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Abstract

We study two variants of the classic knapsack problem, in which we need to place items of
different types in multiple knapsacks; each knapsack has a limited capacity, and a bound on
the number of different types of items it can hold: in the class-constrained multiple knapsack
problem (CMKP) we wish to maximize the total number of packed items; in the fair placement
problem (FPP) our goal is to place the same (large) portion from each set. We look for a
perfect placement, in which both problems are solved optimally. We first show that the two
problems are NP-Hard; we then consider some special cases, where a perfect placement exists
and can be found in polynomial time. For other cases, we give approximate solutions. Finally,
we give a nearly optimal solution for the CMKP. Our results for the CMKP and the FPP are
shown to provide efficient solutions for two fundamental problems arising in multimedia storage
sub-systems.

Key words. knapsack, packing, approximation algorithms, resource allocation, fairness, utiliza-
tion, multimedia on-demand.

1 Introduction

1.1 Problem Statement

In the well-known multiple knapsack problem (MKP) [21], M items of different sizes and values
have to be packed into N knapsacks with limited volumes. In this paper we study two variants of
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the MKP, in which items of M distinct types have to be packed into N knapsacks, each having a
limited volume and a limited number of compartments; items of different types cannot be placed
in the same compartment. Specifically, the input is a universe U , which consists of M distinct
types of items, given as the subsets U1, . . . , UM ; there are |Ui| items of type i, 1 ≤ i ≤ M , and
U = U1 ∪ U2 · · · ∪ UM ; all items have the same (unit) size and the same value, that is, for all
u ∈ U s(u) = w(u) = 1. There are N knapsacks: the jth knapsack, Kj , has the volume Vj , and
a limited number of compartments, Cj , in which the items can be placed, 1 ≤ j ≤ N ; Thus, in
the jth knapsack we can place items of at most Cj different types. The output of our optimization
problems is a placement, which specifies for each knapsack Kj to which types of elements Kj

allocated compartments, and how many items of each type are placed in Kj . A placement is legal
if Kj allocated at most Cj compartments, and the overall size of the items placed in Kj does not
exceed Vj , for all 1 ≤ j ≤ N . A placement determines a subset U ′ = U ′

1 ∪U ′
2 · · · ∪ U ′

M of U , such
that |U ′

i | is the number of items packed from Ui.
The two optimization problems studied in this paper are:

The class constrained multiple knapsack problem (CMKP), in which our ob-
jective is to maximize the total size of the packed elements, given by

∑M
i=1 |U ′

i|.

The fair-placement problem (FPP), where the objective is to maximize the value
of 0 < c ≤ 1 such that ∀1 ≤ i ≤M, |U ′

i| ≥ c · |Ui|.

Throughout the paper we assume that
∑M

i=1 |Ui| =
∑N

j=1 Vj , that is, the total number of items in
U equals to the total sum of the knapsack volumes. In particular, we look for a perfect placement, in
which both problems are solved optimally. Indeed, such a placement yields the maximal utilization
of the knapsack capacities, i.e., the total occupied volume is V =

∑N
j=1 Vj , and maximal fairness,

i.e. c = 1.

The assumption |U | = V simplifies the presentation of our results; moreover, any input for the
storage management problem that motivated our study, satisfies this assumption. It is important
to note, however, that our results hold for general inputs for the CMKP and the FPP, i.e., for any
relation between |U | and V . We elaborate on that in the Appendix.

1.2 Storage Management in Multimedia Systems

Our two variants of the knapsack problem are motivated by two fundamental problems arising
in storage management for multimedia-on-demand (MOD) systems. MOD services are becoming
common in library information retrieval, entertainment and commercial applications. MOD systems
are expected to manage with the enormous storage and bandwidth requirements of multimedia
data. In addition, MOD servers should support strict timing requirements: each user can choose
a program he wishes to view and the time he wishes to view it. The service should be provided
within a small latency and guaranteeing an almost constant transfer rate of the data.

In a MOD system a large database of M video program files is kept on a centralized server.
Each program file is associated with popularity parameter, given by pi ∈ [0, 1], where

∑M
i=1 pi = 1.
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The files are stored on N shared disks. Each of the disks is characterized by (i) its storage capacity,
that is the number of files that can reside on it, and (ii) its load capacity, given by the number
of data streams that can be read simultaneously from that disk. Assuming that {p1, . . . , pM} are
known, we can predict the expected load generated by each of the programs at any time.

We wish to define a static allocation of storage and load to each file, so that the load generated
due to access requests to the file can be satisfied. Our allocation should enable simultaneous
transmissions of as many video programs as possible. Indeed, it should reflect the popularities of
the programs, by allowing many transmissions of popular programs, and only few transmissions to
the less popular ones. In other words, we would like to achieve fair allocation of the storage and
load capacity. Another objective is to maximize the utilization of the load capacity of the system.

The problem of assigning files to disks, so as to maximize utilization (fairness), can be formulated
as an instance of the CMKP (FPP): a disk j with load capacity Lj and storage capacity Cj , will be
represented by a knapsack Kj with volume Lj and Cj compartments. A file i will be represented
by a set Ui with size |Ui|, which is proportional to the file popularity. Specifically, |U | =

∑N
j=1 Lj

and |Ui| = pi|U |1. A solution to any of our two variants of the knapsack problems will induce a
legal static assignment.

1.3 Related Work

Previous work on the MKP and other knapsack related problems assume that (i) all items of the
same type have to be placed in the same knapsack, and (ii) there is no limit on the number of
different types of items that can be placed in one knapsack (see, e.g., [3, 9, 17, 23] and detailed
surveys in [21, 22]).

The special case of the MKP where N = 1, known as the classic 0-1 Knapsack problem, admits
a fully polynomial approximation scheme (FPAS). That is, for any ε > 0, a (1−ε)-approximation to
the optimal solution can be found in O(n/ε2), where n is the number of items [8, 9]. In contrast, the
MKP is NP-Hard in the strong sense, therefore it is unlikely to have a FPAS, unless P = NP [22].

The CMKP is closely related to the fractional knapsack problem: this problem can be optimally
solved in polynomial time (by a simple Greedy algorithm [5]). Indeed, the sets U1, . . . , UM can be
replaced by M items of the sizes |U1|, . . . , |UM |, where each item can split among several knapsacks.
In our generalized version of the fractional knapsack, each knapsack has a limited capacity and a
limit also on the number of items it can hold. We show below, that this problem is NP-Hard.

Other related work deal with multiprocessor scheduling [12, 10, 13], also known as the minimum
makespan problem: given n processors and m jobs with designated integral processing times, the
goal is to schedule the jobs on the processors, such that the overall completion time of the schedule
is minimized. We can represent a knapsack by a processor, and each set of items of size k − by a
job requiring k units of processing time. Hence, there are n = N processors and m = M jobs. The
compartment constraint can be represented in the scheduling problem by allowing at most Cj jobs
to be scheduled on processor j, ∀ 1 ≤ j ≤ N . Note, that minimizing the makespan is equivalent to
maximizing the utilization of the knapsack volumes. Previous research on the scheduling problem

1For simplicity, we assume that pi|U | is an integer (otherwise we can use a standard rounding technique [16]).
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assumes no bound on the number of jobs which can be allocated to each processor, i.e., Ci = M
∀1 ≤ i ≤ M (A survey appears in [14]). In this case the makespan problem admits a polynomial
time approximation scheme ([13]).

Multimedia-on-demand systems were studied intensively in the recent years. However, the
assignment problem received only little attention in this context. Specifically, most of the previous
work discuss the problem of load balancing on the disks, in which the goal is to have the total
load on the system distributed evenly among the N disks. The first solution proposed for the load
balancing problem was disk striping (see, e.g., [2, 4]), in which the data of each file is distributed
over multiple disks. Thus, the heavy load caused by a popular program is shared among these
disks.

In [24] dynamic algorithms were suggested for balancing the load in the system. The paper
also addresses the problem of determining the number of copies of each file, that should be kept
in the system; the goal is to have the total storage capacity allocated to fi reflect its popularity.
This criterion can yield poor results when used for solving our optimization problems: intuitively,
the algorithm will allocate to a popular file multiple copies, however, these copies may be stored
on disks, whose load capacities are small. Consequently, these disks will be overloaded and the
system will often reject requests for that file. This is due to the fact, that the placement of files on
the disks uses as parameters only the file popularities and storage capacities of the disks, while the
load capacities are ignored (A detailed example is given in Section 2.3.2).

