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ABSTRACT

This paper addresses the challenge of truth discovery from
noisy social sensing data. The work is motivated by the
emergence of social sensing as a data collection paradigm of
growing interest, where humans perform sensory data col-
lection tasks. A challenge in social sensing applications lies
in the noisy nature of data. Unlike the case with well-
calibrated and well-tested infrastructure sensors, humans
are less reliable, and the likelihood that participants’ mea-
surements are correct is often unknown a priori . Given a set
of human participants of unknown reliability together with
their sensory measurements, this paper poses the question
of whether one can use this information alone to determine,
in an analytically founded manner, the probability that a
given measurement is true. The paper focuses on binary
measurements. While some previous work approached the
answer in a heuristic manner, we offer the first optimal so-
lution to the above truth discovery problem. Optimality, in
the sense of maximum likelihood estimation, is attained by
solving an expectation maximization problem that returns
the best guess regarding the correctness of each measure-
ment. The approach is shown to outperform the state of the
art fact-finding heuristics, as well as simple baselines such
as majority voting.
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1. INTRODUCTION
This paper presents a maximum likelihood estimation ap-

proach to truth discovery from social sensing data. Social
sensing has emerged as a new paradigm for collecting sen-
sory measurements by means of “crowd-sourcing” sensory
data collection tasks to a human population. The paradigm
is made possible by the proliferation of a variety of sen-
sors in the possession of common individuals, together with
networking capabilities that enable data sharing. Exam-
ples includes cell-phone accelerometers, cameras, GPS de-
vices, smart power meters, and interactive game consoles
(e.g., Wii). Individuals who own such sensors can thus en-
gage in data collection for some purpose of mutual interest.
A classical example is geotagging campaigns, where partic-
ipants report locations of conditions in their environment
that need attention (e.g., litter in public parks).

A significant challenge in social sensing applications lies in
ascertaining the correctness of collected data. Data collec-
tion is often open to a large population. Hence, the partici-
pants and their reliability are typically not known a priori .
The term, participant (or source) reliability is used in this
paper to denote the probability that the participant reports
correct observations. Reliability may be impaired because
of poor used sensor quality, lack of sensor calibration, lack
of (human) attention to the task, or even intent to deceive.
The question posed in this paper is whether or not we can
determine, given only the measurements sent and without
knowing the reliability of sources, which of the reported ob-
servations are true and which are not. In this paper, we
concern ourselves with (arrays of) binary measurements only
(e.g., reporting whether or not litter exists at each of mul-
tiple locations of interest). We develop a maximum likeli-
hood estimator that assigns truth values to measurements
without prior knowledge of source reliability. The algorithm
makes inferences regarding both source reliability and mea-
surement correctness by observing which observations co-
incide and which don’t. It is shown to be very accurate
in assessing measurement correctness as long as sources, on
average, make multiple observations, and as long as some
sources make the same observation.

Note that, a trivial way of accomplishing the truth dis-
covery task is by “believing” only those observations that
are reported by a sufficient number of sources. We call
such a scheme, voting . The problem with voting schemes
is that they do not attempt to infer source reliability and
do not take that estimate into account. Hence, observa-
tions made by several unreliable sources may be believed
over those made by a few reliable ones [19]. Instead, we cast
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the truth discovery problem as one of joint maximum like-
lihood estimation of both source reliability and observation
correctness. We solve the problem using the Expectation
Maximization (EM) algorithm.

Expectation Maximization (EM) is a general optimization
technique for finding the maximum likelihood estimation of
parameters in a statistic model where the data are “incom-
plete” [11]. It iterates between two main steps (namely, the
E-step and the M-step) until the estimation converges (i.e.,
the likelihood function reaches the maximum). The paper
shows that social sensing applications lend themselves nicely
to an EM formulation. The optimal solution, in the sense
of maximum likelihood estimation, directly leads to an ac-
curate quantification of measurement correctness as well as
participant reliability. Moreover, the solution is shown to be
simple and easy to implement.

Prior literature attempted to solve a similar trust analy-
sis problem in information networks using heuristics whose
inspiration can be traced back to Google’s PageRank [7].
PageRank iteratively ranks the credibility of sources on the
Web, by iteratively considering the credibility of sources
who link to them. Extensions of PageRank, known as fact-
finders, iteratively compute the credibility of sources and
claims. Specifically, they estimate the credibility of claims
from the credibility of sources that make them, then esti-
mate the credibility of sources based on the credibility of
their claims. Several algorithms exist that feature modifi-
cations of the above basic heuristic scheme [6,15,22,33,34].
In contrast, ours is the first attempt to optimally solve the
truth discovery problem in social sensing by casting it as one
of expectation maximization.

We evaluate our algorithm in simulation, an emulated geo-
tagging scenario as well as a real world social sensing appli-
cation. Evaluation results show that the proposed maximum
likelihood scheme outperforms the state-of-art heuristics as
well as simple baselines (voting) in quantifying the probabil-
ity of measurement correctness and participant reliability.

The rest of this paper is organized as follows: we review
related work in Section 2. In Section 3, we present the truth
discovery model for social sensing applications. The pro-
posed maximum likelihood estimation approach is discussed
in Section 4. Implementation and evaluation results are pre-
sented in Section 5. We discuss the limitations of current
model and future work in Section 6. Finally, we conclude
the paper in Section 7.

