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On Tubular Neighborhoods
of Piecewise Linear and

Topological Manifolds

s

MORRIS W. HIRSCH

In geometrical and topological problems we are frequently pre-
lented with a pair (X, 4) of spaces, and the question arises: What kind
of neighborhoods has 4 in X ? In general topology this question leads
0 the theory of neighborhood retracts; in differential topology all
juestions are resolved by the tubular neighborhood theorem. In the
rase of topological and/or piecewise linear manifolds the situation is
nore difficult. In this article we shall discuss recent positive and negative
esults on the existence and uniqueness of tubular neighborhoods of
opological and piecewise linear manifolds.

" Before going into technicalities, it should be mentioned that the
fock bundles of Rourke and Sanderson, and independently Morlet, and
{ato, appear to be a satisfactory substitute for tubular neighborhoods
a the piecewise linear category. Existence and uniqueness of normal
dock bundles can be proved, as well as the transversality theorems
geded for surgery. There is an obstruction theory for the problem of
Kvmg a block bundle the structure of an open or closed cell bundle, or
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64 CONFERENCE ON THE TOPOLOGY OF MANIFOLDS

vector bundle. The obstructions may be non-zero; there is no more
reason to expect a random block bundle to have a bundle structure than
to expect a random vector bundle to have a complex structure. The
theory of tubular neighborhoods, then, for the piecewise linear category
has an interest which is mainly technical. It is amusing to see how far
existence theorems can be pushed, and what kinds of pathology can
occur, but for general purposes, especially in connection with differential
and algebraic topology, block bundles appear to be adequate.

DEFINITIONS

Three categories of manifolds will be considered: topological,
piecewise linear (or PL), and smooth. For simplicity, manifolds are
assumed to have empty boundaries unless the contrary is indicated. In
each category the notion of bundle is defined, as well as that of micro-
bundle; thanks to the Kister-Mazur theorem [19; 21] they are essen-
tially equivalent.

Let (M, A) be a pair in one of the categories; M is a manifold and
4 a submanifold. An open tube for 4 in M is a bundle p: E— 4 such |
that E < M is a neighborhood of 4, p is a retraction, and the fibres are
open k-cells where k = dim M — dim A. A closed tube is a similar
bundle whose fibres are closed cells. ;

Let A, be a submanifold of M for i = 1,2, and let p;: £, — A, be
open tubes. These tubes are homeomorphic if there is an isomorphism
f: (M, 4)) —~ (M, A,) in the category and a neighborhood U of 4 in E,
such that fU < E,, and the following diagram commutes:

E, > U—>E,

T

A——>4,

For closed tubes it is reduired that fE, = E,. Two tubes are isotopic if
they are homeomorphic by a homeomorphism isotopic to the identity.
If A, = A, it is required that the isotopy be fixed on 4;.

THEOREMS

The classical result for smooth manifolds is the following.
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TUBULAR NEIGHBORHOOD THEOREM FOR SMOOTH
MANIFOLDS. In the smooth category every submanifold has a
closed tube (and therefore also an open tube). If the submanifold is a
closed subset, any two closed or open tubes are isotopic.

In the smooth category it is easy to see that a cell bundle has an
essentially unique linear structure. For this reason open tubes are
considered as vector bundles and closed tubes as orthogonal disk
bundles.

In the topologlcal category, the tubular neighborhood theorem is
stably true:

STABLE TUBULAR NEIGHBORHOOD THEOREM FOR
TOPOLOGICAL MANIFOLDS. If (M, 4) is a topological manifold
pair, there is an integer ¢ depending only on dim A such that 4 x O
has an open tube in M x RO If E and E’ are open tubes for 4, then
E x R%and E’ x R? are isotopic tubes on A x O in M x R%.

The existence part of this theorem is due to Milnor [24]. Uniqueness
up to isotopy is essentially proved in Lashof-Rothenberg [23]; see also
Hirsch [12]. To get the full strength of an ambient isotopy some unpub-
lished work of the author is needed. In [12] it is shown that one may

. take ¢ = (dim 4 + 1), or if M is smoothable, g = 4dim A4 — 1. No
- doubt better estimates are possible.

