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ON TWO CLASSES OF REFLECTED
AUTOREGRESSIVE PROCESSES
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Abstract

We introduce two general classes of reflected autoregressive processes, INGAR+ and
GAR+. Here, INGAR+ can be seen as the counterpart of INAR(1) with general thin-
ning and reflection being imposed to keep the process non-negative; GAR+ relates to
AR(1) in an analogous manner. The two processes INGAR+ and GAR+ are shown to
be connected via a duality relation. We proceed by presenting a detailed analysis of
the time-dependent and stationary behavior of the INGAR+ process, and then exploit
the duality relation to obtain the time-dependent and stationary behavior of the GAR+
process.

Keywords: INAR(1); AR(1); autoregressive processes; reflection; generating functions;
time-dependent behavior; stationarity
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1. Introduction and model description

The primary aim of this paper is to study the transient and stationary behavior of two classes
of autoregressive processes with reflection at zero. We show that these processes are connected
via a duality relation, so that analysis of one of them provides results for the other, and vice
versa.

Our first starting point is the well-studied INAR(1) process, which is defined by

An+1 = a ◦ An + Jn, n ∈N0,

with N0 :=N∪ {0}. Here, (Jn)n∈N0 are i.i.d. (independent, identically distributed) non-negative
integer-valued random variables, and the thinning operation ◦ is, as defined in [22], given by
a ◦ X := ∑X

k=1 Uk, where the random variables Uk are i.i.d. Bernoulli random variables with
mean a ∈ [0, 1]. We refer, e.g., to [1], [11], [17], and [18] for seminal contributions, and [10]
and [23] for more background on integer-valued time series. We will generalize the INAR(1)
process in two ways.
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658 O. BOXMA ET AL.

1. We allow for negative increments. To keep a non-negative process we reflect the process
at zero:

An+1 = (a ◦ An + Cn − Wn)
+ , n ∈N0,

with i.i.d. non-negative integer-valued random variables (Cn)n∈N0 , and i.i.d. geo-
metrically distributed random variables (Wn)n∈N0 . Here we used the notation x+ :=
max{x, 0}.

2. We allow the variables Uk that are used to define a ◦ An to have a general discrete
distribution with support in N0.

The resulting model has the potential to be used in any setting featuring a non-negative time
series with an autoregressive correlation structure, and in addition it has obvious applications
in, e.g., queueing and inventory theory. See the next section for a detailed introduction to the
process.

The second starting point is the classical AR(1) process, which has also been exten-
sively studied in the literature; see, e.g., the textbook treatment in [8]. It is given through the
recursion

Zn+1 = aZn + In, n ∈N0,

the (In)n∈N0 being i.i.d. non-negative real-valued random variables, and we assume that a ∈
[0, 1]. As in the INAR(1) case we propose a twofold generalization:

1. We allow for negative increments and reflect the process:

Zn+1 = (aZn + Yn − Bn)+, n ∈N0,

with i.i.d. real-valued non-negative (Yn)n∈N0 , i.i.d. exponentially distributed random
variables (Bn)n∈N0 , and a ∈ [0, 1). This process was recently studied in [7].

2. We replace the multiplication by a with a more general construction using a Lévy
subordinator.

Again, this enables us to set up a rather general class of stochastic processes, with abun-
dant applications across various scientific disciplines (such as engineering, economics, and
the social sciences), specifically suitable if the time series under study relates to intrinsically
non-negative quantities. Notice that the boundary case a = 1 corresponds to the waiting time
process in a conventional single-server queue.

Now that we have presented a brief account of existing models, we proceed by describing
in greater detail the processes that we focus on in this paper.

1.1. Description of the INGAR+ process

The first process under consideration is an integer-valued generalized autoregressive process
(An)n∈N0 , reflected at 0. Throughout this paper we refer to it as the INGAR+ process, being
defined as follows. The process (An)n∈N0 has values in N0, and is given by the recursion

An+1 = (Rn(An) + Cn − Wn)
+ , n ∈N0,

with (Cn)n∈N0 and (Wn)n∈N0 being two mutually independent sequences of i.i.d. non-negative
integer-valued random variables. It is assumed that Wn has a geometric distribution with
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On two classes of reflected autoregressive processes 659

success probability p ∈ (0, 1], meaning that P(Wn = k) = p(1 − p)k−1 for k ∈N. Moreover, for
n ∈N0, m ∈N0,

Rn(m) :=
m∑

k=1

Un,k

denotes the partial sum of m i.i.d. non-negative integer-valued random variables Un,k (where
we assume P(Un,k = 0)< 1 to avoid trivial situations). In our model the sequences (Un,1)n∈N0 ,
(Un,2)n∈N0 , . . . are assumed independent, and they are also independent of (Cn)n∈N0 and
(Wn)n∈N0 . In what follows we use the compact notations U, C, and W for generic random
variables with distributions equal to those of Un,k, Cn, and Wn, respectively. Similarly,
we write R(m) = ∑m

k=1 Uk for generic random sums, with i.i.d. (Uk)k∈N0 each having the
distribution of U.

Throughout, we impose the stability condition

E(U) < 1 and E(log (1 + C)) <∞, (S1)

which is shown in Theorem 5 below to be a sufficient condition for ergodicity. We remark that
it turned out to be a delicate issue to identify a stability condition that is both sufficient and
necessary; a short discussion of this issue is added at the end of Section 3.2.

We mention the following special cases:

1. Let the random variables Un,k be i.i.d. Bernoulli random variables with P(Un,k = 1) =
a ∈ [0, 1] and let p = 1 (so that Wn = 1 almost surely). Then An+1 = (a ◦ An + Cn − 1)+
and if we require that Cn ≥ 1 and we write εn = Cn − 1, then we obtain

An+1 = a ◦ An + εn, n ∈N0,

the defining recursion of the INAR(1) process, cf. [23].
If we still assume Cn = εn + 1 ≥ 1 and instead of Bernoulli random variables allow
generally distributed Un,k, then we obtain

An+1 =Rn(An) + εn, n ∈N0.

Such an extension of the INAR(1) process was proposed by [17]. Reference [21]
discusses the case that the increments corresponding to Rn( · ) have a geometric
distribution; see also [4].

2. A rich variety of highly general queueing processes can be embedded in the INGAR+
process. To start with, consider the M/G/1 queue, cf. [9, Chapter II.5], and let An denote
the number of customers waiting immediately after the beginning of the nth service. Let
Cn denote the number of customers arriving during the nth service. Then we obtain the
Lindley-type recursion

An+1 = (An + Cn − 1)+ , n ∈N0,

which is the Un,k ≡ 1 and p = 1 case of the INGAR+ process.
To illustrate the modeling flexibility of INGAR+, consider the following setup. Suppose
that each customer requires a positive service time only with probability p and no service
time with probability (1 − p), but every customer still has to wait in line until their turn.
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660 O. BOXMA ET AL.