2. RELATED WORK
Social sensing has received significant attention due to

the great increase in the number of mobile sensors owned
by individuals (e.g., smart phones with GPS, camera, etc.)
and the proliferation of Internet connectivity to upload and
share sensed data (e.g., WiFi and 4G networks). A broad
overview of social sensing applications is presented in [1].
Some early applications include CenWits [16], a participa-
tory sensor network to rescue hikers in emergency situations,
CarTel [18], a vehicular sensor network for traffic monitoring
and mitigation, and BikeNet [14], a bikers sensor network for
sharing cycling related data and mapping the cyclist experi-
ence. More recent work has focused on addressing the chal-
lenges of preserving privacy and building general models in
sparse and multi-dimensional social sensing space [3,4]. So-
cial sensing is often organized as “sensing campaigns” where
participants are recruited to contribute their personal mea-

surements as part of a large-scale effort to collect data about
a population or a geographical area. Examples include doc-
umenting the quality of roads [25], the level of pollution in
a city [20], or reporting garbage cans on campus [24]. In
addition, social sensing can also be triggered spontaneously
without prior coordination (e.g., via Twitter and Youtube).
Recent research attempts to understand the fundamental
factors that affect the behavior of these emerging social sens-
ing applications, such as analysis of characteristics of so-
cial networks [10], information propagation [17] and tipping
points [32]. Our paper complements past work by addressing
truth discovery in social sensing.

Previous efforts on truth discovery, from the machine learn-
ing and data mining communities, provided several interest-
ing heuristics. The Bayesian Interpretation scheme [29] pre-
sented an approximation approach to truth estimation that
is very sensitive to initial conditions of iterations. Hubs and
Authorities [19] used a basic fact-finder where the belief in
an assertion c is B(c) =

∑

s∈Sc
T (s) and the truthfulness

of a source s is T (s) =
∑

c∈Cs
B(c), where Sc and Cs are

the sources claiming a given assertion and the assertions
claimed by a particular source, respectively. Pasternack
et al. extended the fact-finder framework by incorporat-
ing prior knowledge into the analysis and proposed several
extended algorithms: Average.Log, Investment, and Pooled
Investment [22]. Yin et al. introduced TruthFinder as an
unsupervised fact-finder for trust analysis on a providers-
facts network [33]. Other fact-finders enhanced the basic
framework by incorporating analysis on properties or depen-
dencies within assertions or sources. Galland et al. [15] took
the notion of hardness of facts into consideration by propos-
ing their algorithms: Cosine, 2-Estimates, 3-Estimates. The
source dependency detection problem was discussed and sev-
eral solutions proposed [6, 12, 13]. Additionally, trust anal-
ysis was done both on a homogeneous network [5, 34] and
a heterogeneous network [27]. Our proposed EM scheme is
the first piece of work that finds a maximum likelihood es-
timator to directly and optimally quantify the accuracy of
conclusions obtained from credibility analysis in social sens-
ing. To achieve optimality, we intentionally start with a
simplified application model, where the measured variables
are binary, measurements are independent, and participants
do not influence each other’s reports (e.g., do not propa-
gate each other’s rumors). Subsequent work will address
the above limitations.

There exists a good amount of literature in machine learn-
ing community to improve data quality and identify low
quality labelers in a multi-labeler environment. Sheng et
al. proposed a repeated labeling scheme to improve label
quality by selectively acquiring multiple labels and empir-
ically comparing several models that aggregate responses
from multiple labelers [26]. Dekel et al. applied a classi-
fication technique to simulate aggregate labels and prune
low-quality labelers in a crowd to improve the label quality
of the training dataset [9]. However, all of the above ap-
proaches made explicit or implicit assumptions that are not
appropriate in the social sensing context. For example, the
work in [26] assumed labelers were known a priori and could
be explicitly asked to label certain data points. The work
in [9] assumed most of labelers were reliable and the simple
aggregation of their labels would be enough to approximate
the ground-truth. In contrast, participants in social sensing
usually upload their measurements based on their own obser-
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vations and the simple aggregation technique (e.g., majority
voting) was shown to be inaccurate when the reliability of
participant is not sufficient [22]. The maximum likelihood
estimation approach studied in this paper addressed these
challenges by intelligently casting the truth discovery prob-
lem in social sensing into an optimization problem that can
be efficiently solved by the EM scheme.

Our work is related with a type of information filtering
system called recommender systems, where the goal is usu-
ally to predict a user’s rating or preference to an item us-
ing the model built from the characteristics of the item and
the behavioral pattern of the user [2]. EM has been used
in either collaborative recommender systems as a cluster-
ing module [21] to mine the usage pattern of users or in a
content-based recommender systems as a weighting factor
estimator [23] to infer the user context. However, in so-
cial sensing, the truth discovery problem targets a different
goal: we aim to quantify how reliable a source is and iden-
tify whether a measured variable is true or not rather than
predict how likely a user would choose one item compared
to another. Moreover, users in recommender systems are
commonly assumed to provide reasonably good data while
the sources in social sensing are in general unreliable and
the likelihood of the correctness of their measurements is
unknown a priori. There appears no straightforward use of
methods in the recommender systems regime for the target
problem with unpredictably unreliable data.

3. THE PROBLEM FORMULATION OF SO-

CIAL SENSING
To formulate the truth discovery problem in social sensing

in a manner amenable to rigorous optimization, we consider
a social sensing application model where a group of M par-
ticipants, S1, ..., SM , make individual observations about a
set of N measured variables C1, ..., CN in their environment.
For example, a group of individuals interested in the appear-
ance of their neighborhood might join a sensing campaign
to report all locations of offensive graffiti. Alternatively, a
group of drivers might join a campaign to report freeway
locations in need of repair. Hence, each measured variable
denotes the existence or lack thereof of an offending condi-
tion at a given location1. In this effort, we consider only
binary variables and assume, without loss of generality, that
their “normal” state is negative (e.g., no offending graffiti on
walls, or no potholes on streets). Hence, participants report
only when a positive value is encountered.

Each participant generally observes only a subset of all
variables (e.g., the conditions at locations they have been
to). Our goal is to determine which observations are correct
and which are not. As mentioned in the introduction, we
differ from a large volume of previous sensing literature in
that we assume no prior knowledge of source reliability, as
well as no prior knowledge of the correctness of individual
observations.