The lack of a true tubular neighborhood theorem in the topological

. category is due not to the ignorance of topologists, but rather to the
- following counter-example of Rourke and Sanderson [32]:

THEOREM. There'is a PL embedding $*° < §° x §* having

i no topological open tube. The standard S*® < R* has two closed PL

. tubes whose corresponding open tubes are not homeomorphic as
~ topological open tubes; as abstract bundles they are trivial.
i Not much more is known in the topological category. The collaring
theorem of Brown [3] can be interpreted as a tubular neighborhood
theorem for the case A has codimension 1. At the other extreme,
dim4 = 1, some information can be deduced from Brown and
Gluck [5].

Haefliger and Wall [11] proved that in the PL category the tubular
 neighborhood theorem is true in the stable range. We shall give a proof
of the following slight sharpening of their result:




66 CONFERENCE ON THE TOPOLOGY OF MANIFOLDS

THEOREM 1. Let M™ < V™** be a PL submanifold. Then:

(a) M has a PL open tube provided k = max(m — 1, ¥(m + 3)]

(b) Any two PL open tubes for M are isotopic provided
k = max (m, (m + 4)).

() M has a PL closed tube provided k > max [m, 1(m + 3)]. In
fact every open tube contains a closed subtube.

(d) Any two PL closed tubes are isotopic provided k = max (m +
1, 4(m + 4)]. As an amusing consequence of (c) we note:

COROLLARY. Every PL manifold has a tangent disk bundle.
In case A is a sphere, the dimension restrictions can be weakened:

THEOREM 2. Let S™ < V™**be a PL sphereina PL manifold.
Then S has a PL open tube provided either:

(a) k = max[m — 2,4(m + 3)]
or

(b) k=2m—3andm = 12.

It is taken for granted that a vector bundle has a trivial line bundle
as a Whitney summand if and only if it has a non-zero section. This is
not the case in the PL category, unless restrictions are placed on the

dimension.

THEOREM 3. Let £ be a PL bundle over a polyhedron of
dimension m, with fibre R*, having a distinguished zero section. If
k > m then ¢ is a Whitney sum n @ ¢! if and only if £ has a non-zero
section. If k > m + 1, homotopy classes of such splittings correspond
bijectively to homotopy classes of non-zero sections.

We shall construct the following low-dimensional counter-
examples to a closed tubular neighborhood theorem:

THEOREM 4. There exist PL submanifolds M* < S7 and
St M7 having no topological closed tubes.

Explicit descriptions of such examples are possible, although we
do not give them.

J
|
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Without going into detail, let us mention soie other types of
pathology that are known to occur. An open tube might contain no
closed subtube [36], or two non-isotopic closed subtubes [34]. A sub-
manifold can have two closed subtubes which are not isomorphic as
abstract bundles [22]. It is not known whether this can happen with
open tubes, however.

In the next two sections we give some of the geometrical details of
the proofs of Theorems 4 and 2. In the last section computational proofs
to Theorems 1, 2, and 3 are given. The one new geometrical fact used
for these results is the surjectivity of the map =(PL,, O,) — I'; for
k>i—1, and k>i -2 if i > 11; this last relies on a difficult
theorem of J. Cerf. It is remarkable that the simple geometrical fact
expressed in Theorem 4 requires for its proof some of the deepest
results of differential topology. These include Haefliger’s computation
of the group of smooth 3-knots in S¢; Kneser’s theorem that the orthog-
onal group is a deformation retract of the homeomorphism group of
52; and Novikov’s theorem on the topological invariance of rational
Pontryagin classes!

PROOF OF THEOREM 4

A Haefliger knot is an oriented smooth submanifold 72 < S
which is diffeomorphic to the three sphere S2. A framed Haefliger knot
is a pair (T3, F) where T® is a Haefliger knot and F: T® x D® — S*®
is a framing of its normal bundle. That is, F is a smooth embedding
such that F(x, O) = x for all x € T3. (Here D? is the unit disk in R3.)
Every Haefliger knot can be framed.