Additionally suppose that at service completion each next customer finding themself
first in line but not requiring work leaves the system instantly. This means that the num-
ber of customers who leave the system between the nth and (n + 1)st service completion
equals the geometrically distributed number Wn (with parameter p), but obviously as
long as An + Cn − Wn remains non-negative. We thus obtain the recursion

An+1 = (An + Cn − Wn)
+ , n ∈N0,

which is the Un,k ≡ 1 case of the INGAR+ process.
If, additionally, right after the beginning of a service all waiting customers decide, inde-
pendently of each other, to stay (with probability a) or to leave (before being served,
that is), we end up with

An+1 = (a ◦ An + Cn − Wn)
+ , n ∈N0,

the INGAR+ case where the Un,k have a Bernoulli distribution. We conclude that our
model covers systems with impatient customers as a special case.

1.2. Description of the GAR+ process

The second process we consider in this paper is a real-valued generalized autoregressive
process (Zn)n∈N0 , with the special feature that it is reflected at 0. We call the resulting object
the GAR+ process; it is formally defined as follows. The process attains values in R

+ = [0,∞)
and is defined by the stochastic recursion

Zn+1 = (Sn(Zn) + Yn − Bn)
+ , n ∈N0. (1)

The components featuring in this recursion are defined as follows. In the first place, (Bn)n∈N0

and (Yn)n∈N0 are sequences of i.i.d. real-valued non-negative random variables, that are, in
addition, independent of each other. It is assumed that Bn has an exponential distribution with
rate λ> 0, i.e. P(Bn ≤ x) = 1 − e−λx for x ≥ 0. We allow the λ= ∞ case where Bn ≡ 0. As
before, we write B and Y for generic random variables with distributions equal to those of Bn

and Yn, respectively.
The processes ((Sn(t))t∈R+)n∈N0 form a sequence of i.i.d. increasing Lévy processes (also

referred to as subordinators), independent of (Bn)n∈N0 and (Yn)n∈N0 ; we write (S(t))t∈R+
for a generic stochastic process distributed as (Sn(t))t∈R+ . Recall that Lévy processes are
stochastic processes with stationary independent increments [16], and can be considered as
the continuous-time counterpart of the random walk. In general, a Lévy process is a sum of
a deterministic drift, a Brownian motion, and a pure jump process, but because we focus on
subordinators there is no Brownian motion while the process’ jumps are positive. We let the
associated Laplace–Stieltjes transform be E(e−sS(t)) = e−ψ(s)t, where the Laplace exponent is
necessarily of the form

ψ(s) = as +
∫ ∞

0

(
1 − e−su) dν(u)

for some a ≥ 0; to see that it has this structure, recall the Lévy–Itō decomposition, and observe
that increasing Lévy processes lack a Brownian term and contributions due to negative jumps.
We assume that the Lévy measure ν is concentrated on R

+ with the additional integrability
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constraint
∫ ∞

0 (1 ∧ y) dν(y)<∞, and exclude the trivial case where ψ(s) ≡ 0, i.e. S(t) ≡ 0. In
this model, we throughout impose the stability condition

E(S(1)) < 1 and E(log (1 + Y)) <∞, (S2)

where E(S(1)) is the average rate pertaining to S( · ) that can be calculated via

E(S(1))= a +
∫ ∞

0
u dν(u).

In Section 4.2 we will prove the sufficiency of (S2), and in addition equivalence with (S1) as a
consequence of the duality introduced in the next section. Note that, since ψ ′(0) =E(S(1))< 1
and since ψ is a concave function,

ψ(s)< s, for all s> 0. (2)

The GAR+ process covers the following special cases:

1. If we assume that S(t) = at for some a ∈ [0, 1) and Bn ≡ 0 (which can be achieved by
picking λ= ∞), then (1) becomes

Zn+1 = aZn + Yn, n ∈N0.

This describes a classical autoregressive process of AR(1) type; for more background,
see, for instance, [8].

2. In the case where S(t) = t the recursion (1) is equivalent to the classical Lindley
recursion (see, e.g., [2, p. 92]):

Zn+1 = (Zn + Yn − Bn)
+ , n ∈N0.

This recursion records the waiting time at customer arrivals in an M/G/1 queue, with
service times Yn and inter-arrival times Bn.
This model was recently extended in [7], where the case of S(t) = at (with a ∈ [0, 1);
the abstract of [7] incorrectly speaks of |a|< 1) was studied, leading to the recursion

Zn+1 = (aZn + Yn − Bn)+, n ∈N0.

Zn could be interpreted as the workload in a queueing model just before the nth customer
arrival. Such an arrival adds Yn work, but also makes obsolete a fixed fraction 1 − a of
the work that is already present. Importantly, our new GAR+ model covers the more
general case: working with the thinning Sn(Zn) rather than aZn, a random part of Zn is
made obsolete (instead of a deterministic part).

For any non-negative integer-valued random variable X we introduce its ‘alternate
probability-generating function’ (in short APGF, cf. [19]) as

GX(z) :=E((1 − z)X), z ∈ [0, 1].

Note that the APGF slightly differs from the commonly used probability-generating function;
we use it here, rather than the conventional generating function, for reasons that will become
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662 O. BOXMA ET AL.

clear soon. Given a non-negative random variable X, its LST (Laplace–Stieltjes transform) is
given by

ϕX(s) :=E(e−sX), s ≥ 0.

With these definitions in place, APGFs and LSTs are conveniently related to each other; see
Theorem 1 below. The joint APGF and the joint LST of two random variables X and Y are
defined in a similar manner:

GX,Y (z,w) :=E((1 − z)X(1 − w)Y ), z,w ∈ [0, 1],

ϕX,Y (s, t) :=E(e−sX−tY ), s, t ≥ 0.

In the following we write X =d Y if the two random objects X and Y have the same distribution.

1.3. Main contributions and organization of the paper

We conclude this introduction with a brief account of the results obtained, and an overview
of the paper. We start in Section 2 by establishing a useful duality relation; see Theorem 1.
Another main result of this section (Theorem 2) concerns the fact that this duality relation is
well adapted to all operations that we use in our definition of reflected autoregressive processes,
namely addition, reflection at zero, and the random sum and subordinator operations R( · ) and
S( · ). Based on these results, for any GAR+ process we can explicitly construct its INGAR+
counterpart. In Section 3 we obtain expressions for the time-dependent (Theorem 4) and sta-
tionary (Theorem 5) APGFs corresponding to the INGAR+ process. In addition, moments and
covariances are obtained. In Section 4 we exploit the duality relation of Section 2 to obtain
expressions for the time-dependent (Theorem 10) and stationary (Theorem 11) LSTs of the
GAR+ process, solely relying on the INGAR+ results of Section 3. We also obtain various
results concerning the joint LST of Zn and Zn+1 and moments. Section 5 contains a discussion
and suggestions for further research.