Let Si represent the ith participant and Cj represent the
jth measured variable. SiCj denotes an observation reported
by participant Si claiming that Cj is true (e.g., that graffiti
is found at a given location, or that a given street is in dis-
repair). Let P (Ct

j) and P (Cf
j ) denote the probability that

1We assume that locations are discretized, and therefore fi-
nite. For example, they are given by street addresses or mile
markers.

the actual variable Cj is indeed true and false, respectively.
Different participants may make different numbers of obser-
vations. Let the probability that participant Si makes an
observation be si. Further, let the probability that partic-
ipant Si is right be ti and the probability that it is wrong
be 1 − ti. Note that, this probability depends on the par-
ticipant’s reliability, which is not known a priori . Formally,
ti is defined as the odds of a measured variable to be true
given that participant Si reports it:

ti = P (Ct
j |SiCj) (1)

Let us also define ai as the (unknown) probability that
participant Si reports a measured variable to be true when
it is indeed true, and bi as the (unknown) probability that
participant Si reports a measured variable to be true when it
is in reality false. Formally, ai and bi are defined as follows:

ai = P (SiCj |C
t
j)

bi = P (SiCj |C
f
j ) (2)

From the definition of ti, ai and bi, we can determine their
relationship using the Bayesian theorem:

ai = P (SiCj |C
t
j) =

P (SiCj , C
t
j)

P (Ct
j)

=
P (Ct

j |SiCj)P (SiCj)

P (Ct
j)

bi = P (SiCj |C
f
j ) =

P (SiCj , C
f
j )

P (Cf
j )

=
P (Cf

j |SiCj)P (SiCj)

P (Cf
j )

(3)

The only input to our algorithm is the social sensing topol-
ogy represented by a matrix SC, where SiCj = 1 when par-
ticipant Si reports that Cj is true, and SiCj = 0 otherwise.
Let us call it the observation matrix .

The goal of the algorithm is to compute (i) the best es-
timate hj on the correctness of each measured variable Cj

and (ii) the best estimate ei of the reliability of each partic-
ipant Si. Let us denote the sets of the estimates by vectors
H and E, respectively. Our goal is to find the optimal H∗

and E∗ vectors in the sense of being most consistent with
the observation matrix SC. Formally, this is given by:

< H
∗
, E

∗
>= argmax

<H,E>

p(SC|H,E) (4)

We also compute the background bias d, which is the over-
all probability that a randomly chosen measured variable is
true. For example, it may represent the probability that
any street, in general, is in disrepair. It does not indicate,
however, whether any particular claim about disrepair at a
particular location is true or not. Hence, one can define the
prior of a claim being true as P (Ct

j) = d. Note also that,
the probability that a participant makes an observation (i.e.,
si) is proportional to the number of measured variables ob-
served by the participant over the total number of measured
variables observed by all participants, which can be easily
computed from the observation matrix. Hence, one can de-
fine the prior P (SiCj) = si. Plugging these, together with
ti into the definition of ai and bi, we get the relationship
between the terms we defined above:

ai =
ti × si

d

bi =
(1− ti)× si

1− d
(5)
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4. EXPECTATION MAXIMIZATION
In this section, we solve the problem formulated in the

previous section using the Expectation-Maximization (EM)
algorithm. EM is a general algorithm for finding the maxi-
mum likelihood estimates of parameters in a statistic model,
where the data are “incomplete” or the likelihood function
involves latent variables [11]. Intuitively, what EM does is
iteratively “completes” the data by “guessing” the values of
hidden variables then re-estimates the parameters by using
the guessed values as true values.

4.1 Background
Much like finding a Lyapunov function to prove stability,

the main challenge in using the EM algorithm lies in the
mathematical formulation of the problem in a way that is
amenable to an EM solution. Given an observed data set
X, one should judiciously choose the set of latent or missing
values Z, and a vector of unknown parameters θ, then formu-
late a likelihood function L(θ;X,Z) = p(X,Z|θ), such that
the maximum likelihood estimate (MLE) of the unknown
parameters θ is decided by:

L(θ;X) = p(X|θ) =
∑

Z

p(X,Z|θ) (6)

Once the formulation is complete, the EM algorithm finds
the maximum likelihood estimate by iteratively performing
the following steps:

• E-step: Compute the expected log likelihood function
where the expectation is taken with respect to the com-
puted conditional distribution of the latent variables
given the current settings and observed data.

Q
(

θ|θ(t)
)

= EZ|X,θ(t) [logL(θ;X,Z)] (7)

• M-step: Find the parameters that maximize the Q

function in the E-step to be used as the estimate of
θ for the next iteration.

θ
(t+1) = argmax

θ

Q
(

θ|θ(t)
)

(8)

4.2 Mathematical Formulation
Our social sensing problem fits nicely into the Expecta-

tion Maximization (EM) model. First, we introduce a latent
variable Z for each measured variable to indicate whether
it is true or not. Specifically, we have a corresponding vari-
able zj for the jth measured variable Cj such that: zj = 1
when Cj is true and zj = 0 otherwise. We further denote
the observation matrix SC as the observed data X, and
take θ = (a1, a2, ...aM ; b1, b2, ...bM ; d) as the parameter of
the model that we want to estimate. The goal is to get the
maximum likelihood estimate of θ for the model containing
observed data X and latent variables Z.

The likelihood function L(θ;X,Z) is given by:

L(θ;X,Z) = p(X,Z|θ)

=
N
∏

j=1

{

M
∏

i=1

a
SiCj

i (1− ai)
(1−SiCj) × d× zj

+

M
∏

i=1

b
SiCj

i (1− bi)
(1−SiCj) × (1− d)× (1− zj)

}

(9)

where, as we mentioned before, ai and bi are the conditional
probabilities that participant Si reports the measured vari-
able Cj to be true given that Cj is true or false (i.e., defined
in Equation (2)). SiCj = 1 when participant Si reports that
Cj is true, and SiCj = 0 otherwise. d is the background
bias that a randomly chosen measured variable is true. Ad-
ditionally, we assume participants and measured variables
are independent respectively. The likelihood function above
describes the likelihood to have current observation matrix
X and hidden variable Z given the estimation parameter θ

we defined.