The set of diffeotopy classes of framed Haefliger knots is classxﬁed
y two integer invariants which we shall denote by p and L. To define
(T, F), let M = M"(T, F) be the smooth 7-manifold obtained by
ttaching the handle D* x D? to D" by F': §% x D®— S® = 0D",
here F’ corresponds to F via an orientation preserving diffeomorphism
f T and S3. Then M has the homology type of S*%, and H*(M) is
nfinite cyclic with a distinguished generator; we identify H*(M) with
. Define p(T, F) to be the first Pontryagin class p;(M). It turns out
hat p(T, F) is equal to twice the obstruction to trivializing the tangent
undle of M; this obstruction lies in H*[M; m3(SO7)] = Z

The other invariant L(T, F) € Z is the linking number of F(T x x)
nd T'in S¢, where x € 8 D% is an arbitrary point. An alternative descrip-
jon of L is the following. Let S* = M be the union CTU O x D*



68 CONFERENCE ON THE TOPOLOGY OF MANIFOLDS

where CT < D7 is the cone on T and O x D* is the core of the handle
D? x D*. Then L(T, F) can be identified with the obstruction to deform-
ing S* into OM. (If the inclusion 2M — M is made into a fibration, the
fibre is homotopically S?, and the obstruction to a section lies in
HA[M; m(SH] = Z.)

THEOREM 35 (Haefliger).

(a) Two framed Haefliger knots are diffeotopic if and only if
their p invariants are the same and their L invariants are the
same.

(b) A Haefliger knot T is trivial (i.e., diffeotopic to S* < §°) if
and only if p(T, F) = L(T, F) = O for. some framing F.

() Two framings of T are homotopic if and only if their L
invariants are the same.

(d) There exists a nontrivial Haefliger knot.

The proofs may be found in Haefliger [8; 10].

Using the topological invariance of the rational Pontryagin classes
[28], it is easy to prove:

PROPOSITION 6. Let (T, F) be a framed Haefliger knot,
i=0,1. Put M, = M"(T, F). If there is a topological embedding
M, < M, preserving the generator of H*, then (T, Fo) and (T3, Fy)
have the same p and L invariants and are therefore diffeotopic.

A celebrated theorem of H. Kneser [20], combined with the
Alexander trick [2], gives the following result:

PROPOSITION 7. The orthogonal group Oj is a deformation
retract of the group of homeomorphisms of D°. Consequently every
topological D* bundle carries an orthogonal structure.

The next theorem proves part of Theorem 4:

THEOREM 8. Let T <= S° be a nontrivial Haefliger knot and
let F be any framing of 7. Then the 4-sphere S* < M = M'(T, F) has
no topological closed tube.

Proof: If S* had a closed tube p: E — S*, then by Proposition
the bundle v = (p, E, S§*)-would have an orthogonal structure, and !
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would be homeomorphic to an orthogonal D? bundle over S*. The total
space of such a bundle has the form (D* x D% U (D* x D®) where
G: 8% x D®— 8% x D?%is given by G(x, y) = [x, g.(»)] for some map
g: 8% — O;. Considering S° x D* as a tubular neighborhood of
§2 < 89, this means that £ = M(S3, G). By Proposition 6 this would
make T a trivial knot. This proves Theorem 8.

The framing F of any T can be chosen so that L(7, F) = O; this
makes M (T, F) parallelizable and hence immersible in R by [16; 29;
30]. Extending the definition of tube to immersions, we obtain:

THEOREM 9. There is a PL immersion S*— R? having no
topological closed tube.

From the immersion just described we get a PL immersion $* x
I — R® which can be shown to be homotopic to an embedding in the
category of PL immersions. Using block bundle theory [31] it can be
proved that the resulting PL embedding S* x 7 < R® has no closed
PL tube, for if it did then S* would have a closed PL tube in R”. This
proves:

THEOREM 10. There is a PL embeddmg St x [ < R8 having
no closed PL tube.

