72. On Two Classes of Subalgebras of $L^{1}(\mathbf{G})$

By Leonard Y. H. Yap
Department of Mathematics University of Singapore

(Comm. by Kinjirô Kunugi, m. J. A., May 12, 1972)

1. Introduction. Let G and \hat{G} be two locally compact Abelian groups in Pontrjagin duality. The Fourier transform of a function $f \in L^{1}(G)$ will be denoted by \hat{f}. For $1 \leqq p<\infty$, define

$$
A^{p}(G)=\left\{f \in L^{1}(G): \hat{f} \in L^{p}(\hat{G})\right\}, \quad B^{p}(G)=L^{1}(G) \cap L^{p}(G)
$$

The space $A^{p}(G)$ is a Banach algebra with respect to the norm $\|\cdot\|_{A^{p}(G)}$ defined by $\|f\|_{A^{p}(G)}=\|f\|_{1}+\|\hat{f}\|_{p}$ and the usual convolution product. The Banach algebra $A^{p}(G)$ have been studied by Larsen-Liu-Wang [8], Lai [5]-[7], Martin-Yap [9], and others. The space $B^{p}(G)$ is a Banach algebra with respect to the norm $\|\cdot\|_{B^{p}(G)}$ defined by $\|f\|_{B^{p}(G)}=\|f\|_{1}+\|f\|_{p}$ and the usual convolution product. The Banach algebras $B^{p}(G)$ have been studied by Warner [12], Yap [15], and others. The purpose of this paper is to extend some of the results on $A^{p}(G)$ and $B^{p}(G)$ to the spaces

$$
A(p, q)(G)=\left\{f \in L^{1}(G): \hat{f} \in L(p, q)(\hat{G})\right\}
$$

and

$$
B(p, q)(G)=L^{1}(G) \cap L(p, q)(G)
$$

respectively (see next section for the definition of $L(p, q)(G)$ and some relevant facts about these spaces). In Section 2 we identify the maximal ideal spaces of the algebras $A(p, q)(G)$ and $B(p, q)(G)$, show that they satisfy Ditkin's condition and that the Shilov-Wiener Tauberian theorem holds for these algebras. In Section 3 we prove non-factorization theorems for these algebras.
2. Tauberian theorem for $A(p, q)(\boldsymbol{G})$ and $B(p, q)(\boldsymbol{G})$. For the convenience of the reader, we now review briefly what we need from the theory of $L(p, q)$ spaces.

Definition 2.1. Let f be a measurable function defined on (G, λ), where λ is the Haar measure of G. For $y \geq 0$, we define

$$
m(f, y)=\lambda\{x \in G:|f(x)|>y\} .
$$

For $x \geq 0$, we define

$$
\begin{aligned}
f^{*}(x) & =\inf \{y: y>0 \text { and } m(f, y) \leqslant x\} \\
& =\sup \{y: y>0 \text { and } m(f, y)>x\},
\end{aligned}
$$

with the conventions inf $\phi=\infty$ and $\sup \phi=0$. For $x>0$, we define

$$
f^{* *}(x)=x^{-1} \int_{0}^{x} f^{*}(t) d t
$$

We also define

$$
\begin{aligned}
& \|f\|_{(p, q)}^{*}=\left\{\int_{0}^{\infty}\left[x^{1 / p} f^{*}(x)\right]^{q} \frac{d x}{x}\right\}^{1 / q}, \quad(0<p<\infty, 0<q<\infty) \\
& \|f\|_{(p, \infty)}^{*}=\sup _{x>0} x^{1 / p} f^{*}(x) \quad(0<p<\infty) \\
& L(p, q)(G)=\left\{f:\|f\|_{(p, q)}^{*}<\infty\right\} .
\end{aligned}
$$

