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ON TWO-DIMENSIONAL HOLONOMY

JOÃO FARIA MARTINS AND ROGER PICKEN

Abstract. We define the thin fundamental categorical group P2(M, ∗) of a
based smooth manifold (M, ∗) as the categorical group whose objects are rank-

1 homotopy classes of based loops on M and whose morphisms are rank-2
homotopy classes of homotopies between based loops on M . Here two maps are
rank-n homotopic, when the rank of the differential of the homotopy between
them equals n. Let C(G) be a Lie categorical group coming from a Lie crossed
module G = (∂ : E → G, �). We construct categorical holonomies, defined to
be smooth morphisms P2(M, ∗) → C(G), by using a notion of categorical
connections, being a pair (ω,m), where ω is a connection 1-form on P , a
principal G bundle over M , and m is a 2-form on P with values in the Lie
algebra of E, with the pair (ω,m) satisfying suitable conditions. As a further
result, we are able to define Wilson spheres in this context.

Introduction

Categorification is an influential idea in many areas of mathematics, and in
geometry it is natural to try and think about categorifying the notions of holo-
nomy and parallel transport in terms of higher categorical generalisations of the
notions of loop, Lie group and connection on a principal bundle, in the spirit of
Baez and Schreiber [B, BS1, BS2]. In this article we construct a framework for 2-
dimensional, or surface, holonomy along such lines. The based loops on a manifold
M are replaced by what we call the (strict) thin fundamental categorical group of
M , P2(M, ∗), a monoidal category whose objects are rank-1 homotopy classes of
based loops on M and whose morphisms are rank-2 homotopy classes of homotopies
between based loops (or 1-parameter families of loops). Here, rank-1 homotopy, at
the level of loops, means that the loops are homotopic in such a way that the rank of
the differential of the homotopy between them is less than or equal to 1, i.e. the ho-
motopies between loops do not sweep out area. Similarly, at the level of morphisms,
two homotopies between based loops are rank-2 homotopic if they themselves are

Received by the editors December 4, 2007 and, in revised form, April 30, 2008.
2010 Mathematics Subject Classification. Primary 53C29; Secondary 18D05.
Key words and phrases. Non-abelian gerbe, 2-bundle, two-dimensional holonomy, crossed mod-

ule, categorical group, Wilson sphere.
The first author was financed by Fundação para a Ciência e Tecnologia (Portugal), post-

doctoral grant number SFRH / BPD / 34138 / 2006. This work was supported by the Programa
Operacional Ciência e Inovação 2010, financed by the Fundação para a Ciência e a Tecnologia
(FCT) and cofinanced by the European Community fund FEDER, in part through the research
project Quantum Topology POCI / MAT / 60352 / 2004.

c©2010 American Mathematical Society
Reverts to public domain 28 years from publication

5657

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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homotopic in such a way that the rank of the differential of the homotopy between
them is less than or equal to 2, i.e. the homotopy between homotopies does not
sweep out volume. For precise definitions, we refer to subsections 1.3.1 and 1.3.2.
The Lie group is replaced by a categorical Lie group, C(G), naturally obtained from
a crossed module of Lie groups G = (∂ : E → G, �). The connection on a principal
G-bundle P over M is replaced by what we call a categorical connection, consisting
of a connection 1-form on P with values in g, the Lie algebra of G, together with
a 2-form on P with values in e, the Lie algebra of E, satisfying some conditions in-
cluding the well-known “vanishing of the fake curvature”. Locally these conditions
correspond to Baez and Schreiber’s [BS1, BS2] local formulation for a 2-connection.
The Maurer-Cartan structure equation and Bianchi identity for the curvature of an
ordinary connection are shown to have natural analogues for the curvature 3-form
of the categorical connection. Also a variant of the Ambrose-Singer theorem (which
plays a crucial role in our construction of categorical holonomy) generalises to a
higher-order version.

A categorical holonomy is defined to be a (strict monoidal) smooth functor from
P2(M, ∗) to C(G). The main result that we prove (Theorem 2.14) is how a categor-
ical connection gives rise to a categorical holonomy. The underlying geometrical
idea is to lift the 1-parameter family of loops into P , horizontally in one direction,
namely the direction along the loops, and to use this lift to pull back the forms of
the categorical connection, which are then integrated suitably.

Note that the appearance of a principal G-bundle P with a connection is nat-
ural in the context of categorical holonomies. This is because, at the level of the
set of objects of P2(M, ∗), i.e. π1

1(M, ∗), the thin homotopy classes of based loops
on M , any smooth functor P2(M, ∗) → G gives rise to a smooth group morphism
π1
1(M, ∗) → G, and therefore it defines a principal G-bundle over M with a con-

nection [CP, MP].
The whole construction is carried out using the language and methods of dif-

ferential geometry and principal bundles, thereby avoiding working with infinite-
dimensional path spaces, which was an approach taken in [BS1, BS2]. The con-
struction is coordinate-free from the outset, since we use forms defined on P . We
remark that the construction of P2(M, ∗) is of interest in its own right in defin-
ing a strict thin fundamental categorical group of a manifold (previously only a
weak version was known). This part of our construction is very similar to that of
[BHKP, HKK].

We study the relation between our construction and non-abelian gerbes, as in
[BrMe], and 2-bundles, as in [BS1, BS2], in Subsection 2.4.6. Note that each 2-
bundle with structure 2-group coming from a crossed module of the form (Ad: G →
Aut(G), �), where � denotes the obvious left action of Aut(G) in G, is naturally
a non-abelian gerbe. Let G = (∂ : E → G, �) be a Lie crossed module. Our
construction corresponds to a particular case of G-2-bundles, for which the E-valued
transition functions are trivial, and therefore the G-valued transition functions
satisfy the usual cocycle condition for a principal G-bundle. Although G-2-bundles
are a natural way to approach two-dimensional holonomy, we emphasise that our
main goal is the definition of categorical group maps P2(M, ∗) → C(G). This is
a very strong condition, and we argue that it should force the G-2-bundle with
connection to be of the special form considered here; see Subsection 2.4.6 where
this point is elaborated.
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At the end of this article we define the notion of Wilson sphere, which means that
a categorical holonomy, taking values in the kernel of ∂ : E → G, can be associated
to embedded spheres in a manifold, up to acting by an element of the group G.

1. Preliminaries

1.1. Resumé of results and notation from the theory of principal fibre
bundles.

1.1.1. Connections on principal fibre bundles. For full details on connections on
principal fibre bundles see [KN, P].

LetM be a paracompact smooth manifold. LetG be a Lie group with Lie algebra
g. Consider a principal G-bundle P over M with canonical projection π : P → M .
For each x ∈ M , let Px = π−1(x) be the fibre at x. Also, let X(P ) denote the
Lie algebra of smooth vector fields on P . Recall that there exists a Lie algebra
morphism A ∈ g �→ A# ∈ X(P ) such that A#

u = d
dtu exp(tA)t=0, ∀u ∈ P, ∀A ∈ g.

Here if X ∈ X(P ) is a vector field, then Xu ∈ TuP (the tangent space of P at
u ∈ P ) denotes the value of X at the point u.

Denote the right action of G on P as g ∈ G �→ Rg ∈ diff(P ), where diff(P )
denotes the diffeomorphism group of P . Recall the following very useful formula:

(Rg)∗(A
#) =

(
g−1Ag

)#
,

where g ∈ G and A ∈ g. Given an element u ∈ P , recall that a vector Xu ∈ TuP is
said to be vertical if π∗(Xu) = 0. Let TV

u P denote the subspace of vertical vectors
in TuP . Notice that any Xu ∈ TV

u P is of the form A#
u for some A ∈ g, and this

correspondence is one-to-one.
Let ω ∈ A1(P, g) be a connection on P . In other words, ω is a smooth 1-form

on P with values in g such that:

(1) R∗
g(ω) = g−1ωg, ∀g ∈ G,

(2) ω(A#) = A, ∀A ∈ g.

Given an element u ∈ P , let TH
u P = {Xu ∈ TuP : ω(Xu) = 0}, the horizontal

subspace at u ∈ P . Then TH
u is a complementary subspace of TV

u P in TuP for each
u ∈ P . Moreover, the following identity holds for each g ∈ G and u ∈ P :(

TH
u P

)
g = TH

ugP.

The natural projection maps X ∈ TP �→ XH and X ∈ TP �→ XV are smooth.
Here TP denotes the tangent bundle of P . There also exists a unique map X ∈
X(M) �→ X̃ ∈ X(P ), called the horizontal lift of X ∈ X(M), such that X̃u ∈
TH
u P, ∀u ∈ P and π∗(X̃) = X, for any X ∈ X(M), the Lie algebra of smooth vector

fields on M . Note that this horizontal lift gives rise to linear maps TxM → TuP , if
π(u) = x, where x ∈ M and u ∈ P . The horizontal lift of a vector field X ∈ X(M)
is always G-invariant. In other words,

X̃g = X̃, ∀g ∈ G.

