can

see that A (t) = QT (t), where Q(t) is the intensity (or

infinitesimal) matrix for X(t).
We assume that all birth and death intensity functions

λi(t) and µi(t) are linear combinations of a finite number

of functions which are locally integrable on [0,∞).
Moreover, we assume that

λn(t) ≤ L < ∞, µn(t) ≤ M < ∞, (3)

for almost all t ≥ 0. Throughout the paper by ‖ · ‖
we denote the l1-norm, i.e., ‖x‖ =

∑ |xi|, and ‖B‖ =
supj

∑

i |bij | for B = (bij)
∞
i,j=0.

Let Ω be a set all stochastic vectors, i.e., l1 vectors

with nonnegative coordinates and the unit norm. Then we

have

‖A(t)‖ ≤ 2 sup(λk(t) + µk(t)) ≤ 2 (L + M)

for almost all t ≥ 0. Hence the operator function A(t)
from l1 into itself is bounded for almost all t ≥ 0 and

locally integrable on [0;∞).
Therefore we can consider the system (2) as the

differential equation

dp

dt
= A (t)p, p = p(t), t ≥ 0, (4)

in the space l1 with a bounded operator function A(t).
It is well known (Daleckij and Krein, 1974) that

the Cauchy problem for the differential equation (1)

has unique solutions for arbitrary initial conditions, and

p(s) ∈ Ω implies p(t) ∈ Ω for t ≥ s ≥ 0.

Therefore, we can apply the general approach

to employ the logarithmic norm of a matrix for the

study of the stability of a Kolmogorov system of

differential equations associated with nonhomogeneous

Markov chains. The method is based on the following two

components: the logarithmic norm of a linear operator

and a special similarity transformation of the matrix

of intensities of the Markov chain considered, see the

corresponding definitions, bounds, references and other

details in the works of Van Doorn et al. (2010), Granovsky

and Zeifman (2004), Zeifman (1985; 1995b; 1995a) or

Zeifman et al. (2006).

Definition 1. A Markov chain X(t) is called weakly

ergodic if ‖p∗(t)−p∗∗(t)‖ → 0 as t → ∞ for any initial

conditions p∗(0),p∗∗(0). Here p∗(t) and p∗∗(t) are the

corresponding solutions of (4).

Set Ek(t) = E {X(t) |X(0) = k} (then the

corresponding initial condition of the system (4) is the

k-th unit vector ek).

Definition 2. Let X(t) be a Markov chain. Then ϕ(t) is

called the limiting mean of X(t) if

lim
t→∞

(ϕ(t) − Ek(t)) = 0

for any k.

2. Auxiliary notions and results

Consider an increasing sequence of positive numbers

{di}, i = 1, 2, . . . , d1 = 1, and the corresponding

triangular matrix

D =

⎛

⎜

⎜

⎜

⎝

d1 d1 d1 · · ·
0 d2 d2 · · ·
0 0 d3 · · ·

. . .
. . .

. . .

⎞

⎟

⎟

⎟

⎠

. (5)

Let l1D be the space of sequences

l1D =
{

z = (p1, p2, . . . )
T : ‖z‖1D ≡ ‖Dz‖ < ∞

}

.

We also introduce the auxiliary space of sequences

l1E as

l1E =
{

z = (p1, p2, · · · )T : ‖z‖1E ≡
∑

k|pk| < ∞
}

.

Set

d = inf
i≥1

di = 1, W = inf
i≥1

di

i
, gi =

i
∑

n=1

dn.



On truncations for weakly ergodic inhomogeneous birth and death processes
505

Consider the following expressions:

αk (t) = λk (t) + µk+1 (t) − dk+1

dk
λk+1 (t)

− dk−1

dk
µk (t) , k ≥ 0, (6)

and

α (t) = inf
k≥0

αk (t) . (7)

At first, we recall the definition of the logarithmic

norm and the related bound (for details, see Van Doorn

et al., 2010; Granovsky and Zeifman, 2004; Zeifman

et al., 2006)

Let B (t) , t ≥ 0 be a one-parameter family of

bounded linear operators on a Banach space B and let I
denote the identity operator. For a given t ≥ 0, the number

γ (B (t))B = lim
h→+0

‖I + hB (t)‖ − 1

h

is called the logarithmic norm of the operator B (t) .
If B is an (N +1)-dimensional vector space with the

l1-norm, so that the operator B(t) is given by the matrix

B(t) = (bij(t))
N
i,j=0 , t ≥ 0, then the logarithmic norm

of B(t) can be found explicitly:

γ (B (t)) = sup
j

⎛

⎝bjj (t) +
∑

i�=j

|bij (t)|

⎞

⎠ , t ≥ 0.

On the other hand, the logarithmic norm of the

operator B(t) is related to the Cauchy operator V (t, s)
of the system

dx

dt
= B (t)x, t ≥ 0,

in the following way:

γ (B (t))B = lim
h→+0

‖V (t + h, t)‖ − 1

h
, t ≥ 0.

From the latter, one can deduce the following bounds

of the Cauchy operator V (t, s):

‖V (t, s)‖B ≤ e

t
∫

s

γ(B(τ)) dτ
, 0 ≤ s ≤ t.

Recall now the following general statement.