2. Transforms and duality

In this section we establish a duality between the INGAR+ model and the GAR+ model.
With this duality we can construct, for any given GAR+ process, an INGAR+ counterpart.
Later on in this paper we will use the duality as a device to translate results for the INGAR+
model into results for the GAR+ model.

We introduce a family (Nγ )γ>0 of transformations that map non-negative random variables
to non-negative integer-valued random variables as follows. Given a non-negative random vari-
able X, let Nγ (X) denote any random variable with a mixed Poisson distribution of the form

P
(
Nγ (X) = k | X = x

) = e−γ x (γ x)k

k! , k = 0, 1, 2, . . . ;

see, e.g., [13]. Consequently,

P
(
Nγ (X) = k

) =
∫

[0,∞)
e−γ x (γ x)k

k! P(X ∈ dx).

Thus, a sample of Nγ (X) can be obtained by letting (N(t))t≥0 be an independent Poisson
process with rate γ and setting Nγ (X) = N(X). Although Nγ (X) actually denotes a class
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On two classes of reflected autoregressive processes 663

of random variables with a common distribution, we still write, with minor abuse of nota-
tion, Y = Nγ (X) to indicate that Y has the same distribution as any member of Nγ (X). The
above transformation has been used by [19] to describe the similarity of INAR(1) and AR(1)
processes.

Theorem 1. (Duality.) The APGF of the transformed variable Nγ (X) is related to the LST of
the original variable X through

GNγ (X)(s) = ϕX(γ s). (3)

In particular, given that the relevant expectations and/or variances exist,

E(Nγ (X)) = γ E(X), (4)

Var
(
Nγ (X)

) = γ 2Var(X)+ γE(X). (5)

More generally, if Y is another non-negative random variable, not necessarily independent of
X, and Nγ1 (X) as well as Nγ2(Y) are obtained by using two independent Poisson processes,
then

GNγ1 (X),Nγ2 (Y)(s, t) = ϕX,Y (γ1s, γ2t). (6)

Proof. We prove only (6), as (3) is obviously a special case of it. This follows by observing
that

GNγ1 (X),Nγ2 (Y)(s, t) =E
(
(1 − s)Nγ1 (X)(1 − t)Nγ2 (Y))

=
∞∑

k=0

∞∑
�=0

∫ ∞

0

∫ ∞

0
e−γ1x (γ1x)k

k! e−γ2y (γ2y)�

�! (1 − s)k(1 − t)� P(X ∈ dx, Y ∈ dy)

=
∫ ∞

0

∫ ∞

0
e−γ1xs−γ2yt

P(X ∈ dx, Y ∈ dy)=E
(
e−γ1sX−γ2tY) = ϕX,Y (γ1s, γ2t).

The claims (4) and (5) follow directly from (3), applying standard rules for deriving moments
from the respective transforms. �

We need the next proposition to establish a relation between (the transforms of) the random
sum R( · ) and subordinator S( · ) operations which were defined in Section 1.

Proposition 1. Let ν be the Lévy measure as defined in Section 1, and let γ > 0. Then

G	(s) := 1 − ψ(γ s)

γ

is the APGF of a non-negative integer-valued random variable 	 given by the probabilities

θ0 := 1 − ψ(γ )

γ
,

θk := a1{k=1} + γ k−1

k!
∫ ∞

0
e−γ uuk dν(u), k = 1, 2, 3, . . .
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664 O. BOXMA ET AL.

Proof. We first show that the numbers θk are indeed probabilities. Obviously θ0 ≤ 1, and
since γ ≥ψ(γ ) by (2) it follows that θ0 ≥ 0, so θ0 is a probability. Moreover, θk ≥ 0 for k ∈N0
and

∞∑
k=0

θk = 1 − ψ(γ )

γ
+ a +

∞∑
k=1

γ k−1

k!
∫ ∞

0
e−γ uuk dν(u)

= 1 − 1

γ

(
ψ(γ ) − aγ −

∫ ∞

0

(
1 − e−γ u) dν(u)

)
= 1.

The APGF of the non-negative integer-valued random variable 	 is given by

G	(s) = 1 − ψ(γ )

γ
+ (1 − s)a +

∞∑
k=1

(1 − s)k γ
k−1

k!
∫ ∞

0
e−γ uuk dν(u)

= 1 − ψ(γ )

γ
+ (1 − s)a + 1

γ

∫ ∞

0
(1 − e−γ u − 1 + e−sγ u) dν(u) = 1 − ψ(γ s)

γ
,

thus establishing the claim. �
As the next theorem shows, the introduced transformation is well adapted to all operations

we use to define our autoregressive processes, namely addition, reflection at zero, and the
random sum and subordinator operations R( · ) and S( · ).

Theorem 2. Let X be a non-negative random variable.

1. If Y is non-negative and independent of X, then

Nγ (X + Y) =d Nγ (X) + Nγ (Y),

with the two random variables on the right-hand side being independent.

2. If Uk =d 	 for every k ∈N0, where 	 is as in Proposition 1, then

Nγ (S(X)) =d R(Nγ (X)). (7)

3. Let B be exponential with rate λ> 0, let W be a geometric random variable with P(W =
k) = p(1 − p)k−1, k ∈N, p ∈ (0, 1], and let both random variables be independent of X.
Then,

Nλ/p((X − B)+) =d (Nλ/p(X) − W)+. (8)

Remark 1. Relation (7) is a special case of what is called discrete subordination (see [5, 20]).

Proof.

1. This follows from (3):

GNγ (X+Y)(s) = ϕX+Y (γ s) = ϕX(γ s)ϕY (γ s) = GNγ (X)(s)GNγ (Y)(s),

where the second equality is due to the independence of X and Y .
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On two classes of reflected autoregressive processes 665

2. We have, by the well-known formulas for subordination (in combination with (3)),

GNγ (S(X))(s) = ϕS(X)(γ s) = ϕX(ψ(γ s)) = GNγ (X)(ψ(γ s)/γ )

= GNγ (X)(1 − (1 −ψ(γ s)/γ )) = GR(Nγ (X))(s).

3. Let γ := λ/p. Using (A3) and (A1) in the appendix in the second and fourth equalities,
and (3) in the third equality, we obtain

GNλ/p((X−B)+)(s) = ϕ(X−B)+ (λs/p) = ϕX(λ) + p
ϕX(λs/p) − ϕX(λ)

p − s

= GNλ/p(X)(p) + p
GNλ/p(X)(s) − GNλ/p(X)(p)

p − s

= G(Nλ/p(X)−W)+ (s). �

The main question of this section is: given a GAR+ process (Zn)n∈N0 , can we explicitly
construct an integer-valued counterpart, i.e. an INGAR+ process (An)n∈N0? (And, if yes, how?)
To study this, let Sn( · ), Yn, and λ (defining the GAR+ process (Zn)n∈N0 ) be given. In a naive
construction one would take, for some value of γ ,

Kn =d Nγ (Sn(Zn)), Cn =d Nγ (Yn),

Wn =d Geom(λ/γ ), An+1 := (Kn + Cn − Wn)+.