1.4 Our Results

We now summarize the results presented in this paper.

• The CMKP and the FPP are NP-Hard.

• For some instances a perfect placement always exists and can be found in polynomial time.
Three simple conditions for the existence of a perfect placement are given. For each condition,
we show how the CMKP and the FPP can be optimally solved, when this condition is satisfied.

• When the conditions are not met, we derive approximate solutions for our two knapsack prob-
lems. The approximation ratio depends on the “uniformity” of the knapsacks. Specifically,
given r > 0 and α ≥ 1 such that ∀j, r ≤ Vj

Cj
≤ α · r, we give an algorithm, which achieves

1
α -approximation for both the CMKP and the FPP.

• We show, that if the number of compartments in each knapsack is at least b, for some b ≥ 1,
i.e., Cj ≥ b, ∀ 1 ≤ j ≤ N , then the CMKP can be approximated to within a factor b/(b+1).

The rest of the paper is organized as follows. The hardness results are given in Section 2.4.
In Section 3 we discuss several cases in which a perfect placement exists and can be found in
polynomial time. A nearly optimal solution for the CMKP is given in Section 4. In Section 5 we
describe how our theoretical results can be applied to storage management in MOD systems, and
in particular to heterogeneous disk sub-systems. In Section 6 we give possible directions for future
work.
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2 Preliminaries

Given N knapsacks with the volumes V1, . . . , VN , the packing potential of the knapsacks, denoted
by V , is the total number of items that can be placed in the knapsacks, i.e., V =

∑N
j=1 Vj . For a

universe U of unit size items, partitioned to the sets U1, . . . , UM , a solution to the CMKP or the
FPP can be represented as two M ×N matrices:

1. The indicator matrix, I, a {0, 1}-matrix, Ii,j = 1 iff a compartment of Kj was allocated to
items of type Ui.

2. The quantity matrix Q, Qi,j ∈ {0, 1, . . . , Vj}, Qi,j is the number of items of Ui that are placed
in Kj .

A legal placement has to satisfy the following conditions:

• Ii,j = 0⇒ Qi,j = 0. This condition reflects the fact that items of Ui can be placed in Kj only
if a compartment of Kj was allocated to items of type i.

• For each knapsack Kj ,
∑

iQi,j ≤ Vj , that is, the total number of items placed in Kj does not
exceed its capacity.

• For each knapsack Kj ,
∑

i Ii,j ≤ Cj , that is, the number of different types of items placed in
Kj does not exceed the number of compartments in Kj .

The matrices I and Q determine a subset of items U ′ = U ′
1 ∪ . . .∪U ′

M , which is placed into the
knapsacks.

Definition 2.1 Given a solution for the CMKP (FPP), the packed quantity of Ui, denoted by Qi,
is the total number of items packed from Ui. Thus, Qi = |U ′

i| =
∑N

j=1Qi,j.

2.1 Utilization of a Placement

Our first measure for the quality of a placement is utilization:

Definition 2.2 The utilization of a placement is
∑M

i=1Qi.

The maximal possible utilization of a placement is V , meaning that all the packing potential of
the knapsacks is exploited. Since

∑M
i=1 |Ui| = V , it also means that exactly |Ui| items from the set

Ui are packed. Other placements may utilize only part of the overall packing potential:

Definition 2.3 A placement is c-utilized if its utilization equals to c · V , for some c ∈ [0, 1].
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Our main questions here are: “Can the maximal possible utilization be found in polynomial time?”,
“Can we find an efficient approximation?”

The CMKP aims at maximizing the utilization of the packing potential: in Section 4 we present
a dual approximation algorithm for the CMKP. The notion of dual approximation was introduced
in [15]. It involves approximating the feasibility of a solution for a given problem, rather than its
optimality; traditional approximation algorithms seek feasible solutions that are suboptimal, where
the performance of the algorithm is measured by the degree of suboptimality allowed.

In a dual approximation algorithm the objective is to find an infeasible solution that is super-
optimal; the performance of the algorithm is measured by the degree of infeasibility allowed. The
general relationship between traditional (or primal) approximation algorithms and dual approxi-
mation algorithm is discussed in [14] (Chapter 9). The dual approximation algorithm we present
in Section 4 is superoptimal for the CMKP. Our algorithm allows a small degree of infeasibility,
that is, at most one compartment is added to each of the knapsacks.

2.2 The Fair Placement Problem

Our second criterion for measuring the quality of a placement is fairness:

Definition 2.4 A placement is c-fair, for some c ∈ [0, 1], if for every set Ui, Qi ≥ c · |Ui|.

An optimal placement is 1-fair. In a 1-fair placement, for each i, exactly |Ui| items from the
set Ui are packed. Since

∑M
i=1 |Ui| = V , it also means that the packing potential of the knapsacks

is fully exploited.

Several questions arise when looking for a fair-placement: “Does a 1-fair placement exist for
any instance of the problem?” “Can we find it efficiently?” “When a 1-fair placement does not
exist, can we find (or approximate) an optimal placement efficiently?”

2.3 Combining Utilization and Fairness

2.3.1 The Perfect Placement Problem

We first explore the relation between the CMKP and the FPP.

Definition 2.5 A perfect placement is a placement in which all the items of all the sets are packed,
and all the knapsacks are full.

Clearly, any perfect placement is 1-fair and 1-utilized.

We now show that for some instances a perfect placement does not exist. Consider a simple
system consisting of two knapsacks, with C1 = C2 = 1 and V1 = V2 = 10, and two sets of items:
|U1| = 15 and |U2| = 5. The only legal placements are:
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1. Each set is packed into a different knapsack. 10 items of U1 and 5 items of U2 are packed.

2. Both compartments are allocated to U1, or both compartments are allocated to U2. Clearly,
these placements are 0-fair.

Note, that by increasing C1 to 2 we obtain an instance, for which a perfect placement exists: now
we can place items of U1 into both knapsacks and choose Q1,1 = Q2,1 = 5 and Q1,2 = 10.

When a perfect placement does not exist, we would like to find the best possible one. However,
the two goals of utilization and fairness may conflict. Consider an instance with two knapsacks:
V1 = 20, C1 = 2; V2 = 10, C2 = 1; and three sets of items: |U1| = 14, |U2| = 14, |U3| = 2.

A placement which achieves the maximal utilization is presented in Figure 1(a): 28 items are
packed, i.e., this placement is 28

30 -utilized. However, it is 0-fair - no element of U3 is packed.
Figure 1(b) presents the best possible placement with respect to fairness. It is 10

14 -fair and 26
30 -

utilized. Generally, any c-fair placement is at least c-utilized.

U1

U3

U2

U2

U1

U2

��
��
��

��
��
��

��
��
��

��
��
�����

���
���

���
���
���

���
���
���

���
���
������

���
���

���
���
���

���
���
���

���
���
��� ��

��
��

��
��
��

��
��
��

��
��
�� ���

���
���

���
���
���

���
���
���

���
���
���

��
��
��
��

��
��
��

��
��
����

��
��
��

��
��
��

��
��
�����

���
���
���

���
���
���

���
���
��� ��

��
��
��

��
��
��

��
��
�� ��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
����
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
����

��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��

��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����
��
��
��

��
��
����
��
��
��

��
��
��
��

(a)

(b)

0-fair.
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Allocation
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Figure 1: Maximal Utilization vs. Maximal Fairness
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2.3.2 Simple Algorithms

In this section we show that two simple greedy algorithms are not suitable for the CMKP and the
FPP. The first algorithm (presented in [24], in the context of MOD systems) can be used for the
FPP: the algorithm attempts to guarantee “fairness”, by allocating to each set of items a number of
compartment, that is proportional to its size. Specifically, using an apportionment procedure, the
algorithm first determines the number of compartments, Ii, that will be allocated to Ui, 1 ≤ i ≤M ;
then it selects a subset of Ii knapsacks that will store items from Ui. Finally, the volumes of the
knapsacks are split among the sets, so as to achieve maximal fairness.