Theorem 1. Let a BDP with the rates λk(t) and µk(t) be

given. Assume that there exists a sequence {di} such that

∞
∫

0

α(t) dt = +∞. (8)

Then X(t) is weakly ergodic, and the following bounds

hold:

‖p∗(t) − p∗∗(t)‖1D

≤ e
−

t
∫

s

α(τ) dτ
‖p∗(s) − p∗∗(s)‖1D, (9)

‖p∗(t) − p∗∗(t)‖

≤ 4e
−

t
∫

s

α(τ) dτ ∑

i≥1

gi|p∗i (s) − p∗∗i (s)|, (10)

for any t ≥ s ≥ 0 and any initial conditions p∗(s) and

p∗∗(s).

Proof. The property p(t) ∈ Ω for any t ≥ 0 allows

putting p0(t) = 1−∑

i≥1 pi(t). Then from (4) we obtain

the following system:

dz(t)

dt
= B(t)z(t) + f(t), (11)

where

z(t) = (p1(t), p2(t), . . . )
T

,

f(t) = (λ0(t), 0, 0, . . . )
T

,

B(t) = (bij(t))
∞
i,j=1

and

bij =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−(λ0 + λ1 + µ1) if i = j = 1,
µ2 − λ0 if i = 1, j = 2,
−λ0 if i = 1, j > 2,
−(λj + µj) if i = j > 1,
µj if i = j − 1 > 1,
λj if i = j + 1 > 1,
0 otherwise.

(12)

This is a linear non-homogeneous differential system

the solution of which can be written as

z(t) = V (t, 0)z(0) +

∫ t

0

V (t, τ)f(τ) dτ, (13)

where V (t, z) is the Cauchy operator of (11) (see, e.g.,

Zeifman, 1995a).

Consider Eqn. (11) in the space l1D. We have

‖f(t)‖1D = d1λ0(t) ≤ L for almost all t ≥ 0. On the
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other hand,

DBD−1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−(λ0 + µ1)
d1

d2
µ2

d2

d1
λ1 −(λ1 + µ2)

0 d3

d2
λ2

. . .

0
. . .

d2

d3
µ3 0

. . .

−(λ2 + µ3)
d3

d4
µ4 0

. . .
. . .

. . .
. . .

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(14)

Hence

‖B(t)‖1D

= sup
k≥0

(

λk(t) + µk+1(t) +
dk+1

dk
λk+1(t)

+
dk−1

dk
µk(t)

)

≤ sup
k≥0

(

(

− λk(t) − µk+1(t) +
dk+1

dk
λk+1(t)

+
dk−1

dk
µk(t)

)

+ 2λk(t) + 2µk+1(t)

)

≤ 2 (L + M) − α(t)

(15)

for almost all t ≥ 0.

Then f(t) and B(t) are bounded and locally

integrable on [0,∞) as a vector function and an operator

function in l1D, respectively.

Now we have the following bound for the logarithmic

norm γ (B(t)) in l1D:

γ (B)1D = γ
(

DB(t)D−1
)

1

= sup
i≥0

(di+1

di
λi+1(t) +

di−1

di
µi(t)

−
(

λi(t) + µi+1(t)
)

)

= − inf
k≥0

(αk (t)) = −α(t),

(16)

in accordance with (7). Hence

‖V (t, s)‖1D ≤ e
−

t
∫

s

α(τ) dτ
. (17)

Therefore, the bound (9) holds.

On the other hand, we have

‖z‖
≤

∑

i≥1

di|pi|

= d1

(

∣

∣

∣

∑

i≥1

pi +
∑

i≥2

−pi

∣

∣

∣

)

+ d2

(

∣

∣

∣

∑

i≥2

pi +
∑

i≥3

−pi

∣

∣

∣

)

+ . . .

≤ d1

∣

∣

∣

∑

i≥1

pi

∣

∣

∣ + 2d2

∣

∣

∣

∑

i≥2

pi

∣

∣

∣ + · · · ≤ 2‖z‖1D,

(18)

and ‖p∗ − p∗∗‖ ≤ 2‖z‖ for any p∗,p∗∗ and the

corresponding z. Hence the bound (10) holds. �

Corollary 1. Let, in addition, the numbers di grow suf-

ficiently fast so that W > 0. Then X(t) has the limiting

mean, say φ(t), and the following bound holds:

|φ(t) − Ek(t)| ≤ 4

W
e
−

t
∫

0

α(τ) dτ
‖p(0) − ek‖1D. (19)

Proof. The bound (19) follows from (9) and from the

inequality

‖z‖1D = d1

∣

∣

∣

∞
∑

i=1

pi

∣

∣

∣ + d2

∣

∣

∣

∣

∣

∞
∑

i=2

pi

∣

∣

∣

∣

∣

+ . . .

≥ W
∑

k≥1

k
∣

∣

∣

∑

i≥k

pi

∣

∣

∣ ≥ W

2
‖z‖1E . (20)

�

3. Truncations

Now we consider the family of “truncated” processes

XN (t) on the state space EN = {0, 1, . . . , N}, where the

birth rates are λn(t), n ∈ EN−1 and the death rates are

µn(t), n ∈ EN (and with the intensity matrix AN ). The

truncated process has the vector of probabilities governed

by the forward Kolmogorov differential system

dpN

dt
= AN (t)pN . (21)

Below we will identify the finite vector with entries

(a1, . . . , aN ) and the infinite vector with the same first

N coordinates and the others equal to zero. The same

identification will be assumed also for the rate matrix AN ,

triangular matrix DN , and so on.