Then indeed, by Theorem 2,

An+1 =d
(
Nγ (Sn(Zn)) + Nγ (Yn) − Wn

)+ =d
(
Nγ (Sn(Zn) + Yn) − Wn

)+

=d Nγ ( (Sn(Zn) + Yn − Bn)
+ ) =d Nγ (Zn+1).

However, if we do not carefully select the appropriate Poisson transformations, the joint
distribution of An and An+1 might be different from the required INGAR+-type bivariate
relation

(An, An+1) =d
(
An, (Rn(An) + Cn − Wn)+

)
,

and hence (An)n∈N0 would not necessarily qualify as an INGAR+ process. In the next theorem,
we point out how (An)n∈N0 should be properly defined.

Theorem 3. Let (Zn)n∈N0 be a GAR+ process as in (1). Suppose that the conditions (S1) and
(S2) hold. Then, for every γ > λ there is an INGAR+ process (A)n∈N0 with

An+1 = (Rn(An) + Cn − Wn)
+

such that

1. An+1 =d Nγ (Zn+1)

2. Rn(An) =d Nγ (Sn(Zn)) and the i.i.d. summands Un,k, k ∈N0, have the same distribution
as 	 in Proposition 1

3. Cn =d Nγ (Yn)

4. Wn has a geometric distribution with P(Wn = k) = λ
γ

(1 − λ
γ

)k−1, k ∈N.
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666 O. BOXMA ET AL.

Proof. We will explicitly construct the process (An)n∈N0 and start with any realization of A0
having the same distribution as Nγ (Z0). Suppose that we already constructed A1, A2, . . . , An

in accordance with 1–4. Let N(n)
1 ,N(n)

2 ,N(n)
3 be independent Poisson processes with intensity

γ (and independent of everything else). It follows from (7) and An =d Nγ (Zn) that Rn(An) has
the same distribution as Nγ (Sn(Zn)). Hence, there is a probability space on which An and i.i.d.

(Un,k)k=1,2,... (with distribution necessarily equal to that of 	) exist such that
∑An

k=1 Un,k =
N(n)

1 (Sn(Zn)) almost surely. Let Cn = N(n)
2 (Yn) and Wn = N(n)

3 ((1 − λ/γ )Bn). Since

GWn(s) = ϕBn

((
1 − λ

γ

)
γ s

)
= λ

λ+ (γ − λ) s
= λ/γ

λ/γ + (1 − λ/γ )s
,

it follows that Wn =d Geom(λ/γ ) as required. To complete the construction we define

An+1 = (N(n)
1 (Sn(Zn)) + Cn − Wn)+.

Then 2–4 are fulfilled and, applying (8), we see that An+1 =d Nγ (Zn+1), too. �
As an example, suppose that Sn(t) = at with a ∈ [0, 1), where the GAR+ process is given

by

Zn+1 = (aZn + Yn − Bn)+, n ∈N0,

as studied in [7]. Since Nγ (aX) =d a ◦ Nγ (X), it follows that the discrete counterpart is given
by the INGAR+ process

An+1 = (a ◦ An + Cn − Wn)
+ , n ∈N0,

a generalized INAR(1) process.

Remark 2. Note that not every integer-valued non-negative random variable appears as an
image under the transformation Nγ . For example, every random variable Nγ (X) with X non-
negative has an infinite support, in fact P(Nγ (X) = k)> 0 for every k ∈N0. It follows that there
are INGAR+ processes which cannot be obtained as counterparts from a GAR+ process using
the above construction. Hence, while it is possible to derive results for general GAR+ processes
from those of the corresponding INGAR+ processes, the converse does not always work. In the
forthcoming section we therefore first investigate INGAR+ processes, and in Section 4 apply
these results to GAR+ processes via the duality.

3. The INGAR+ model

In this section we analyze the INGAR+ model, the main objective being to uniquely char-
acterize its time-dependent and stationary behavior. Recall that the INGAR+ model is defined
by the recursion

An+1 := (Rn(An) + Cn − Wn)
+ , (9)

with (Rn( · ))n∈N0 , (Cn)n∈N0 , and (Wn)n∈N0 as introduced earlier; in particular, Wn has a geo-
metric distribution with success probability p. It requires a direct verification to see that the
APGF of the random sum Rn(An) is given by GAn (�(s)), where �(s) := 1 − GU(s). The func-
tion �( · ) is increasing and concave with �(0) = 0. We will make frequent use of the iterates

�(0)(s) = s, �(k)(s) =�(�(k−1)(s)), k = 1, 2, . . .
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On two classes of reflected autoregressive processes 667

The time-dependent behavior of An is studied in Section 3.1, and the stationary behavior in
Section 3.2. Joint APGFs and moments are derived in Section 3.3.

3.1. Time-dependent analysis

A specific type of functional difference equation naturally appears in the analysis of the
INGAR+ and GAR+ models. The following lemma gives a solution of this difference equation,
for a sufficiently general setup. The proof is standard, in that it follows directly by iterating the
equation (and is therefore omitted).

Lemma 1. Suppose that, for a given initial value f0, a sequence of functions f = ( fn)n∈N0 is
defined by

fn(s) = π (s)fn−1(�(s)) − (s)fn−1(�(p)) + κ, n ≥ 1, (10)

for functions π ( · ) and ( · ) and a constant κ . Then

fn(s) = f0(�(n)(s))
n−1∏
i=0

π (�(i)(s))

+ κ

n−1∑
i=0

i−1∏
j=0

π (�(j)(s)) −
n∑

i=1

fn−i(�(p))(�(i−1)(s))
i−2∏
j=0

π (�(j)(s)), (11)

for n ∈N0. The values of fj(�(p)) follow recursively by inserting s =�(p) into (11).

We apply the above lemma in order to obtain the APGFs GAn ( · ), n = 1, 2, . . . , when
GA0 ( · ) is given. Define

�n(s) :=
n−1∏
k=0

pGC(�(k)(s))

p −�(k)(s)
, �n(s) := �(n)(s)

p −�(n)(s)
�n(s), (12)

with empty products to be defined equal to one. Whenever the infinite product limn→∞ �n(s)
converges we simply write �∞(s) for its value. The following result provides the APGFs
GAn ( · ) in terms of the functions �n( · ) and �n( · ) featuring in (12).

Theorem 4. For n = 0, 1, . . . and s ∈ [0, 1],

GAn (s) = GA0 (�(n)(s))�n(s) − GC(p)
n−1∑
j=0

GAn−j−1 (�(p)) �j(s). (13)

The values of GAn (�(p)) follow recursively by inserting s =�(p) into (13); see Remark 4.

