
JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 21, NO. 3, MARCH 2003 727

On Turbo Code Decoder Performance in
Optical-Fiber Communication Systems

With Dominating ASE Noise
Yi Cai, Member, IEEE, Joel M. Morris, Senior Member, IEEE, Tülay Adalı, Senior Member, IEEE, and

Curtis R. Menyuk, Fellow, IEEE, Fellow, OSA

Abstract—In this paper, we study the effects of different ASE
noise models on the performance of turbo code (TC) decoders.
A soft-decoding algorithm, the Bahl, Cocke, Jelinek, and Raviv
(BCJR) decoding algorithm [1], is generally used in the TC de-
coders. The BCJR algorithm is a maximuma posterioriprobability
(MAP) algorithm, and is very sensitive to the noise statistics. The
Gaussian approximation of the ASE noise is widely used in the
study of optical-fiber communication systems [2]–[8], and there
exist standard TCs for additive white Gaussian noise (AWGN)
channels. We show that using a MAP decoding algorithm based
on the Gaussian noise assumptions, however, may significantly
degrade the TC decoder performance in an optical-fiber channel
with non-Gaussian ASE noise. To take full advantage of TC, the
accurate noise statistics in optical-fiber transmissions should be
used in the MAP decoding algorithm.

Index Terms—Amplified spontaneous emission noise, forward
error correction, MAP decoding, optical-fiber communication.

I. INTRODUCTION

T URBO codes (TCs) based on soft-decision iterative de-
coding have been shown to be a very powerful of forward

error correction (FEC) code achieving near-Shannon limit per-
formance [9]. As FEC codes have become a practical solution in
improving system capacity in fiber communications, the appli-
cation of TC in fiber transmissions has begun to attract research
interest [4], [5], [10].

A soft-decision decoding algorithm, the Bahl, Cocke, Je-
linek, and Raviv (BCJR) algorithm [1], is generally used in the
TC decoders. The BCJR algorithm is a maximuma posteriori
probability (MAP) algorithm and requires prior knowledge of
the noise statistics in the communication channels and, hence,
is very sensitive to the accuracy of the noise statistics in the
channel model.

In both undersea and terrestrial systems, the optical ampli-
fiers are critical components, and amplified spontaneous emis-
sion (ASE) noise in the optical amplifiers is the major source of
noise in optical-fiber channels. ASE noise has an asymmetric
statistical nature, and the chi-square distribution model is cur-
rently a commonly used model of the ASE noise statistics in
the receiver after passing through a square law photodetector
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and a narrow-band filter [6], [7]. For simplicity, the chi-square
distributions are often approximated with Gaussian distributions
in characterizing optical-fiber channels [2]–[5]. Moreover, most
existing FEC codes are developed and evaluated with the addi-
tive white Gaussian noise (AWGN) assumption. Thus, the pre-
vious applications and performance evaluations of FEC codes
in optical-fiber transmission systems are mostly based on the
Gaussian noise approximation or AWGN assumption with little
effort to use a more accurate model of the optical-fiber channels.

It has been shown that the theoretical and simulation results of
the RS code performance in [3], using BSC and AWGN assump-
tions, agree well with the experimental measurements. How-
ever, RS codes or any other FEC codes using hard-decision al-
gebraic decoding are not sensitive to the exact noise statistics.
Because thea priori knowledge of the channel noise statistics
is not used in algebraic decoding, as long as the channel model
assumption gives a good estimate of the uncoded bit error rate
(BER), it also gives a good estimate of the algebraic block coded
BER.

By contrast,a priori knowledge of the channel noise statistics
is essential for soft-decision FEC codes that use probabilistic
decoding algorithms such as the BCJR algorithm (MAP proba-
bility). We show in this paper that the Gaussian approximation
of the ASE noise distributions after passing through the pho-
todetector and filter or the AWGN assumption may significantly
degrade the performance of TC in optical-fiber channels when
used with the BCJR decoding algorithm.

In the following section, we describe and compare three dif-
ferent channel models for the optical-fiber channels with domi-
nating ASE noise. Section III describes the modifications of the
BCJR algorithm according to the chi-square noise distribution.
Simulation results for the performance of TC decoders based on
the different channel models are shown and discussed in Sec-
tion IV. Finally, Section V concludes the paper.