4.3 Deriving the E-step and M-step
Given the above formulation, substitute the likelihood

function defined in Equation (9) into the definition of Q
function given by Equation (7) of Expectation Maximiza-
tion. The Expectation step (E-step) becomes:

Q
(

θ|θ(t)
)

= EZ|X,θ(t) [logL(θ;X,Z)]

=

N
∑

j=1

{

p(zj = 1|Xj , θ
(t))

×

[

M
∑

i=1

(SiCj log ai + (1− SiCj) log(1− ai) + log d)

]

+ p(zj = 0|Xj , θ
(t))

×

[

M
∑

i=1

(SiCj log bi + (1− SiCj) log(1− bi) + log(1− d))

]}

(10)

where Xj represents the jth column of the observed SC

matrix (i.e., observations of the jth measured variable from

all participants ) and p(zj = 1|Xj , θ
(t)) is the conditional

probability of the latent variable zj to be true given the
observation matrix related to the jth measured variable and
current estimate of θ, which is given by:

Z(t, j) = p(zj = 1|Xj , θ
(t))

=
p(zj = 1;Xj , θ

(t))

p(Xj , θ(t))

=
p(Xj , θ

(t)|zj = 1)p(zj = 1)

p(Xj , θ(t)|zj = 1)p(zj = 1) + p(Xj , θ(t)|zj = 0)p(zj = 0)

=
A(t, j) × d(t)

A(t, j) × d(t) +B(t, j) × (1− d(t))
(11)

where A(t, j) and B(t, j) are defined as:

A(t, j) = p(Xj , θ
(t)|zj = 1)

=
M
∏

i=1

a
(t)SiCj

i (1− a
(t)
i )(1−SiCj)

B(t, j) = p(Xj , θ
(t)|zj = 0)

=
M
∏

i=1

b
(t)SiCj

i (1− b
(t)
i )(1−SiCj) (12)

A(t, j) and B(t, j) represent the conditional probability re-
garding observations about the jth measured variable and
current estimation of the parameter θ given the jth mea-
sured variable is true or false respectively.
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Next we simplify Equation (10) by noting that the con-

ditional probability of p(zj = 1|Xj , θ
(t)) given by Equa-

tion (11) is only a function of t and j. Thus, we represent it

by Z(t, j). Similarly, p(zj = 0|Xj , θ
(t)) is simply:

p(zj = 0|Xj , θ
(t)) = 1− p(zj = 1|Xj , θ

(t))

=
B(t, j)× (1− d(t))

A(t, j) × d(t) +B(t, j)× (1− d(t))

= 1− Z(t, j) (13)

Substituting from Equation (11) and (13) into Equation (10),
we get:

Q
(

θ|θ(t)
)

=

N
∑

j=1

{

Z(t, j)

×

[

M
∑

i=1

(SiCj log ai + (1− SiCj) log(1− ai) + log d)

]

+ (1− Z(t, j))

×

[

M
∑

i=1

(SiCj log bi + (1− SiCj) log(1− bi) + log(1− d))

]}

(14)

The Maximization step (M-step) is given by Equation (8).
We choose θ∗ (i.e., (a∗

1, a
∗
2, ...a

∗
M ; b∗1, b

∗
2, ...b

∗
M ; d∗)) that max-

imizes the Q
(

θ|θ(t)
)

function in each iteration to be the

θ(t+1) of the next iteration.
To get θ∗ that maximizes Q

(

θ|θ(t)
)

, we set the derivatives
∂Q

∂ai
= 0, ∂Q

∂bi
= 0, ∂Q

∂d
= 0 which yields:

N
∑

j=1

[

Z(t, j)(SiCj
1

a∗
i

− (1− SiCj)
1

1− a∗
i

)

]

= 0

N
∑

j=1

[

(1− Z(t, j))(SiCj
1

b∗i
− (1− SiCj)

1

1− b∗i
)

]

= 0

N
∑

j=1

[

Z(t, j)M
1

d∗
− (1− Z(t, j))M

1

1− d∗
)

]

= 0 (15)

Let us define SJi as the set of measured variables the
participant Si actually observes in the observation matrix
SC, and ¯SJi as the set of measured variables participant Si

does not observe. Thus, Equation (15) can be rewritten as:

∑

j∈SJi

Z(t, j)
1

a∗
i

−
∑

j∈ ¯SJi

Z(t, j)
1

1− a∗
i

= 0

∑

j∈SJi

(1− Z(t, j))
1

b∗i
−

∑

j∈ ¯SJi

(1− Z(t, j))
1

1− b∗i
= 0

N
∑

j=1

[

Z(t, j)
1

d∗
− (1− Z(t, j))

1

1− d∗
)

]

= 0 (16)

Solving the above equations, we can get expressions of the

optimal a∗
i , b

∗
i and d∗:

a
(t+1)
i = a

∗
i =

∑

j∈SJi
Z(t, j)

∑N

j=1 Z(t, j)

b
(t+1)
i = b

∗
i =

Ki −
∑

j∈SJi
Z(t, j)

N −
∑N

j=1 Z(t, j)

d
(t+1)
i = d

∗
i =

∑N

j=1 Z(t, j)

N

(17)

where Ki is the number of measured variables observed by
participant Si and N is the total number of measured vari-
ables in the observation matrix. Z(t, j) is defined in Equa-
tion (11).