Proof. By rearranging relation (A1) in the appendix, we obtain, from (9),

GAn+1 (s) = p

p − s
GRn(An)+Cn (s) − s

p − s
GRn(An)+Cn (p)

= pGC(s)

p − s︸ ︷︷ ︸
π (s)

GAn (�(s)) − sGC(p)

p − s︸ ︷︷ ︸
(s)

GAn (�(p)). (14)

This function is of the type (10) with κ = 0. �
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668 O. BOXMA ET AL.

Remark 3. Since (13) is a consequence of the purely arithmetic Lemma 1, there are no issues
in relation to convergence. Relation (13) is true for all s ∈ [0, 1]. Note that the first term of
the difference on the right-hand side has the same singularities as the second term (which are
the values s for which p =�(k)(s) for some k). It can be verified that these singularities are
removable; each singularity in the first term of the right-hand side of (13) is compensated by
that same singularity in the second term of the right-hand side. In this respect, observe that
s = p is a removable singularity in (14).

Remark 4. Inserting s =�(p) into (13) shows that

GAn (�(p)) = GA0 (�(n+1)(p))�n(�(p)) − GC(p)
n−1∑
j=0

GAn−j−1 (�(p)) �j(�(p)). (15)

With this relation, the constants GAn (�(p)) can be found recursively.

3.2. Stationary analysis

Now we turn to the stationary analysis. In the analysis, an important role is played by ξ ,
denoting the limit as n → ∞ of the probability that Rn(An) + Cn − Wn is strictly smaller than
zero, i.e.

ξ = lim
n→∞ P(Wn >Rn(An) + Cn) ,

whenever it exists.

Theorem 5. If (S1) holds, then the INGAR+ process (An)n∈N0 is positive recurrent. The
stationary APGF is given by

GA(s) =�∞(s) − ξ �(s),

where �(s) := ∑∞
n=0 �n(s) and

ξ = GC(p) GA(�(p)) = GC(p)�∞(�(p))

1 + GC(p)�(�(p))
. (16)

Proof. Let the process (A+
n )n∈N0 be defined by A+

0 = A0 and A+
n+1 =Rn(A+

n ) + Cn. Then
(A+

n )n∈N0 is a Galton–Watson branching process with immigration. As follows from [14, 15],
under (S1) this process is positive recurrent and, since it majorizes (An)n∈N0 , the same follows
for our INGAR+ process.

To determine the APGF of the stationary distribution we use the generating functions

A(r, s) =
∞∑

n=0

rnGAn (s), B(r, s) =
∞∑

n=0

rnβn(s), D(r, s) =
∞∑

n=0

rn�n(s), r ∈ ( − 1, 1),

where βn(s) := GA0 (�(n)(s))�n(s). It follows from (15) that

GAn (�(p)) = βn(�(p)) − GC(p)
n−1∑
j=0

GAn−j−1 (�(p)) �j(�(p)),
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On two classes of reflected autoregressive processes 669

and hence, after standard algebraic manipulations,

A(r, �(p)) = B(r, �(p))

1 + GC(p) rD(r, �(p))
.

Under condition (S1) we have E(U)< 1 and �(n)(s) = O(E(U)n) ↓ 0 as n → ∞; see
[3, Theorem 11.1]. It follows that the product

n−1∏
k=0

p

p −�(k)(s)

tends to a finite non-zero limit as n → ∞. Moreover,
∏∞

k=0 GC(�(k)(s)) is the LST of the limit
distribution of the Galton–Watson process (A+

n )n∈N0 ; see, e.g., [14]. Hence, βn(s) tends to a
finite non-zero limit �∞(s). The convergence of βn together with �(n)(s) = O((E(U))n) ↓ 0
implies the convergence of

∑n
k=0 �k(s) to �(�(s)) as n → ∞. Hence, using Abel’s theorem,

we obtain

GA(�(p)) = lim
r↑1

(1 − r)A(r, �(p)) =
lim
r↑1

(1 − r)B(r, �(p))

1 + GC(p) lim
r↑1

rD(r, �(p))
= �∞(�(p))

1 + GC(p)�(�(p))
,

and

GA(s) = lim
r↑1

(1 − r)A(r, s) = lim
r↑1

(1 − r) B(r, s) − lim
r↑1

(1 − r)GC(p)D(r, s)A(r, �(p))

=�∞(s) − GA (�(p)) GC(p)�(s).

It remains to prove that ξn = P(Wn >Rn(An) + Cn) indeed converges to GC(p)GA(�(p)) as
n → ∞. According to (A2) in the appendix and the recurrence relation (9) we obtain

ξn = GRn(An)+Cn (p) = GC(p) GAn (�(p)).

Claim (16) thus follows by sending n to ∞. �

Remark 5. Condition (S1) is clearly not necessary in the case where U ≡ 1. In this case the
INGAR+ process An+1 = (An + Cn − Wn)

+ is a reflected random walk and, as is well known,
E(C)<E(W) ensures positive recurrence. However, it is not obvious how necessary conditions
can be derived in the general INGAR+/GAR+ setting. To illustrate the complications one
encounters in studying the E(U) = 1 case, assume that, additionally, Var(U) <∞. One can
show that in this case �(k)(s) ∼ 1/k as k → ∞; see [3, Theorem 11.1]. This implies that both
main terms in (13), i.e.

GA0 (�(n)(s))�n(s) and GC(p)
n−1∑
j=0

GAn−j−1 (�(p)) �n(s),

tend to infinity as n → ∞. It follows that it is not clear whether their difference tends to zero,
tends to a finite non-zero limit, or does not converge at all.

Remark 6. In passing, we have also shown that

A(r, s) = B(r, s) − GC(p) A(r, �(p)) rD(r, s) = B(r, s) − GC(p)
B(r, �(p)) rD(r, s)

1 + GC(p) rD(r, �(p))
,

as revealed by the proof of Theorem 5.
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In the case A0 = �, we have that B(r, s) equals B(r, s | �), given by

B(r, s | �) :=
∞∑

n=0

rn(1 −�(n)(s)
)�
�n(s).

The fact that this is a power in � will be exploited in the proof of Theorem 9.

3.3. Moments and covariance structure

In this subsection we include various results concerning the moments and covariance struc-
ture of the INGAR+ process (An)n∈N0 . As before, ξn is defined by P(Wn >Rn(An) + Cn),
which we have seen to equal GC(p) GAn (�(p)).