1.1.2. Curvature. Let P be a principal G-bundle over M and let ω ∈ A1(P, g) be a
connection 1-form on P . Given an n-form a on P , the exterior covariant derivative
of a is given by

Da = da ◦ (H ×H . . .×H︸ ︷︷ ︸
(n+1)-times

).
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Let Ω ∈ A2(P, g) be the curvature 2-form of the connection ω. It can be defined
as the exterior covariant derivative Dω of the connection 1-form ω. In other words,

Ω(X,Y ) = dω(XH , Y H),

where X,Y ∈ X(P ). The curvature 2-form Ω is G-equivariant, which means that

R∗
g(Ω) = g−1Ωg, ∀g ∈ G.

Also recall Cartan’s structure equation:

(1.1) dω(X,Y ) + [ω(X), ω(Y )] = Ω(X,Y ),

valid for any vector fields X,Y ∈ X(P ). The Bianchi identity can be stated by
saying that the exterior covariant derivative DΩ of the curvature form is zero. In
other words,

(1.2) DΩ = dΩ ◦ (H ×H ×H) = 0.

The Bianchi identity can also be written as

dΩ(X,Y, Z) + [ω(X),Ω(Y, Z)] + [ω(Y ),Ω(Z,X)] + [ω(Z),Ω(X,Y )] = 0,

for any smooth vector fields X,Y, Z ∈ X(P ).

1.1.3. Parallel transport. Let P be a principal G-bundle over the manifold M . Let
ω ∈ A1(P, g) be a connection on P . Recall that ω determines a parallel transport
along smooth curves. Specifically, given x ∈ M and a smooth curve γ : [0, 1] → M ,
with γ(0) = x, there exists a smooth map,

(t, u) ∈ [0, 1]× Px �→ Hω(γ, t, u) ∈ P,

uniquely defined by the conditions:

(1) d
dtHω(γ, t, u) =

(
d̃
dtγ(t)

)
Hω(γ,t,u)

; ∀t ∈ [0, 1], ∀u ∈ Px,

(2) Hω(γ, 0, u) = u; ∀u ∈ Px.

In particular, this implies that Hω(γ, t), given by u �→ Hω(γ, t, u), maps Px bi-
jectively into Pγ(t), for any t ∈ [0, 1]. Recall that the parallel transport is G-
equivariant. In other words,

Hω(γ, t, ug) = Hω(γ, t, u)g, ∀g ∈ G, ∀u ∈ Px.

1.1.4. The dependence of the parallel transport on a smooth family of curves - the
Ambrose-Singer theorem. Let M be a smooth manifold. Let Dn .

= [0, 1]n be the
n-cube, where n ∈ N. A map f : Dn → M is said to be smooth if its partial
derivatives of any order exist and are continuous as maps Dn → M . Let G be a Lie
group with Lie algebra g. Consider a smooth principal G-bundle π : P → M with
a connection 1-form ω ∈ A1(P, g).

Now let s ∈ [0, 1] �→ γs be a smooth 1-parameter family of smooth curves
[0, 1] → M . Here smooth means that the map Γ: (t, s) ∈ [0, 1]2 �→ γs(t) ∈ M
is smooth. Define the initial point map q : [0, 1] → M by q(s) = γs(0) for each
s ∈ [0, 1]. Choose u ∈ Pq(0) and set us = Hω(q, s, u) ∈ Pq(s), where s ∈ [0, 1].
Our purpose is to analyse the s-dependence of Hω(γs, t, us), where s, t ∈ [0, 1], by
calculating

∂

∂s
Hω(γs, t, us).

This analysis is of course classical.
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For convenience of notation, define

f(s, t) = Hω(γs, t, us); s, t ∈ [0, 1].

Let the coordinate vector fields of [0, 1]2 be ∂
∂t and ∂

∂s . We have

∂

∂t
ω

(
∂

∂s
f(s, t)

)
=

∂

∂t
f∗(ω)

(
∂

∂s

)
= f∗(dω)

(
∂

∂t
,
∂

∂s

)
+

∂

∂s
f∗(ω)

(
∂

∂t

)
= dω

(
∂

∂t
f(s, t),

∂

∂s
f(s, t)

)
.

Note that the second equation follows from the well-known formula

(1.3) dφ(X,Y ) = Xφ(Y )− Y φ(X)− φ([X,Y ]),

valid for any 2-form φ on a manifold M and any X,Y ∈ X(M). The last equation
follows from the fact that ∂

∂tf(s, t) is horizontal, by definition of parallel transport.

Therefore by Cartan’s structure equation (1.1) and the fact that ∂
∂tf(s, t) is

horizontal, it follows that

(1.4)
∂

∂t
ω

(
∂

∂s
f(s, t)

)
= Ω

(
∂

∂t
f(s, t),

∂

∂s
f(s, t)

)
.

Since Ω(X,Y ) = 0, if either of the vectors X or Y is vertical we can conclude that

∂

∂t
ω

(
∂

∂s
f(s, t)

)
= Ω

((
∂

∂t
f(s, t)

)H

,

(
∂

∂s
f(s, t)

)H
)
.

Note that, by definition of parallel transport, we have(
∂

∂t
f(s, t)

)H

=
∂

∂t
f(s, t) =

(
∂̃

∂t
γs(t)

)
Hω(γs,t,us)

.

Given that
(

∂
∂sf(s, t)

)H
is horizontal and the fact that

π∗

((
∂

∂s
f(s, t)

)H
)

= π∗

(
∂

∂s
f(s, t)

)
=

∂

∂s
π
(
f(s, t)

)
=

∂

∂s
γs(t),

it follows that (
∂

∂s
f(s, t)

)H

=

(
∂̃

∂s
γs(t)

)
Hω(γs,t,us)

.

Going back to equation (1.4), we have that, for each s ∈ [0, 1], ω
(

∂
∂sf(s, 0)

)
= 0,

since f(s, 0) = us = Hω(q, s, u), then
∂
∂sf(s, 0) is horizontal for each s ∈ [0, 1]. We

thus arrive at the following well-known result:

Lemma 1.1. Let G be a Lie group with Lie algebra g. Let P be a smooth principal
G-bundle over the manifold M . Let s ∈ [0, 1] �→ γs be a smooth 1-parameter family
of curves [0, 1] → M . Here smooth means that the map (s, t) ∈ [0, 1]2 �→ γs(t) ∈ M
is smooth. Consider a connection ω ∈ A1(P, g). Let q : [0, 1] → M be the curve such
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that q(s) = γs(0), ∀s ∈ [0, 1]. Choose u ∈ Pq(0), and let us = Hω(q, s, u) ∈ Pq(s),
where s ∈ [0, 1]. The following holds for each s, t′ ∈ [0, 1]:

(1.5) ω

(
∂

∂s
Hω(γs, t

′, us)

)
=

∫ t′

0

Ω

(
∂̃

∂t
γs(t),

∂̃

∂s
γs(t)

)
Hω(γs,t,us)

dt.

Consider the case when all curves γs : [0, 1] → M , where s ∈ [0, 1], are closed,
though possibly with varying initial points. (This flexibility will be important
to define Wilson spheres in Subsection 2.5.3.) Then we can define a family of
holonomies gγs

∈ G, where s ∈ [0, 1], by

usgγs
= Hω(γs, 1, us), ∀s ∈ [0, 1].

We will use the preceding lemma to obtain a differential equation satisfied by gγs
.

Because d
dsus is horizontal it follows that

ω

(
d

ds
(usgγs

)

)
= ω

(
us

d

ds
gγs

)
=

∫ 1

0

Ω

(
∂̃

∂t
γs(t),

∂̃

∂s
γs(t)

)
Hω(γs,t,us)

dt.

Since, for each s ∈ [0, 1], the vector us
d
dsgγs

is vertical, this means, by the second
condition of the definition of a connection 1-form ω (see Subsection 1.1.1), that

(1.6) us
d

ds
gγs

=

⎛⎝∫ 1

0

Ω

(
∂̃

∂t
γs(t),

∂̃

∂s
γs(t)

)
Hω(γs,t,us)

dt

⎞⎠#

Hω(γs,1,us)

or[
d

dt′
usgγ(s+t′)

]
t′=0

=
d

dt′
Hω(γs, 1, us) exp

⎛⎝t′
∫ 1

0

Ω

(
∂̃

∂t
γs(t),

∂̃

∂s
γs(t)

)
Hω(γs,t,us)

dt

⎞⎠
t′=0

=
d

dt′
usgγs

exp

⎛⎝t′
∫ 1

0

Ω

(
∂̃

∂t
γs(t),

∂̃

∂s
γs(t)

)
Hω(γs,t,us)

dt

⎞⎠
t′=0

,

which, given the fact that the right action of G on P is free, is equivalent to:

Lemma 1.2.