Given the above, The E-step and M-step of EM optimiza-
tion reduce to simply calculating Equation (11) and Equa-
tion (17) iteratively until they converge. The convergence
analysis has been done for EM scheme and it is beyond the
scope of this paper [31]. In practice, we can run the algo-
rithm until the difference of estimation parameter between
consecutive iterations becomes insignificant. Since the mea-
sured variable is binary, we can compute the optimal deci-
sion vectorH∗ from the converged value of Z(t, j). Specially,
hj is true if Z(t, j) ≥ 0.5 and false otherwise. At the same
time, we can also compute the optimal estimation vector
E∗ of participant reliability from the converged values of

a
(t)
i , b

(t)
i and d(t) based on their relationship given by Equa-

tion (5). This completes the mathematical development. We
summarize the resulting algorithm in the subsection below.

4.4 The Final Algorithm
In summary of the EM scheme derived above, the input is

the observation matrix SC from social sensing data, and the
output is the maximum likelihood estimation of participant
reliability and measured variable correctness (i.e., E∗ and
H∗ vector defined in Equation (4)). In particular, given the
observation matrix SC, our algorithm begins by initializing
the parameter θ2. The algorithm then performs the E-steps
and M-steps iteratively until θ converges. Specifically, we
compute the conditional probability of a measured variable
to be true (i.e., Z(t, j)) from Equation (11) and the esti-

mation parameter (i.e., θ(t+1) ) from Equation (17). After
the estimated value of θ converges, we compute the opti-
mal decision vector H∗ (i.e., decide whether each measured
variable Cj is true or not) based on the converged value of
Z(t, j) (i.e., Zc

j ). We can also compute the optimal estima-
tion vector E∗ (i.e., the estimated ti of each participant)

from the converged values of θ(t) (i.e., ac
i , b

c
i and dc) based

on Equation (5) as shown in the pseudocode of Algorithm 1.
One should note that a theoretical quantification of ac-

curacy of maximum likelihood estimation (MLE) using the
EM scheme is well-known in literature, and can be done us-
ing the Cramer-Rao lower bound (CRLB) on estimator vari-
ance [8]. In estimation theory, if the estimation variance of
an unbiased estimator reaches the Cramer-Rao lower bound,
the estimator provides the maximum likelihood estimation
and the CRLB quantifies the minimum estimation variance.
The estimator proposed in this paper is shown to operate

2In practice, if the a rough estimate of the average reliability
of participants or the prior of measured variable correctness
is known a priori , EM will converge faster
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Algorithm 1 Expectation Maximization Algorithm

1: Initialize θ (ai = si, bi = 0.5 × si, d =Random number
in (0, 1) )

2: while θ(t) does not converge do
3: for j = 1 : N do
4: compute Z(t, j) based on Equation (11)
5: end for
6: θ(t+1) = θ(t)

7: for i = 1 : M do
8: compute a

(t+1)
i , b

(t+1)
i , d(t+1) based on Equa-

tion (17)

9: update a
(t)
i , b

(t)
i , d(t) with a

(t+1)
i , b

(t+1)
i , d(t+1) in

θ(t+1)

10: end for
11: t = t+ 1
12: end while
13: Let Zc

j = converged value of Z(t, j)

14: Let ac
i = converged value of a

(t)
i ; bci =

converged value of b
(t)
i ; dc = converged value of d(t)

15: for j = 1 : N do
16: if Zc

j ≥ 0.5 then

17: h∗
j is true

18: else
19: h∗

j is false
20: end if
21: end for
22: for i = 1 : M do
23: calculate e∗i from ac

i , b
c
i and dc based on Equation (5)

24: end for
25: Return the computed optimal estimates of measured

variables Cj = h∗
j and source reliability e∗i .

at this bound and hence reach the maximum likelihood esti-
mation [30]. This observation makes it possible to quantify
estimation accuracy, or confidence in results generated from
our scheme, using the Cramer-Rao lower bound.

5. EVALUATION
In this section, we carry out experiments to evaluate the

performance of the proposed EM scheme in terms of estima-
tion accuracy of the probability that a participant is right or
a measured variable is true compared to other state-of-art
solutions. We begin by considering algorithm performance
for different abstract observation matrices (SC), then apply
it to both an emulated participatory sensing scenario and a
real world social sensing application. We show that the new
algorithm outperforms the state of the art.

5.1 A Simulation Study
We built a simulator in Matlab 7.10.0 that generates a

random number of participants and measured variables. A
random probability Pi is assigned to each participant Si rep-
resenting his/her reliability (i.e., the ground truth probabil-
ity that they report correct observations). For each partic-
ipant Si, Li observations are generated. Each observation
has a probability ti of being true (i.e., reporting a variable as
true correctly) and a probability 1−ti of being false (report-
ing a variable as true when it is not). Remember that, as
stated in our application model, participants do not report
“lack of problems”. Hence, they never report a variable to
be false. We let ti be uniformly distributed between 0.5 and
1 in our experiments3. For initialization, the initial values

3In principle, there is no incentive for a participant to lie

of participant reliability (i.e., ti) in the evaluated schemes
are set to the mean value of its definition range.

In recent work, a heuristic called Bayesian Interpreta-
tion was demonstrated to outperform all contenders from
prior literature [29]. Bayesian Interpretation takes a linear
approximation approach to convert the credibility ranks of
fact-finders into a Bayesian probability that a participant re-
ports correctly or the measured variable is true. In Bayesian
Interpretation, the performance evaluation results were av-
eraged over multiple observation matrices for a given par-
ticipant reliability distribution. This is intended to approx-
imate performance where highly connected sensing topolo-
gies are available (e.g., observations from successive time
intervals involving the same set of sources and measured
variables). In this paper, we consider more challenging con-
ditions not investigated in [29], where only a single ob-
servation matrix is taken as the input into the algorithm.
This is intended to understand the algorithm’s performance
in more realistic scenarios where the sensing topologies are
sparsely connected. We compare EM to Bayesian Interpre-
tation and three state-of-art fact-finder schemes from prior
literature that can function using only the inputs offered
in our problem formulation [19, 22, 33]. Results show a sig-
nificant performance improvement of EM over all heuristics
compared.