Such an embedding cannot be PD isotoped to a smooth embedding,
even though for each t €/, §* x ¢ is unknotted (by Zeeman [35]) and
hence smoothable.

For the next construction the following notation is used. Let D7
and D? be the two hemispheres of S7 whose intersection is S¢. Let
T = S° be a Haefliger knot bounding a smooth compact manifold
V¢ < D%.. Let A* < D7 be the cone on T from the center of D. Put
N*=VUA < 8" Then N is a PL submanifold in some 'smooth
triangulation of S”.

Part (b) of the next theorem completes the proof of Theorem 4.

THEOREM I1I. Assume 7 is a nontrivial Haefliger knot. Then:

(&) N* < S7 has no PL closed tube.
(b) If Vis simply connected and has signature O, then N has no
topological closed tube.
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Remark: For every Haefliger knot there exists a manifold
¥V < D7 satisfying (b) (Haefliger [8)).

Proof: To prove (a) we appeal to the obstruction theory of Rourke
and Sanderson [31]. The obstructions to a closed PL tube on N have
coefficients in =(PLs, PLa). (In [31] PL is denoted by PL(J), in [11], by
mA.) We may also consider the obstructions to finding a pseudolinear
tube, i.e., a PL tube having a compatible orthogonal structure; these

lie in ni(FLs, 03) and are related to the obstructions to a PL open tube
by the homomorphism = (PL3, O3) — w((FLa, ﬁa) of the exact homo-
topy sequence of the triple (PLs, PLs, 03). By Hirsch [15), the group

m(l;f, 0,) is isomorphic to m(PLg, OQ,), which vanishes by T. Akiba
[1]. Therefore if N has a closed PL tube, it has a pseudolinear tube. By

Rourke and Sanderson [31] the group m(f;La, 0,) is isomorphic to the
group of smooth embeddings S'— S**2, which vanishes for / < 2.
Therefore the only obstruction to a pseudolinear tube on N is the
obstruction to extending the normal tube of the smooth embedding
V < D% over N © 87, considering it as a pseudolinear tube. This
obstruction cannot vanish, since it is precisely the Haefliger knot we
started with! Alternatively, if it vanished, then N would have a vector
bundle neighborhood which was smoothly embedded in a neighborhood
of V. A trivialization of this bundle over A could be isotoped in D”. onto
a smooth embedding keeping T fixed, by the product smoothing theorem
[13; 17). This would make 7 bound a smooth 4-cell in D7, contradicting
the nontriviality of 7. This proves that N has no PL closed tube in S7.

To prove part (b), assume N has a closed tube p: E — N, where
(p, E, N) is a D® bundle v. By Proposition 7 we endow v with an
orthogonal bundle structure. The first step is to prove that v is trivial as
an orthogonal bundle.

Let E, be the interior of E. Observe that E, has two differential
structures: «, making E into a smooth vector bundle over a compatible
smoothing of N (see Cairns [6], or Munkres [26; 27]); and the smooth-
ing B induced by the inclusion E, = S”. The topological invariance of
rational Pontryagin classes shows that p,(E, «) = p(E, B), which is O
because B is parallelizable. (We use here the assumption that =, (V) = 0
to ensure that N is orientable and consequently the integer Pontryagin
class is also invariant. This is because H*(E,) = Z.) Since N has
signature O, it follows that p;(N¥) = O, and therefore p,(v) = 0.
Similarly the Stiefel-Whitney classes of v are O.
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At this point we have p,(v) = w,(v) = w,(») = O, and also the
euler class of v is O since v is a (topological) normal bundle of an
orientable manifold (or because H3(N) = O). This information suffices
to make v trivial. (To see this, observe that v is stably trivial and hence
trivial over V. Therefore v is induced from a bundle over S$* having O
Pontryagin class. Such a bundle must be trivial.)