(1.7)
d

ds
gγs

= gγs

∫ 1

0

Ω

(
∂̃

∂t
γs(t),

∂̃

∂s
γs(t)

)
Hω(γs,t,us)

dt.

This fact will be of major importance later.

1.2. Crossed modules. All Lie groups and Lie algebras are taken to be finite-
dimensional.

Definition 1.3 (Lie crossed module). A crossed module G = (∂ : E → G, �) is given
by a group morphism ∂ : E → G, together with a left action � of G on E by
automorphisms, such that:

(1) ∂(X � e) = X∂(e)X−1; ∀X ∈ G, ∀e ∈ E,
(2) ∂(e) � f = efe−1; ∀e, f ∈ E.
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If both G and E are Lie groups, ∂ : E → G is a smooth morphism, and if the left
action of G on E is smooth, then G will be called a Lie crossed module.

A morphism G → G′ between the crossed modules G = (∂ : E → G, �) and G′ =
(∂′ : E′ → G′, �′) is given by a pair of maps φ : G → G′ and ψ : E → E′, making
the diagram

E
∂−−−−→ G

ψ

⏐⏐� ⏐⏐�φ

E′ ∂′
−−−−→ G′

commutative. In addition, we must have ψ(X � e) = φ(X) �′ ψ(e) for each e ∈ E
and each X ∈ G.

Given a Lie crossed module G = (∂ : E → G, �), then the induced Lie algebra
map ∂ : e → g, together with the derived action of g on e (also denoted by �), is a
differential crossed module, in the sense of the following definition; see [BS1, BS2,
B, BC].

Definition 1.4 (Differential crossed module). A differential crossed module, say
G = (∂ : e → g, �), is given by a Lie algebra morphism ∂ : e → g, together with a
left action of g on the underlying vector space of e, such that:

(1) For any X ∈ g the map e ∈ e �→ X � e ∈ e is a derivation of e. In other
words,

X � [e, f ] = [X � e, f ] + [e,X � f ]; ∀X ∈ g, ∀e, f ∈ e.

(2) The map g → Der(e) from g into the derivation algebra of e induced by the
action of g on e is a Lie algebra morphism. In other words,

[X,Y ] � e = X � (Y � e)− Y � (X � e); ∀X,Y ∈ g, ∀e ∈ e.

(3) ∂(X � e) = [X, ∂(e)]; ∀X ∈ g, ∀e ∈ e.
(4) ∂(e) � f = [e, f ]; ∀e, f ∈ e.

Note that the map (X, e) ∈ g× e �→ X � e ∈ e is necessarily bilinear.
Therefore, given a differential crossed module G = (∂ : e → g, �), there exists a

unique crossed module of simply connected Lie groups G = (∂ : E → G, �) whose
differential form is G, up to isomorphism. The proof of this result is standard Lie
theory, together with the lift of the Lie algebra action to a Lie group action, which
can be found in [K], Theorem 1.102.

Example 1.5. Let G be a Lie group with a left action � on an abelian group V
by automorphisms. For example, take V to be any representation of G on a vector
space. If we put ∂ = 1G, then (∂ : V → G, �) is a Lie crossed module. Its differential
form is given by the derived action of g on V and the zero map V → g.

Example 1.6. Let G be any Lie group. Let Ad denote the adjoint action of G on
G. Then (id : G → G,Ad) is a Lie crossed module.

Example 1.7. Let G and E be Lie groups, and let ∂ : E → G be a surjective map
such that ker(∂) is central in E. Define a left action of G on E as g � e = g0eg

−1
0 ,

where g0 ∈ E is such that ∂(g0) = g ∈ G, and e ∈ E. Then G = (∂ : E → G, �) is a
Lie crossed module.
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Example 1.8. In the previous example, we can take the universal covering map
SU(2) → SO(3), whose kernel is {±1}. The differential form of this crossed module
is given by the adjoint action of su(2) on su(2) and the identity map.

Example 1.9. More generally, take the universal cover ∂ : E → G of the Lie group
G. Then the construction in Example 1.7 can be applied since the kernel of ∂ is
necessarily central in E.

Example 1.10. Let H be the group of upper triangular matrices in R which only
have 1’s in the main diagonal. Define a Lie group map ∂ : H → R2 as

∂

⎛⎝1 a b
0 1 c
0 0 1

⎞⎠ = (a, c),

where a, b, c ∈ R. Then the kernel of ∂ : H → R2 is central in H, and therefore the
construction in Example 1.7 can be applied.

Example 1.11. Let E be any Lie group. Let Aut(E) be the group of automor-
phisms of E. Then Aut(E) is a Lie group; in fact, it is a Lie subgroup of GL(e) if
E is simply connected. Consider the map Ad: E → Aut(E) that sends e ∈ E to
the automorphism Ad(e) : E → E. The group Aut(E) acts on E as φ � e = φ(e),
where φ ∈ Aut(E) and e ∈ E. Then (Ad: E → Aut(E), �) is a Lie crossed module.

The previous construction yields several examples of Lie crossed modules. For
instance, Example 1.8 is obtained this way since Aut(SU(2)) = SO(3). To get new
examples, however, we need to consider non-semisimple Lie groups.

Example 1.12. In Example 1.11, take E = H, the group of upper triangular 3×3
matrices in R, which only have 1’s in the main diagonal. Then the crossed module
(Ad: H → Aut(H), �) is highly non-trivial. In fact, Ad(E) is isomorphic to R2,
whereas the cokernel Out(E) of Ad is isomorphic to GL(2,R); see [KH]. The kernel
of Ad is a central subgroup of H isomorphic to R; see Example 1.10.

1.2.1. Crossed modules and categorical groups.

Definition 1.13 (Categorical groups and Lie categorical groups). A categorical

group C is a groupoid provided with a strict monoidal structure C × C ⊗−→ C, as
well as a “group inversion” functor −1 : C → C, such that both the set of objects
C0 of C and the set of morphisms C1 of C are groups under the tensor product,
and both the source and target maps σ, τ : C1 → C0 are group morphisms. A
Lie categorical group is defined analogously by replacing groups by Lie groups and
group morphisms by Lie group morphisms.

See [BM, BL] for more details.

Definition 1.14 (Morphism of categorical groups). A morphism of categorical
groups is given by a strict monoidal functor; see [ML].

It is well known that the category of crossed modules and the category of cate-
gorical groups are equivalent; see for example [BL, BM, BHS]. Let us explain how
to define a categorical group C(G) from a crossed module G. This construction is
an old one.

Let G = (∂ : E → G, �) be a crossed module. The set of objects C0 of C(G) is
given by all elements of G. The set of morphisms C1 of C(G) is given by the set of

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON TWO-DIMENSIONAL HOLONOMY 5665

all pairs (X, e), where X ∈ G and e ∈ E. The source and the target of (X, e) ∈ C1

are given by σ(X, e) = X and τ (X, e) = ∂(e)−1X, respectively. In other words,

a morphism in C(G) “looks like” X
(X,e)−−−→ ∂(e)−1X, which we will sometimes

abbreviate as X
e−→ ∂(e)−1X. Given X ∈ G and e, f ∈ E, the composition

X
e−→ ∂(e)−1X

f−→ ∂(f)−1∂(e)−1X

is

X
ef−→ ∂(ef)−1X.

The tensor product has the form

(1.8)

∂(e)−1X�⏐⏐e

X

⊗

∂(f)−1Y�⏐⏐f

Y

=

∂(e)−1X∂(f)−1Y�⏐⏐(X�f)e

XY

,

where X,Y ∈ G and e, f ∈ E. Therefore, the set of morphisms of C(G) is a group
under the tensor product. This group is isomorphic to the semidirect product G�E
of G and E.

From the definition of a crossed module, it is easy to see that we have indeed
defined a strict monoidal category which, furthermore, is a categorical group.

We will recall in Subsection 1.3.4 how to define a crossed module from a cate-
gorical group.

1.3. The thin fundamental categorical group of a manifold. Let M be a
smooth manifold.

1.3.1. 1-tracks.