II. OPTICAL-FIBER CHANNEL MODELS

ASE noise in optical amplifiers is the major source of errors
in optical-fiber systems with a low signal-to-noise ratio (SNR).
Generally, the ASE noise leads to asymmetric distributions of
marks and spaces after passing through the receiver in the sense
that they have different variances and their probability density
functions (pdf) are asymmetric. Because of the asymmetric na-
ture of the noise statistics, the-factor, which is defined as [8]

(2.1)
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is widely used as a SNR measure in optical-fiber channels,
where , , , and represent means and variances of
the marks and the spaces, respectively. In the following, we
describe and compare three different channel models: the
chi-square, the asymmetric Gaussian, and the AWGN channel
models for ASE noise channels.

A. Chi-Square Channel Model

The pdf of the detected signalis a function of the energy
of the transmitted optical pulse as well as the power spectral

density, , of the ASE noise, as described in [6], [7]. The re-
ceived marks and spaces have different pdfs that are given by
[7]

(2.2)

(2.3)

where is the number of modes per polarization
state in the received optical spectrum, and are the op-
tical bandwidth and the electrical bandwidth, respectively, of the
system at the detector, and denotes the th modi-
fied Bessel function of the first kind. The means and variances
of the received marks and spaces can be derived from the pdfs
given in (2.2) and (2.3) , ,

, , respectively [7]. We can also obtain
from the above formulae for ,

, , and [7]. With these results and the definition of
in (2.1), we can evaluate , , , and as functions of the
system parameters , , and , as [11]

(2.4)

where is normalized to 1.
We see that the marks have a noncentral chi-square distribu-

tion, the spaces have a central chi-square distribution, and both
are asymmetric pdfs with degrees of freedom [7]. Thus,
we call this model the chi-square channel model. We note that
this model does not take into account signal distortion due to
optical-fiber transmission, and it assumes an ideal integrate and
dump receiver. It is possible to obtain a more accurate character-
ization of the noise distributions by using more accurate models
of the transmission and the receiver [12], [13]. However, numer-
ical methods must be used to generate the pdfs. By contrast, the
chi-square assumption yields a simple analytical form for the
pdfs of the marks and the spaces and is a substantially better ap-
proximation to the actual noise statistics than is the often-used
Gaussian approximation. Thus, this model is sufficient to estab-
lish the deficiencies in the Gaussian approximation when used
in the turbo decoder, which is the main point of our paper. More-
over, it is a useful starting point for carrying out more sophis-
ticated analyses based on the considerations of [12] and [13].

Fig. 1. Probability density functions of the chi-square, asymmetric Gaussian,
and AWGN forM = 3,Q = 6:8 dB, where(I � I ) is normalized to 1.

Thus, our work in this paper is based on the assumption that the
chi-square model is accurate.

B. Asymmetric Gaussian Channel Model

For simplicity of analytical studies of the noise and the in-
duced error probability, Gaussian pdfs with the same means and
variances as the chi-square distributions are commonly used.
The Gaussian approximation is given by

(2.5)

(2.6)

Note that the detected signal, as shown in [6] and [7], is a sum
of independent random variables. From the central limit
theorem, the Gaussian approximation can be a good model for
both and for large . However, for small , as is
the case for DWDM systems, and at low, the Gaussian distri-
bution is not a good approximation of the chi-square distribution
as shown in Fig. 1. Because the marks and spaces have different
variances in this model, we call it the asymmetric Gaussian
channel model to distinguish it from the AWGN channel model.

C. AWGN Channel Model

The AWGN channel model is the most widely used channel
model in error correction code analysis and development. In
AWGN channels, marks and spaces have Gaussian distributions
with the same variance. This property can significantly simplify
the log likelihood ratio (LLR) calculations in the MAP or other
soft-decision decoding algorithms. In optical-fiber channels,
however, the computational simplification due to the AWGN
assumption for the noise diminishes the accuracy of the channel
model and, thus, degrades the decoder performance.