Theorem 2. Let a BDP with the rates λk(t) and µk(t) be

given. Assume that there exists a sequence {di} such that

∞
∫

0

α(t) dt = +∞. (22)
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Then XN (t) is weakly ergodic for any N , and the follow-

ing bounds hold:

‖p∗
N(t) − p∗∗

N (t)‖1D

≤ e
−

t
∫

s

α(τ) dτ
‖p∗

N (s) − p∗∗
N (s)‖1D, (23)

‖p∗
N(t) − p∗∗

N (t)‖

≤ 4e
−

t
∫

s

α(τ) dτ ∑

i≥1

gi|p∗i,N (s) − p∗∗i,N (s)|

≤ 8gNe
−

t
∫

s

α(τ) dτ
, (24)

for any t ≥ s ≥ 0 and any initial conditions p∗
N (s) and

p∗∗
N (s).

Proof. The property pN (t) ∈ Ω for any t ≥ 0 allows

setting p0,N(t) = 1 − ∑

i≥1 pi,N(t). Then from (21) we

obtain the following system:

dzN (t)

dt
= BN (t)zN (t) + fN (t), (25)

where zN(t) = (p1,N (t), . . . , pN,N(t))T , fN(t) =

(λ0(t), 0, . . . , 0)
T

, BN (t) = (bij(t))
N
i,j=1 and

bij =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−(λ0 + λ1 + µ1) if i = j = 1,
µ2 − λ0 if i = 1, j = 2,
−λ0 if i = 1, j > 2,
−(λj + µj) if i = j > 1,
µj if 1 < i = j − 1 ≤ N,
λj if 1 < i = j + 1 ≤ N − 1,
0 otherwise.

(26)

The solution of Eqn. (25) can be written as

zN (t) = VN (t, 0)zN (0) +

∫ t

0

VN (t, τ)fN (τ) dτ, (27)

where VN (t, z) is the Cauchy operator of (25).

Now the following bound for the logarithmic norm

γ (BN (t)) in the l1D,N norm holds:

γ (BN)1D,N

= γ
(

DNBN (t)D−1
N

)

1

≤ max
0≤i≤N−1

(

di+1

di
λi+1(t) +

di−1

di
µi(t)

− (λi(t) + µi+1(t)))

≤ sup
k≥0

(−αk (t)) = −α(t),

(28)

in accordance with (25). Hence

‖VN (t, s)‖1D,N ≤ e
−

t
∫

s

α(τ) dτ
. (29)

Our claim follows from this bound. �

Denote by Ek,N (t) = E {XN(t) |XN(0) = k } the

mathematical expectation of the truncated process under

the initial condition ek.

Corollary 2. Under the assumptions of Theorem 2 the

truncated process XN (t) has the limiting mean for any

N , say φN (t), and the following bounds hold:

|φN (t) − Ek,N (t)|

≤ 4

W
e
−

t
∫

0

α(τ) dτ
‖pN (0) − ek‖1D,N , (30)

and

|φN (t) − Ek,N (t)| ≤ 8NgN , (31)

for any k and any t ≥ 0.

Now if we suppose in addition that there exist

positive R and a such that

e−
∫

t

s
α(u) du ≤ Re−a(t−s) (32)

for any 0 ≤ s ≤ t, then the process X(t) is exponentially

weakly ergodic.

Moreover, consider a “new” sequence {d∗i } such that

d∗i = d2
i , and the correspondent inequality

e−
∫

t

s
α∗(u) du ≤ R∗e−a∗(t−s) (33)

for any 0 ≤ s ≤ t.

Theorem 3. Let the assumptions of Theorem 2 hold. In

addition, let the inequalities (32) and (33) hold for some

positive R,R∗, a, a∗. Then we have the following bounds

of truncation:

‖p(t) − pN (t)‖ ≤ 8LRR∗(L + M)

aa∗dN
, (34)

for p(0) = pN (0) = e0,

|E0(t) − E0,N (t)| ≤ 4LRR∗(L + M)

aa∗dNW
. (35)

Proof. Consider the correspondent non-homogeneous

equation for X(t) (11) in the form

dz(t)

dt
= BN (t)z(t)+(B(t) − BN (t)) z(t)+ f(t). (36)

Then we have

z(t) = VN (t)z(0)

+

∫ t

0

VN (t, τ)(B(τ) − BN (τ))z(τ) dτ

+

∫ t

0

VN (t, τ)f(τ) dτ.

(37)
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We note that the following equality holds:

VN (t, s)f(s) = VN (t, s)fN(s),

for any 0 ≤ s ≤ t. Hence we have

z(t) − zN (t)

=

∫ t

0

VN (t, τ)(B(τ) − BN (τ))z(τ) dτ (38)

if p(0) = pN (0).

Write B(t) − BN (t) =
(

b∗ij(t)
)∞

i,j=1
. Then

b∗ij =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 if i = 1, j ≤ N,
−λ0 if i = 1, j > N,
0 if 2 ≤ i ≤ N − 1, j ≤ 1,
−λN if i = j = N,
−(λj + µj) if i = j > N,
µj if i ≥ N, j = i + 1
λj if N > i, j = i − 1,
0 otherwise.