To realize that this algorithm is not suitable for any of our knapsack problems, consider an
instance which consists of 3 sets, |U1| = 6, |U2| = |U3| = 3, and 8 knapsacks, with Cj = 1 for
1 ≤ j ≤ 8. The volume of the first knapsack is V1 = 5, and the volumes of the remaining knapsacks
are V2 = V3 = . . . = V8 = 1; thus the packing potential of the knapsacks is V = 12. The total
number of compartments is 8, therefore, by the ‘number of compartments’ criterion, since half of
the items belong to U1, 4 compartments should be allocated to this set, while U2 and U3 should be
placed into two knapsacks each. Clearly, no fair placement exists under these conditions: the set
whose items are stored in the first knapsack is allocated extra volume, while the two other sets are
“discriminated”.

In the FPP our goal is to find placements in which Qi, the packed quantity of Ui, reflects its
size. Note, that in the above example, if the number of compartments allocated to each set of items
is not determined prior to the placement, a perfect placement exists: for example, we can place the
items of U1 into K1 and K2, items of U2 into K3,K4 and K5; and items of U3 into K6,K7 and K8.
Indeed, items of U1 are placed into only two knapsacks, but since one of these knapsacks is large
(K1), all the items of U1 can be packed.

The second algorithm is based on the Longest Remaining Time First (LRTF) algorithm [12].
LRTF provides a (43 −

1
n)- approximation for the makespan problem, where n is the number of

machines. When LRTF is adopted to the FPP, we place items from the largest remaining set into
the knapsack with the largest remaining volume.

Note, that this algorithm can yield poor, non-fair placements. Consider an instance with two
knapsacks: V1 = L+ 1, C1 = L and V2 = L,C2 = 1, for some L > 1; suppose that there are L+ 1
sets, |U1| = L + 1, and in the L remaining sets |Ui| = 1. The optimal placement packs the L
items of the small sets into K1 and L items of U1 into K2. This is an L

L+1 -fair and 2L
2L+1 -utilized

placement. The LRTF algorithm chooses first Q1,1 = L + 1 and one more item from another set
is placed in K2. Then no available compartments are left in K2. The resulting placement is 0-fair
and L+2

2L+1 -utilized.

Alternatively, consider a variant of the LRTF, which sorts the knapsacks by the ratio
Vj

Cj
. Then,

items from the largest remaining set are placed into the knapsack in which the (updated) ratio
Vj

Cj

is maximal. Note, that this algorithm also yields inefficient solutions for the FPP. Consider, e.g.,
two knapsacks with V1 = 7, C1 = 1 and V2 = 12, C2 = 2; and three sets with |U1| = 10, |U2| = 7,
and |U3| = 2. In the optimal placement U2 is placed in K1, while U1 and U3 are placed in K2. The
above algorithm initially packs 7 items of U1 into K1, and cannot complete the packing of all the
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items. In particular, it is 0-fair for U3. Using a slightly different rule, which places items from the
set with the largest remaining ‘unpacked fraction’, into the knapsack with the largest (updated)

Vj

Cj

ratio, may increase fairness, with a corresponding decrease in utilization. Still, a more complicated
algorithm, which combines sorting by the ratios Vj/Cj with other ideas, can be useful in obtaining
approximation algorithms for the CMKP (We elaborate on that in Section 4).

2.4 Hardness of the Perfect Placement Problem

The next question we consider is whether we can detect efficiently if a perfect placement exists.

Theorem 2.1 Given N knapsacks with the volumes V1, . . . , VN , and Cj compartments in knapsack
j, and the sets of items U1, . . . , UM , it is NP-Hard to determine if a perfect placement exists for
this instance.

Proof: We show a reduction from the partition problem, which is known to be NP-Hard [8].
The partition problem consists of a finite set A, and size s(a) for each a ∈ A. The problem is to
determine if there exists a subset A′ of A such that

∑
i∈A′ s(i) =

∑
i∈A\A′ s(i).

Given an instance for partition, consider the placement problem consisting of two sets |U1| =
|U2|, and |A| knapsacks with Cj = 1 and Vj = s(aj), ∀1 ≤ j ≤ |A|. For this problem, every perfect
placement induces a desired partition and vice-versa.

Any perfect placement is both 1-fair and 1-utilized. Therefore, the above reduction is suitable
for the CMKP and the FPP; we conclude that each of these problems is NP-Hard.

3 Finding a Perfect Placement

3.1 Simple Conditions for the Existence of a Perfect Placement

In this section we present simple conditions for the existence of a perfect placement. The first one
considers inputs in which the ‘number of compartments’ constraint can be ignored. Clearly, if for
all the knapsacks Cj ≥ Vj , then a perfect placement exists, and can be found in polynomial time.
(Observe, that if Cj ≥ Vj for all 1 ≤ j ≤ N , then we can greedily place the sets into the knapsacks,
until all the items are packed).

The next simple condition considers the sizes of the different sets.

Theorem 3.1 Let 0 < ε ≤ 1 be the maximal number, such that for all 1 ≤ i ≤ M , |Ui| ≥ ε·|U |
M . If

for all the knapsacks Cj ≥ Vj ·M
ε·V +1, there exists a perfect placement which uses at most M +N − 1

different compartments.

Proof: Consider the simple greedy algorithm, which packs the sets of items by filling the
knapsacks one after the other. Specifically, the knapsack Kj , is filled until it contains Vj items,
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we then continue to pack into Kj+1, and so on. Since
∑

i |Ui| = |U | = V =
∑

j Vj , the algorithm
terminates when the last knapsack, KN is filled with the last item of UM . Thus, all the packing
potential of the knapsacks is exploited and all the items are packed. Intuitively, the conditions
indicate that even the smallest sets are large enough to fill any knapsack. Formally, |Ui| ≥ ε·|U |

M
implies that any subset of Cj − 1 sets includes at least (Cj − 1)|U | · ε

M = (Cj − 1)V · ε
M items.

Since, Cj ≥ Vj ·M
ε·V + 1, the subset’s total size is at least Vj . The additional compartment is needed

for small number of items of the first set placed in Kj - for this set, the size is not predicted, since
some of its items were already placed in previous knapsacks.

If all the items of one set are placed in one knapsack, we use only one compartment for this set.
If it is placed in k different knapsacks, we use k compartments for this set. Since the algorithm
makes at most N−1 splits, the total number of compartments used by this algorithm is M+N−1.

3.2 Uniform Capacity Ratio

In this section we present an alternative condition for the existence of perfect placement. We require
that the volume and the number of compartments in a knapsack will be correlated - knapsacks with
high volume should have many compartments and vice-versa.

Definition 3.1 For any 1 ≤ j ≤ N , the capacity ratio of Kj is
Vj

Cj
. The set of knapsacks

K1, . . . ,KN has a uniform capacity ratio, if there exists a constant r > 0, such that
Vj

Cj
= r,

∀ 1 ≤ j ≤ N .

Intuitively, the capacity ratio of a knapsack Kj gives the average number of items contained in
each compartment, when the volume of Kj is totally utilized. We show that, for a set of knapsacks
with uniform capacity ratio, if

∑N
j=1Cj ≥M +N − 1, then a perfect placement exists and can be

found efficiently. This holds for any distribution on the sizes of the sets U1, . . . UM .

Theorem 3.2 If the capacity ratio is uniform and
∑N

j=1Cj ≥M+N−1, then a perfect placement
exists and can be found in O(M ·N +max(N lgN,M lgM)) steps.

Proof: We present a polynomial time algorithm which terminates with a perfect placement.
The algorithm, denoted by Au, proceeds by placing exactly Vj items of at most Cj different sets
into each of the knapsacks. We assume that the sets are given in a non-decreasing order of their
sizes, i.e., |U1| ≤ |U2| ≤, . . . ,≤ |UM |.