To relate a given chi-square channel to an AWGN channel, we
first calculate the bit error rate (BER), , of the chi-square
channel with optimal hard-decision detection. Then, we con-
struct an AWGN model with the same means and BER as that
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of the chi-square channel. Thus, the standard deviation
in the corresponding AWGN model is given by

erfc
(2.7)

where is the energy of the transmitted optical pulse and
erfc is the inverse complementary error function.

D. Comparison of the Three Models

As described above, the asymmetric Gaussian and AWGN
models are actually Gaussian approximations for the chi-square
noise distributions, while the first one keeps the same signal
means and variances as the chi-square distribution, the second
one keeps the same means and hard-decision BER as the chi-
square distribution.

Fig. 1 plots the pdfs of the chi-square, the asymmetric
Gaussian, and the AWGN distributions in an optical-fiber
transmission system with dB and . It shows
that the asymmetric Gaussian pdfs look more similar to the
chi-square pdfs than the AWGN pdfs. But we still see that the
central chi-square pdf of the spaces is quite different from the
asymmetric Gaussian approximation, even in the central part
of the pdfs. The difference between the pdfs of the marks,
although not as significant as that between the pdfs of the
spaces, is clearly observed. Because the optical detector is
a square-law device and its output is thus always a positive
electrical voltage, the probability of a negative output voltage
is zero. The chi-square pdfs have zero probability density for
an output voltage less than zero. By contrast, the Gaussian
approximation yields distributions that are not zero when the
output voltage is less than zero.

Fig. 1 also clearly shows the asymmetric distribution of the
marks and spaces. For both the chi-square and the asymmetric
Gaussian pdfs, the variance of the marks are much larger than
that of the spaces. The difference between the variances comes
from the signal/noise beat term [6], [7].

Fig. 2 compares the three channel models from another point
of view, the LLR of the received signal defined as

(2.8)

where represents the transmitted signal andrepresents the
received signal. For equally likely transmitted marks and spaces,
i.e., , can be expressed as the ratio
of the pdfs as

(2.9)

The MAP decoder performance highly depends on the accu-
racy of the LLR of received signals. Therefore, the accuracy of
the approximated LLR is more critical than the accuracy of the
approximated pdf in choosing a proper channel model used in
MAP decoding.

In Fig. 2, we show hatched areas in which the Gaussian
approximations have different LLR signs from that of the

Fig. 2. LLRs based on the chi-square, asymmetric Gaussian, and AWGN for
M = 3: (a)Q = 6:8 dB and (b)Q = 0 dB, where(I � I ) is normalized
to 1.

chi-square model. The size of the shadowed area can be
intuitively used as a measure of how close the Gaussian
models approximate the chi-square model in terms of the LLR
of the received signal. The area hatched with vertical lines
corresponds to the asymmetric Gaussian approximation, and
the area hatched with oblique lines corresponds to the AWGN
approximation. In Fig. 2(a), the system has a dB.
We find that the area hatched with oblique lines is significantly
larger than the area hatched with vertical lines. Hence, we
predict that the asymmetric Gaussian model approximates
the chi-square channel better than the AWGN model at a
of about 6.8 dB and, hence, use of the asymmetric Gaussian
model will lead to better MAP decoder performance. However,
Fig. 2(b) shows that in a system with dB, the two
Gaussian models have almost identical hatched areas. Outside
the hatched areas, the LLRs of the AWGN model are more
similar to that of the chi-square channel and, hence, use of the
AWGN model will result in better MAP decoder performance
than will use of the asymmetric Gaussian model.

The above LLR comparisons of the two Gaussian models
show that neither one is always better than the other one in ap-
proximating a chi-square channel, and which approximation is
better depends on the-factor. Moreover, we observe in Fig. 2
that the use of either Gaussian approximation may significantly
skew the ASE noise statistics in MAP decoding and, thus, de-
grade the TC performance.