(39)

Hence

(B(τ) − BN (τ)) z(τ) = (r1(τ), r2(τ), . . . )
T

, (40)

where

ri =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−λ0

∑

i>N pi if i = 1,
0 if 2 ≤ i ≤ N − 1,
−λNpN + µN+1pN+1 if i = N,
λi−1pi−1 − (λi + µi)pi

+µi+1pi+1 if i > N.
(41)

Now we have

D (B(τ) − BN(τ)) z(τ) = (r∗1(τ), r∗2 (τ), . . . )
T

, (42)

where

r∗i =

⎧

⎨

⎩

−d1λ0

∑

i>N pi if i = 1,
0 if 2 ≤ i ≤ N,
di (λipj − µi+1pi+1) if i > N,

(43)

and

‖(B(τ) − BN (τ))z(τ)‖1D

=
∑

i

|r∗i (τ)|

≤ 2(L + M)

∞
∑

i=N

dipi(τ). (44)

Therefore, in the l1D-norm the following bound holds:

‖z(t) − zN (t)‖

≤
∫ t

0

‖VN(t, τ)‖‖(B(τ) − BN (τ))z(τ)‖ dτ.

≤ 2(L + M)

∫ t

0

Re−a(t−τ)
∞
∑

i=N

dipi(τ) dτ

≤ 2R(L + M)

a
sup

0≤τ≤t

∞
∑

i=N

dipi(τ).

(45)

For estimating the right-hand side of (45) we

consider now the upper and lower bounds for ‖z(t)‖1D∗ .

Firstly, one has

‖z(t)‖1D∗

≤ ‖V (t)‖1D∗‖z(0)‖1D∗

+

∫ t

0

‖V (t, τ)‖1D∗‖f(τ)‖1D∗ dτ

≤ R∗e−a∗t‖z(0)‖1D∗ +
LR∗

a∗

(46)

since λ0(t) ≤ L for almost all t ≥ 0.

Set X(0) = 0. Then p(0) = (1, 0, 0, . . . )T , z(0) =
0, and hence

‖z(t)‖1D∗ ≤ LR∗

a∗
(47)

for any t ≥ 0.

On the other hand, all pi(t) ≥ 0. Therefore

‖z(t)‖1D∗

=
∑

i≥1

pi(t)

i
∑

k=1

d2
k ≥

∑

i≥N

d2
i pi(t)

≥ dN

∑

i≥N

dipi(t), (48)

and
∞
∑

i=N

dipi(t) ≤
‖z(t)‖1D∗

dN
≤ LR∗

a∗dN
, (49)

for any t ≥ 0.

Finally, we have

‖z(t) − zN (t)‖1D ≤ 2LRR∗(L + M)

aa∗dN
, (50)

for p(0) = pN (0) = e0, and the first bound of our

theorem follows now from the inequality d‖z‖ ≤ 2‖z‖1D.

The inequality

‖z‖1D = d1

∣

∣

∣

∞
∑

i=1

pi

∣

∣

∣ + d2

∣

∣

∣

∞
∑

i=2

pi

∣

∣

∣ + . . .

≥ W
∑

k≥1

k
∣

∣

∣

∑

i≥k

pi

∣

∣

∣ ≥ W

2
‖z‖1E (51)

implies the second bound. �
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Denote by p(t, k) the probability distribution of

X(t) with the initial condition p(0, k) = ek, i.e., with

the initial condition X(0) = k.

Theorem 4. Under the assumptions of Theorem 3, the

following bounds hold:

‖p(t, k) − pN (t, 0)‖

≤ 8Rgke−at +
8LRR∗(L + M)

aa∗dN
, (52)

‖p(t, k) − pN (t, 0)‖

≤ 8R∗g∗ke−a∗t +
8LRR∗(L + M)

aa∗dN
, (53)

and

|Ek(t) − E0,N (t)|

≤ 4Rgk

W
e−at +

4LRR∗(L + M)

aa∗dNW
, (54)

|Ek(t) − E0,N (t)|

≤ 4R∗g∗k
W ∗

e−a∗t +
4LRR∗(L + M)

aa∗dNW
. (55)

Proof. The claim follows from the inequalities (10), (19),

(34) and (35). �

We formulate separately the correspondent statement

for the important case of periodic (1-periodic, for

definiteness) intensities.

Note firstly that in this situation the condition (22)

implies the inequality (32) for

a =

∫ 1

0

α(t) dt, R = eK , K = sup
|t−s|≤1

∫ t

s

α(u) du.

Similarly, the assumption

∫ ∞

0

α∗(t) dt = ∞

implies the inequality (33) for

a∗ =

∫ 1

0

α∗(t) dt,

R∗ = eK∗

,

K∗ = sup
|t−s|≤1

∫ t

s

α∗(u) du.