In each step we keep the remainders of the sets in a sorted list, denoted by R. The list,
R[1], . . . , R[m], 1 ≤ m ≤M , is updated during the algorithm, that is, we remove from R sets that
were fully packed, and we move to their updated place sets that were only partially packed. R
is the volume request list, that is, each entry of R represents the request for volume, which is the
number of unpacked items, of some set Ui. The knapsacks are given in a non-decreasing order of
the number of compartments they have, i.e., C1 ≤ C2 ≤, . . . ,≤ CN .
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Greedy-Filling(j)
i← 1
repeat

Allocate one compartment of Kj for items of the set Uk corresponding to R[i].
Place items of Uk in Kj : Qk,j = min{R[i], Vj}
Vj ← Vj −Qk,j

i← i+ 1
until Vj = 0
Remove from R the sets that were fully packed into Kj .
Update the size of the new smallest set that was only partially packed into Kj .
Remove Kj from the knapsack list.

Figure 2: The Greedy-Filling Procedure

The main idea in the algorithm is to keep the average size of the requests in R large enough.
Specifically, for each 1 ≤ k ≤ N , we will show that when the knapsack Kk is filled, either the
average request size is at least r, or a trivial greedy algorithm can be applied to pack the remaining
requests in the remaining knapsacks.

The algorithm uses two knapsack-filling procedures: some of the knapsacks are filled using the
greedy-filling procedure; the other knapsacks will be filled, using the moving-window procedure. We
now describe the two procedures.

Greedy-Filling:
The greedy-filling procedure fills a knapsack with items, starting from the smallest set, R[1], and
continuing until the knapsack is saturated, that is, until it contains exactly Vj items. The last
set may split, that is, only part of its items will be packed into Kj . A formal description of the
greedy-filling procedure is given in Figure 2.

Moving-Window:
The moving-window procedure fills a knapsack, Kj , with the first sequence of Cj sets whose total
size is at least Vj . We search the list R using a moving window of size Cj . Initially, the window
covers the set of the smallest Cj sets. In every iteration we replace the smallest set in the window
by the next set in R, until the number of items that are contained in the window is large enough to
saturate Kj . If the subset of the Cj largest sets includes less than Vj items, then we cannot saturate
Kj . However, we show below that this never happens. A formal description of the moving-window
procedure is given in Figure 3. Note, that the window advances until it covers Cj sets, such that
Vj > R[i − 1] + . . . + R[i + Cj − 2] and Vj ≤ R[i] + . . . + R[i + Cj − 1] (see Figure 4). At this
stage we can clearly place in Kj all the items in the sets R[i], . . . , R[i + Cj − 2], and saturate Kj

by adding some of the items in the set R[i+ Cj − 1].

The Algorithm Au: The algorithm proceeds in iterations, in the jth iteration we fill Kj by the
following rules:

1. If there are less than Cj sets, or if the subset of the Cj smallest sets contains more than Vj

11



Moving-Window(j)
i← 1
a = R[1] + . . .+R[Cj ].
while (a < Vj and |R| ≥ Cj + i)

a← a−R[i] +R[Cj + i]
i← i+ 1

Fill Kj :
Allocate compartments of Kj to all the sets corresponding to the requests

R[i], . . . , R[i+ Cj − 1].
For each k, i ≤ k ≤ i+ Cj − 2

Place in Kj R[k] elements of the corresponding set.
Qk′,j = Vj − (R[i] + . . .+R[i+ Cj − 2]) .
Place in Kj Qk′,j elements of the set Uk′ corresponding to R[i+ Cj − 1].

Update the list R:
Remove from R the sets R[i], . . . , R[i+ Cj − 2].
If the set Uk′ corresponding to R[i+ Cj − 1] is not completely packed,

Move R[i+ Cj − 1] to its appropriate new place in the sorted list R.
Remove Kj from the knapsack list.

Figure 3: The Moving-Window Procedure

items, then fill Kj using the greedy procedure.

2. If the subset of the Cj smallest sets contains at most Vj items, then fill Kj using the moving-
window procedure.

We now show that the algorithm terminates with a perfect placement. We distinguish between
two stages in the execution of Au:

1. In the first stage, each knapsack Kj that is filled contains Cj − 1 or Cj sets of items. This
stage includes executions of the moving-window procedure and some executions of the greedy
procedure.

R :

Vj ≤

. . . . . . . . .

Vj >

i− 1 i i+ Cj − 2 i+ Cj − 1

Figure 4: The List R
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2. The second stage starts when, for the first time, the number of sets placed in Kj , for some
1 ≤ j ≤ N , is smaller than Cj . This can clearly happen only when the greedy procedure is
used.

Note, that for some inputs, one of the stages may not occur. For each of the two stages, we
show that any knapsack Kj that is filled during this stage will contain exactly Vj items of at most
Cj different sets.

We use the following notation:

• Ck - the total number of compartments that are available after k knapsacks were filled.

• Mk - the number of sets that are not fully packed after k knapsacks were filled.

• Nk - the number of empty knapsacks after k knapsacks were filled. (Nk = N − k).

• r - the capacity ratio, that is, ∀j, Vj

Cj
= r.

We now consider the first stage.

Lemma 3.3 Each of the knapsacks that are filled during the first stage of Au will contain exactly
Vj items, that belong to at most Cj different sets.

Proof: We show the following invariant for the ratio between the number of remaining sets,
knapsacks, and compartments, during the first stage. Let Kb be the first knapsack filled in the
second stage: b can be any number between 1 and N .

Claim 3.4 For every 0 ≤ k < b, Ck ≥Mk +Nk − 1.

Proof: The proof is by induction on k, the number of knapsacks that were already filled.
Base: k = 0. It is given that

∑N
j=1Cj ≥M +N −1. Thus, using our notation, C0 ≥M0+N0−1.

Induction Step: Consider the kth iteration, in which Kk is filled.

1. After this iteration Kk is no longer available, therefore, Ck = Ck−1 − Ck.

2. By the definition of the first stage, we fully pack in this iteration Ck−1 or Ck sets. Therefore,
Mk = Mk−1 − (Ck − 1) or Mk = Mk−1 − Ck. Hence, Mk ≤ Mk−1 − (Ck − 1), that is,
Mk−1 ≥Mk + Ck − 1

3. Clearly, Nk = Nk−1 − 1.

By the induction hypothesis, Ck−1 ≥Mk−1 +Nk−1 − 1, therefore

Ck = Ck−1 − Ck

≥ Mk−1 +Nk−1 − 1− Ck

≥ Mk + Ck − 1 +Nk + 1− 1− Ck

= Mk +Nk − 1
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Claim 3.5 For every 1 ≤ k < b, the average set size when we fill Kk is at least r.

Proof: Using Claim 3.4, after k − 1 knapsacks were filled, the average set size is:

number of remaining items
number of remaining sets ≥ remaining packing potential

number of remaining sets

=
r · Ck−1

Mk−1
≥ r · (Mk−1 +Nk−1 − 1)

Mk−1
≥ r

Recall, that at the beginning
∑M

i=1 |Ui| =
∑N

j=1 Vj . Therefore, at any stage, the number of non-

packed items is at least the remaining packing potential. Also, Nk−1 ≥ 1 since at least Kk is still
empty after k − 1 knapsacks are filled.

We conclude, that for every k < b, the largest Ck sets after (k − 1) iterations contain at least
r · Ck items, which is equal to Vk. This means, that if the moving window procedure is applied,
the window never reaches the end of R (the largest sets) without saturating Kk. Knapsacks that
are filled by the greedy procedure are clearly saturated, since the greedy procedure is applied when
even the smallest Ck sets are large enough to saturate Kk.

We now analyze the second stage of the algorithm. Note, that we reach the second stage since
the smallest Cb − 1 sets contain together more than Vb items.

Lemma 3.6 Each of the knapsacks that are filled during the second stage of Au will contain exactly
Vj items, that belong to at most Cj different sets.

Proof: Let Rb be the set list at the end of the first stage. We first show that for every j ≥ b,
Kj can be saturated by any subset of Cj − 1 sets from Rb.

Claim 3.7 At the beginning of the second stage, for every j ≥ b, any subset of Cj−1 sets contains
more than Vj items.