Let F: N x D®- S7 be a trivialization of v, so that F(x, 0) = x
and F(N x D®) = E. Consider F as defining a homotopy trivialization
of the sphere bundle 0F, i.e., a homotopy equivalence N x S2 — 0E
which commutes up to homotopy with projection onto N. It is easy to
find a homotopy F,: N x S? — E — N such that:

(1) Fo=F|N x §2

(2) F,and F,|T x S? are homotopy trivializations of the normal
sphere bundles ¢ and y of ¥ < D% and T = S, respectively.

(3B) FR(A x §?) < DT — A

It follows that if x, € S2, then
(4) Fi:T x xo— S® — T is null homotopic.

This is because the inclusion S® — T— D7 — A is a homotopy
equivalence, and F,(T x x,) bounds the cell F;(A x xo) in D — A.

Now choose a smooth embedding H:V x D®— D% which
trivializes the orthogonal normal disk bundle & of V in D%. Thus
H(x, O) = x, and we may assume H(T x D? < S® Next we show:

(5) H:T x xo— S® — T is null homotopic. This is done by
proving that the two homotopy trivializations, F;|7T x S2 and
H|T x 82, of the normal sphere bundle 5 of T < §9, are
homotopic through homotopy trivializations.

Let G; be the h-space of homotopy equivalences of S2. The two
homotopy trivializations differ by a map ¢: V' — G5. We must prove
that the composition : T' < V — G is null homotopic. Up to homo-
topy type V is a union of a finite set of 2-spheres having a point in
common but otherwise disjoint. (Here we use the assumption = (V) =
0.) Since V has trivial normal bundle and N has signature O, it follows
that the tangent bundle of N is stably trivial and therefore the inclusion
T— V is stably null homotopic. This implies that the inclusion is
homotopic to a sum of Whitehead products. Since these are known to
vanish in a h-space, it follows that : T— G; is null homotopic,
proving (5).
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Part (b) of Theorem 11 is now proved as follows. Form the
smooth manifold W7 = D% { g s3.ps B* x D?, where B is a smooth
4-ball bounded by T (but otherwise disjoint from S7). Contained in W
is a homeomorphic copy Y of N x D3 Novikov’s theorem shows that
p(Y) = O. Therefore

6) p(W)=o0.

Now consider the framed Haefliger knot (7, H|T). By (5) and (6),
L(T, H|T) = O, and also p(T, H|T) = O. Therefore T is trivial by
Theorem 5(b). This completes the proof of Theorem 11(b). »

Remark: By following Haefliger [8] specific examples of mani-
folds N as in Theorem 11 can be described. It would be interesting to
discover whether such manifolds also admit smooth embeddings in S”.

PROOF OF THEOREM 2

Experts are advised to skip to Theorem 12, below, on which the
proof is based, and then go to the next section, where another proof of
Theorem 2 is given by obstruction theory.

Let ¥™*¥ be a PL manifold and Q™ < ¥ a PL sphere. The obstruc-
tion to a PL open tube for Q can be described as follows. Let B™ and
B™ be m-cells whose union is Q and whose intersection is a sphere
Pm-l < Q. Let N7** and N™+* be regular neighborhoods of B, and
B_ in V. Choose PL homeomorphisms ¢, : D™ x D*— N, and ¢_:
D™ x D¥— N_ in such a way that ¢,(D™ x O) = B, and ¢_(D"
x 0) = B_. We may assume further that ¢ ,(S™~! x D*) = ¢_(S™"!
x D¥), where S™~! = 9D™ Put f= @p-lp,.:S™ 1 x DF > Sm-1 x
D*. Then f is a PL embedding; it is further assumed that
fIS™! x O = identity. Let S®~1 = Am~1 U 4™~ where A, and A_
are hemispheres meeting'in S™~2. After an isotopy we may assume
fl4, x D* = identity. (Compare Hirsch [14].)

If f happens to be fibre preserving, that is, if f(x x D¥) < x x D*
for all x € S™~1, then it is easy to see that Q has a normal microbundle,
and hence an open tube. It turns out that it suffices for f to be isotopic,
or merely concordant, to a fibre preserving homeomorphism (all maps
being understood to be PL). Observe also that we may replace f by fg,
where g: 8™ x D¥—» S™~! x D¥ is a fibre preserving homeo-
morphism.

