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ABSTRACT. A new proof of a (slightly extended) geometric version of Tucker’s

fundamental result is given.

i. INTRODUCTION.

A classical result of A. W. Tucker (9) states that the dual systems

Ax=0, x> 0

and

ATy 0

o yO ATy o
have solutions x and such that + x is positive.

In this note we suggest a new proof of a (slightly extended) geometric

version of this fundamental result, which was observed, e.g. (6), to be a key

to duality theory.

2. MAIN RESULTS.

We use L and S to denote convex cones in Cn, i.e., subsets of the n-dimensional
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unitarian space which are closed under addition and under multiplication by a

nonnegative scalar. For a nonempty set T =_ Cn, T* denotes the closed convex cone

{x e cn; Re(x,T) -> 0}.

We shall make use of the following identities:

K* (cK)*, (2.1)

K** cZK, (2.2)

( + K2)* KI* N K2*, (2.3)

satisfied by the convex cones K, and K2. For these and other basic results

on convex cones the reader is referred to (2) and (4).

Consider the following intersection.

I(L,S) S S*O (LOS)*O (-LnS)*)O (L-S).

The proof of the main result is based on the fact that this intersection consists

only of the origin.

LEMMA. I(L,S)--- {0}.

PROOF. Let x I(L,S). Then x e L S and there exists an s e S such that

x+s eL.

Now, x e S -)x + s e S =)x + s e L S.

On the other hand, x e (LOS)*n(-(LS)*.

Thus Re(x,x+s) 0.

Still more, x e S* => Re(x,s) __> 0. Thus < 0, but this is possible only

when x 0, which was to be proved

The intersection SNS* is pointed. (It consists only of the origin if and

only if S is a real subspace, e.g. (i), (5)). Thus (SS*)* is solid and the

following theorem is meaningful.

KEY THEOREM. If (i) L S is closed or (iia) L* + S* is closed and

(lib) c(LNS) c L c S, then
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x LOS, v e (S-L)*, x + v e int(SnS*)*, (2.4)

is consistent.

PROO.F. The consistency of (2.4) is equivalent (by 2.3) to

(LOS + (-L*)nS*)Oint(SnS*)* # , (2.5)

The set LOS + (-L*)S* is convex. The set int(SOS*)* is the interior of a

convex cone. Thus, e.g. (4), (2.5) is not true if and only if there exists a

non-zero z SNS* such that Re(z,LNS + (-L*)0S*) < 0.

But z S => Re(z, (-L*)NS*) _> 0 and z S* => Re (z ,LOS) _> 0. Thus the negation

of (2.5) is equivalent to the existence of a 0 # z e SOS* such that

Re(z,LNS) Re(z, (-L*)0S*) 0. To show that this is impossible consider the

intersection

I sns,n(Lns),n(-(Lns),)n((-L,)ns,),n(L,n(-s,)),.

By (2.3) and (2.2), (L*0(-S*))*-- ((L-S)*)*--cZ (L-S). By (2.1), (iib),

(2.2) and (2.3), -(LOS)* -(L**0S**)* -(L* + S*)** cZ(L*+S*), and by

(2.2), S c__ S**.

Thus if L- S is closed, I=_I(L,S) {0} and if L* + S* is closed

Ic__IL*,S*) {0} so in both cases the proof is complete.

The assumptions made in the theorem suggest two interrelated open problems:

a) Is the theorem true without the assumptions?

b) For what convex cones L and S, both assumptions, (i) and (ii), do not hold?

Notice that if L and S are polyhedral then all the assumptions hold. We remark

that, in general, assumptions (iia) and (lib) are independent. Let S and L be

closed convex cones in R3 such that

x
S* {(y), x _> 0, z > 0, 2xz > y2}

z

and L* is the x-axis. Then obviously (iib) holds but, e.g. (2, p. 7), (iia) does
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not. Conversely, let

s {(); x > o, y > o}u{o}

and L {(); x > 0, y < 0}U{0}

be (not closed) convex cones in R2. Then (iia) holds but (lib) is false.

In conclusion, we point out some special cases.

The real version of the theorem with S R is due to Epelman and Waksman (3).

Taking S to be polyhedral and L the null space of a matrix A,L* L+ R(AH)

and replacing v e R(AH)s* by AHy S* one gets the Key Theorem of Abrams and

Ben-lsrael (i). As shown in (i), the theorem of Tucker is the real special case

where S R. Its complex extension, due to Levinson (8), is the special case

where

CnS T {z e arg z
i

< a i}

o. (i) <
T

e, e-vector of ones

and S* T
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