It is quite easy to see that we have

$$
\int_{0}^{\infty} f^{*}(x)^{p} d x=\int_{G}|f(x)|^{p} d \lambda(x)
$$

and hence $L^{p}(G)=L(p, p)(G), A^{p}(G)=A(p, p)(G), B^{p}(G)=B(p, p)(G)$.
If we replace $f^{*}(x)$ by $f^{* *}(x)$ in the definition of $\|f\|_{(p, q)}^{*}$, the resulting number will be denoted by $\|f\|_{(p, q)}$. For $1<p<\infty, 1 \leqslant q \leqslant \infty$, it is known that
(i) $\|f\|_{(p, q)}^{*} \leq\|f\|_{(p, q)} \leq p /(p-1) \cdot\|f\|_{(p, q)}^{*}$ (see the proof of (3.2) in [13]),
(ii) $\left(L(p, q),\|\cdot\|_{(p, q)}\right)$ is a Banach space. (see $\left.[4,(2.6)],[10,(2.1)].\right)$ Thus we can endow $A(p, q)(G)$ and $B(p, q)(G)(1<p<\infty, 1 \leq q \leq \infty)$ with the norms

$$
\|f\|_{A(p, q)}=\|f\|_{1}+\|\hat{f}\|_{(p, q)}, \quad\|f\|_{B(p, q)}=\|f\|_{1}+\|f\|_{(p, q)}
$$

respectively.
We now single out the following fact for easy reference.
Lemma 2.2. Let $1<p<\infty, 1 \leqslant q \leqslant \infty$. Let $\left\{f_{n}\right\}$ be a sequence in $L(p, q)(G)$ and $\left\|f_{n}-f\right\|_{(p, q)} \rightarrow 0$, where $f \in L(p, q)(G)$. Then $\left\{f_{n}\right\}$ has a subsequence which converges pointwise almost everywhere to f.

Proof. See the proof of (2.3) in Hunt [4, p. 258] and (2.1(i)) above.
We will prove the main result in this section via the concept of Segal algebra whose definition we now recall. A subalgebra $S(G)$ of $L^{1}(G)$ is called a Segal algebra if:
(S-1) $S(G)$ is dense in $L^{1}(G)$ in the L^{1}-norm topology and if $f \in S(G)$ then $f_{a} \in S(G)$, where $f_{a}(x)=f\left(a^{-1} x\right)$;
(S-2) $S(G)$ is a Banach algebra under some norm $\|\cdot\|_{S}$ which also satisfies $\|f\|_{S}=\left\|f_{a}\right\|_{S}$ for all $f \in S(G), a \in G$ (multiplication in $S(G)$ is the usual convolution);
(S-3) if $f \in(G)$, then for any $\varepsilon>0$ there exists a neighborhood U of the identity element of G such that $\left\|f_{y}-f\right\|_{s}<\varepsilon$ for all $y \in U$.
Proposition 2.3. For $1<p<\infty$ and $1 \leq q<\infty$, the space $A(p, q)$ is a Segal algebra with respect to the norm $\|\cdot\|_{A(p, q)}$.

Proof. Clearly $A(p, q)$ is a subalgebra of L^{1} and $f_{a} \in A(p, q)$ whenever $f \in A(p, q), a \in G$. Since $D=\left\{f \in L^{1}: \hat{f}\right.$ has compact support $\}$ is dense in L^{1} (see [11, 2.6.6]) and $D \subset A(p, q), A(p, q)$ is dense in L^{1}. Thus condition ($\mathrm{S}-1$) is satisfied.

That $A(p, q)$ is a Banach algebra with respect to the norm $\|\cdot\|_{A(p, q)}$ can be proved as in [8, Theorems 1 and 3], using Lemma (2.2) above.

It is clear that $\|f\|_{A(p, q)}=\left\|f_{a}\right\|_{A(p, q)}$ for all $f \in A(p, q), a \in G$. Thus condition (S-2) is fulfiled.

Next we check that $A(p, q)$ satisfies condition (S-3). Let $0 \neq f \in A(p, q)$ and let $\varepsilon>0$. First we choose a neighborhood U of the identity element e of G such that $\left\|f_{y}-f\right\|_{1}<\varepsilon / 2$ for all $y \in U$. Define $\varepsilon^{\prime}=\varepsilon(p-1) / p$. Choose a continuous function ϕ on \hat{G} having compact support such that $\|\phi-\hat{f}\|_{(p, q)}^{*}<\varepsilon^{\prime} / 8$ (see [13, (4.2)]). Let K denote the support of ϕ, and let $K^{\prime}=\hat{G} \backslash K$. It follows that

$$
\begin{equation*}
\left\|\hat{f} \chi_{K^{\prime}}\right\|_{(p, q)}^{*}<\varepsilon^{\prime} / 8 . \tag{1}
\end{equation*}
$$

Now define

$$
N\left(K, \varepsilon^{\prime}\right)=\left\{y \in G:|(y, \gamma)-1|<\varepsilon^{\prime} / 4\|\hat{f}\|_{(p, q)}^{*} \text { for all } \gamma \in K\right\} .
$$