The product smoothing theorem [13; 17] implies that f is PD
isotopic to a smooth embedding A: ST~ x D*-—> S™-1 x D¥ where
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« is a compatible differential structure (or smoothing) of $™-1, If it
happens that « is diffeomorphic to the standard smoothing, and we are
working in dimensions where all smooth knots are trivial, then
k(S x O) can be diffeotoped back onto S™-* x 0, and the smooth
tubular neighborhood theorem implies that the diffeotopy can be
chosen to carry the fibres of the orthogonal disk bundle of h(ST-* x 0)
back onto the fibres x x D* of S™-1 x D*, The diffeotopy can then
be approximated by a PL isotopy. Finally we take advantage of another
degree of freedom by observing that g need not be defined on all of
S™-1 x D It suffices to find a fibre preserving PD embedding
go:A. X D¥ - A4_ x D having the added property that in a neigh-
borhood of ™% x 0, g is a diffeomorphism; for example, in such a
neighborhood, N x D¥, g, might have the form g(x, » = [x, u. (],
where u: N — O, is a smooth map into the orthogonal group. In that
case the smoothing on A_ x D induced from the standard smoothing
by fgo will coincide with the standard smoothing in a neighborhood of
S™72 x DF¥, and the relative form of the product smoothing theorem
can be applied.

In this way we see that Q™ < F'™*¥ has an open PL tube provided
the following conditions are satisfied:

(@ k& > 4(m + 3) (so that Haefliger’s unknotting theorems can
be applied);

(b) There is a PD fibre preserving embedding g: A_ x D* —
A_ x DF which is a diffeomorphism in a neighborhood of
S™-1 x 0, and which induces a smoothing of 4A_ x D
which is PD isotopic to the standard smoothing keeping a
neighborhood of $™~2 x O fixed.

The function which to g assigns a smoothing of S™-! via the
relative form of the product smoothing theorem gives rise to a homo-
morphism

(I): Hm—l(PDka Ok) - I--‘m—l ~ Hml(PD’ 0)

(Here I',, _; is the group of concordance classes (or, equivalently, isotopy
or diffeomorphism classes) of smoothings of $™~1; for the isomorphism
Ihey = - (PD, O) see [13] or [31]. See [31] for the definition of
PD,, and other undefined objects.) Actually this map factors through
a1, the group of smooth embeddings of smoothings of S™-! in
Sm-itksintherangek > 3(m + 3), T%_, =TI, _, by Haefliger [9].

A test for whether Q < V has a PL open tube is now seen to
consist of the following steps:
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() Define a PL embedding f: S™~* x DF—S™~1 x D* by
comparing product neighborhoods of the two hemispheres
of Q.

(ii) Apply the product smoothing theorem to obtain a smoothmg
a of S™~1 such that the smoothing S*~* x D* is isotopic to
the smoothing induced by f.

(i) If [o] is in the image of ® = II,,_,(PDy, Or) — I',._,, and
if £ > ¥(m + 3), then O has a PL open tube.

Theorem 2(a) states that Q has such a tube provided k > max [m —
2, 3(m + 3)]. This is now seen to be a consequence of:

THEOREM 12. The homomorphism @: IL(PD,, Q) — T, is
surjective for k > n — 1.

Proof (outline): It is enough to prove that ® = II(PD,._,,
0,_1) — I, is surjective. To do this we use Munkres’ theorem [37] that
every smoothing of S™ is obtained by glueing together two n-balls by
an orientation preserving diffeomorphism of S"~!. Such a diffeo-
morphism may be assumed fixed on a neighborhood of a hemisphere.
If D*~1 < $*-1 is the other hemisphere, let V,_, denote the group of
diffeomorphisms of D*~* which are fixed in a neighborhood of S"~%;
give V,_, the C* topology. Then there is defined a homomorphism
0: (V,-,) — I, which is surjective by Munkres’ theorem. Theorem
12 is proved by factoring 0 thus:

HO(Vn-l) _‘L') Hn(PDn-l, Ou—l)