Definition 1.15 (1-path). A 1-path is given by a smooth map γ : [0, 1] → M
such that there exists an ε > 0 such that γ is constant in [0, ε] ∪ [1 − ε, 1]. In the
terminology of [CP], this can be abbreviated by saying that each end point of γ has
a sitting instant. Given a 1-path γ, define the source and target of γ as σ(γ) = γ(0)
and τ (γ) = γ(1), respectively.

Given two 1-paths γ and φ with τ (γ) = σ(φ), their concatenation γφ is defined
in the usual way:

(γφ)(t) =

{
γ(2t), if t ∈ [0, 1/2],

φ(2t− 1), if t ∈ [1/2, 1].

Note that the concatenation of two 1-paths is also a 1-path. The fact that any
1-path has sitting instants at its end points needs to be used to prove this.

Definition 1.16 (2-paths). A 2-path Γ is given by a smooth map Γ: [0, 1]2 → M
such that there exists an ε > 0 for which:

(1) Γ(t, s) = Γ(0, 0) if 0 ≤ t ≤ ε and s ∈ [0, 1],
(2) Γ(t, s) = Γ(1, 0) if 1− ε ≤ t ≤ 1 and s ∈ [0, 1],
(3) Γ(t, s) = Γ(t, 0) if 0 ≤ s ≤ ε and t ∈ [0, 1],
(4) Γ(t, s) = Γ(t, 1) if 1− ε ≤ s ≤ 1 and t ∈ [0, 1].
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Given a 2-path Γ, define the following 1-paths:

∂l(Γ)(s) = Γ(0, s), s ∈ [0, 1], ∂r(Γ)(s) = Γ(1, s), s ∈ [0, 1],

∂d(Γ)(t) = Γ(t, 0), t ∈ [0, 1], ∂u(Γ)(t) = Γ(t, 1), t ∈ [0, 1].

Note that the paths ∂l(Γ) and ∂r(Γ) are necessarily constant, thus each of them
can be identified with a point of M . In addition, given a 2-path Γ, the 1-paths
∂u(Γ) and ∂d(Γ) have the same initial and end points. If x is a point of M , then
the constant 1- and 2-paths with value x are both denoted by x.

If Γ and Γ′ are 2-paths such that ∂r(Γ) = ∂l(Γ
′), their horizontal concatenation

Γ ◦h Γ′ is defined in the obvious way. In other words,(
Γ ◦h Γ′)(t, s) = {

Γ(2t, s), if t ∈ [0, 1/2] and s ∈ [0, 1],

Γ′(2t− 1, s), if t ∈ [1/2, 1] and s ∈ [0, 1].

Similarly, if ∂u(Γ) = ∂d(Γ
′) we can define a vertical concatenation Γ ◦v Γ′ as

(
Γ ◦v Γ′)(t, s) = {

Γ(t, 2s), if s ∈ [0, 1/2] and t ∈ [0, 1],

Γ′(t, 2s− 1), if s ∈ [1/2, 1] and t ∈ [0, 1].

We will also represent the 2-paths Γ of M in the following suggestive way:

Γ =

∂u(Γ)�⏐⏐Γ

∂d(Γ)

In this notation, the vertical concatenation of two 2-paths Γ and Γ′ with ∂d(Γ
′) =

∂u(Γ) can be represented as

Γ ◦v Γ′ =

∂u(Γ ◦v Γ′)�⏐⏐Γ◦vΓ
′

∂d(Γ ◦v Γ′)

=

∂u(Γ
′)�⏐⏐Γ′

∂d(Γ
′) = ∂u(Γ)�⏐⏐Γ

∂d(Γ)

Definition 1.17. Two 1-paths φ and γ are said to be rank-1 homotopic (and we
write φ ∼=1 γ) if there exists a 2-path Γ such that:

(1) ∂u(Γ) = γ and ∂d(Γ) = φ.
(2) Rank(DvΓ) ≤ 1, ∀v ∈ [0, 1]2.

Here D denotes a derivative.

In particular, if γ and φ are rank-1 homotopic, then they have the same initial
and end points. Note also that rank-1 homotopy is an equivalence relation. Given
a 1-path γ, the equivalence class to which it belongs is denoted by [γ]. Rank-1
homotopy is one of a number of notions of “thin” equivalence between paths or
loops, and it was introduced in [CP], following a suggestion by A. Machado.

We denote the set of 1-paths of M by S1(M). The quotient of S1(M) by the
relation of thin homotopy is denoted by S1(M). We call the elements of S1(M)
1-tracks. The concatenation of 1-tracks, together with the source and target maps
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σ, τ : S1(M) → M , defines a groupoid S1(M) whose set of morphisms is S1(M) and
whose set of objects is M .

Definition 1.18. Let ∗ ∈ M be a base point. The group π1
1(M, ∗) is defined as

being the set of 1-tracks [γ] ∈ S1(M) starting and ending at ∗, with the group
operation being the concatenation of paths.

It is easy to see directly that π1
1(M, ∗), a thin analogue of π1(M), is indeed a

group. See [CP, MP] for details.

1.3.2. 2-tracks.

Definition 1.19. Two 2-paths Γ and Γ′ are said to be rank-2 homotopic (and we
write Γ ∼=2 Γ′) if there exists a smooth map J : [0, 1]2 × [0, 1] → M such that:

(1) J(t, s, 0) = Γ(t, s), J(t, s, 1) = Γ′(t, s) for s, t ∈ [0, 1].
(2) J is constant over {0} × [0, 1]2 and {1} × [0, 1]2.
(3) Over [0, 1]×{0}× [0, 1], the map J : [0, 1]2× [0, 1] → M restricts to a rank-1

homotopy ∂d(Γ) → ∂d(Γ
′).

(4) J restricts to a rank-1 homotopy ∂u(Γ) → ∂u(Γ
′) over [0, 1]× {1} × [0, 1].

(5) There exists an ε > 0 such that J(t, s, x) = J(t, s, 0) if x ≤ ε and s, t ∈
[0, 1], and analogously for all the other faces of [0, 1]3. We will denote this
condition as saying that J has a product structure close to the boundary
of [0, 1]3.

(6) Rank(DvJ) ≤ 2 for any v ∈ [0, 1]
3
.

Note that rank-2 homotopy is an equivalence relation. To prove transitivity
we need to use the penultimate condition of the previous definition. We denote
by S2(M) the set of all 2-paths of M . The quotient of S2(M) by the relation of
rank-2 homotopy is denoted by S2(M). We call the elements of S2(M) 2-tracks. If
Γ ∈ S2(M), we denote the equivalence class in S2(M) to which Γ belongs by [Γ].

1.3.3. Horizontal and vertical compositions of 2-tracks. Note that the horizontal
composition of 2-paths descends immediately to a horizontal composition in S2(M).
Suppose that Γ and Γ′ are 2-paths with ∂u(Γ) ∼=1 ∂d(Γ

′). Choose a rank-1 homotopy
J connecting ∂u(Γ) and ∂d(Γ

′). Then [Γ]◦v [Γ′] is defined as [(Γ◦v J)◦vΓ′]. The fact
that this composition is well-defined in S2(M) follows immediately from Lemma 3.2
in the appendix.

Therefore both the vertical and horizontal compositions of 2-paths descend to
S2(M). These compositions are obviously associative, and admit units and inverses.
Since the interchange law is trivially verified, the following theorem holds:

Theorem 1.20. Let M be a smooth manifold. The horizontal and vertical compo-
sitions in S2(M), together with the boundary maps ∂u, ∂d, ∂l, ∂r : S2(M) → S1(M),
define a 2-groupoid S2(M) whose set of objects is given by all points of M , the set
of 1-morphisms by the set S1(M) of 1-tracks on M , and given two 1-tracks [γ] and
[γ′], the set of 2-morphisms [γ] → [γ′] is given by all 2-tracks [Γ] with ∂d([Γ]) = [γ]
and ∂u([Γ]) = [γ′].

The definition of a 2-groupoid can be found in [HKK]. This construction should
be compared with [HKK, BHKP], where the thin strict 2-groupoid of a Hausdorff
space was defined, using a different notion of thin equivalence (factoring through a
graph). See also [BH] for the construction of the fundamental double groupoid of
a triple of spaces. For analogous non-strict constructions see [M, BS1, BS2, MP].
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1.3.4. Definition of the thin fundamental categorical group of a smooth manifold.
Since S2(M) is a 2-category, given a base point ∗ of M (in other words an object of
S2(M)), we can define a monoidal category P2(M, ∗). The objects of P2(M, ∗) are
given by all 1-tracks of M starting and ending at ∗, and therefore by all elements of
π1
1(M, ∗). On the other hand, the set P2(M, ∗) of morphisms of P2(M, ∗) is given

by the set of all 2-tracks [Γ] ∈ S2(M) such that ∂l([Γ]) = ∂r([Γ]) = ∗. Therefore,
given [γ], [γ′] ∈ π1

1(M, ∗), the set of morphisms [γ] → [γ′] is given by all 2-tracks
[Γ] connecting [γ] and [γ′]; in other words with ∂d([Γ]) = [γ] and ∂u([Γ]) = [γ′].
The composition in P2(M, ∗) is given by the vertical composition in S2(M). On
the other hand the horizontal composition of 2-tracks will give the tensor product
in P2(M, ∗).