Proof: By definition, Kb is the first knapsack filled in the second stage. Therefore, less than
Cb − 1 sets are packed into Kb. This can happen only if the subset of the Cb − 1 smallest sets
contains more than Vb = r ·Cb items. Therefore, the average size of the smallest Cb−1 sets is larger
than r·Cb

Cb−1 . Consider a knapsack Kj , j > b. The knapsacks are sorted such that Cj ≥ Cb, and the
sets are sorted in a non-decreasing order of their sizes, therefore, the average size of the smallest
Cj − 1 sets is larger than r·Cb

Cb−1 . In addition, since Cj ≥ Cb,

r · Cb

Cb − 1
≥ r · Cj

Cj − 1

This means that the total number of items in the smallest Cj − 1 sets is larger than

(Cj − 1) · r · Cj

Cj − 1
= r · Cj = Vj

14



Clearly, if the smallest Cj − 1 sets in Rb contain more than Vj items, then any Cj − 1 sets in Rb

contain more than Vj items.

We now use Claim 3.7 to show, that any knapsack filled after Kb contains at most Cj − 1
different sets, and is saturated by additional items packed from one set of Rb.

By the greedy-filling procedure, Kb is filled until Vb items are packed. The last set packed into
Kb may include some more unpacked items. The fraction left from the split set is now the smallest
set in Rb (since even before the split it was part of the smallest available set). In other words,
the fraction is R[1]. We now turn to fill Kb+1. Consider the smallest Cb+1 sets. These sets are
composed of R[1] and additional Cb+1 − 1 sets. By Claim 3.7 the additional Cb+1 − 1 sets include
more than Vb+1 items, therefore (no matter what the size of the fraction R[1]), the smallest Cb+1

sets include together more than Vb+1 items, and the greedy-filling procedure is used: Vb+1 items
of at most Cb+1 sets are placed in Kb+1. Again, the last set may be only partially packed. The
same argument holds until we reach a knapsack Kl, such that less than Cl sets are left. Since∑M

i=1 |Ui| =
∑N

j=1 Vj at the beginning, and since all the knapsacks before Kl were saturated, the
total number of non-packed items equals to the total left volume. Hence, we can fill Kl using the
greedy procedure. This argument holds for all the remaining knapsacks, until KN is saturated and
no sets are left.

Combining Lemmas 3.3 and 3.6 we conclude that each of the knapsacks Kj , 1 ≤ j ≤ N is filled
by exactly Vj items of at most Cj different sets. Thus, the algorithm terminates with a perfect
placement.

The algorithm is polynomial: each of the filling procedures takes O(M) steps. Adding the
preprocessing complexity of sorting the lists, the total complexity of the algorithm is O(N ·M +
N logN +M logM).

3.3 Approximating a Perfect Placement

When the knapsacks do not have uniform capacity ratio, the degree of non-uniformity is measured
by the minimal α such that for some r > 0,

∀j, r ≤ Vj

Cj
≤ α · r. (1)

(When α = 1 we have uniform capacity ratio, in any other case α > 1). In this section we show
how a perfect placement can be approximated. The approximation ratio is proportional to α.

Theorem 3.8 Let α ≥ 1 be the minimal number satisfying (1). If C ≥ M + N − 1 then a 1/α-
utilized placement can be found in polynomial time.

Proof: Consider the following instance, I ′, of the placement problem: for each knapsack Kj ,
1 ≤ j ≤ N , the volume of Kj in I ′ is V ′

j = ⌈r · Cj⌉. Let V ′ =
∑N

j=1 V
′
j . For each set, Ui, the set

size of Ui in I ′, denoted by |U ′
i | is determined by solving the following MAX-MIN problem:

Maximize min
|U ′

i |
|Ui|

, such that
M∑
i=1

|U ′
i | = V ′, |U ′

i | integer. (2)

15



First, note that any legal placement of I ′ induces a legal placement for the original instance.
This follows from the next claim:

Claim 3.9 For each 1 ≤ j ≤ N , V ′
j ≤ Vj.

Proof: For each 1 ≤ j ≤ N , Vj is an integer. Therefore, for the knapsack achieving the minimal

capacity ratio Vj = r · Cj = ⌈r · Cj⌉ = V ′
j . For each knapsack Kj such that

Vj

Cj
> r, there exists

some ε > 0 such that Vj = (r + ε) · Cj = ⌈(r + ε) · Cj⌉ ≥ ⌈r · Cj⌉ = V ′
j .

Next, we show that a perfect placement exists, and can be found efficiently for I ′. Note, that
the knapsacks in I ′ do not necessarily have uniform capacity ratio, however, the non-uniformity is
small enough to show that the algorithm Au presented in Section 3.2 is suitable for I ′. We follow
the proof of Theorem 3.2 to show that Au fills each knapsack with exactly V ′

j items of at most
Cj sets. It is easy to verify that the two claims 3.4 and 3.5 hold for I ′. Let Kk be a knapsack
filled during the first stage of Au. By Claim 3.5, the average set size when we fill Kk is at least r.
Indeed, V ′

j may be larger than r ·Cj , however, since the number of items included in the window is
an integer and since V ′

j = ⌈r · Cj⌉ is the smallest integer not smaller than r · Cj , we conclude that
whenever the moving window procedure is applied, the window does not reach the end of R without
saturating Kk. Similarly, for the second stage of Au, Claim 3.7 holds for I ′ and we conclude that
all the knapsacks are saturated. By claim 3.9, a legal placement in I ′ is a legal placement for the
original instance. Since V ′ ≥ 1

αV , a perfect placement in I ′ induces a placement, that is 1
α -utilized

for the original instance I.

Remark 3.1 For solving the CMKP, any choice of set sizes that satisfies ∀i, |U ′
i | ≤ |Ui| and∑M

i=1 |U ′
i | = V ′ can be applied here. The solution of (2) also solves efficiently the FPP: for each set

Ui, |U ′
i | ≥ 1

α |Ui| − 1.

In order to achieve a good approximation we would like to have α as close as possible to 1.
In Section 5 we show, that if compartments can be moved among the knapsacks, then α = Ck

Ck−1 ,
where Kk is the knapsack having the maximal capacity ratio. This model is relevant to MOD
storage sub-systems, in which storage resources can be moved among the disks.

4 Approximation Algorithm for the CMKP

In this section we present a dual approximation algorithm for the CMKP. Specifically, we show that
it is sufficient to add one compartment to each knapsack, in order to eliminate the gap between the
performance of an optimal, probably exponential time algorithm, and a polynomial time algorithm.
Recall, that a dual approximation algorithm finds an infeasible solution that is superoptimal. Its
performance is measured by the degree of infeasibility allowed. The proposed algorithm is allowed
to place items of Cj + 1 (instead of Cj) different sets into Kj , 1 ≤ j ≤ N .

Theorem 4.1 Given an instance I of the CMKP, by adding a single compartment to each knap-
sack, we can find in polynomial time a placement, whose utilization is at least the maximal possible
utilization for I.
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Proof: Let I be an instance of the CMKP. Denote by I+ the instance generated from I by
adding one compartment to each knapsack. We present a polynomial time algorithm which finds a
legal placement in I+. The algorithm, denoted by Ar, proceeds by filling Kj with at most Vj items
of at most Cj + 1 different sets, ∀1 ≤ j ≤ N . The total number of items packed from I+ by Ar is
at least the total number of items packed from I by an optimal algorithm.

As in the uniform-ratio case (Section 3.2), we assume that the sets of items are given in non-
decreasing order of their sizes, i.e. the sets satisfy |U1| ≤ |U2| ≤, . . . ,≤ |UM |. We keep the remaining
sets in a sorted list, denoted by R, which is updated during the algorithm. This algorithm also
uses the two knapsack-filling procedures: greedy-filling and moving-window introduced in Section
3.2. However, the moving-window procedure is slightly changed: now, the window covers Cj + 1
sets (instead of Cj). Also, if the subset of the Cj + 1 largest sets includes less than Vj items,
then we cannot saturate Kj , and we do the best we can: we fill Kj with these Cj + 1 sets (in the
uniform-ratio case this never happens).

The knapsacks are given in a non-increasing order by their capacity ratio, i.e., V1
C1
≥ V2

C2
≥, . . . ,≥

VN
CN

. The sorted knapsacks are kept in a list denoted by L′. Another list of knapsacks, denoted by
L′′, may be created during the execution of the algorithm.

The Algorithm Ar: Generally, the algorithm uses the moving-window procedure to fill the knap-
sacks according to their order in L′, that is, in the jth iteration we fill Kj and remove it from
L′.