Theorem 5. Under the assumptions of Theorem 3, let the

birth and death intensities be 1-periodic. Then there ex-

ist a limiting 1-periodic probability distribution π(t), say,

and the respective limiting 1-periodic mean φ(t), and the

following bounds hold:

‖π(t) − pN (t, 0)‖

≤ 4LR2

a
e−at +

8LRR∗(L + M)

aa∗dN
, (56)

‖π(t) − pN (t, 0)‖

≤ 4LR∗2

a∗
e−a∗t +

8LRR∗(L + M)

aa∗dN
, (57)

and

|φ(t) − E0,N (t)|

≤ 4LR2

aW
e−at +

4LRR∗(L + M)

aa∗dNW
. (58)

|φ(t) − E0,N (t)|

≤ 4LR∗2

a∗W ∗
e−a∗t +

4LRR∗(L + M)

aa∗dNW
. (59)

Proof. The existence of the 1-periodic solution π(t) of the

forward Kolmogorov system follows from the exponential

ergodicity in l1D-norm or l1D∗ -norm, respectively. For

obtaining the first summands in all inequalities, we

consider the respective expression on the right-hand side

of (9). Namely, we have, instead of ‖p∗(s) − p∗∗(s)‖1D ,

the following quantity:

‖π(0) − e0‖1D = ‖π(0)‖1D

= ‖q(0)‖1D

≤ lim sup
t→∞

‖q(t)‖1D, (60)

where π(t) and q(t) are the correspondent solutions of

(4) and (11). Now we have, instead of (46), the following

bound:

‖q(t)‖1D

≤ ‖V (t)‖1D‖q(0)‖1D

+

∫ t

0

‖V (t, τ)‖1D‖f(τ)‖1D dτ (61)

≤ Re−at‖q(0)‖1D +
LR

a
,

and

‖π(0) − e0‖1D ≤ lim sup
t→∞

‖q(t)‖1D ≤ LR

a
. (62)

Similarly, (46) implies the bound

‖π(0) − e0‖1D∗ ≤ lim sup
t→∞

‖q(t)‖1D∗ ≤ LR∗

a∗
. (63)

Finally, the claim follows from the inequalities (10),

(19), (34), (35), and (62), (63). �
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Remark 1. The best previous bounds contain an

additional factor of t on the right-hand sides of (34) and

(35), (see Zeifman et al., 2006).

4. Mt/Mt/S queue

In this section we deal with a classic queueing model.

An Mt/Mt/S is a stochastic process whose values

correspond to the numbers of customers in the system,

including any currently in service. Arrivals occur at the

rate λ(t) according to an inhomogeneous Poisson process

and move the process from state i to i + 1. Service

times have a nonstationary exponential distribution with

the parameter µ(t) in the Mt/Mt/S queue. There are

S servers which serve from the front of the queue. If

there are less than S jobs, some of the servers will be

idle. If there are more than S jobs, the jobs queue in a

buffer. The buffer is of infinite size, so there is no limit

on the number of customers it can contain. Let X =
X(t), t ≥ 0 be a queue-length process for the Mt/Mt/S
queue. This is a BDP with the birth and death rates

λn(t) = λ(t) and µn(t) = min (n, S)µ(t), respectively.

There are a number of investigations of this model in a

general situation, and, especially, in the case of periodic

intensities and for the simplest Mt/Mt/1 model (see Di

Crescenzo and Nobile, 1995; Knessl, 2000; Knessl and

Yang, 2002; Mandelbaum and Massey, 1995; Margolius,

2007a; 2007b; Massey and Whitt, 1994; Massey, 2002;

Zhang and Coyle, 1991).

Bounds on the rate of convergence, truncations and

stability for this process were obtained by Granovsky and

Zeifman (2004), Zeifman (1995b; 1995a), Zeifman et al.

(2006) as well as Zeifman and Korotysheva (2012). Here

we improve estimates of the truncation error.

Assume that there exist δ > 1, a function θ∗(t) and

positive numbers R∗ and a∗ such that

Sµ(t) − δ2λ(t) ≥ θ∗(t) (64)

and

e−
∫

t

s
(1−δ−2)θ∗(u) du ≤ R∗e−a∗(t−s), (65)

for any s and t, 0 ≤ s ≤ t.

One can see that for some function θ(t) and positive

numbers R and a the corresponding bounds

Sµ(t) − δλ(t) ≥ θ(t) (66)

and

e−
∫

t

s
(1−δ−1)θ(u) du ≤ Re−a(t−s), (67)

for any s and t, 0 ≤ s ≤ t, hold, too.

For S = 1 we can choose δ > 1 arbitrarily, and

if S > 1 we suppose δ2 ≤ S/(S − 1). Note that this

assumption is unnecessary. It is formulated here only

for ease of computation. If we choose δ2 > S/(S − 1),

then we obtain another formula for the bounding of α(t)
instead of (71).

Set dk = δk−1. Then

gk =
k

∑

n=1

dn =
δk − 1

δ − 1
.

Consider

αk (t) = λ (t) + min (k + 1, S)µ (t)

− δλ (t) − 1

δ
min (k, S)µ (t) , k ≥ 0.

(68)

Then

αk (t) ≥ α0 (t) ≥ λ (t) + µ (t) − δλ (t) (69)

for k < S, and

αk (t) ≥ (Sµ (t) − δλ (t))
(

1 − δ−1
)

(70)

for k ≥ S.

Hence the inequality δ ≤ δ2 ≤ S/(S − 1) implies

α (t) ≥ αS (t)

≥ (Sµ (t) − δλ (t))
(

1 − δ−1
)

≥
(

1 − δ−1
)

θ(t),

(71)

and we obtain the following theorem.