Given that S2(M) is a 2-groupoid, the monoidal category P2(M, ∗) is a categor-
ical group. We therefore call P2(M, ∗) the thin fundamental categorical group of
M .

1.3.5. The thin fundamental crossed module of a smooth manifold. Since P2(M, ∗)
is a categorical group, it defines a crossed module Π2,1

2 (M, ∗), which we call the

thin fundamental crossed module of M . Let us explain how to construct Π2,1
2 (M, ∗)

directly. Define a group π2,1
2 (M, ∗) as being given by

π2,1
2 (M, ∗) = {[Γ] ∈ P2(M, ∗) : ∂d([Γ]) = [∗]} ,

with the product law being the horizontal composition. Note that the map ∂
.
=

∂u : π
2,1
2 (M, ∗) → π1

1(M, ∗) is therefore a group morphism. In addition, π1
1(M, ∗)

acts on π2,1
2 (M, ∗) on the left as follows:

[γ] � [Γ] = id[γ] ◦h [Γ] ◦h id[γ−1],

where [Γ] ∈ π2,1
2 (M, ∗) and [γ] ∈ π1

1(M, ∗). Here if [γ] is a 1-track, then id[γ] denotes
the 2-track such that id[γ](s, t) = γ(t), where s, t ∈ [0, 1].

The following theorem follows from the well-known equivalence between the cat-
egory of categorical groups and the category of crossed modules which was referred
to in Subsection 1.2.1; see [BM, BL, BMo, P]. For a graphical proof see [BHS, 6.2].

Theorem 1.21. The boundary map ∂ : π2,1
2 (M, ∗) → π1

1(M, ∗), together with the

left action of π1
1(M, ∗) on π2,1

2 (M, ∗), defines a crossed module, which we denote by

Π2,1
2 (M, ∗).

In Subsection 1.2.1 we showed how to construct a categorical group from any
crossed module. The way we defined Π2,1

2 (M, ∗) from the categorical group P2(M, ∗)
shows how to go in the reverse direction.

1.3.6. Two exact sequences. This subsection is not necessary to understand the rest
of the article.

Definition 1.22. Let M be a smooth manifold and let ∗ ∈ M . The group
π2
2(M, ∗) is given by all 2-paths Γ ∈ S2(M) such that Γ(∂([0, 1]2)) = {∗}, up

to the equivalence relation given by Γ ∼= Γ′ if there exists a rank-2 homotopy
J : [0, 1]2 × [0, 1] → M , connecting Γ and Γ′, such that, in addition, J

(
∂([0, 1]2)× I

)
= {∗}. The group law is taken to be the horizontal composition.

For more details see [MP].
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Theorem 1.23. Let M be a smooth manifold with a base point ∗. The crossed
module Π2,1

2 (M, ∗) can be embedded into the exact sequence:

{0} → π2
2(M, ∗) i−→ π2,1

2 (M, ∗) ∂−→ π1
1(M, ∗) p−→ π1(M, ∗) → {1}.

Proof. The only non-trivial part is the proof that the natural map i : π2
2(M, ∗) →

π2,1
2 (M, ∗) is injective. This follows from Lemma 3.2. �

Definition 1.24. The thin k-invariant of M is defined as being the cohomology
class kt(M, ∗) ∈ H3

(
π1(M, ∗), π2

2(M, ∗)
)
determined by the exact sequence above.

See [EML, Br] for the construction of these group cohomology classes.

We can define a 2-category Q2(M), with objects given by the points of M and
morphisms given by the arrows of the groupoid S1(M). The set of 2-morphisms
Q2(M) of Q2(M) is given by the set of 2-paths of M up to homotopy. Here the
notion of homotopic 2-paths is defined in the same way as the notion of rank-2
homotopic 2-paths (Definition 1.19), but omitting the final condition on the rank
of the derivative of the map defining the homotopy; see the remarks after Definition
2.11. If Γ and Γ′ are 2-paths, we write Γ ∼=∞ Γ′ to denote that they are homotopic.
Applying the construction that defined the crossed module Π2,1

2 (M, ∗) to Q2(M, ∗)
yields a crossed module

Π∞,1
2 (M, ∗) =

(
π∞,1
2 (M, ∗) ∂−→ π1

1(M, ∗), �
)
.

Here the group π∞,1
2 (M, ∗) is given by

π∞,1
2 (M, ∗) = {[Γ] ∈ Q2(M, ∗) : ∂d([Γ]) = [∗]} ,

with the product law being the horizontal composition. Therefore the map ∂
.
=

∂u : π
∞,1
2 (M, ∗) → π1

1(M, ∗) is a group morphism.
As before we have:

Theorem 1.25. The crossed module Π∞,1
2 (M, ∗) can be embedded into the exact

sequence

{0} → π2(M, ∗) i−→ π∞,1
2 (M, ∗) ∂−→ π1

1(M, ∗) p−→ π1(M, ∗) → {1}.

It is easy to show that the cohomology class k(M, ∗) ∈ H3 (π1(M, ∗), π2(M, ∗))
given by this exact sequence coincides with the k-invariant of M . This follows from
the explicit construction of it in [EML], and also from the no-free-lunch principle.

2. Two-dimensional holonomies

2.1. Categorical connections.

Definition 2.1. Let G be a Lie group. Let M be a smooth manifold. Let P → M
be a smooth principal bundle with structure group G. Denote the right action
of G on P as g ∈ G �→ Rg ∈ diff(M). Also, let G = (∂ : E → G, �) be a Lie
crossed module, where � is a Lie group left action of G on E by automorphisms,
and also let G = (∂ : e → g, �) be the associated differential crossed module. A G-
categorical connection on P is a pair (ω,m), where ω is a connection 1-form on P ,
i.e. ω ∈ A1(P, g) is a 1-form on P with values in g such that:

(1) R∗
g(ω) = g−1ωg, ∀g ∈ G,

(2) ω(A#) = A, ∀A ∈ g;
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and m ∈ A2(P, e) is a 2-form on P with values in e, the Lie algebra of E, such that:

(1) The 2-form m is G-equivariant. In other words, we have R∗
g(m) = g−1 � m

for each g ∈ G.
(2) The 2-form m is horizontal. In other words,

m(X,Y ) = m(XH , Y H), for each X,Y ∈ X(P ).

In particular, m(Xu, Yu) = 0 if either of the vectors Xu, Yu ∈ TuP is
vertical, where u ∈ P . Here the map X ∈ X(P ) �→ XH ∈ X(P ) denotes the
horizontal projection of vector fields on P with respect to the connection
1-form ω.

Finally, we require that

(2.1) ∂(m) = Ω,

where Ω ∈ A2(P, g) is the curvature 2-form of ω.

This last condition is of course equivalent to the vanishing of the fake curvature
of [BS1, BS2, BrMe]; see Subsection 2.2.4.

Example 2.2. Let P be any principal G-bundle with a connection 1-form ω. Let
Ω be the curvature 2-form of ω. If G = (id: G → G, �), where � is the adjoint action
of G on G, then (ω,Ω) is a G-categorical connection on P . More generally, we can
take G to be given by the universal covering map E → G of G; see Example 1.9.

2.2. The 2-curvature 3-form of a G-categorical connection. Recall the defi-
nition of the curvature 2-form Ω of a connection 1-form ω as the covariant exterior
derivative of the 1-form ω.

Definition 2.3 (2-Curvature). Let G = (∂ : E → G, �) be a Lie crossed module,
and let P → M be a smooth principal G-bundle. The 2-curvature 3-form of a
G-categorical connection (ω,m) on P is defined as

M = dm ◦ (H ×H ×H).

In other words,

M(A,B,C) = dm(AH , BH , CH),

where A,B,C ∈ X(P ) are smooth vector fields on P .

2.2.1. Algebraic preliminaries. LetM be a smooth manifold. Consider a differential
crossed module G = (∂ : e → g, �). In particular, the map (X, e) ∈ g×e �→ X�e ∈ e

is bilinear.
Let a ∈ An(M, g) and b ∈ Am(M, e) be g- and e-valued (respectively) differential

forms on M . We define a ⊗� b as being the e-valued covariant tensor field on M
such that

(a⊗� b)(A1, . . . , An, B1, . . . , Bm) = a(A1, . . . , An) � b(B1, . . . , Bm);Ai, Bj ∈ X(M).