Note, that the moving-window procedure places in Kj items of exactly Cj +1 sets. Sometimes,
it is not possible to pack from that amount of sets (see below): in such cases we move Kj to L′′

or look for another knapsack, for which the moving-window procedure can be applied. Knapsacks
that are moved from L′ to L′′ are filled using the greedy procedure, after L′ is empty.

The following rules are used when Ar examines Kj ∈ L′.

• If Kj = ∅, i.e. L′ is empty, fill sequentially all the knapsacks in L′′, using the greedy-filling
procedure.

• If there are less than Cj + 1 sets in R, move Kj to the end of L′′.

• If the subset of the Cj smallest sets in R contains at most Vj items, fill Kj with items from
Cj + 1 different sets, using the moving-window procedure.

• If the subset of the Cj smallest sets in R contains more than Vj items, look for the first
knapsack Kk ∈ L′ for which the subset of the smallest Ck sets includes at most Vk items. If
such a knapsack exists, fillKk using the moving-window procedure; Kj will be examined again
in the next iteration. If there is no such knapsack in L′, fill sequentially all the knapsacks in
L′ and L′′ using the greedy-filling procedure.

Optimality: Denote by G = {Kg1 ,Kg2 , . . . ,Kgn} the set of knapsacks that are not saturated by
Ar, and by w1, w2, . . . , wn the resulting waste of volume in each non-saturated knapsack, i.e., the
volume of Kgi is not fully exploited and only Vgi −wi items are placed in Kgi . We show, that there
is no legal placement of I, in which the total utilization exceeds

∑N
j=1 Vj − (w1 + w2 + . . . + wn).

To prove this, we distinguish between four stages of Ar:
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1. Knapsacks from L′ are filled by their order in L′, using the moving-window procedure; some
of the knapsacks may be moved to L′′.

2. Knapsacks from L′ are filled using the moving-window procedure, but not necessarily accord-
ing to their order in L′; some of the knapsacks may be moved to L′′.

3. Knapsacks from L′ are filled, using the greedy-filling procedure (when no knapsack from L′

can be filled by the moving-window procedure).

4. Knapsacks from L′′ are filled using the greedy-filling procedure (when L′ is empty).

For the first two stages we show, that the total waste of volume for I+ is at most the total
waste of volume in an optimal placement of I. For the last two stages we show that there is no
waste, and all the knapsacks filled during these stages are saturated.

For simplicity, assume that whenever the moving-window-procedure is executed, the list R is
scanned from left to right, that is, the smallest set, R[1], is the leftmost set and the largest set
is the rightmost in R. During the execution of the moving-window procedure, the window moves
from left to right. There are two possible scenarios:

1. Saturating: in which Kj is saturated, meaning that there exists some i, which is the index
in R of the smallest set in the window, such that

(i) (i > 1 and Vj > R[i− 1] + . . .+R[i+ Cj − 1]) or (i = 1 and Vj > R[1] + . . .+R[Cj ]).

(ii) Vj ≤ R[i] + . . .+R[i+ Cj ].

At this stage, we can clearly place in Kj the Cj sets R[i], . . . , R[i+Cj − 1], and saturate Kj

by adding some of the items of R[i+ Cj ]. The sets R[i], . . . , R[i+ Cj − 1] are removed from
R, and the fraction left from the set R[i + Cj ] is moved to its updated place in the list R.
Note, that since some of the items of this set are packed, the position of that fraction in R is
left to its original position.

2. Non-saturating: in which the window reaches the rightmost position in R, but the subset
of the Cj +1 largest sets covered by the window contains less than Vj items. All items in the
sets R[i], . . . , R[i+ Cj ] are packed, and these sets are removed from R.

In both cases we can consider the removed sequence of sets as a hole in R. In a saturating
execution, Kj creates a hole of Cj sets in R, and one additional set (the fraction left from the last
set) is moved left to the hole. In a non-saturating execution, Kj creates a hole of Cj + 1 sets in R.

Let us examine the sequence of holes created in R during the first stage of the algorithm. We
first show that every non-saturated knapsack creates, at the right end of R, a hole which is the
union of all the holes in R.

Claim 4.2 Every Kgj ∈ G filled during the first stage of Ar unites the holes existing in R into a
single hole positioned at the right end of R.
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Proof: The proof is by induction on j, the index of Kgj in G.
Base: Kg1 is the first non-saturated knapsack in the execution of Ar. The knapsacks are sorted
in non-increasing order by their capacity-ratio. Therefore, for every k < g1 the average number
of items from each set packed into Kk is larger than the average number of items from each set
packed into Kg1 . In particular, the largest set in the hole created by Kk is larger than the smallest
set in the hole created by Kg1 . Thus, the hole created by Kg1 starts left to the hole created by Kk.
In addition, since Kg1 is not saturated, the hole it creates includes the largest Cg1 + 1 available
sets, and in particular the rightmost one. Therefore it unites all the holes that were created by
previously filled knapsacks into one hole.

Step: Let Kgj be the jth non-saturated knapsack filled during the first stage of the algorithm
Ar. By the induction hypothesis, Kgj−1 unites all the holes created by K1,K2, . . . ,Kgj−1 . In other
words, Kgj−1 divides R into two parts: the hole at the right and the remaining sets at the left. The
knapsacks are sorted in non-increasing order by their capacity-ratio. Therefore, as in the base case,
for every gj−1 < k < gj the average number of items in each set placed in Kk is larger than the
average number of items in each set packed into Kgj , thus, the hole created by Kgj starts left to
the hole created by Kk. Since it includes also the largest available set, it unites the holes created
by Kgj−1+1, . . . ,Kgj−1 and the hole at the right created by K1, . . . ,Kgj−1 into one hole.

The way the holes are created implies that Ar is optimal for the knapsacks filled during the
first stage:

Lemma 4.3 Let Kj be the last knapsack filled by Ar during the first stage, then the total number of
items placed in K1, . . . ,Kj is at least the number of items placed into K1, . . . ,Kj under an optimal
algorithm for the instance I.

Proof: Let Kgj be the last non-saturated knapsack filled during the first stage. The knapsacks
that are filled after Kgj are saturated. Thus, it is sufficient to prove that the lemma holds for
K1, . . . ,Kgj . By Claim 4.2, the hole created by Kgj unites all the holes created by K1, . . . ,Kgj .
For every k ≤ gj the hole created by Kk consists of Ck or Ck + 1 sets, therefore the combined hole
consists of at least the largest C1+C2+ . . .+Cgj sets. The total size of the hole is the total size of
undivided sets placed in K1, . . . ,Kgj , which is at most V1 + V2 + . . .+ Vgj − (w1 + w2 + . . .+ wj).
We conclude that the sum of the largest C1 + C2 + . . .+ Cgj sets is at most V1 + V2 + . . .+ Vgj −
(w1 +w2 + . . .+wj), meaning that no algorithm, and in particular an optimal one, can place more
than V1 + V2 + . . .+ Vgj − (w1 + w2 + . . .+ wj) items in K1, . . . ,Kgj .

Note, that fractions of sets that were created by K1, . . . ,Kgj−1 should not bother us: if a
fraction of a set is packed later, it means that the original size of that set is contained in the united
hole. If the fraction is not packed, then the total number of items packed by Ar is in fact larger
than V1 + V2 + . . .+ Vgj − (w1 + w2 + . . .+ wj), meaning that K1, . . . ,Kgj cannot be filled better
even by more than the largest C1 + C2 + . . .+ Cgj sets.

Recall, that during the first stage knapsacks can be moved from L′ to L′′. These knapsacks will
be filled during the fourth stage, and the first stage continues. The first stage continues until we
find a knapsack Kk, for which the subset of the Ck smallest sets contains more than Vk items.
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We now prove the optimality of the second stage. The proof is similar to the proof for the first
stage. We show that the holes created during the second stage are united whenever a knapsack is
not saturated; then we conclude that the placement is optimal.

We first prove that the holes created during the second stage always “spread to the left” in R.

Claim 4.4 Let Kk1 and Kk2 be two knapsacks that are filled in successive iterations during the
second stage, then the hole created by Kk2 starts left to the hole created by Kk1.

Proof: We consider separately two cases:

1. k1 < k2, meaning that the capacity ratio of Kk1 is higher than the capacity ratio of Kk2 . In
this case, as in the first stage, it is clear that the hole created by Kk2 starts left to the hole
created by Kk1 .

