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(Comm. by Kinjir.5 KuNu(I, M. $..., May 12, 1972)

1. introduction. Let G and be two locally compact Abelian
groups in Pontrjagin duality. The Fourier transform of a unction
f e L(G) will be denoted by ]. For l<_p ao, define

A(G)--{f eLl(G)" f eL()}, B,(G)=L(G)L(G).
The space A(G) is a Banach algebra with respect to the .norm
defined by I]fll(o)-Ilfll+llf]l and the usual convolution product. The
Banach algebra Av(G) have been studied by Larsen-Liu-Wang [8], Lai
[5]-[7], Martin-Yap [9], and others. The space B(G) is a Banach
algebra with respect to the norm "}1,() defined by IIf]l,(o)=llflll+
and the usual convolution product. The Banach algebras B’(G) have
been studied by Warner [12], Yap [15], and others. The purpose of
this paper is to extend some of the results on A’(G) and B’(G) to the
spaces

A(p, q)(G)= {f e L’(G)" ] e L(p, q)()}
and

B(p, q)(G):=LI(G) gl L(p, q)(G)
respectively (see next section or the definition of L(p, q)(G) and .some
relevant facts about these spaces). In Section 2 we identiy the maxi-
mal ideal spaces of the algebras A(p, q)(G)and B(p, q)(G), show that
they satisfy Ditkin’s condition and that the Shilov-Wiener Tauberian
theorem holds for these algebras. In Section 3 we prove non-factori-
zation theorems or these lgebras.

2. Tauberian theorem for A(p, q)(G) and B(p,q)(G). For the
convenience of the reader, we now review briefly what we need from
the theory of L(p, q) spaces.

Definition 2..1. Let f be a measurable unction defined on (G, ),
where 2 is the Haar measure of G. For y>_0, we define

re(f, y)--2{x e G"
For x >_ 0, we define

f*(x) inf {y" y> 0 and re(f, y)< x}
=sup {y" y>0 and re(f, y)>x},

with the conventions inf= and sup =0. For x>.0, we define

f**(x) x-f*(t)dt.

We also define
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f I1’,>--sup x/’f*(x) (O<p< c)

L(p, q)(G) {f f [1, < c).
It is quite easy to see that we have:f*(x)"dx o,f(x) ," d(x)

and hence L(G)=L(p, p)(G), A(G)--A(p, p)(G), B(G)=B(p, p)(G).
If we replace f*(x) by f**(x) in the definition of IIfll,), the result-

ing number will be denoted by f I1(,). For lp c, 1< q< c, it is
known that

(i) f ]], q) -- f ]l(,q) -- P / (P-- 1). f II(*,q) (see the proo o (3.2) in
[13]),

(ii) (L(p, q), ll’ll(,q)) is a Banach space. (see [4, (2.6)], [10, (2.1)].)
Thus we can endow A(p, q)(G) and B(p, q)(G) (lpc, l_q<_ c) with
the norms

respectively.
We now single out the following fact or easy reference.
Lemma 2.2. Let lpc, lqc. Let {f} be a sequence in

L(p, q)(G) and llf-fll(,)-0, where f e L(p, q)(G). Then {fn} has a
subsequence which converges pointwise almost everywhere to f

Proof. See the proof of (2.3) in Hunt [4, p. 258] and (2.1(i)) above.
We will prove the main result in this section via the concept of

Segal algebra whose definition we now recall. A suba!gebra S(G) of
LI(G) is called a Segal algebra if"

(S-1) S(G) is dense in L(G) in the L-norm topology and i fe S(G)
then f e S(G), where f(x)-f(a-x)

(S-2) S(G) is a Banach algebra under some norm II’ll which also
satisfies f lis f lls or all f e S(G), a e G (multiplication
in S(G) is the usual convolution);

(S-3) if f e (G), then or any >0 there exists a neighborhood U
of the identity element of G such that I]fv--flls<Y. or all
yeU.

Proposition 2.:. For lpc and l<_qc, the space A(p,q)
is a Segal algebra with respect to the norm I1"

Proof. Clearly A(p, q) is a subalgebra of L and f e A(p, q) when-
ever f e A(p, q), a e G. Since D={f e L" j has compact support} is
dense in L (see [11, 2.6.6]) and DA(p, q), A(p, q) is dense in L. Thus
condition (S-1) is satisfied.

That A(p, q) is a Banach algebra with respect to the norm
can be proved as in [8, Theorems I and 3], using Lemma (2.2) above.
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It is clear that for all f A(p, q), a e G. Thus con-
dition (S-2) is fulfiled.

Next we check that A(p,q) satisfies condition (S-3). Let
0:/=f e A(p, q) and let 0. First we choose a neighborhood U of the
identity element e of G such that Inf-fll</2 for all y e U. Define
’=(p-1)/p. Choose a continuous function on G having compact sup-
port such that ll--fl,q)e’/8 (see [13, (4.2)]). Let K denote the sup-
port of , and let K’=K. It follows that

Now define

N(K, ’)- {p G" [(p, T)- 1[<e’/4 ]]/[]p,q) for all r K}.
Then N(K, ’) is a neighborhood of e in G. We now choose a symmetric
neighborhood W of e sueh that Wc N(K, e’). I follows that

(i) forpWandKwehave

and hence (/-/)z II,q) <’/4;
(ii) for y e W and r e K’ we have f()-f()l2l/()l. It follows

from (1) that ll(f-f)Z.l,q)
Thus for y e W we have ll/-fll, <’/2, and hence
all y e W.