In the first experiment, we compare the estimation accu-
racy of EM and the baseline schemes by varying the number
of participants in the system. The number of reported mea-
sured variables was fixed at 2000, of which 1000 variables
were reported correctly and 1000 were misreported. To fa-
vor our competition, we “cheat” by giving the other algo-
rithms the correct value of bias d (in this case, d = 0.5).
The average number of observations per participant was set
to 100. The number of participants was varied from 20 to
110. Reported results are averaged over 100 random partici-
pant reliability distributions. Results are shown in Figure 1.
Observe that EM has the smallest estimation error on par-
ticipant reliability and the least false positives among all
schemes under comparison. For false negatives, EM per-
forms similarly to other schemes when the number of par-
ticipants is small and starts to gain improvements when the
number of participants becomes large. Note also that the
performance gain of EM becomes large when the number
of participants is small, illustrating that EM is more useful
when the observation matrix is sparse.

The second experiment compares EM with baseline schemes
when the average number of observations per participant
changes. As before, we fix the number of correctly and in-
correctly reported variables to 1000 respectively. Again, we
favor our competition by giving their algorithms the correct
value of background bias d (here, d = 0.5). We also set the
number of participants to 30. The average number of obser-
vations per participant is varied from 100 to 1000. Results
are averaged over 100 experiments. The results are shown
in Figure 2. Observe that EM outperforms all baselines
in terms of both participant reliability estimation accuracy
and false positives as the average number of observations
per participant changes. For false negatives, EM has similar
performance as other baselines when the average number
of observations per participant is small and starts to gain
advantage as the average number of observations per par-

more than 50% of the time, since negating their statements
would then give a more accurate truth
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Figure 1: Estimation Accuracy versus Number of Participants
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Figure 2: Estimation Accuracy versus Average Number of Observations per Participant
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Figure 3: Estimation Accuracy versus Ratio of Correctly Reported Measured Variables

ticipant becomes large. As before, the performance gain of
EM is higher when the average number of observations per
participant is low, verifying once more the high accuracy of
EM for sparser observation matrices.

The third experiment examines the effect of changing the
measured variable mix on the estimation accuracy of all
schemes. We vary the ratio of the number of correctly re-
ported variables to the total number of reported variables
from 0.1 to 0.6, while fixing the total number of such vari-
ables to 2000. To favor the competition, the background
bias d is given correctly to the other algorithms (i.e., d =
varying ratio). The number of participants is fixed at 30
and the average number of observations per participant is set
to 150. Results are averaged over 100 experiments. These
results are shown in Figure 3. We observe that EM has
almost the same performance as other fact-finder baselines
when the fraction of correctly reported variables is relatively
small. The reason is that the small amount of true mea-

sured variables are densely observed and most of them can
be easily differentiated from the false ones by both EM and
baseline fact-finders. However, as the number of variables
(correctly) reported as true grows, EM is shown to have a
better performance in both participant reliability and mea-
sured variable estimation. Throughout the first to the third
experiments, we also observe that the Bayesian interpreta-
tion scheme predicts less accurately than other heuristics.
This is because the estimated posterior probability of a par-
ticipant to be reliable or a measured variable to be true in
Bayesian interpretation is a linear transform of the partici-
pant’s or the measured variable’s credibility values. Those
values obtained from a single or sparse observation matrix
may not be very accurate and refined [29].

The fourth experiment evaluates the performance of EM
and other schemes when the offset of the initial estimation
on the background bias d varies. The offset is defined as the
difference between initial estimation on d and its ground-
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Figure 4: Estimation Accuracy versus Initial Estimation Offset on Prior d
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Figure 5: Convergence Property of the EM Algorithm

truth. We fix the number of correctly and incorrectly re-
ported variables to 1000 respectively (i.e., d = 0.5). We
vary the absolute value of the initial estimate offset on d

from 0 to 0.45. The reported results are averaged for both
positive and negative offsets of the same absolute value. The
number of participants is fixed at 50 and the average num-
ber of observations per participant is set to 150. Reported
results are averaged over 100 experiments. Figure 4 shows
the results. We observe that the performance of EM scheme
is stable as the offset of initial estimate on d increases. On
the contrary, the performance of other baselines degrades
significantly when the initial estimate offset on d becomes
large. This is because the EM scheme incorporates the d as
part of its estimation parameter and provides the MLE on
it. However, other baselines depend largely on the correct
initial estimation on d (e.g., from the past history) to find
out the right number of correctly reported measured vari-
ables. These results verify the robustness of the EM scheme
when the accurate estimate on the prior d is not available
to obtain.

The fifth experiment shows the convergence property of
the EM iterative algorithm in terms of the estimation error
on participant reliability, as well as the false positives and
false negatives on measured variables. We fix the number of
correctly and incorrectly reported variables to 1000 respec-
tively and set the initial estimate offset on d to 0.3. The
number of participants is fixed at 50 and the average num-
ber of observations per participant is set to 250. Reported
results are averaged over 100 experiments. Figure 5 shows
the results. We observe that both the estimation error on
participant reliability and false positives/negatives on mea-
sured variable converge reasonably fast (e.g., less than 10
iterations ) to stable values as the number of iterations of

EM algorithm increases. It verifies the efficiency of apply-
ing EM scheme to solve the maximum likelihood estimation
problem formulated.

This concludes our general simulations. In the next sub-
section, we emulate the performance of a specific social sens-
ing application.

5.2 A Geotagging Case Study
In this subsection, we applied the proposed EM scheme

to a typical social sensing application: Geotagging locations
of litter in a park or hiking area. In this application, lit-
ter may be found along the trails (usually proportionally
to their popularity). Participants visiting the park geotag
and report locations of litter. Their reports are not reli-
able however, erring both by missing some locations, as well
as misrepresenting other objects as litter. The goal of the
application is to find where litter is actually located in the
park, while disregarding all false reports.