2. k1 > k2. By the algorithm, when we examined Kk2 the subset of the Ck2 smallest sets
contained more than Vk2 items, and the filling of Kk2 was delayed. Since we finally fill Kk2

during the second stage, new small sets are used. These small sets are fractions created by
knapsacks saturated after Kk2 was rejected. Since we examine Kk2 again after each iteration,
and it is finally filled right after Kk1 , it means that a fraction created by Kk1 is used. Recall,
that for i ≥ 1, any remainder of a set which returns to R at the end of iteration i, will be
positioned left to the hole created in R during this iteration. Thus, the hole created by Kk2

starts left to the hole created by Kk1 .

We now conclude that non-saturated knapsacks unite the holes in R.

Claim 4.5 Every Kgj ∈ G filled during the second stage of Ar unites the holes in R into a single
hole; this hole forms the right end of R.

Proof: The proof is by induction on j, the index of Kgj in G. We follow the steps of the proof
of Claim 4.2. Indeed, we cannot assume that the knapsacks are filled in a non-increasing order of
their capacity-ratio. However, by Claim 4.4, if Kgj is filled after Kk, then the hole it creates starts
left to the hole created by Kk, and since it includes also the rightmost available set, it unites all
the holes created by Kk, . . . ,Kgj , and the induction in the proof of Claim 4.2 can be applied.

As in the proof of optimality for the first stage, we conclude from the way the holes are created,
that the placement is optimal.

Corollary 4.6 Let Kj be the last knapsack filled by Ar during the second stage, then the total
number of items packed into K1, . . . ,Kj is at least the number of items packed into K1, . . . ,Kj

under an optimal algorithm for the original instance I.

For the first and second stages we have shown that the total volume wasted in knapsacks filled
during these stages does not exceed the waste of volume in these knapsacks under an optimal
placement for I. We complete the proof of optimality by showing that all the knapsacks which are
filled during the third and the fourth stages of Ar are saturated.
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Lemma 4.7 Each of the knapsacks that are filled during the third stage of Ar will contain exactly
Vj items, which belong to at most Cj + 1 different sets.

Proof: The third stage consists of successive executions of the greedy-filling procedure. Ar

reaches the third stage if, for every knapsack Kj ∈ L′, the subset of the Cj smallest sets contains
more than Vj items. Clearly, if the Cj smallest sets are too large, then any Cj sets are too large
for Kj . We show that the greedy algorithm never uses more than Cj + 1 sets to fill Kj :

Let Kc be the first knapsack filled in the third stage. Clearly, at most Cc sets are used. The last
set from which items are packed into Kc may split. The fraction that is left is now the smallest set
(since even before the split it was part of the smallest available set). In other words, the fraction is
R[1]. We now turn to fill Kc+1. Consider the subset of the Cc+1+1 smallest sets. It consists of R[1]
and additional Cc+1 sets. The subset of the additional Cc+1 sets includes more than Vc+1 items,
therefore, no matter what the size of the fraction R[1], the smallest Cc+1 + 1 sets include together
more than Vc+1 items, and we can pack into Kc+1 exactly Vc+1 items from at most Cc+1 + 1 sets.
Again, the last set may split. The same argument holds for all the knapsacks that remain in L′.
That is, every knapsack Kj will contain exactly Vj items, that belong to at most Cj + 1 sets.

Lemma 4.8 Each of the knapsacks filled during the fourth stage of Ar will contain exactly Vj items
that belong to at most Cj + 1 different sets.

Proof: In the fourth stage we fill the knapsacks in L′′. Recall, that a knapsack Kj is moved to
L′′, if there are less than Cj + 1 available sets at the time it is examined by Ar. Since we do not
add sets along the execution of the algorithm, clearly, there are less than Cj +1 available sets when
we fill Kj in the fourth stage, using the greedy procedure. In order to realize that the knapsacks
are saturated, note that at the beginning

∑M
i=1 |Ui| =

∑N
j=1 Vj , that is, the total number of items

is equal to the total available volume. Since no knapsack is filled by more than Vj items, the sum
of the sizes of the remaining sets always exceeds the total remaining volume.

By combining Corollary 4.6 with Lemmas 4.7 and 4.8 we conclude, that the total amount of
wasted volume for the instance I+ does not exceed the total amount of wasted volume under an
optimal placement of I. In particular, if there exists a perfect placement of I, then our algorithm
finds a perfect placement of I+.

The algorithm is polynomial: each filling procedure has complexity O(M). In the worst case
(during the second stage) it takes O(M ·N) steps to choose the next knapsack to be filled. Therefore,
the total complexity of Ar is O(M2 ·N2).

The dual approximation scheme yields the following approximation algorithm for the CMKP:

1. Find an optimal solution, assuming Cj = Cj + 1, ∀1 ≤ j ≤ N .
Let I ′, Q′ be the resulting indicator and quantity matrices.

2. Let I = I ′, Q = Q′.

3. For each knapsack Kj , j = 1, . . . , N : if
∑

iQi,j = Cj + 1 (i.e., Cj + 1 compartments are
used), let Us be the set from which the quantity placed in Kj is minimal, that is, Qs,j =
min1≤i≤M Qi,j > 0, then Qs,j = 0.
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In other words, we turn the non-feasible placement into a feasible one, by using only the Cj

fullest compartments in each knapsack. Note, that this way we omit from the subset of packed
items at most

Vj

Cj+1 items.

Corollary 4.9 Given an instance I of the CMKP, let Uopt be the utilization obtained by an optimal
placement of the items, then we can find in O(M2 ·N2) steps a placement which achieves utilization

U = Uopt − ε for ε =
∑N

j=1
Vj

Cj+1 .

In particular, if the number of compartments in each knapsack is at least b, for some b ≥ 1, that
is, Cj ≥ b for all 1 ≤ j ≤ N , the above approximation algorithm achieves utilization (1 − α)Uopt

for α = 1
b+1 .

5 Application to MOD Systems

In this section, we show how our results for the CMKP and the FPP apply to storage management
in multimedia systems. Consider a system having N disks: the storage capacity of disk j is Cj ,
and its load capacity is Lj , 1 ≤ j ≤ N . The database associated with the MOD system contains M
video program files {f1, . . . , fM}, with the corresponding popularities {p1, . . . , pM}. The popularity
parameter of fi reflects the portion of the total load generated due to access requests to fi. Knowing
these popularities and the total load capacity of the system, we can determine the average load
generated by each of the files.

As mentioned in Section 1.2, the problem of assigning files to disks can be formulated as an
instance of our packing problems, with the disks represented by knapsacks, and the files – by sets of
items. The popularities of the files determine the set sizes, such that

∑M
i=1 |Ui| =

∑N
j=1 Lj . When

our objective is to maximize utilization, we need to solve the CMKP; when the goal is to maximize
fairness, we need to solve the FPP. A solution for any of our two variants of the knapsack problems
will induce a legal static assignment. In terms of the matrices I and Q,

• Ii,j = 1 iff a copy of the file i is stored on the disk j.

• Qi,j ∈ {0, 1, . . . , Lj} is the total load that file i can create on the disk j.

Thus, our results in Section 3 yield efficient algorithms for finding a perfect assignment of files
to the disks, in which the load capacity of the system is totally utilized, and the requests to each
of the files can be satisfied.

5.1 Approximating Uniform Capacity Ratio

We now consider a slightly different model, in which the storage sub-system consists of N disk
arrays, D1, . . . , DN : Dj has a fixed load capacity, Lj , and in addition, there is a limit, C, on the
total number of storage units that can be allocated to the disk arrays. We would like to find an
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allocation of the storage units to the disk arrays. That is, for any 1 ≤ j ≤ N we need to determine
Cj , the storage capacity of Dj , such that

∑N
j=1Cj = C. This model reflects the situation in which

several disk arrays are used for storing the files. The storage capacity of a disk array is the sum
of the storage capacities of the individual disks. Thus, the storage capacity of a disk array (with a
fixed load capacity) can vary, depending on the storage capacities of the disks composing the array.
We show below that in such a system, the overall storage capacity can be distributed among the
disk arrays, so as to achieve a nearly uniform capacity ratio. This enables to find an almost perfect
assignment of the files to the disks.