Then $N\left(K, \varepsilon^{\prime}\right)$ is a neighborhood of e in G. We now choose a symmetric neighborhood W of e such that $W \subset u \cap N\left(K, \varepsilon^{\prime}\right)$. It follows that
(i) for $y \in W$ and $\gamma \in K$ we have

$$
\left|\hat{f}_{y}(\gamma)-\hat{f}(\gamma)\right|=\left|\left(y^{-1}, \gamma\right)-1\right| \cdot|\hat{f}(\gamma)|<\varepsilon^{\prime}\left(4\|\hat{f}\|_{(p, q)}^{*}\right)^{-1}|\hat{f}(\gamma)|,
$$

and hence $\left\|\left(\hat{f}_{y}-\hat{f}\right) \chi_{K}\right\|_{(p, q)}^{*}<\varepsilon^{\prime} / 4$;
(ii) for $y \in W$ and $\gamma \in K^{\prime}$ we have $\left|\hat{f}_{y}(\gamma)-\hat{f}(\gamma)\right| \leqq 2|\hat{f}(\gamma)|$. It follows from (1) that $\left\|\left(\hat{f}_{y}-\hat{f}\right) \chi_{K^{\prime}}\right\|_{(p, q)}^{*}<\varepsilon^{\prime} / 4$.
Thus for $y \in W$ we have $\| \hat{f}_{y}-\hat{f}_{(p, q)}^{*}<\varepsilon^{\prime} / 2$, and hence $\left\|f_{y}-f\right\|_{A(p, q)}<\varepsilon$ for all $y \in W$.

Proposition 2.4. For $1<p<\infty$ and $1 \leqq q<\infty$, the space $B(p, q)$ is a Segal algebra with respect to some norm which is equivalent to the norm $\|\cdot\|_{B(p, q)}$.

Proof. Blozinski [1, (2.9)] shows that if $f \in L^{1}$ and $g \in L(p, q)$ then $\|f * g\|_{(p, q)} \leqq C(p, q)\|f\|_{1} \cdot\|g\|_{(p, q)}$, where $C(p, q)$ is a constant depending only on p, q. We assume with no loss of generality that $C(p, q) \geq 1$. It follows that if $f, g \in B(p, q)$ then $\|f * g\|_{B(p, q)} \leqq C(p, q)\|f\|_{B(p, q)} \cdot\|g\|_{B(p, q)}$. Thus $\mid\|f\|_{B(p, q)}=C(p, q)\|f\|_{B(p, q)}$ defines a norm in $B(p, q)$ under which $B(p, q)$ is a Banach algebra. Since $B(p, q)$ contains all the continuous functions with compact supports, $B(p, q)$ is dense in L^{1}. Thus conditions (S-1) and (S-2) are satisfied.

We now prove that $B(p, q)$ satisfies condition (S-3). Let $0 \neq f \in B(p, q)$ and let $\varepsilon>0$. First choose a continuous function ϕ with compact support such that $\|\phi-f\|_{(p, q)}^{*}<\varepsilon^{\prime} / 4$, where $\varepsilon^{\prime}=\varepsilon(p-1) / p C(p, q)$. Let $K=$ support of ϕ. By the uniform continuity of ϕ, there is a neighborhood V of the identity element e in G such that

$$
\left\|\phi-\phi_{x}\right\|_{\infty}<\frac{\varepsilon^{\prime}}{4}(q / p)^{1 / q}(2 \lambda(K))^{-1 / p}
$$

for all $x \in V$. It follows that $\left\|\phi-\phi_{x}\right\|_{(x, q)}^{*}<\varepsilon^{\prime} / 4$ for all $x \in V$. Next choose a neighborhood W of e such that $W \subset V$ and $\left\|f-f_{x}\right\|_{1}<\varepsilon / 4 C(p, q)$ for all $x \in W$. Thus for $x \in W$ we have

$$
\begin{aligned}
\left\|\left\|f-f_{x}\right\|_{B(p, q)}\right. & =C(p, q) \cdot\left\|f-f_{x}\right\|_{1}+C(p, q) \cdot\left\|f-f_{x}\right\|_{(p, q)} \\
& <\varepsilon / 4+C(p, q)\left[\|f-\phi\|_{(p, q)}+\left\|\phi-\phi_{x}\right\|_{(p, q)}+\left\|\phi_{x}-f_{x}\right\|_{(p, q)}\right] \\
& <\varepsilon / 4+C(p, q) \frac{p}{p-1}\left(\varepsilon^{\prime} / 4+\varepsilon^{\prime} / 4+\varepsilon^{\prime} / 4\right)=\varepsilon .
\end{aligned}
$$