730 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 21, NO. 3, MARCH 2003

III. BCJR ALGORITHM WITH NON-AWGN DISTRIBUTIONS

A. Standard Rate 1/3 TC

The BCJR algorithm is a recursive algorithm for the MAP
decoding of the received noisy codeword , , ,

, , , ) [1], [14], where represents a received infor-
mation bit corresponding to the transmitted information bit,
and represents a received parity-check bit corresponding to
the transmitted parity-check bit generated by theth con-
stituent encoder. We note that for our rate 1/3 TC,
where each constituent convolutional encoder has rate 1/2. In
the th constituent MAP decoder for TC, the information bit
in the transmitted codeword , , , , , ,

) is estimated based on the received noisy codewordby

if
if

(3.1)

where is the LLR given the received codeword, de-
fined as

(3.2)

The key to the BCJR algorithm is to decompose thea posteriori
probability into three factors , , and (we refer to the
subscribe as “time ” in the following discussions). These
factors relate the decision on to the previous, current, and
future observations, respectively, as

causing state transition to

(3.3)

Here: 1) , , , , is the set of all constituent
encoder states, the state pair represents a state transition
from to ; 2) ,

, , , , , is a probability measure for state
at time that depends only on the past observations,

i.e., the received information and parity-check bits before time
; 3) , , , , , is

a probability measure for stateat time that depends only
on the future observations, i.e., the received information and
parity-check bits after time; and 4) is a probability
measure connecting state at time to state at time

that depends only on the present observation . The
can be written as

(3.4)
and and can be computed recursively as func-
tions of given by

(3.5)

and

(3.6)

respectively [14].
We observe that depends on the conditional pdfs

of the received signals and is the key factor in the BCJR algo-

rithm. Hence, the performance of the BCJR algorithm depends
strongly on the accuracy of the noise model.

As shown in Fig. 1, the differences between the pdfs of the
noise with the chi-square distribution and the Gaussian approx-
imations are not negligible, especially at lowas in the case of

dB. An obvious question is, therefore, can better TC
performance be achieved by modifying the standard formula of

, which uses the AWGN model, to a new formula using
the more accurate chi-square distribution model given by (2.2)
and (2.3), rewritten here as

(3.7)

(3.8)

where represents or , represents or , is the
transmitted signal energy, is the two-sided power spectral
density of the ASE noise, and is the dimensionality of the
optical signal space. When we substitute (3.7) and (3.8) into
(3.6), we obtain (3.9), as shown at the bottom of the next page.
Defining

(3.10)

we may write

(3.11)

Note that (3.9) and (3.11) can be substituted into (3.2) and
(3.3) to calculate the LLR. Thus, all the common terms in the
four cases in (3.9) can be removed to simplify the calculations.
Then, the can be calculated with

(3.12)

where , , , and are constants given by
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Defining

(3.13)

the LLR can be calculated iteratively to yield

(3.14)

where is the set of caused by , and is
similarly defined for . The first term on the right side
of (3.14), which depends on the currently observed information
bit and the channel SNR, is sometimes called the channel value.
The second term represents anya priori information
provided (extrinsic information received) by the other decoder,
and the third term represents extrinsic information passed to the
other decoder.

B. Punctured TC

Punctured TC is more practical than the standard TC in op-
tical-fiber transmission systems because of the higher code rates
that can be obtained from lower code rate codes. Puncturing can
be implemented by deleting some parity and/or information bits
at the output of the encoder [14], [15]. At the input of the de-
coder, the signals corresponding to the punctured bits are set to
the same value as the optimal hard-decision threshold[14].
The reason follows. If we assume that the pdfs of the spaces and
the marks, and , cross at the point
and satisfy the conditions

(a) for all

(b) for all

then (a) and (b) are sufficient conditions to imply that ,
which is optimal in the sense of yielding the minimum hard-de-

cision detection error probability, is the crossover point of the
two pdf curves, i.e., .

Suppose , there are only two possible cases,
or . First, consider the case when

. With condition (a), we have for
. Then, the minimum hard-decision detection

error probability can be expressed as

(3.15)

where is actually the hard-decision detection error proba-
bility with as the decision threshold, and . Thus,
we obtain , which contradicts the definition of

. Hence, is not possible. Similarly, with con-
dition (b), we can prove that is also not possible
and, hence, .