To evaluate the performance of different schemes, we de-
fine two metrics of interest: (i) false negatives defined as
the ratio of litter locations missed by a scheme to the total
number of litter locations in the park, and (ii) false positives
defined as the ratio of the number of incorrectly labeled lo-
cations by a scheme, to the total number of locations in
the park. We compared the proposed EM scheme to the
Bayesian Interpretation scheme and to voting, where loca-
tions are simply ranked by the number of times people report
them.

We created a simplified trail map of a park, represented
by a binary tree as shown in Figure 6. The entrance of the
park (e.g., where parking areas are usually located) is the
root of the tree. Internal nodes of the tree represent fork-
ing of different trails. We assume trails are quantized into
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Figure 7: Litter Geotagging Accu-

racy versus Number of People Vis-

iting the Park
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Figure 8: Litter Geotagging Accu-

racy versus Pollution Ratio of the

Park
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Figure 9: Litter Geotagging Accu-

racy versus Initial Estimation Offset

on Pollution Ratio of Park

Figure 6: A Simplified Trail Map of Geotagging Ap-

plication

discretely labeled locations (e.g., numbered distance mark-
ers). In our emulation, at each forking location along the
trails, participants have a certain probability Pc to continue
walking and 1 − Pc to stop and return. Participants who
decide to continue have equal probability to select the left
or right path. The majority of participants are assumed to
be reliable (i.e., when they geotag and report litter at a lo-
cation, it is more likely than not that the litter exists at that
location).

In the first experiment, we study the effect of the number
of people visiting the park on the estimation accuracy of dif-
ferent schemes. We choose a binary tree with a depth of 4 as
the trail map of the park. Each segment of the trail (between
two forking points) is quantized into 100 potential locations
(leading to 1500 discrete locations in total on all trails). We
define the pollution ratio of the park to be the ratio of the

number of littered locations to the total number of locations
in the park. The pollution ratio is fixed at 0.1 for the first
experiment. The probability that people continue to walk
past a fork in the path is set to be 95% and the percent of
reliable participants is set to be 80%. We vary the number
of participants visiting the park from 5 to 50. The corre-
sponding estimation results of different schemes are shown
in Figure 7. Observe that both false negatives and false pos-
itives decrease as the number of participants increases for
all schemes. This is intuitive: the chances of finding litter
on different trails increase as the number of people visiting
the park increases. Note that, the EM scheme outperforms
others in terms of false negatives, which means EM can find
more pieces of litter than other schemes under the same con-
ditions. The improvement becomes significant (i.e., around
20%) when there is a sufficient number of people visiting
the park. For the false positives, EM performs similarly to
Bayesian Interpretation and Truth Finder scheme and bet-
ter than voting. Generally, voting performs the worst in
accuracy because it simply counts the number of reports
complaining about each location but ignores the reliability
of individuals who make them.

In the second experiment, we show the effect of park pol-
lution ratio (i.e, how littered the park is) on the estimation
accuracy of different schemes. The number of individuals
visiting the park is set to be 40. We vary the pollution ra-
tio of the park from 0.05 to 0.15. The estimation results of
different schemes are shown in Figure 8. Observe that both
the false negatives and false positives of all schemes increase
as the pollution ratio increases. The reason is that: litter is
more frequently found and reported at trails that are near
the entrance point. The amount of unreported litter at trails
that are far from entrance increases more rapidly compared
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to the total amount of litter as the pollution ratio increases.
Note that, the EM scheme continues to find more actual lit-
ter compared to other baselines. The performance of false
positives is similar to other schemes.

In the third experiment, we evaluate the effect of the ini-
tial estimation offset of the pollution ratio on the perfor-
mance of different schemes. The pollution ratio is fixed at
0.1 and the number of individuals visiting the park is set to
be 40. We vary the absolute value of initial estimation offset
of the pollution ratio from 0 to 0.09. Results are averaged
over both positive and negative offsets of the same absolute
value. The estimation results of different schemes are shown
in Figure 9. Observe that EM finds more actual litter lo-
cations and reports less falsely labeled locations than other
baselines as the initial estimation offset of pollution ratio
increases. Additionally, the performance of EM scheme is
stable while the performance of other baselines drops sub-
stantially when the initial estimation offset of the pollution
ratio becomes large.

The above evaluation demonstrates that the new EM scheme
generally outperforms the current state of the art in infer-
ring facts from social sensing data. This is because the state
of the art heuristics infer the reliability of participants and
correctness of facts based on the hypothesis that their rela-
tionship can be approximated linearly [22,29,33]. However,
EM scheme makes its inference based on a maximum like-
lihood hypothesis that is most consistent with the observed
sensing data, thus it provides an optimal solution.

5.3 A Real World Application
In this subsection, we evaluate the performance of the pro-

posed EM scheme through a real-world social sensing appli-
cation, based on Twitter. The objective was to see whether
our scheme would distill from Twitter feeds important events
that may be newsworthy and reported by media. Specifi-
cally, we followed the news coverage of Hurricane Irene and
manually selected, as ground truth, 10 important events re-
ported by media during that time. Independently from that
collection, we also obtained more than 600,000 tweets origi-
nating from New York City during Hurricane Irene using the
Twitter API (by specifying keywords as “hurricane”, “Irene”
and“flood”, and the location to be New York). These tweets
were collected from August 26 until September 2nd, roughly
when Irene struck the east coast. Retweets were removed
from the collected data to keep sources as independent as
possible.