Proposition 2.4. For lp and lq, the space B(p,q)
is a Segal algebra with respect to some norm which is equivalent to
the norm I" ].(,q.

Proof. Blozinski [1, (2.9)] shows that if f e L and g e L(p, q) then
llf.gll(,q)C(p, q)Ilf[l’llgl(,q, where C(p, q) is a constant depending
only on p, q. We assume with no loss of generality that C(p, q)21. It
follows that if f, g e B(p, q) then lf*gl.(,q)C(p, q)
Thus ]]lfll.(,q)-C(p, q)]]fllB(p,q) defines a norm in B(p, q) under which
B(p, q) is a Banach algebra. Since B(p, q) contains all the continuous
functions with compact supports, B(p, q) is dense in L. Thus conditions
(S-l) and (S-2) are satisfied.

We now prove that B(p,q) satisfies condition (S-3). Let
OCf e B(p, q) and let 0. First choose a continuous function with
compact support such that l]--fll,q)<’/4, where ’-(p-1)/pC(p, q).
Let K=support of . By the uniform continuity of , there is a neigh-

borhood V of the identity element e in G such that

/q /p

or all V. It follows that --1,<s’/ or all V. Next choose
a neighborhood W of e such that Wc V and llf-ll<s/(, q) for all
W. husoreWwehave
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<14+C(p,q) p
p--1

Theorem 2.5. Let S(G):A(p, q)(G) or B(p, q)(G). Then
( i ) the maximal ideal space of S(G) can be identified with the dual

group of G;
(ii) the algebra S(G) satisfies Ditkin’s condition;
(iii) the Shilov-Wiener Tauberian theorem holds in S(G).
Proof. Immediate from Propositions (2.3) and (2.4) and the fact

that every Segal algebra has properties (i)-(iii) (Yap [16]).
3. Non-factorization in A(p, q)(G) and B(p, q)(G). We recall that

an algebra A is said to have the factorization property if A A. A, where
A.A {xy" x,y cA}. We use A to denote the ideal in A generated by A.A.
The group algebra L(G) is known to have the factorization property
(Cohen [2]), but in general A(G) and B(G) do not satisfy this property
(Martin-Yap [9] and Yap [15]). In this section we extend these non-
actorization theorems to the algebras A(p, q)(G) and B(p, q)(G).

Lemma 3.1. A(p, q)2A(p/2, q/2).
Proof. It suffices to show that if f, g e A(p, q) then f.g e A(p/2,

q/2). First we define a 2(p + q) / q. Thus If v/", I Iv/" e L(a, aq/p) and
by O’Neil [10, 3.4] we see that IfO!/" e L(r, s), where

1/r--1/+ 1/, 1/s--p/aq+p/aq.

It follows that f.g=f) e L(p/2, q/2), and hence f.g e A(p/2, q/2).
Theorem 3.2. If G is non-discrete, 1 p c, 1 <__ q c, then

A(p, q)(G)=/=A(p, q)(G).
Proof. Suppose A(p, q)--A(p, q), then by Lemma (3.1) we would

have A(p, q)cA(p/2, q/2) or n=l, 2, 3, We will show that this
leads to a contradiction. Since G is non-discrete, G is non-compact,
and we may choose a symmetric neighborhood U of the identity in
whose closure is compact, and a sequence ?, , , in such that

rU.rU= (i=/=])
Now let N be a positive integer such that p (2. Define

a=2/p, a,--n (n=l, 2, 3, ...)

g----Zv, h-- ,
Thus g, h e L() and so by Rudin [11, Theorem 1.6.3] there is a function

f e L(G) such that f=g.h. It ollows that f(r)=g.h(r)=ap(U) for

r e 7U, where p denotes the Harr measure of . Direct computations

(similar to those in [14, p. 138]) show that f e L(p, q), but f e L(p/2,
q/2). Hence f e A(p, q), but f e A(p/2, q/2).

Lemma 3.3. If f e L(p, s) f L(p, s), then f e L(r, s) for all r such
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that
Proof. Define fl=(1/r-1/p2)(1/p-l/p2)-1, and note that

f.,)-’:f*(x)x/-dx
:[f*(x),x,(/,-’ [f*(x)-,’x-,’/-’]dx

,,(,,). f(.,) (by HSlder’s inequality).
Theorem 3.4. If G is non-discrete and l(p(, lq(, then

B(p, q)(G)B(p, q)(G).
Proof. Let f, g e B(p, q). Since L=L(1, 1), and L(1, 1)cL(1, q)

(by [13, (3.3)]), it follows that f, g e L(1, q). Define r=2p/(1 + p).
Clearly 1 <r<p, and so f, g e L(r, q) by Lemma (3.3). By [13, (3.5)]
we have f,g e L(p, q/2). Thus B(p, q)cB(p, q/2). But B(p, q/2) is a
proper subset o B(p, q) (see the proof of Case I of Theorem (2.7)in
Yap [14]).

Remark 3.5. Theorem (3.4) is valid or all (non-discrete) locally
compact unimodular groups and the proo is the same.

Conjecture. For a Segal algebra S(G), S(G) S(G) if S(G) L(G).
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