Theorem 6. The following bounds of truncation for the

queue-length process of the Mt/Mt/S queue hold:

‖p(t) − pN (t)‖ ≤ 8LRR∗(L + M)

aa∗dN
, (72)

for p(0) = pN (0) = e0,

|E0(t) − E0,N (t)| ≤ 4LRR∗(L + M)

aa∗dNW
, (73)

where gN = (δN − 1)/(δ − 1).
Moreover, Theorem 4 is valid for both sequences

{di} and {d∗i }. Hence we obtain the following theorem.

Theorem 7. The following bounds of truncation for the

queue-length process of the Mt/Mt/S queue hold:

‖p(t, k) − pN (t, 0)‖

≤ 8Rgke
−at +

8LRR∗(L + M)

aa∗dN
, (74)

‖p(t, k) − pN (t, 0)‖

≤ 8R∗g∗ke−a∗t +
8LRR∗(L + M)

aa∗dN
, (75)
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where p(0, k) = ek, pN (0, 0) = e0,

|Ek(t) − E0,N (t)|

≤ 4Rgk

W
e−at +

4LRR∗(L + M)

aa∗dNW
, (76)

|Ek(t) − E0,N (t)|

≤ 4R∗g∗k
W ∗

e−a∗t +
4LRR∗(L + M)

aa∗dNW
, (77)

gN =
δN − 1

δ − 1
, g∗N =

δ2N − 1

δ2 − 1
.

Consider the case of 1-periodic arrival and service

rates in greater detail. In this case, the conditions

(64)–(67) appear substantially simpler. Namely, let the

following assumption hold:

∫ 1

0

(Sµ(t) − λ(t)) dt > 0. (78)

Then
∫ 1

0

Sµ(t) dt >

∫ 1

0

λ(t) dt. (79)

Hence, for a sufficiently small η > 0,

∫ 1

0

Sµ(t) dt > (1 + η)

∫ 1

0

λ(t) dt. (80)

Therefore, setting δ2
0 = (1 + η) > 1, we have

∫ 1

0

(

Sµ(t) − δ2
0λ(t)

)

dt > 0. (81)

Then
∫ 1

0

(Sµ(t) − δ0λ(t)) dt > 0, (82)

and we can choose

θ∗0(t) = Sµ(t) − δ2
0λ(t), (83)

and

θ0(t) = Sµ(t) − δ0λ(t). (84)

Therefore, we obtain

α0(t) =
(

1 − δ−1
0

)

θ0(t), a0 =

∫ 1

0

α0(t) dt,

R0 = eK0 , K0 = sup
|t−s|≤1

∫ t

s

α0(u) du. (85)

Similarly, we have

α∗
0(t) =

(

1 − δ−2
0

)

θ∗0(t), a∗
0 =

∫ 1

0

α∗
0(t) dt,

R∗
0 = eK∗

0 , K∗
0 = sup

|t−s|≤1

∫ t

s

α∗
0(u) du. (86)

Theorem 8. Let the arrival and service rates in the

Mt/Mt/S queue be 1-periodic, and let (78) hold. Then

there exist a limiting 1-periodic probability distribution

π(t), say, and the respective limiting 1-periodic mean

φ(t) for the queue-length process X(t), and the follow-

ing bounds hold:

‖π(t) − pN (t, 0)‖

≤ 4LR2
0

a0
e−a0t +

8LR0R
∗
0(L + M)

a0a∗
0dN

, (87)

‖π(t) − pN (t, 0)‖

≤ 4LR∗
0
2

a∗
0

e−a∗

0t +
8LR0R

∗
0(L + M)

a0a∗
0dN

, (88)

and

|φ(t) − E0,N (t)|

≤ 4LR2
0

a0W
e−a0t +

4LR0R
∗
0(L + M)

a0a∗
0dNW

, (89)

|φ(t) − E0,N (t)|

≤ 4LR∗
0
2

a∗
0W

∗
e−a∗

0t +
4LR0R

∗
0(L + M)

a0a∗
0dNW

. (90)

5. Examples

5.1. Example 1. Let X = X(t), t ≥ 0 be a

queue-length process for a concrete Mt/Mt/S with S =
2, λ(t) = 1 + sin 0.02πt, µ(t) = 4 + 2 cos 0.02πt. This

example of a queueing system with periodical intensity

functions with a sufficiently large period T = 100 was

considered by Zeifman et al. (2006). Now we can obtain

essentially more accurate bounds.

Remark 2. This example deals with the situation

that can happen if the intensities of arrivals and services

have different periods. As this is so if these periods

are commensurable, the limit characteristics will also be

periodic, although with a rather large period. Here L = 2,

M = 6.

Set δ0 =
√

2. Then d0,k = 2
k−1

2 and d∗0,k = 2k−1.

We have

W = inf
i≥1

di

i
=

2

3
,

W ∗ = inf
i≥1

d∗i
i

= 1,

gN =
2N/2 − 1√

2 − 1
, g∗N = 2N − 1.

Further,

α0(t) =
(

1 − 1/
√

2
) (

2µ(t) −
√

2λ(t)
)

,
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a0 = 9 − 5
√

2 > 1.5,

α∗
0(t) = 0.5 (2µ(t) − 2λ(t))

= 3 + 2 cos 0.02πt− sin 0.02πt,

a∗ = 3.