We also define an alternating tensor field a ∧� b ∈ An+m(M, e) being given by

a ∧� b =
(n+m)!

n!m!
Alt(a⊗� b).

Here Alt denotes the natural projection from the vector space of e-valued covariant
tensor fields on M onto the vector space of e-valued differential forms on M .
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For example, if a ∈ A1(M, g) and b ∈ A2(M, e), then a ∧� b satisfies

(2.2) (a ∧� b)(X,Y, Z) = a(X) � b(Y, Z) + a(Y ) � b(Z,X) + a(Z) � b(X,Y ),

where X,Y, Z ∈ X(M).
Note that the formula

d(a ∧� b) = da ∧� b+ (−1)na ∧� db,

where a ∈ An(M, g) and b ∈ Am(M, e), holds trivially.
As an example of this notation, let P → M be a principal G-bundle over the

manifold M . Let ω ∈ A1(P, g) be a connection 1-form on M . Then the structure
equation for the curvature form Ω = Dω of ω can be written as

Ω = dω +
1

2
ω ∧ad ω,

where ad denotes the adjoint action of g on g. Furthermore, the Bianchi identity
can be written as

dΩ + ω ∧ad Ω = 0;

see Subsection 1.1.2.

2.2.2. The 2-structure equation. The following equation is an analogue of Cartan’s
structure equation. It will be of prime importance later.

Proposition 2.4 (2-Structure equation). Let G = (∂ : E → G, �) be a Lie crossed
module. Let P be a principal G-bundle over the manifold M and let (ω,m) be
a categorical G-connection on P . We have M = dm+ω ∧� m, where M = Dm
is the 2-curvature 3-form of (ω,m). In particular, the 2-curvature 3-form M is
G-equivariant; in other words, R∗

g(M) = g−1 �M, for each g ∈ G.

The proof of the 2-structure equation follows directly from the following lemma.

Lemma 2.5. Let a be a G-equivariant horizontal (n− 1)-form in P . Then Da =
da+ ω ∧� a.

Proof. Let X1, . . . , Xn ∈ TuP be extended to a neighbourhood of u ∈ P . If all
vectors are horizontal it follows that Da(X1, . . . , Xn) = (da+ω∧� a)(X1, . . . , Xn),
since ω is vertical. Suppose that one of the vectors, which we can suppose to be X1,
is vertical. We need to prove that (da + ω ∧� a)(X1, . . . , Xn) = 0. Choose A ∈ g

such that A#
u = X1

u. By using Cartan’s magic formula, together with the fact that
a is horizontal, it follows that da(A#, X2, . . . , Xn) = (LA#a)(X2, . . .Xn), where L
denotes a Lie derivative. Since a is G-equivariant, it follows that LA#a = −A � a.
However, (ω∧� a)(A#, X2, . . . , Xn) = ω(A#)�a(X2, . . . , Xn), since a is horizontal.
Note ω(A#) = A. �
2.2.3. The 2-Bianchi identity. Fix a Lie crossed module G = (∂ : E → G, �). Let P
be a smooth principal G-bundle overM with a connection ω. Choose a G-categorical
connection (ω,m) on P .

Proposition 2.6 (2-Bianchi identity). Let M ∈ A3(P, e) be the 2-curvature 3-form
of (ω,m). Then the exterior covariant derivative DM of M vanishes. In other
words,

dM ◦ (H ×H ×H ×H) = 0,

which by Lemma 2.5 is the same as

dM+ ω ∧� M = 0.
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Proof. Let us prove the second form of the 2-Bianchi identity. By the 2-structure
equation it follows that

dM = ddm+d(ω ∧� m) = dω ∧� m−ω ∧� dm = dω ∧� m−ω ∧� M+ ω ∧� (ω ∧� m) .

Given that ω ∧� (ω ∧� m) = 1
2 (ω ∧ad ω) ∧� m, we can conclude that

dM = (dω +
1

2
ω ∧ad ω) ∧� m−ω ∧� M = Ω ∧� m−ω ∧� M = ∂(m) ∧� m−ω ∧� M.

We now prove that ∂(m)∧�m = 0. Since G = (∂ : e → g, �) is a differential crossed
module, we have, for any vector fields X,Y, Z,W ∈ X(P ),

∂(m)(X,Y ) � m(Z,W ) = ∂
(
m(X,Y )

)
� m(Z,W ) = [m(X,Y ),m(Z,W )].

Let us see that Alt[m,m] = 0, which implies that ∂(m)∧�m = 0. The permutation
r such that r(X,Y, Z,W ) = (Z,W,X, Y ) is even. In particular, Alt([m,m]) =
Alt([m,m] ◦ r). However, [m,m] ◦ r = −[m,m]. �

2.2.4. Local form of a categorical connection. Let G = (∂ : E → G, �) be some Lie
crossed module, and let G = (∂ : e → g, �) be the associated differential crossed
module. Fix a smooth manifold M and a smooth principal G-bundle P → M , with
a categorical G-connection (ω,m), where, as usual, ω ∈ A1(P, g) and m ∈ A2(P, e).

The local form of the categorical G-connection (ω,m) is similar to the local form
of a connection. Let {Uα} be an open covering of the manifold M . We can suppose
that each Uα is contractible and that, for each α and β, the intersection Uα ∩ Uβ

is contractible; see [BT]. Therefore, for each α, the restriction Pα of P to Uα is
trivial, and, in particular, it admits a section fα : Uα → Pα. The local form of a
categorical G-connection is therefore given by the family of forms ωa = f∗

α(ω) and
mα = f∗

α(m).
For each α, by the structure equation the local curvature form Ωα = f∗

α(Ω) takes
the form

Ωα = dωα +
1

2
ωα ∧ad ωα.

Locally, the Bianchi identity reads:

dΩα + ωα ∧ad Ωα = 0.

Analogously, from the 2-structure equation, locally in each Uα, the 2-curvature
3-form Mα = f∗

α(M) takes the form

Mα = dmα + ωα ∧� mα

and the 2-Bianchi identity reads

dMα + ωα ∧� Mα = 0.

These local expressions correspond to the formulae in [B] when the fake curvature
vanishes.

Let φα,β : Ua∩Uβ → G be defined as fα(x)φα,β(x) = fβ(x), for each x ∈ Uα∩Uβ .
We have

ωβ(X) = φ−1
α,βω(X)φα,β + φ−1

α,βdφα,β ,(2.3)

Ωβ(X,Y ) = φ−1
α,βΩ(X,Y )φα,β ,(2.4)
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for each X,Y ∈ X(M). Since both m and M are G-equivariant and horizontal, it
follows that for each α, β,

mβ(X,Y ) = φ−1
α,β � mα(X,Y ),(2.5)

Mβ(X,Y, Z) = φ−1
α,β �Mα(X,Y, Z),(2.6)

for each X,Y, Z ∈ X(M).

Lemma 2.7. Let M be a smooth manifold. Also, let G = (∂ : E → G, �) be a Lie
crossed module, and let G = (∂ : e → g, �) be the associated differential crossed mod-
ule. Suppose π : P → M is the trivial bundle M × G. Given m0 ∈ A2(M, e) and
ω0 ∈ A1(M, g), such that ∂(m0) = Ω0 = dω0+

1
2ω0∧adω0, there exists a categorical

G-connection (ω,m) on P such that its local form is (ω0,m0).

Proof. Let θ be the canonical g-valued left-invariant 1-form on G; see Subsection
2.4.2. Then ω = g−1π∗(ω0)g + θ is a connection 1-form on M × G, and its local
form, considering the section f : M → P such that, for each x ∈ M , f(x) = (x, 1G),
is ω0. The 2-form π∗(m0) ∈ A2(P, e) is horizontal. However, it is not G-equivariant.
Therefore we define m ∈ A2(M × G, e) as being such that, given X,Y ∈ T(x,g)P ,
we have

m(X,Y ) = g−1 � π∗(m0)(X,Y ),

where g ∈ G, x ∈ M and X,Y ∈ T(x,g)M × G. This 2-form is obviously smooth
and horizontal. Moreover, given X,Y ∈ T(x,g)P , it follows that

(R∗
hm)(X,Y ) = m(Xh, Y h)

= (gh)−1 � π∗(m0)(Xh, Y h)

= h−1g−1 � π∗(m0)(X,Y )

= h−1 � m(X,Y ).