Theorem 2.5. Let $S(G)=A(p, q)(G)$ or $B(p, q)(G)$. Then
(i) the maximal ideal space of $S(G)$ can be identified with the dual group \hat{G} of G;
(ii) the algebra $S(G)$ satisfies Ditkin's condition;
(iii) the Shilov-Wiener Tauberian theorem holds in $S(G)$.

Proof. Immediate from Propositions (2.3) and (2.4) and the fact that every Segal algebra has properties (i)-(iii) (Yap [16]).
3. Non-factorization in $\mathbf{A}(\boldsymbol{p}, q)(\boldsymbol{G})$ and $B(\boldsymbol{p}, \boldsymbol{q})(\boldsymbol{G})$. We recall that an algebra A is said to have the factorization property if $A=A \cdot A$, where $A \cdot A=\{x y: x, y \in A\}$. We use A^{2} to denote the ideal in A generated by $A \cdot A$. The group algebra $L^{1}(G)$ is known to have the factorization property (Cohen [2]), but in general $A^{p}(G)$ and $B^{p}(G)$ do not satisfy this property (Martin-Yap [9] and Yap [15]). In this section we extend these nonfactorization theorems to the algebras $A(p, q)(G)$ and $B(p, q)(G)$.

Lemma 3.1. $A(p, q)^{2} \subset A(p / 2, q / 2)$.
Proof. It suffices to show that if $f, g \in A(p, q)$ then $f * g \in A(p / 2$, $q / 2$). First we define $\alpha=2(p+q) / q$. Thus $|\hat{f}|^{p / \alpha},|\hat{g}|^{p / \alpha} \in L(\alpha, \alpha q / p)$ and by O'Neil [10, 3.4] we see that $|\hat{f} \hat{g}|^{p / \alpha} \in L(r, s)$, where

$$
1 / r=1 / \alpha+1 / \alpha, \quad 1 / s=p / \alpha q+p / \alpha q
$$

It follows that $\widehat{f * g}=\hat{f} \hat{g} \in L(p / 2, q / 2)$, and hence $f * g \in A(p / 2, q / 2)$.
Theorem 3.2. If G is non-discrete, $1<p<\infty, 1 \leqq q<\infty$, then $A(p, q)(G)^{2} \neq A(p, q)(G)$.

Proof. Suppose $A(p, q)^{2}=A(p, q)$, then by Lemma (3.1) we would have $A(p, q) \subset A\left(p / 2^{n}, q / 2^{n}\right)$ for $n=1,2,3, \cdots$. We will show that this leads to a contradiction. Since G is non-discrete, \hat{G} is non-compact, and we may choose a symmetric neighborhood U of the identity in \hat{G} whose closure \bar{U} is compact, and a sequence $\gamma_{1}, \gamma_{2}, \gamma_{3}, \ldots$ in \hat{G} such that

$$
\gamma_{i} U^{2} \cap \gamma_{j} U^{2}=\emptyset \quad(i \neq j)
$$

Now let N be a positive integer such that $p<2^{N}$. Define

$$
\begin{gathered}
\alpha=2^{N} / p, a_{n}=n^{-\alpha} \quad(n=1,2,3, \cdots) \\
g=\chi_{U}, h=\sum_{k=1}^{\infty} a_{k} \chi_{r_{k} U^{2}}
\end{gathered}
$$

Thus $g, h \in L^{2}(\hat{G})$ and so by Rudin [11, Theorem 1.6.3] there is a function $f \in L^{1}(G)$ such that $\hat{f}=g * h$. It follows that $\hat{f}(\gamma)=g * h(\gamma)=a_{k} \rho(U)$ for $\gamma \in \gamma_{k} U$, where ρ denotes the Harr measure of \hat{G}. Direct computations (similar to those in [14, p. 138]) show that $\hat{f} \in L(p, q)$, but $\hat{f} \notin L\left(p / 2^{N}\right.$, $\left.q / 2^{N}\right)$. Hence $f \in A(p, q)$, but $f \notin A\left(p / 2^{N}, q / 2^{N}\right)$.