Hence we obtain

K0 = sup
|t−s|≤100

∫ t

s

α0(u) du =
100(3 −

√
2)

π
,

and

R0 = exp
100(3 −

√
2)

π
< e60.

Similarly,

K∗
0 = sup

|t−s|≤100

∫ t

s

α∗
0(u) du =

300

π
,

and

R∗
0 ≤ e

300
π < e100.

Therefore the inequalities (74) and (76) of Theorem 7

imply the following statement.

Proposition 1. The following bounds hold:

‖p(k, t) − pN (0, t)‖

≤ 24+k/2 · e60−1.5t +
e160

10 · 2 N−17

2

, (91)

and

|Ek(t) − E0,N (t)|

≤ 1 +
√

2

2
‖p(k, t) − pN (0, t)‖

< 2
k+9

2 · e60−1.5t +
e160

10 · 2 N−18

2

,

(92)

for any k, N and any t ≥ 0.

Further, we can apply Theorem 8.

Proposition 2. The queue-length process for the model

has a limiting 1-periodic probability distribution π(t), the

respective limiting 1-periodic mean φ(t), and the follow-

ing bounds hold:

‖π(t) − pN (0, t)‖

≤ 16 · e119−1.5t +
e160

10 · 2 N−17

2

, (93)

and

|φ(t) − E0,N (t)| ≤ 8 · e120−1.5t +
e160

10 · 2 N−18

2

,

for any N and any t ≥ 0.

These bounds can be used for the study and

construction of limiting characteristics of the queue, as

was firstly shown by Zeifman et al. (2006).

Particularly, for N ≥ 550, t ≥ 150 and the initial

conditions k ≤ 400, we obtain error bounds for all

characteristics less than 10−10.

Note that the best of previously known estimates (see

Zeifman et al., 2006, Example 2(iii)) give us (even for k =
0) significantly poorer estimates N = 945 and interval

[418, 518], and the error bound 10−8.

The behaviour of probabilistic characteristics of the

queue-length process is shown in the figures below.

Remark 3. All the characteristics mentioned above

(state probabilities, mathematical expectations, etc.) are

found in one and the same way, namely, by solving the

Cauchy problem with an appropriate initial condition for

the truncated Kolmogorov system by the Runge–Kutta

method of the fourth order of accuracy. Moreover, as was

shown, the dimensionality of the corresponding system

appears to be rather moderate. Further, if the figure

depicts a characteristic on the interval [a, a + T ], then the

Cauchy problem is solved on [0, a + T ]. Furthermore,

the figures show that the rate of convergence to the

corresponding limit characteristics is sufficiently large so

that the parameter a can be chosen not so large.

t

p0

Fig. 1. Probability Pr (X(t) = 0|X(0) = k) of an empty

queue for k = 0 and t ∈ [70, 170].

t

p0

Fig. 2. Probability Pr (X(t) = 0|X(0) = k) of an empty

queue for k = 400 and t ∈ [70, 170].
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t

p0

Fig. 3. Probability Pr (X(t) = 0|X(0) = k) of an empty

queue for k = 0 and t ∈ [150, 250].

t

p0

Fig. 4. Probability Pr (X(t) = 0|X(0) = k) of an empty

queue for k = 400 and t ∈ [150, 250].

t

p1

Fig. 5. Probability Pr (X(t) = 1|X(0) = k) for k = 0 and t ∈
[150, 250].

t

p2

Fig. 6. Probability Pr (X(t) = 2|X(0) = k) for k = 0 and t ∈
[150, 250].

t

p3

Fig. 7. Probability Pr (X(t) = 3|X(0) = k) for k = 0 and t ∈
[150, 250].

t

p4

Fig. 8. Probability Pr (X(t) = 4|X(0) = k) for k = 0 and t ∈
[150, 250].

t

p5

Fig. 9. Probability Pr (X(t) = 5|X(0) = k) for k = 0 and t ∈
[150, 250].

t

p6

Fig. 10. Probability Pr (X(t) = 6|X(0) = k) for k = 0 and

t ∈ [150, 250].
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Remark 4. One can see in Figs. 3 and 4 that they give us

very good approximations of the real limiting probability

of an empty queue.

Remark 5. In Figs. 5–10 one can see the limiting

probability of the corresponding length of the queue.

t

�

Fig. 11. Mathematical expectation of the length of the queue

E400(t), k = 400 and t ∈ [0, 100].

t

�

Fig. 12. Mathematical expectation of the length of the queue

E0(t), k = 0 and t ∈ [70, 170].

t

�

Fig. 13. Mathematical expectation of the length of the queue

E400(t), k = 400 and t ∈ [70, 170].

Remark 6. In Figs. 14 and 15 one can see that they

give us very good approximation of the real limiting mean

(mathematical expectation) of the length of a queue.

5.2. Example 2. Let X = X(t), t ≥ 0 be now

a queue-length process for Mt/Mt/S with S = 1012,

t

�

Fig. 14. Mathematical expectation of the length of the queue

E0(t), k = 0 and t ∈ [150, 250].

t

�

Fig. 15. Mathematical expectation of the length of the queue

E400(t), k = 400 and t ∈ [150, 250].