This proof leads to the straightforward likelihood ratio result,
i.e., if we set punctured bits to the same value as the optimal
hard-decision threshold , then

preset signal value for punctured bitpunctured bit
preset signal value for punctured bitpunctured bit

(3.16)

Obviously, a likelihood ratio equal to 1 (and LLR ) is the
best guess for the punctured bits in the sense of achieving min-
imum error probability. Hence, is the best value to use for
those virtual signals corresponding to the punctured bits. Note
that the chi-square, the asymmetric Gaussian, and the AWGN
distributions all satisfy the two conditions mentioned above and,
hence, the proof and statements made above are valid for them.

(3.9)
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For the AWGN model, we find . For the
chi-square and asymmetric Gaussian models, we find that
is given by the solutions to the transcendental equations

(3.17)

(3.18)

respectively. We see that for the chi-square distribution, there is
no closed-form formula in evaluating the optimal hard-decision
threshold. For the asymmetric Gaussian case, the solution is
quite complex. Therefore, in addition to the Gaussian approxi-
mation of the ASE noise distribution, the hard-decision threshold
is customarily set so that the two transition probabilities are
equal, which implies a binary symmetric channel assumption.
Then, the hard-decision threshold can be simplified to [6]

(3.19)

However, it has been shown in [16] and [17] that evaluating
with (3.19) in the asymmetric Gaussian model may significantly
degrade the performance of punctured TCs. Hence, in the punc-
tured TC simulations discussed in Section IV, we used the ac-
curate for each of the three channel models.

IV. SIMULATION RESULTS

In this section, we use simulations to show the result of using
each of the three models on the TC decoder performance in op-
tical-fiber channels. We assume chi-square distributed noise at
the output of the optical-fiber transmission system, including
the receiver, and compare the performance of the TC decoders
based on different channel models.

Weusea(31,27,400)parallel-concatenated-convolutionalTC
with the encoder and decoder structure as depicted in Fig. 3. The
(31, 27, 400) TC is a rate 1/3 code, where the first two parame-
ters,31and27,areoctalnumbers representing thestructureof the
constituentencoders. Ifwetransformtheoctalnumbers31and27
into binary numbers 11 001 and 10111, then the digits of the bi-
nary numbers represent the coefficients of the parity-check gen-
eratorpolynomials and .Asdepicted
in Fig. 3(a), “31/27” corresponds to the recursive parity-check
generator polynomial .

A 400-bit interleaver is used between the two constituent en-
coders shown in Fig. 3(a). The major motivations for using an
interleaver are [15]: 1) to generate a long block code from small
memory length convolutional codes and 2) to decorrelate the
two parity check sequences so that an iterative suboptimal de-
coding algorithm based on information exchange between the
two constituent decoders can be applied.

In the turbo encoder, for each input original information bit
, there are two parity check bits, and , generated by the

two parallel concatenated convolutional encoders, respectively.
Thus, we have a code rate of 1/3. To achieve higher code rates,
a puncturer can be added at the output of the turbo encoder. The
puncturing operation can be represented by a puncturing matrix,

Fig. 3. (31, 27, 400) Turbo code: (a) encoder and (b) decoder structure.

inwhicheachcolumnrepresentsanoutputblockwith theelement
in the first row corresponding to the information bit and the other
elements corresponding to the parity check bits. A “0” element
in the puncturing matrix means that the corresponding informa-
tion bit or parity check bit is deleted according to the puncturing
mechanism. Similarly, a “1” means that the corresponding bit
is transmitted. The puncturing matrices for the rate 1/2 and rate
3/4 punctured TCs are shown in (4.1) and (4.2), respectively

Puncturing Matrix
(rate 1/3 to rate 1/2)

(4.1)

Puncturing Matrix
(rate 1/3 to rate 3/4)

(4.2)

As shown in Fig. 3(b), the iterative turbo decoder consists of
two serially concatenated constituent decoders, between which
there is a 400-bit interleaver identical to the one in the turbo
encoder of Fig. 3(a). The first decoder uses MAP decoding on
the received information sequenceand parity check sequence

generated by the first encoder, and passes the soft extrinsic
information to the second MAP decoder via the interleaver.
Then, the second decoder uses MAP decoding on the interleaved
information sequence and the parity check sequencegener-
ated by the second encoder, with an improved estimate of the
a priori probabilities of the information sequence. The soft ex-
trinsic information produced by the second MAP decoder
is then transferred to the first decoder as improveda priori
knowledge of the information sequence. Thus, iterative MAP
decoding is realized via the information exchange between the
two constituent MAP decoders.