Theorem 6. The mean and the variance of the INGAR+ process fulfil the following recursions:

E(An+1)=E(U)E(An)+E(C)− 1 − ξn

p
, (17)

Var(An+1)= Var(An)E(U)
2 +E(An)Var(U)+ Var(C)

− 2ξn

p
(E(An)E(U)+E(C))+ (1 − ξn)(1 − p + ξn)

p2
. (18)

In stationarity,

E(A)=
E(C)− 1 − ξ

p
1 −E(U)

, (19)

Var(A)=
E(A)Var(U)+ Var(C)− 2ξ

p
(E(A)E(U)+E(C))+ (1 − ξ )(1 − p + ξ )

p2

1 − (E(U))2
. (20)

Proof. We start by multiplying (14) by p − s; recalling that ξn = GRn(An)+Cn (p), we obtain,
by differentiating with respect to s,

−GAn+1 (s) + (p − s)G′
An+1

(s) = pG′
C(s)GAn(�(s)) + pGC(s)G′

An
(�(s))� ′(s) − ξn. (21)

Letting s → 0 we obtain

−1 − pE(An+1)= −pE(C)− pE(An)E(U)− ξn,

from which (17) follows. Moreover, taking another derivative in (21) and letting s → 0 we
obtain

p
(
E(A2

n+1) −E(An+1)
) + 2E(An+1)= p

(
E(C2) −E(C)

) + 2pE(C)E(An)E(U)

+ p
(
E(A2

n) −E(An)
)
E(U)2 − pE(An)

(
E(U) −E(U2)

)
,

which leads to (18). The stationary mean (19) and variance (20) follow by letting n tend to
infinity and solving E(A) and Var(A), respectively. �
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On two classes of reflected autoregressive processes 671

Besides the mean and variance of An, we can use similar techniques to obtain insight into
the process’ correlation structure. Our next objective is to evaluate the joint APGF of An and
An+1. This joint APGF GAn,An+1 (s, t) is expressed in terms of the (univariate) APGF of An,
which is given by Theorem 4. We restrict ourselves to t �= p; the result for t = p follows in an
elementary way by taking a limit.

Theorem 7. For t �= p,

GAn,An+1 (s, t) = p

p − t
GC(t) GAn (1 − (1 − s)GU(t))

− t

p − t
GC(p) GAn (1 − (1 − s)GU(p)). (22)

Proof. By conditioning, we obtain

GAn,An+1 (s, t) =E
(
(1 − s)An(1 − t)(Rn(An)+Cn−Wn)

+)
=E

(
(1 − s)AnE

(
(1 − t)(Rn(An)+Cn−Wn)

+ |Rn(An),Cn
))

.

By (A1) in the appendix it follows that, for every k ∈N0, provided that p �= t,

E
(
(1 − t)(k−Wn)+) = p

p − t
(1 − t)k − t

p − t
(1 − p)k.

Hence, for p �= t,

E

(
(1−s)AnE

(
(1 − t)(Rn(An)+Cn−Wn)

+ |Rn(An),Cn
))

=E
(
(1 − s)An

p

p − t
(1 − t)Rn(An)+Cn − (1 − s)An

t

p − t
(1 − p)Rn(An)+Cn

)

= p

p − t
GC(t) GA

(
1 − (1 − s)GU(t)

) − t

p − t
GC(p) GA

(
1 − (1 − s)GU(p)

)
,

where we used the fact that

E
(
(1 − s)A(1 − t)R(A)) =E

(
(1 − s)A

E
(
(1 − t)R(A) | A

)) =E
(
(1 − s)AGU(t)A)

= GA(1 − (1 − s) GU(t)). �

Theorem 8. The covariance of An and An+1 is given by

Cov(An, An+1)=E(U)Var(An)− ξn

p
E(An)− 1

p
GC(p)GU(p)G′

An
(�(p)). (23)

Proof. To derive an expression for E(An An+1), we first take the derivative of (22) with
respect to s, to obtain

∂

∂s
GAn,An+1 (s, t) = p

p − t
GC(t)G′

An
(1 − (1 − s)GU(t)) GU(t)

+
(

1 − p

p − t

)
GC(p)G′

An
(1 − (1 − s)GU(p)) GU(p).
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672 O. BOXMA ET AL.

Then, taking the derivative with respect to t yields

∂2

∂t∂s
GAn,An+1 (s, t) = p

(p − t)2
GC(t) G′

An
(1 − (1 − s)GU(t)) GU(t)

+ p

p − t
G′

C(t) G′
An

(1 − (1 − s)GU(t)) GU(t)

− (1 − s)
p

p − t
GC(t)G′′

An
(1 − (1 − s)GU(t))G′

U(t) GU(t)

+ p

p − t
GC(t) G′

An
(1 − (1 − s)GU(t)) G′

U(t)

− p

(p − t)2
GC(p) G′

An
(1 − (1 − s)GU(p)) GU(p).

Letting s ↓ 0 and t ↓ 0 we obtain

E(An An+1)=E(An)

(
E(C)− 1

p

)
+E

(
A2

n

)
E(U)− GC(p) G′

An
(�(p)) GU(p)

p
.

Then,

Cov(An, An+1)=E(U)E
(
A2

n

) +E(An)

(
E(C)− 1

p

)
− 1

p
GC(p) GU(p) G′

An
(�(p))

−E(An)

(
E(An)E(U)+E(C)− 1 − ξn

p

)
,

which can be checked to equal the right-hand side of (23). �
We conclude this section by presenting the joint APGF of A0 and AN , where N is geo-

metrically distributed, i.e. P(N = n) = rn(1 − r) for n ∈N0 and r ∈ [0, 1]. We assume that
the process is stationary, i.e. A0 has the stationary distribution characterized in Theorem 5
(which, evidently, also implies that AN follows the stationary distribution). This joint APGF,
which can be seen as the discrete r-transform of the joint APGF of A0 and An (with n ∈N0),
provides insight into the level of correlation within the INGAR+ process; in particular, by
differentiation it allows the computation of the r-transform of the covariance between A0
and An. The results obtained may open the opportunity to get insight into structural prop-
erties of Cov(A0, An); cf. similar results for Lévy-fed queues [6, 12]. Combining the above
results, we obtain a representation for GA0,AN (t, s) =E((1 − t)A0 (1 − s)AN ), as follows. First,
observe that

GA0,AN (t, s) = (1 − r)
∞∑

n=0

rn
∞∑
�=0

E((1 − t)A0 (1 − s)An | A0 = �) P(A0 = �)

= (1 − r)
∞∑

n=0

rn
∞∑
�=0

(1 − t)�GAn (s | �) P(A0 = �) ,
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On two classes of reflected autoregressive processes 673

where GAn (s | �) :=E((1 − s)An | A0 = �). Relying on Remark 6, and remarking that in A(r, s)
only B(r, s) depends on the distribution of A0,

∞∑
n=0

rnGAn (s | �) =
∞∑

n=0

rn(1 −�(n)(s)
)�
�n(s)

− GC(p) rD(r, s)

1 + GC(p) rD(r, �(p))

∞∑
n=0

rn(1 −�(n+1)(p)
)�
�n(�(p)).