Therefore m is G-equivariant. Let Ω be the curvature of ω. Then Ω(X,Y ) =
g−1π∗(Ω0)(X,Y )g, where as before X,Y ∈ T(x,g)P . In particular, it follows that
Ω = ∂(m). �

The following follows from the previous discussion.

Corollary 2.8. Let M be a smooth manifold. Also, let G = (∂ : E → G, �) be a
Lie crossed module, and let G = (∂ : e → g, �) be the associated differential crossed
module. Let {Uα} be an open cover of M , such that the restriction Pα of P to Uα is
the trivial bundle. Also, let fα : Uα → Pα be local sections of P . Define φα,β : Uα ∩
Uβ → G as fα(x)φα,β(x) = fβ(x). Suppose that for each α we are given forms
ωα ∈ A1(Uα, g) and mα ∈ A2(Uα, e) satisfying ∂(mα) = Ωα = dωα + 1

2ωα ∧ad ωα.
Moreover, suppose that for each α, β with Uα ∩ Uβ �= ∅ equations (2.3) and (2.5)
are satisfied. There exists a unique categorical connection (ω,m) on P such that
the forms ωα and mα are its local form.

The trivial bundle M ×G → M always admits the trivial categorical connection
whose local form is given by the forms ω0 = 0 and m0 = 0. However, there exist
several other examples for the trivial bundle. Let A = ∂(E), and let a be its Lie
algebra. There exists a linear map r : a → e such that ∂ ◦ r = ida. Let ω0 be
any a-valued 1-form on M . Let Ω0 be the curvature of ω0 and define m0 = r(Ω0).
Then (ω0,m0) is the local form of a categorical G-connection on M × G. In fact,
let B = ker ∂ ⊂ E. Therefore, B is closed under the action of G on E, by the first
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condition of the definition of crossed modules; see Definition 1.3. Let b be the Lie
algebra of B. Given any b-valued 2-form ρ0 on M , ρ0 +m0 is the local form of a
categorical G-connection on M ×G.

It is not a trivial problem as to whether there always exists a categorical G-
connection on any principal G-bundle. This issue is very likely to depend on the
topology of the manifold. The strategy of combining locally defined connection
1-forms ω using a partition of unity cannot be carried through for the 2-forms m,
since ∂(m) = Ω, which is not C∞-linear in ω.

2.3. Categorical holonomy.

2.3.1. Definition of a holonomy. The following definition appears in [CP].

Definition 2.9 (Holonomy). Let M and N be smooth manifolds. Suppose that
M has a chosen base point ∗. A map F : π1

1(M, ∗) → N is said to be smooth if, for
any 2-path Γ: [0, 1]2 → M, with ∂l(Γ) = ∂r(Γ) = ∗, the map

s ∈ [0, 1] �→ F ([γs]) ∈ N

is smooth. Here Γ(t, s) = γs(t), where s, t ∈ [0, 1].
Let G be a Lie group. A holonomy is, by definition, a smooth group morphism

π1
1(M, ∗) → G.

The following result appears in [CP].

Theorem 2.10. Let M be a smooth manifold with a base point ∗ and let G be a
Lie group. Let P → M be a smooth principal G-bundle over M with a connection
ω. Let u ∈ P∗, the fibre of P at ∗. Then the parallel transport of ω determines a
holonomy F 1

(ω,u) : π
1
1(M, ∗) → G.

Proof. Recall the notation of Subsection 1.1.3. Given a 1-path γ : [0, 1] → M ,
with γ(0), γ(1) = ∗, define F 1

(ω,u)(γ) to be the unique element of G such that

u = Hω(γ, 1, u)F
1
(ω,u)(γ). Then, if Γ is a 2-path, with ∂l(Γ) = ∂r(Γ) = ∗, it follows

that the map

s ∈ [0, 1] �→ F 1
(ω,u)(γs) ∈ G,

where Γ(t, s) = γs(t); s, t ∈ [0, 1], is smooth. This follows from the fact that the map
t ∈ [0, 1] �→ Hω(γs, t, u) is a solution of a differential equation in t. This differential
equation depends smoothly on s if Γ is smooth. For details see [KN, page 74].

The fact that F 1
(ω,u) descends to a map π1

1(M, ∗) → G follows from Lemma 1.2

and the fact that the horizontal lift of vectors defines a linear map. Finally, the
fact that F 1

(ω,u) is a group morphism follows from the fact that Hω

(
γ2γ1, 1, u

)
=

Hω

(
γ1, 1,Hω(γ

2, 1, u)
)
, for any smooth curves γ1 and γ2 in M starting and ending

at ∗. �

It is proved in [CP] that any holonomy π1
1(M, ∗) → G arises from a bundle with

connection in this way.

2.3.2. Definition of a categorical holonomy.

Definition 2.11 (3-path). Let M be a manifold. A smooth map J : [0, 1]3 → M ,
say J(t, s, x) = Γx(t, s) = γx

s (t), where t, s, x ∈ [0, 1], is said to be a 3-path if:

(1) J is constant over {0} × [0, 1]2 and over {1} × [0, 1]2.
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(2) J restricts to a rank-1 homotopy (connecting γ0
0 with γ1

0) over [0, 1]×{0}×
[0, 1] and over [0, 1]× {1} × [0, 1] (connecting γ0

1 with γ1
1).

(3) J has a product structure close to the boundary of [0, 1]3; see Definition
1.19.

In particular, J defines a homotopy connecting the 2-paths Γ0 and Γ1; see Sub-
section 1.3.6. Note that it is not necessarily a rank-2 homotopy.

Definition 2.12. Let M and N be smooth manifolds. Consider the projection
map S2(M) → S2(M). A map F : S2(M) → N is said to be smooth if, for any
3-path J , the map

x ∈ [0, 1] �→ F ([Γx]) ∈ N

is smooth. Here J(t, s, x) = Γx(t, s), for each (t, s, x) ∈ [0, 1]3.

Let G = (∂ : E → G, �) be a Lie crossed module. Consider the categorical group
C(G) constructed from G, see Subsection 1.2.1. Its set of objects is G, and its set
of morphisms is the semidirect product G�E of G and E; all of these are smooth
manifolds. The following definition extends the definition of holonomy for principal
G-bundles of [CP] and should be compared with analogous non-strict constructions
in [BS1, BS2, MP, M].

Definition 2.13 (Categorical holonomy). Let M be a smooth manifold. Choose an
element ∗ ∈ M . A categorical holonomy is, by definition, a strict monoidal functor
(in other words, a categorical group morphism) F : P2(M, ∗) → C(G), such that the
associated maps F1 : π

1
1(M) → G and F2 : P2(M, ∗) → G�E on the sets of objects

and morphisms of P2(M, ∗) are smooth. Here P2(M, ∗) is the thin fundamental
categorical group of M ; see Subsection 1.3.4.

If we use the notation

[Γ] =

∂u([Γ])�⏐⏐[Γ]

∂d([Γ])

and (X, e) =

∂(e)−1X�⏐⏐e

X

to denote the morphisms of P2(M, ∗) and of C(G), then the tensor product of two
elements [Γ] and [Γ′] of P2(M, ∗) can be presented in the suggestive form:

(2.7)

∂u([Γ])�⏐⏐[Γ]

∂d([Γ])

⊗

∂u([Γ
′])�⏐⏐[Γ′]

∂d([Γ
′])

=

∂u([Γ])∂u([Γ
′])�⏐⏐[Γ]◦h[Γ

′]

∂d([Γ])∂d([Γ
′])

In this notation, the condition that a functor F = (F1, F2) : P2(M, ∗) → C(G) be a
strict monoidal functor means that

(2.8) F

⎛⎜⎜⎝
∂u([Γ])�⏐⏐[Γ]

∂d([Γ])

⊗

∂u([Γ
′])�⏐⏐[Γ′]

∂d([Γ
′])

⎞⎟⎟⎠ =

F1(∂u([Γ]))�⏐⏐F2([Γ])

F1(∂d([Γ]))

⊗

F1(∂u([Γ
′]))�⏐⏐F2([Γ

′])

F1(∂d([Γ
′]))
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for each [Γ], [Γ′] ∈ P2(M, ∗). In other words,

(2.9)

F1

(
∂u([Γ])∂u([Γ

′])
)�⏐⏐F2([Γ]◦h[Γ
′])

F1

(
∂d([Γ])∂d([Γ

′])
) =

F1

(
∂u([Γ]))F1 (∂u([Γ

′]))�⏐⏐(F1(∂d[Γ])�F2([Γ′])
)
F2([Γ])

F1 (∂d([Γ]))F1 (∂d([Γ
′]))

for each [Γ], [Γ′] ∈ P2(M, ∗); see Subsection 1.2.1. Recall that an arrow g
(g,e)−−−→

∂(e−1)g in C(G) is sometimes simply denoted by g
e−→ ∂(e−1)g, where g ∈ G and

e ∈ E.
Since the category of crossed modules and the category of categorical groups

are equivalent, we can give an alternative definition of a categorical holonomy, and
define it as being a smooth crossed module map

Π2,1
2 (M, ∗) → G,

where the notion of a smooth crossed module map is the obvious one. Here
Π2,1

2 (M, ∗) is the thin fundamental crossed module of the smooth manifold M ;
see Subsection 1.3.5.