Let L =
∑N

j=1 Lj be the total load capacity of the system. Indeed, it is easy to determine
the storage capacity of each disk array, so as to obtain ‘uniform capacity ratio’: in particular, we
can choose Cj = C · Lj/L. This yields a uniform capacity ratio with r = L/C. However, since
we require that each disk array holds an integral number of files, we need to round the Cj ’s in a
way that minimizes the violation of uniformity. Formally, we need to solve the following integer
programming problem:

Minimize α =
max1≤j≤N

Lj

Cj

min1≤j≤N
Lj

Cj

, such that
N∑
j=1

Cj = C, Cj integer. (3)

This problem can be optimally solved in O(N logN +N logC) steps, by using, e.g., the algorithm
‘SOLVE-FAIR’ (see in [16], Chapter 6). The solution provides an allocation of the storage units to
the disks such that for some r > 0,

∀j, r ≤ Lj

Cj
≤ α · r. (4)

and α is minimized. By Theorem 3.8 we have:

Corollary 5.1 If storage units can be distributed among the disks, a 1/α-utilized assignment can
be found in O(N ·M + N logN + N logC) steps, where α is the value of the optimal solution of
(3).

To observe that α is small (that is, close to 1), note that in any optimal solution of (3), the
capacity ratio of Dj satisfies

⌊L
C
⌋ ≤ Lj

Cj
≤ ⌈L

C
⌉ ∀ 1 ≤ j ≤ N .

This immediately yields a bound of 2 on α. More accurately, α ≤ ⌈L
C
⌉

⌊L
C
⌋ .

5.2 Achieving Almost Optimal Utilization

In Section 4 we presented a dual approximation algorithm for the CMKP. In terms of MOD systems,
it means that we can achieve the optimal utilization of a system by adding one storage unit to each
disk. Indeed, for a given MOD system, such changes in configuration may be impossible, however,
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we can use the approximation algorithm derived from algorithm Ar, and the result in Corollary
4.9. This implies, that if each of the disks can store at least b files, for some b ≥ 1, that is,
Cj ≥ b for all 1 ≤ j ≤ N , the above approximation algorithm achieves utilization (1−α)Uopt, with
α = 1

b+1 .

6 Discussion

We have studied two variants of the knapsack problem, namely, the CMKP and the FPP. We have
shown that both problems are NP-Hard; for some instances an optimal polynomial time algorithm
exists; we also proposed approximation algorithm for the CMKP. Finally, we have shown how our
results for the CMKP and the FPP can be used for efficient resource allocation in multimedia
storage sub-systems.

Our paper leaves open several interesting avenues for future work:

• For the special case whereM = 1, both the CMKP and the FPP are easy to solve. In contrast,
both problems are hard to solve, already for the case where M = 2, if each knapsack has
a single compartment. It is interesting to investigate further how the ratio between M , the
number of items classes, and the number of compartments in the knapsacks enables to find
efficiently an optimal solution for each of the problems. Along these lines, it may be possible
to formulate weaker versions of the conditions given in Section 3.1.

• We presented a (1 − α)-approximation algorithm for the CMKP, where α depends on the
input, namely, the capacity ratio of the knapsacks. Can the CMKP (FPP) be approximated
to within a factor 1− ε, for any, ε > 0, using a (fully) polynomial approximation scheme?

• We considered the case, where s(u) = w(u) for any u ∈ U . A natural extension of both the
CMKP and the FPP would allow items of different types to have different sizes and different
weights.

• We have shown the application of the CMKP and the FPP to the problem of assigning files
to disks in multimedia storage sub-systems. An underlying assumption in the assignment
problem was that the hardware configuration is fixed, and our goal is to make the best
use of this configuration, in terms of utilization and fairness. In the dual problem of system
configuration our objective is to achieve certain quality of service, and we are allowed to change
the hardware configuration. Specifically, given a set of files, we would like to determine the
number of disks, that need to be used for storing and broadcasting these files; the disks may
be of several different types, where each type is characterized by specific storage and load
capacity, and a fixed cost. This gives rise to the following class-constrained version of the
fractional bin-packing problem: suppose we have a set U of |U | = M items; each item u ∈ U
has a size s(u) ∈ Z+. We can pack the items in U (allowing items to split) in a collection of
bins that may be of several different types. A bin of type j, has volume Vj ; it can hold Cj ≥ 1
items and its cost is Fj . Our objective is to pack all the items in a set of bins at minimal
cost.
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• The CMKP and the FPP can be applied for the static assignment of files to the disks. Static
assignment is only the first component of a MOD resource allocation scheme, in which the
initial state of the system is defined. It is then followed by a dynamic phase, in which
customer requests arriving to the system need to be serviced. During the dynamic phase,
the popularities of the various files can change. Such changes are natural, e.g., when dealing
with video data available on the world-wide-web sites. In response, the MOD system should
support operations such as file deletions or replications, as well as reallocations of load. This
introduces an on-line version of each of our packing problems, where the sizes of the sets
that we would like to pack can change dynamically, and we need to update the placement
accordingly. The transition from one placement to another should be done with minimum
number of reallocations of items to compartments.
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Appendix A

In this section we show the validity of our results for general instances of the CMKP and the FPP,
in which the total number of items is not necessarily equal to the sum of volumes of the knapsacks,
namely, |U | ≠ V . Note, that the definitions of utilization and fairness, as given in Sections 2.1
and 2.2, do not depend on the ratio between |U | and V . This ratio, however, influences the definition
of perfect placement. When |U | ̸= V , the maximal possible utilization is min(|U |, V ). When the
objective is to maximize fairness, an optimal placement is min(1, V

|U |)-fair
2. For a general instance,

a placement is perfect, if it is optimal with respect to utilization as well as fairness. Formally,

Definition 6.1 A perfect placement is a placement that is min(1, V/|U |)-fair, in which one of the
following is satisfies: (i) all the items are packed, or (ii) all the knapsacks are full.

We now argue, that all the results presented in Section 3 hold for general inputs:

• if V > |U |, then add one dummy set of size V − |U |, to obtain an instance, in which V = |U |.
After placing the items in the knapsacks, omit the ‘dummy’ items.

• if V < |U |, a perfect placement is V
|U | -fair. For each set i, determine |U∗

i | = V
|U | |Ui| (rounded

to integers, such that
∑

i |U∗
i | = V ). The resulting instance U∗ fulfills |U∗| = V .

All the algorithms presented in Section 3 can be applied to the above adjusted instances, to produce
perfect placements for the original instances. Special tuning is needed in the proof of Theorem 3.1:
when V > |U |, the added dummy set may not satisfy the condition |Ui| ≥ ε·|U |

M . To solve this
potential problem, the algorithm has to consider the dummy set first: Note, that one (arbitrarily
small) fraction of a set is allowed, in each knapsack, hence, the dummy set can serve as the fraction
placed in the first knapsack.

Our results in Section 4 also hold for general inputs, namely, the statements of Theorem 4.1
and Corollary 4.9 remain valid. In fact, the algorithm Ar, used in the proof of Theorem 4.1, can
be applied for any instance of the CMKP. It is sufficient to show the validity of Corollary 4.6 and
Lemmas 4.3, 4.7 and 4.8. First note, that only the proof of Lemma 4.8 assumes that |U | = V .
We now show, how the proof of this lemma can be modified, to argue that all the knapsacks filled
during the fourth stage are ‘saturated’, also when |U | ̸= V . We consider separately two cases:

(i) if |U | > V , then as in the case where |U | = V , the sum of the sizes of the remaining sets
always exceeds the total remaining volume.

2Standard rounding techniques [16] can be applied here to determine the exact number of items to be packed from
each type.
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(ii) if V > |U |, then all the knapsacks filled during the fourth stage are saturated until R is empty,
or until all the knapsacks are filled. If R is empty (no requests are left), it means that we
packed all the elements of U , which is clearly optimal. If we run out of knapsacks, then, as
in the case where |U | ≥ V , it means that all the knapsacks filled in this stage are saturated.
Thus, the only waste of volume is the inevitable w = w1 + w2 + . . .+ wn (from the two first
stages).

In both cases the utilization achieved by Ar is at least the maximal possible utilization for the
original instance, I.
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