Combining the above elements, and using that A0 obeys the equilibrium distribution, we arrive,
after some algebra, at the following result.

Theorem 9. The joint APGF of A0 and AN (in stationarity) is given, with GA( · ) as determined
in Theorem 5, by

GA0,AN (t, s) = (1 − r)
∞∑

n=0

rnGA
(
t +�(n)(s) − t�(n)(s)

)
�n(s)

− (1 − r)
GC(p) rD(r, s)

1 + GC(p) rD(r, �(p))

∞∑
n=0

rnGA
(
t +�(n+1)(p) − t�(n+1)(p)

)
�n(�(p)).

4. The GAR+ model

In this section we investigate the GAR+ model as specified in Section 1:

Zn+1 = (Sn(Zn) + Yn − Bn)
+ ,

with the random objects (Sn( · ))n∈N0 , (Bn)n∈N0 , and (Yn)n∈N0 as introduced earlier; in particu-
lar, we have P(Bn ≤ x) = 1 − e−λx for x ≥ 0. Recall that (S(t))t∈R+ is a Lévy subordinator with
Laplace exponent ψ .

This section has the same structure as the previous one, but, as it will turn out, we will
greatly benefit from the the duality property that was described in Section 2, facilitating direct
translation of the INGAR+ results into their GAR+ counterparts. The time-dependent behavior
of Zn is addressed in Section 4.1, while the stationary behavior is covered by Section 4.2;
joint LSTs and moments are derived in Section 4.3. While our approach heavily relies on the
duality, it is of course also possible to derive the results for GAR+ from scratch, by an iterative
approach similar to the one we developed to analyze the INGAR+ model.

4.1. Time-dependent analysis

By Theorem 3 there is a dual INGAR+ process

An+1 = (Rn(An) + Cn − Wn)
+ ,

when choosing

An =d Nγ (Zn), Rn(An) =d Nγ (Sn(Zn)) (i.e. Un,k =d 	),

Cn =d Nγ (Yn), Wn =d Geom(p).

This identification enables us to translate INGAR+ results to their GAR+ counterparts, as we
will show below. Since ϕZn (s) = GAn (γ s) by (3), we can express the results for generating
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674 O. BOXMA ET AL.

functions in terms of Laplace transforms. Also, note that �(s) = 1 − GU(s) =ψ(γ s)/γ and it
follows that ψ (k)(s) = γ�(k)(s/γ ) and �(k)(s) =ψ (k)(γ s)/γ . Define

�∗
n(s) :=

n−1∏
k=0

λϕY (ψ (k)(s))

λ−ψ (k)(s)
, �∗

n (s) := ψ (n)(s)

λ−ψ (n)(s)
�∗

n(s).

The following theorem immediately follows from the duality relations of Section 2 (see, in
particular, Theorem 3) and Theorem 4.

Theorem 10. For n = 0, 1, . . . and s ∈ [0, 1],

ϕZn(s) = ϕZ0 (ψ (n)(s))�∗
n(s) − ϕY (λ)

n−1∑
j=0

ϕZn−j−1 (ψ(λ)) �∗
j (s). (24)

The values of ϕZn (ψ(λ)) follow recursively by inserting s =ψ(λ) into (24).

4.2. Stationary analysis

Regarding the stationary behavior, we will mimic Theorem 5. First, we show that the sta-
bility conditions (S1) and (S2) are equivalent here, if An, Rn(An), Cn, and Wn are as defined
above.

Lemma 2. (S1) and (S2) are equivalent.

Proof. Since U =d 	=d S(1) we have that E(U)< 1 is equivalent to E(S(1))< 1.
Moreover, using integration by parts,

E(log (1 + Y))=
∫ ∞

0
log (1 + y) P(Y ∈ dy)=

∫ ∞

0

1

1 + y
P(Y > y) dy. (25)

Note that, for any given ε > 0,

1

1 + y
∼ 1 − e−εy

y

as y → ∞. Hence, the integral on the right-hand side of (25) is finite if and only if∫ ∞

0

1 − e−εy

y
P(Y > y) dy =

∫ ε

0

1 − ϕY (s)

s
ds

is finite for some ε > 0 (where the last equality is a consequence of the observation that
(1 − e−εy)/y = ∫ ε

0 e−sy ds). This finiteness condition is, by our duality, equivalent to∫ ε

0

1

s
(1 − GC(s)) ds<∞

for some ε > 0. But, due to [15], this condition is equivalent to E( log 1 + C)<∞. �
The following theorem immediately follows from the duality relations of Section 2 (see, in

particular, Corollary 3) and Theorem 5.

Theorem 11. If (S2) holds then the GAR+ process (Zn)n∈N0 is positive recurrent. The limit
stationary LST is given by

ϕZ(s) =�∗∞(s) − η�∗(s),

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/jpr.2020.6
Downloaded from https://www.cambridge.org/core. Eindhoven University of Technology, on 17 Jun 2021 at 14:38:38, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jpr.2020.6
https://www.cambridge.org/core


On two classes of reflected autoregressive processes 675

where �∗(s) := ∑∞
n=0 �

∗
n (s) and

η= P(Z = 0)= ϕY (λ)ϕZ(ψ(λ)) = ϕY (λ)�∗∞(ψ(λ))

1 + ϕY (λ)�∗(ψ(λ))
.

4.3. Moments and covariance structure

In this subsection we focus on deriving explicit formulas for moments and joint LSTs.

Theorem 12. The mean and the variance of the GAR+ process fulfil the following
recursions:

E(Zn+1)=E(S(1))E(Zn)+E(Y)− 1 − ηn

λ
,

Var(Zn+1)= Var(Zn)E(S(1))2 +E(Zn)Var(S(1))+ Var(Y)

− 2ηn

λ
(E(Zn)E(S(1))+E(Y))+ (1 − ηn)(1 + ηn)

λ2
,

where ηn = P(Zn+1 = 0) = P(Bn > Sn(Zn) + Yn) = ϕY (λ)ϕZn(ψ(λ)). In stationarity,

E(Z)=
E(Y)− 1 − η

λ

1 −E(S(1))
,

Var(Z)=
E(Z)Var(S(1))+ Var(Y)− 2η

λ
(E(Z)E(S(1))+E(Y))+ (1 − η)(1 + η)

λ2

1 −E(S(1))2
.

Proof. Just translate Theorem 6 via the duality. Note that

E(An)= γE(Zn) , E(C)= γE(Y) ,

Var(An)= γ 2Var(Zn)+ γE(Zn) , Var(Cn)= γ 2Var(Yn)+ γE(Yn) ,

E(U)=E(S(1)) , Var(U)=E(S(1))+ γVar(S(1))−E(S(1))2 .