We then generated an observation matrix from these tweets
by clustering them based on the Jaccard distance metric (a
simple but commonly used distance metric for micro-blog
data [28]). Each cluster was taken as a statement of claim
about current conditions, hence representing a measured
variable in our model. Sources contributing to the clus-
ter were connected to that variable forming the observation
matrix. In the formed observation matrix, participants are
the twitter users who provided tweets during the observation
period, measured variables are represented by the clusters
of tweets and the element SiCj is set to 1 if the tweets of
participant Si belong to cluster Cj , or to 0 otherwise. The
matrix was then fed to our EM scheme. We ran the scheme
on the collected data and picked the top (i.e., most credi-
ble) tweet in each hour. We then checked if our 10 “ground
truth” events were reported among the top tweets. Table 1
compares the ground truth events to the corresponding top

hourly tweets discovered by EM. The results show that in-
deed all events were reported correctly, demonstrating the
value of our scheme in distilling key important information
from large volumes of noisy data.

# Media Tweet found by EM
1 East Coast Braces For Hurricane Irene;

Hurricane Irene is expected to follow a
path up the East Coast

@JoshOchs A #hurri-
cane here on the east
coast

2 Hurricane Irene’s effects begin being
felt in NC, The storm, now a Category
2, still has the East Coast on edge.

Winds, rain pound
North Carolina as Hur-
ricane Irene closes in
http://t.co/0gVOSZk

3 Hurricane Irene charged up the U.S.
East Coast on Saturday toward New
York, shutting down the city, and mil-
lions of Americans sought shelter from
the huge storm.

Hurricane Irene rages
up U.S. east coast
http://t.co/u0XiXow

4 The Wall Street Journal has created a
way for New Yorkers to interact with
the location-based social media app
Foursquare to find the nearest NYC
hurricane evacuation center.

Mashable - Hurricane
Irene: Find an NYC
Evacuation Center
on Foursquare ...
http://t.co/XMtpH99

5 Following slamming into the East
Coast and knocking out electricity to
more than a million people, Hurricane
Irene is now taking purpose on largest
metropolitan areas in the Northeast.

2M lose power as
Hurricane Irene moves
north - Two million
homes and businesses
were without power ...
http://t.co/fZWkEU3

6 Irene remains a Category 1, the low-
est level of hurricane classification, as
it churns toward New York over the
next several hours, the U.S. National
Hurricane Center said on Sunday.

Now its a level 1 hurri-
cane. Let’s hope it hits
NY at Level 1

7 Blackouts reported, storm warnings is-
sued as Irene nears Quebec, Atlantic
Canada.

DTN Canada: Irene
forecast to hit
Atlantic Canada
http://t.co/MjhmeJn

8 President Barack Obama declared New
York a disaster area Wednesday, The
New York Times reports, allowing the
release of federal aid to the state’s gov-
ernment and individuals.

Hurricane Irene: New
York State Declared A
Disaster Area By Pres-
ident Obama

9 Hurricane Irene’s rampage up the East
Coast has become the tenth billion-
dollar weather event this year, break-
ing a record stretching back to 1980,
climate experts said Wednesday.

Irene is 10th billion-
dollar weather event of
2011.

10 WASHINGTON- On Sunday, Septem-
ber 4, the President will travel to Pa-
terson, New Jersey, to view damage
from Hurricane Irene.

White House: Obama
to visit Paterson, NJ
Sunday to view dam-
age from Hurricane
Irene

Table 1: Ground truth events and related tweets

found by EM in Hurricane Irene

6. DISCUSSION AND FUTURE WORK
Participants (sources) are assumed to be independent from

each other in the current EM scheme. However, sources can
sometimes be dependent. That is, they copy observations
from each other in real life (e.g., retweets of Twitter). Re-
garding possible solutions to this problem, one possibility
is to remove duplicate observations from dependent sources
and only keep the original ones. This can be achieved by
applying copy detection schemes between sources [12, 13].
Another possible solution is to cluster dependent sources
based on some source-dependency metric [6]. In other words,
sources in the same cluster are closely related with each
other but independent from sources in other clusters. Then
we can apply the developed algorithm on top of the clustered
sources.

Observations from different participants on a given mea-
sured variable are assumed to be corroborating in this paper.
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This happens in social sensing applications where people do
not report “lack of problems”. For example, a group of par-
ticipants involved in a geotagging application to find litter
of a park will only report locations where they observe lit-
ter and ignore the locations they don’t find litter. However,
sources can also make conflicting observations in other types
of applications. For example, comments from different re-
viewers in an on-line review system on the same product
often contradict with each other. Fortunately, our current
model can be flexibly extended to handle conflicting obser-
vations. The idea is to extend the estimation vector to in-
corporate the conflicting states of a measured variable and
rebuild the likelihood function based on the extended esti-
mation vector. The general outline of the EM derivation
still holds.

The current EM scheme is mainly designed to run on static
data sets, where the computation overhead stays reasonable
even when the dataset scales up (e.g., the Irene dataset).
However, such computation may become less efficient for
streaming data because we need to re-run the algorithm on
the whole dataset from scratch every time the dataset gets
updated. Instead, it will be more technically sound that the
algorithm only runs on the updated dataset and combines
the results with previously computed ones in an optimal (or
suboptimal) way. One possibility is to develop a scheme that
can compute the estimated parameters of interest recursively
over time using incoming measurements and a mathematical
process model. The challenge here is that the relationship
between the estimation from the updated dataset and the
complete dataset may not be linear. Hence, linear regression
might not be generally plausible. Rather, recursive estima-
tion schemes, such as the Recursive Bayesian estimation,
would be a better fit. The authors are currently working on
accommodating the above extensions.

7. CONCLUSION
This paper described a maximum likelihood estimation

approach to accurately discover the truth in social sensing
applications. The approach can determine the correctness
of reported observations given only the measurements sent
without knowing the trustworthiness of participants. The
optimal solution is obtained by solving an expectation max-
imization problem and can directly lead to an analytically
founded quantification of the correctness of measurements
as well as the reliability of participants. Evaluation results
show that non-trivial estimation accuracy improvements can
be achieved by the proposed maximum likelihood estimation
approach compared to other state of the art solutions.
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