Lemma 3.3. If $f \in L\left(p_{1}, s\right) \cap L\left(p_{2}, s\right)$, then $f \in L(r, s)$ for all r such
that $p_{1}<r<p_{2}$.
Proof. Define $\beta=\left(1 / r-1 / p_{2}\right)\left(1 / p_{1}-1 / p_{2}\right)^{-1}$, and note that

$$
\begin{aligned}
\|f\|_{(r, s)}^{* s} & =\int_{0}^{\infty} f^{*}(x)^{s} x^{s / r-1} d x \\
& =\int_{0}^{\infty}\left[f^{*}(x)^{s s} x^{\beta\left(s / p_{1}-1\right)}\right] \cdot\left[f^{*}(x)^{(1-\beta) s} x^{(1-\beta)\left(s / p_{2}-1\right)}\right] d x
\end{aligned}
$$

$$
\leq\|f\|_{\left(p_{1}, s\right)}^{* s \beta} \cdot\|f\|_{\left(p_{2}, s\right)}^{* s(1-\beta)} \quad \text { (by Hölder's inequality). }
$$

Theorem 3.4. If G is non-discrete and $1<p<\infty, 1 \leqq q<\infty$, then $B(p, q)(G)^{2} \neq B(p, q)(G)$.

Proof. Let $f, g \in B(p, q)$. Since $L^{1}=L(1,1)$, and $L(1,1) \subset L(1, q)$ (by [13, (3.3)]), it follows that $f, g \in L(1, q)$. Define $r=2 p /(1+p)$. Clearly $1<r<p$, and so $f, g \in L(r, q)$ by Lemma (3.3). By [13, (3.5)] we have $f * g \in L(p, q / 2)$. Thus $B(p, q)^{2} \subset B(p, q / 2)$. But $B(p, q / 2)$ is a proper subset of $B(p, q)$ (see the proof of Case I of Theorem (2.7) in Yap [14]).

Remark 3.5. Theorem (3.4) is valid for all (non-discrete) locally compact unimodular groups and the proof is the same.

Conjecture. For a Segal algebra $S(G), S(G)^{2} \neq S(G)$ if $S(G) \neq L^{1}(G)$.

References

[1] A. P. Blozinski: On a convolution theorem for $L(p, p)$ spaces (to appear).
[2] P. J. Cohen: Factorization in group algebras. Duke Math. J., 26, 199-205 (1959).
[3] E. Hewitt and K. A. Ross: Abstract Harmonic Analysis. I. Berlin (1963).
[4] R. A. Hunt: On $L(p, p)$ spaces, l'Enseigne. Math., 12, 249-276 (1966).
[5] H. C. Lai: On some properties of $A^{p}(G)$-algebras. Proc. Japan Acad., 45, 572-575 (1969).
[6] -: On the category of $L^{1}(G), L^{p}(G)$ in $A^{q}(G)$. ibid,. 45, 577-581 (1969). (1969).
[7] -: Remark on the $A^{p}(G)$-algebras. ibid., 46, 58-63 (1970).
[8] R. Larsen, T. S. Liu, and J. K. Wang: On functions with Fourier transforms in L^{p} Michigan Math. J., 11, 369-378 (1964).
[9] J. C. Martin and L. Y. H. Yap: The algebra of functions with Fourier transforms in Lp. Proc. Amer. Math. Soc., 24, 217-219 (1970).
[10] R. O'Neil: Convolution operators and $L(p, q)$ spaces. Duke Math. J., 30, 129-142 (1963).
[11] W. Rudin: Fourier Analysis on Groups. New York (1962).
[12] C. R. Warner: Closed ideals in the group algebra $L^{1}(G) \cap L^{2}(G)$. Trans. Amer. Math. Soc., 121, 408-423 (1966).
[13] L. Y. H. Yap: Some remarks on convolution operators and $L(p, q)$ spaces. Duke Math. J., 36, 647-658 (1969).
[14] - -: On the impossibility of representing certain functions by convolutions. Math. Scand., 26, 132-140 (1970).
[15] -: Ideals in subalgebras of the group algebras. Studia Math., 35, 165-175 (1970).
[16] ——: Every Segal algebra satisfies Ditkin's condition. Studia Math., 40, 235-237 (1971).