Moreover, since λ= γ p and ψ(γ p)/γ =�(p), we have

ηn = ϕYn(λ)ϕZn(ψ(λ)) = GCn (p)GAn (ψ(γ p)/γ ) = ξn. �

We continue by discussing various results concerning the correlation structure of the
(Zn)n∈N0 process. We start by evaluating the joint LST of Zn and Zn+1, expressing it as
ϕZn,Zn+1 (s, t) in terms of the (univariate) LST of Zn, which is characterized through Theorem
5. We only cover the case t �= λ; if t = λ the result follows by L’Hôpital’s rule.

Theorem 13. For t �= λ,

ϕZn,Zn+1 (s, t) = λ

λ− t
ϕY (t)ϕZn(s +ψ(t)) − t

λ− t
ϕY (λ)ϕZn(s +ψ(λ)). (26)

Proof. By conditioning, we obtain

GZn,Zn+1 (s, t) =E
(
e−sZn e−t(Sn(Zn)+Yn−Bn)

+)
=E

(
e−sZnE

(
e−t(Sn(Zn)+Yn−Bn)

+ | Yn, Sn(Zn)
))

.
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676 O. BOXMA ET AL.

By (A3), for every z ∈R,

ϕ(z−B)+ (t) = λe−tz − te−λz

λ− t
e−tz, λ �= t,

so that

E

(
e−sZnE

(
e−t(Sn(Zn)+Yn−Bn)

+ | Yn, Sn(Zn)
))

=E

(
λe−sZn−t(Sn(Zn)+Yn) − te−sZn−λ(Sn(Zn)+Yn)

λ− t

)

= λ

λ− t
ϕY (t) E

(
e−sZn−tSn(Zn)

)
− t

λ− t
ϕY (λ) E

(
e−sZn−λ(Sn(Zn))

)
. (27)

By the definition of ψ( · ),

E(e−sS(X)) =
∫ ∞

0
e−ψ(s)x

P(X ∈ dx)= ϕX(ψ(s)),

and

E

(
e−sZn−tSn(Zn)

)
=E

(
E

(
e−sZn−tSn(Zn) | Zn

)) =E

(
e−sZn−ψ(t)Zn

)
= ϕZn (s +ψ(t)).

Now some elementary algebra shows that (27) equals (26), as desired. �

Theorem 14. The covariance of Zn and Zn+1 is given by

Cov(Zn, Zn+1)=E(S(1))Var(Zn)− ηn

λ
E(Zn)− ϕY (λ)

λ
ϕ′

Zn
(ψ(λ)).

Proof. Note that the supposed straightforward approach via the duality and using the relation
(6), which leads to Cov(An, An+1) = γ 2 Cov(Nγ (An),Nγ (An+1)), would yield a wrong result
since a simple transformation (An, An+1) �→ (Nγ (An),Nγ (An+1)) does not preserve the depen-
dence structure of the INGAR+ process. Instead, we used Theorem 13 and direct computations,
analogous to those underlying Theorem 8. �

The joint LST of Z0 and ZN , with N being geometrically distributed and the process being
in equilibrium at time 0, can also be computed. As this amounts to paralleling the approach
underlying Theorem 9, we omit this result.

5. Conclusion and suggestions for further research

We have introduced and analyzed two general classes of reflected autoregressive processes,
INGAR+ and GAR+. In our approach a crucial role is played by a powerful duality relation that
connects both classes of processes. We have shown that, despite the models’ general nature,
a detailed analysis of the time-dependent and stationary behavior is possible. We started by
analyzing the INGAR+ process, and subsequently we have used the duality relation to obtain
the analogous results for the GAR+ process.

Various options for follow-up research arise. In this study the focus was primarily on trans-
forms and moments, but one may wonder whether, in asymptotic regimes, the (time-dependent
or stationary) distribution function can be explicitly given. The results in [7] suggest poten-
tial scaling limits when approaching the stability limit (i.e. E(U) ↑ 1 and E(S(1)) ↑ 1 for the
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On two classes of reflected autoregressive processes 677

INGAR+ and GAR+ model, respectively). In addition, one could try to derive the system’s
tail behavior from the corresponding transforms; e.g. in the regime with heavy-tailed jumps in
the upward direction, Tauberian techniques could be applied. We also aim to investigate some
generalizations of the INGAR+ and GAR+ processes, allowing distributions for Wn and Bn

that are more general than just the geometric and exponential distributions, respectively.
Other opportunities for future study concern multivariate extensions of the processes that

we introduced. Such vector-valued counterparts are anticipated to be highly challenging, as for
such models finding the distributions on the boundaries of the state space typically leads to
severe complications.

Appendix A. The APGF and the LST

This appendix covers a set of technical results regarding the APGF of a non-negative
integer-valued random variable X and the LST of a non-negative random variable Y ,

GX(s) =E
(
(1 − s)X)

, ϕY (s) =E
(
e−sY)

.

Most of the results are standard, but we have included them for completeness and easy
reference.

Provided the first two moments exist, as s → 0, the expansions

GX(s) = 1 −E(X) s + E(X2) −E(X)

2
s2 + o(s2),

ϕY (s) = 1 −E(Y) s + E(Y2)

2
s2 + o(s2)

are valid. It follows that

E(X)= −G′
X(0), E(Y)= −ϕ′

Y (0),

E
(
X2) = G′′

X(0) − G′
X(0), E

(
Y2) = ϕ′′

Y (0),

Var(X)= G′′
X(0) − G′

X(0) − G′
X(0)2, Var(Y)= ϕ′′

Y (0) − ϕ′
Y (0)2

Probabilities can be recovered from the APGF if the limit as s → 1 is considered:

P(X = k)= ( − 1)k

k! G(k)
X (1 − ).

The following results are used several times in the paper; hence we have collected them
in this appendix. Their proofs are omitted, as these results follow after straightforward
calculations.

Lemma A1.

(i) If X is a non-negative integer-valued random variable and W is an independent
geometric random variable with success probability p ∈ (0, 1], then

G(X−W)+ (s) = GX(p) + p
GX(s) − GX(p)

p − s
= p

p − s
GX(s) − s

p − s
GX(p) (A1)

for s �= p, and G(X−W)+ (p) = GX(p) − pG′
X(p). Moreover,

P(W > X)= GX(p), P(W ≥ X)= 1

1 − p
GX(p) − p

1 − p
GX(1). (A2)
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(ii) If X is a non-negative random variable and if B has an exponential distribution with
parameter λ> 0, independent of X, then

ϕ(X−B)+ (s) = ϕX(λ) + λ
ϕX(s) − ϕX(λ)

λ− s
= λ

λ− s
ϕX(s) − s

λ− s
ϕX(λ) (A3)

for λ �= s and ϕ(X−B)+ (λ) = ϕX(λ) − λϕ′
X(λ). Moreover,

P(B> X)= ϕX(λ).
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