We simulate the performance of the TC with BCJR (MAP) de-
coding algorithms designed based on the chi-square, asymmetric
Gaussian, and AWGN models of the optical-fiber channel. In the
simulations, the chi-square distributed ASE noise is added to the
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Fig. 4. Output BER of the turbo code (31, 27, 400) decoder based on the
chi-square (solid), asymmetric Gaussian (dashed), and AWGN (dotted) models
of the ASE noise. The rate 1/2 (circles) and rate 3/4 (triangles) codes are
punctured versions of the rate 1/3 (stars) turbo code.

optical-fiber transmission line. We repeat the simulations for
different code rates by puncturing the 1/3 turbo code.

Fig. 4 plots the decoded BER with TCs based on different
channel models as a function of thefactor. In all the simula-
tions, the factor is evaluated based on the encoded data se-
quence instead of the original uncoded data sequence, i.e., the
penalty caused by lower code rate is not taken into account in
the evaluations (which turns the performance curves of the l/3
TCs into a region with negative values of in decibels). We
only use Fig. 4 to compare the relative performance, at a given
code rate, of the TC decoders that are based on different channel
models, which is the major concern in this paper. The results
show that the TC decoder based on the chi-square model always
performs better than the decoders based on the Gaussian approx-
imations. For the rate 3/4 punctured TC, the chi-square model,
when used in the BCJR decoding, provides about 1.5- and 3-dB
coding gain over the asymmetric Gaussian and AWGN models,
respectively, at BER around .

Comparing the two Gaussian models, we see that the perfor-
mance of the decoder based on the AWGN model is better at
rate 1/3 (low ), but worse at rate 3/4 (relatively high) than
that of the asymmetric Gaussian model. This observation agrees
with the predictions made in Section II about the accuracy of the
two Gaussian approximations for chi-square distributions. Com-
pared to the chi-square model, the AWGN model results in sim-
ilar decoder performance for the regular rate 1/3 TC where the
operating -factor is around 0 dB. This result is also consistent
with the LLR comparison of the two models shown in Fig. 2(b).

V. CONCLUSION

In this paper, we discussed the effects of three different noise
models: the chi-square, asymmetric Gaussian, and AWGN,
on the performance of a TC decoder. We compared the three
channel models from two different points of view, the pdf and
the LLR of received signals. We showed that the asymmetric
Gaussian model is better than the AWGN model in approxi-
mating chi-square pdfs, but is not always better than the AWGN
model in approximating the LLR of chi-square distributions. We

applied the BCJR algorithm to non-AWGN noise distributions.
We simulated the performance of TC decoders assuming the
chi-square, asymmetric Gaussian, and AWGN distributions,
respectively, for a channel that actually has a chi-square noise
distribution. We showed that the Gaussian approximations of the
chi-square noise distribution might significantly degrade the TC
decoder performance. Specifically, the performance degradation
for thepunctured rate3/4TCcanbemore than2dB inat10
BER. We also showed that the decoder using the AWGN model
outperforms the one using the asymmetric Gaussian model at

around 0 dB, but the latter one outperforms the former one
at around 7 dB.

Based on these results, we conclude that using accurate
channel noise statistics in the iterative MAP decoding algorithm
is critical to achieve the expected coding gain from a turbo code.
Therefore, we should take into account the accuracy of channel
models in soft-decision FEC system designs. To achieve the best
possible code performance, accurate noise statistics is required.
On the other hand, if accurate statistical model cannot be ob-
tained in a practical implementation, we need to consider a
design margin for an approximated or assumed noise statistics.

In Section II of this paper, we proposed an intuitive way
to measure how close the Gaussian models approximate the
chi-square model in terms of the LLR of received signals. A
more complete and accurate measure of LLR approximation
should be developed in future research. Moreover, more accu-
rate channel models taking into account signal distortion during
transmission and the effects of a realistic low pass filter in the
receiver [12], [13] should be incorporated in FEC code studies.
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