λ(t) = 1 + sin 2πt, µ(t) = 3 + 2 cos 2πt. This

example and its analogue for a queueing system with

group services was considered by Zeifman et al. (2013b).

Now we consider only an ordinary “classic”

queueing model and obtain its main limiting

characteristics. Here L = 2, M = 5 · 1012. Put

δ0 =
√

2. Then d0,k = 2
k−1

2 and d∗0,k = 2k−1. We have

W = inf
i≥1

di

i
=

2

3
,

W ∗ = inf
i≥1

d∗i
i

= 1,

gN =
2N/2 − 1√

2 − 1
,

g∗N = 2N − 1.

Further,

α0(t) = µ(t) −
(√

2 − 1
)

λ(t),

a0 = 4 −
√

2 > 2,

α∗
0(t) = µ(t) − λ(t), a∗ = 2.

Hence we obtain

K0 = sup
|t−s|≤100

∫ t

s

α0(u) du =
1 +

√
2

π
,
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and

R0 = exp
(1 +

√
2

π

)

< e.

Similarly,

K∗
0 = sup

|t−s|≤100

∫ t

s

α∗
0(u) du =

3

π
,

and R∗
0 ≤ e

3
π < e.

Therefore, the inequalities (74) and (76) of

Theorem 7 imply the following statement.

Proposition 3. The following bounds hold:

‖p(k, t) − pN (0, t)‖ ≤ 2k/2 · e4−2t +
e2 · 1013

2
N−3

2

(94)

and

|Ek(t) − E0,N (t)| ≤ 2(k+2)/2 · e4−2t +
3e2 · 1013

2
N−1

2

(95)

for any k, N and any t ≥ 0.

Further, Theorem 8 implies the following statement.

Proposition 4. A queue-length process for the model has

a limiting 1-periodic probability distribution π(t), the re-

spective limiting 1-periodic mean φ(t), and the following

bounds hold:

‖π(t) − pN (0, t)‖ ≤ 4 · e2−2t +
e2 · 1013

2
N−3

2

(96)

and

|φ(t) − E0,N (t)| ≤ 6 · e2−2t +
3e2 · 1013

2
N−1

2

(97)

for any N and any t ≥ 0.

Here for N ≥ 170, t ≥ 85, and the initial

conditions k ≤ N = 170 we obtain error bounds for all

characteristics less than 10−10.

t

p0

Fig. 16. Probability Pr (X(t) = 0|X(0) = k) of an empty

queue for k = 0 and t ∈ [3, 5].

t

p0

Fig. 17. Probability Pr (X(t) = 0|X(0) = k) of an empty

queue for k = 170 and t ∈ [3, 5].

t

�

Fig. 18. Mathematical expectation of the length of the queue

Ek(t), k = 0 and t ∈ [1, 3].

t

�

Fig. 19. Mathematical expectation of the length of the queue

Ek(t), k = 170 and t ∈ [1, 7].

t

�

Fig. 20. Mathematical expectation of the length of the queue

Ek(t), k = 170 and t ∈ [2, 7].
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t

�

Fig. 21. Mathematical expectation of the length of the queue

Ek(t), k = 0 and t ∈ [3, 5].

t

�

Fig. 22. Mathematical expectation of the length of the queue

Ek(t), k = 170 and t ∈ [3, 5].

t

p0

Fig. 23. Approximation of the limiting probability of an empty

queue Pr (X(t) = 0|X(0) = k) for k = 0 and t ∈
[85, 86].

t

p1

Fig. 24. Approximation of the limiting probability

Pr (X(t) = 1|X(0) = k) for k = 0 and t ∈ [85, 86].

t

p2

Fig. 25. Approximation of the limiting probability

Pr (X(t) = 2|X(0) = k) for k = 0 and t ∈ [85, 86].

t

p3

Fig. 26. Approximation of the limiting probability

Pr (X(t) = 3|X(0) = k) for k = 0 and t ∈ [85, 86].

t

p4

Fig. 27. Approximation of the limiting probability

Pr (X(t) = 4|X(0) = k) for k = 0 and t ∈ [85, 86].

t

p5

p
0
+
p
1
+
p
2
+
p
3

Fig. 28. Approximation of the limiting probability

Pr (X(t) ≤ 3|X(0) = k) for k = 0 and t ∈ [85, 86].
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t

�

Fig. 29. Approximation of the limiting mathematical expecta-

tion of the length of the queue φ(t) by Ek(t), k = 0
and t ∈ [85, 86].

6. Conclusion

In this paper, we investigated a class of weakly ergodic

inhomogeneous birth and death processes and obtained

uniform (in time) error bounds of truncation. Our

approach also guarantees that we can find limiting

characteristics approximately with an arbitrary fixed error,

see the detailed discussion by Zeifman et al. (2006).

Moreover, we can find the limiting characteristics for

any number of servers S; see the respective example for

S = 1012 by Zeifman et al. (2013b). Arbitrary intensity

functions instead of periodic ones can be considered in

the same manner. Finally, we would like to remark that

all of our results can be applied to birth and death process

with catastrophes; see perturbation bounds in the work of

Zeifman and Korotysheva (2012) and the bounds on the

rate of convergence given by Zeifman et al. (2013a).
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