To define p, for every diffeomorphism g: D*~'— D" ! in V,_y,
choose a PD isotopy g; from g to the identity; assume g, is fixed in a
neighborhood of S*~2. Any two such isotopies are themselves PD
isotopic through similar isotopies. (These facts can easily be proved by
first isotoping to a PL homeomorphism, or isotopy, and then applying
Alexander’s shrinking process.) Assume that g; = go for O < ¢ < {and
g: = g, for 3 < ¢t < 1. Define a level preserving PD homeomorphism
h: D1 x I— D"~ x I by h(x, t) = [g(x), t]. Then h is a diffeo-
morphxsm in a neighborhood of &D"-* x I). Extend & to a PD level
preserving homeomorphism H: R*"! x I— R"~ 1 x Iby defining Hto
be the identity outside D"~* x I. Put H(X, t) = [H(x), t].
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Define G: (D*"* x I}) x R*~* (D"~ ! x I) x R""! by the for-
mula G[(x, t), y] = [(x, 1), H(x + y) — H,(x)]. For each (x, t) the restric-
tion of G to (x, t) x R"" ! is the microbundle “differential” of the PD
homeomorphism H, of R*~! at the point x of D"~ 1. Since G preserves
projection onto D"~! x I, G has the form G(z, y) = [z, G.(»)]. For
each ze D! x I, G, is a PD homeomorphism of R*~?, and G, is a
diffeomorphism if z e &(D*~! x I). Since the orthogonal group O, _,
is a deformation retract of the group of diffeomorphism of R"*~* [33],
G defines an element u(G) € I1,(PD, _;, O, _,). It is not hard to see that
depends only on the diffeotopy class of g, so that w: IIo(V,_,) —
IL(PD,_;, O,_,) is well defined. It is less obvious that § = ®u, but
this can be proved using smoothing theory; I expect to give more
details in another paper. In this way Theorem 12 is proved.

Remark: 1 have recently proved that II(PD,, 0,) =~ T, for
i = n. Most of the theorems in this paper can be improved by one
dimension using this result. The proof will appear elsewhere.

Theorem 2(b) is proved by using the theorem of J. Cerf [7] implying
that for n = 11; the homomorphism #: II,(V,_o) = IIo(V,_4) is
surjective. (To define ¢, let f: D"~2 x I— D"~2 x Ibe a level preserv-
ing diffeomorphism, fixed in a neighborhood of the boundary, repre-
senting an element ¢ € I1,(V,, ). Identify D"~2 x Iwith D*~1, making
f a diffeomorphism of D"~* representing (£).)

There is a commutative diagram

I1y(Vp - 5) ——> 11, (PDy_3, On_3)
v i
o(Va-1) ———> M(PD,_, O0,_y)
o
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where the definition of p’ is similar to that of p, and i is induced by
inclusion. Since ) and € are surjective, Theorem 2(b) is proved. We
have also proved:

THEOREM 13. For #n > n — 2 the homomorphism

®: II(PD,, O,)— T,
is surjective.
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PROOFS OF THEOREMS 1, 2, AND 3

The obstruction theory of Haefliger-Wall [11] and Rourke-
Sanderson [31] will be applied. It is shown that the appropriate homo-
topy groups in which the obstructions take values are 0. For Theorem
2 this is done in (9), below; for Theorem 1, in (10) and (13); and for
Theorem 3, in (12).

The proofs are standard diagram chases based on the following
facts:

(1) I(PLyyy, PL) = O for i < k — 1 (Haefliger—Wall [11].

(2) The kernel of II,_,(PL,) — I, _,(PL,. 1) is the image of

ker (I, _1(0) = I, _1(Ox,1)) under the homomorphism
[T, 1(0x) — I, _,(PL,) (Haefliger-Wall [11]).

3 Hg(l"va, 0,) ~ I'f (Rourke-Sanderson [31]).

(4) T¥ = Iy fork = 3(i + 4) (Haefliger [9]).

(5) I(PL,, O,) T, is surjective for k > i~ 1, and for k >

i —2ifi > 11 (Theorems 12 and 13).

(6) Lim,., II(PL,, O;) ~ T, (Hirsch [13]).

From these we make the following deductions:

(7) IL(PLy, O) - I(PL, 4, O,) is bijective for i < k — 1 and
surjective for [ = k.

Proof: Let T stand for the triad (PL,, 1, Oy, 1, PL,) and consider
the commuting diagram, with exact rows and columns:

I(0y) —> ,(0k+1) — (O 41, Oy)

v
I;41(PLy 41, PLy) —> T(PL,) > T(PL, , ;) —> M(PL,, 1, PL,)

5]

0 (T) ———m——— I(PL,, O) > HPLy s 1, Ogsr) —> I(T)

Ht(0k+13 Ok) nl—1(0k+11 Ok)




PIECEWISE LINEAR AND TOPOLOGICAL MANIFOLDS 71

From (1) and the last column we get II(7T) = O for i < k — 1; hence
from the bottom row, s, is bijective for i < k — 2, and surjective for
i =k — 1.8ince II,_1(Ok+1, Ox) = O, we have ker (s,._,) < r, ker (2),
which is 0 by (2). This proves the first statement of (7). The second now
follows from (5) and (6).

(8) The homomorphism II(PL,, O;) — II(PL,, O,) is bijective
for k> max[i+ 1,40 + 4] It is surjective for k >
max [[ — 1,3( + 4)], and also fork > i — 2 and i > 11.

Proof: Apply (3) and (4) and (5).

(9) The homomorphism I,(PL,)— II(PL,, PL,) is O if k >
max [i — 1,3( + 4)]; also, if k > i — 2 and i > 11.

Proof: Apply (8) and the following commuting diagram with
exact row and column:

II,(PL,)

IL(PLy, Oy) — Hi(l’;’Lk’ 0,) —— Hi(lsik: PL,) ——II,_,(PLy, Oy)

I, .,(PL,)
This last result implies Theorem 2.
(10) M(PL,, PL,) = O if k > max [i, 3(i + 4)].
Proof: Apply (8) and the exact homotopy sequence of the triple

(PLlu PLka Ok)’
This proves (a) and (b) of Theorem 1.

« (1) (044, Oy) — IL(PL,,,, PL,) is bijective.

Proof: Let T'stand for the triad (PL,,; Ok 41, PLy), and consider
the commuting diagram with exact rows and columns:
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(0 —— I1,(Ok+1)

—> Hy(Ok 415 Oy

Ay

In(PL,) —— (PLgsyy) ———> M(PLy 41, PL,)

M(PLy, Ox) —> M(PLi 41, Oxsr) —> (T)

From (7) and the bottom row, II(T) = O for i < k. From the last
column we get the surjectivity of A,. But A is injective for all i, as can
be seen from the commuting diagram:

(O s 1 O) ———> T(PLy 4, PLy)

Hi(Sk) ———— nt(GkH-ls Fk)

Here G,., is the space of homotopy equivalences of S* and Fy is the
subspace leaving the north pole fixed. The evaluation maps Oy 1 —> Sk
and G, ., — S* induce isomorphisms u and ». Therefore A, is injective.
This proves 11, and also:
(12) T(PLys1, PLy) = TGy, F) = TL(S¥) is bijective. This
proves Theorem 3.
(13) Let PL, denote the simplicial set based on PL homeomor-
phisms of I* (denoted by PL,(/) in (31) and by ITA, in (11)).
Then IT(PL,, PL,) = O fori < k — 1.
Proof: By Hirsch [15], TI,(PLy, PL,_;) =& I[(S*~*). By (1) and
(11), T(PL,, PL,_,) = (S*"Y) for j < k — 1; moreover 1T, _,(PL,,
PL,_,) — O, _,(PL,, PL,_,) is easily seen to be bijective. The result

now follows from the exact homotopy sequence of the triple (PLy, PL,,
PLy_,). '
Note that (13) and (9) prove (c) and (d) of Theorem 1.
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