2.4. Categorical connections and categorical connection holonomies. The
aim of this subsection is to prove the following main theorem.

Theorem 2.14. Let G be a Lie group and let M be a smooth manifold. Also,
let P → M be a smooth principal fibre bundle with structure group G. Let
G = (∂ : E → G, �) be a Lie crossed module. A G-categorical connection (ω,m) on
P , together with an element u ∈ P∗, the fibre of P over ∗ ∈ M , determines a cate-
gorical holonomy F(ω,m,u) : P2(M, ∗) → C(G), which we call a categorical connection
holonomy, since it arises from a categorical connection.

For the rest of this subsection, fix a Lie crossed module G = (∂ : E → G, �), and
let G = (∂ : e → g, �) be the associated differential crossed module. Also, consider a
smooth manifold M and a principal G-bundle P over M , as well as a G-categorical
connection (ω,m) on P .

2.4.1. Defining a categorical holonomy from a categorical connection. Consider a
base point ∗ ∈ M and also choose u ∈ P∗, the fibre of P at ∗. To describe F(ω,m,u)

on the set π1
1(M, ∗) of objects of P2(M, ∗), we use Theorem 2.10. Therefore we

define

(2.10) F 1
(ω,m,u)([γ]) = F 1

(ω,u)([γ]), where [γ] ∈ π1
1(M, ∗).

Now let Γ be a 2-path in M with ∂l(Γ) = ∂r(Γ) = ∗. Let γs(t) = Γ(t, s); s, t ∈
[0, 1]. To define F 2

(ω,m,u), consider the smooth function s ∈ [0, 1] �→ eΓ(s) ∈ E,

which solves the following differential equation in E:

(2.11)
d

ds
eΓ(s) = eΓ(s)

∫ 1

0

m

(
∂̃

∂t
γs(t),

∂̃

∂s
γs(t)

)
Hω(γs,t,u)

dt,

with initial condition eΓ(0) = 1E . Set eΓ = eΓ(1) to be the element of E assigned
to the 2-path Γ. Then we define

(2.12) F 2
(ω,m,u)(Γ) =

(
F 1
(ω,u)

(
[∂d(Γ)]

)
, eΓ

)
.
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Recall the elements gγs
∈ G, where s ∈ [0, 1], which are given by the condition

ugγs
= Hω(γs, 1, u); see Subsection 1.1.4. Thus F 1

(ω,m,u)([γs]) = g−1
γs

, where g−1
γs

.
=(

gγs

)−1
. In local coordinates, our definition of a categorical holonomy coming from

a categorical connection coincides with Definition 2.32 of [BS1, BS2].

We will prove that F(ω,m,u) =
(
F 1
(ω,m,u), F

2
(ω,m,u)

)
defines a categorical holonomy

P2(M, ∗) → C(G). Explicitly, we need to prove that the assignment

∂u(Γ)�⏐⏐Γ

∂d(Γ)

�→

g−1
γ1�⏐⏐eΓ

g−1
γ0

,

where Γ is a 2-path in M such that ∂l(Γ) = ∂r(Γ) = ∗ and where Γ(t, s) =
γs(t); ∀s, t ∈ [0, 1], depends only on the rank-2 homotopy class to which Γ belongs,
and defines a monoidal functor P2(M, ∗) → C(G), such that the induced maps on
the set of objects and morphisms of P2(M, ∗) are smooth.

First of all:

Lemma 2.15. Let Γ be a 2-path in M with ∂l(Γ) = ∂r(Γ) = ∗. Then for each
s ∈ [0, 1] we have gγ0

∂(eΓ(s)) = gγs
. Here Γ(t, s) = γs(t); ∀s, t ∈ [0, 1].

Proof. The previous equation holds for s = 0, by definition of eΓ(s). We have

d

ds

(
gγ0

∂(eΓ(s))
)
= gγ0

d

ds
∂ (eΓ(s)) = gγ0

∂

(
d

ds
eΓ(s)

)
;

therefore,

d

ds

(
gγ0

∂(eΓ(s))
)
= gγ0

∂
(
eΓ(s)

∫ 1

0

m

(
∂̃

∂t
γs(t),

∂̃

∂s
γs(t)

)
Hω(γs,t,u)

dt
)

= gγ0
∂(eΓ(s))

∫ 1

0

Ω

(
∂̃

∂t
γs(t),

∂̃

∂s
γs(t)

)
Hω(γs,t,u)

dt,

since ∂(m) = Ω. By equation (1.7) we also have

d

ds
gγs

= gγs

∫ 1

0

Ω

(
∂̃

∂t
γs(t),

∂̃

∂s
γs(t)

)
Hω(γs,t,u)

.

Thus both sides of the equation are solutions of the same differential equation in
G and have the same initial condition. �

We remark that, using the terminology of [BS1, BS2], this result corresponds
to the condition that a local pre-2-holonomy gives rise to a local true 2-holonomy,
which also follows from the vanishing of the fake curvature.

Let Γ: [0, 1]2 → M be a 2-path in M with ∂l(Γ) = ∂r(Γ) = ∗. We need to prove
that F 2

(ω,m,u)(Γ) depends only on the 2-track defined by Γ; in other words, on the

rank-2 homotopy class of 2-paths to which Γ belongs. This will be shown shortly
in Corollary 2.18 of Theorem 2.17. For now, consider a 3-path J , where J(t, s, x) =
Γx(t, s); ∀t, s, x ∈ [0, 1], defining a homotopy (not necessarily rank-2) connecting
the 2-paths Γ0 and Γ1. Suppose that ∂l(Γ

0), ∂r(Γ
0) = ∗; thus ∂l(Γ

1), ∂r(Γ
1) = ∗.

We want to calculate ∂
∂xeΓx(s), where s, x ∈ [0, 1].
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In fact, for later applications, we will consider the more general case when, for
each x ∈ [0, 1], we have that ∂l(Γ

x) = q(x) and ∂r(Γ
x) = q(x), where q : [0, 1] → M

is a smooth map. This generality will be important to define Wilson spheres in
Subsection 2.5.3. The lemma in the following subsection will be useful for our
purpose.

2.4.2. A well-known lemma. Let G be a Lie group. Consider a g-valued smooth
function V (s, x) defined on [0, 1]2. Consider the following differential equation in
G:

∂

∂s
a(s, x) = a(s, x)V (s, x),

with initial condition a(0, x) = 1G, ∀x ∈ [0, 1]. We want to know ∂
∂xa(s, x).

Let θ be the canonical g-valued 1-form on G. Thus θ is left invariant and satisfies
θ(A) = A, ∀A ∈ g, being defined uniquely by these properties. Also

(2.13) dθ(A,B) = −θ([A,B]),

where A,B ∈ g. We have

∂

∂x
θ

(
∂

∂s
a(s, x)

)
=

∂

∂x
θ
(
a(s, x)V (s, x)

)
=

∂

∂x
V (s, x).

On the other hand,

∂

∂x
θ

(
∂

∂s
a(s, x)

)
= da∗(θ)

(
∂

∂x
,
∂

∂s

)
+

∂

∂s
a∗(θ)

(
∂

∂x

)
+a∗(θ)

([
∂

∂x
,
∂

∂s

])
= dθ

(
∂

∂x
a(s, x),

∂

∂s
a(s, x)

)
+

∂

∂s
θ

(
∂

∂x
a(s, x)

)
.

Therefore,

θ

(
∂

∂x
a(s, x)

)
=

∫ s

0

(
−dθ

(
∂

∂x
a(s′, x),

∂

∂s′
a(s′, x)

)
+

∂

∂x
V (s′, x)

)
ds′ + θ

(
∂

∂x
a(0, x)

)
.

Since ∂
∂xa(0, x) = 0 (due to the initial conditions), we have the following:

Lemma 2.16.

∂

∂x
a(s, x) = a(s, x)

∫ s

0

(
−dθ

(
∂

∂x
a(s′, x),

∂

∂s′
a(s′, x)

)
+

∂

∂x
V (s′, x)

)
ds′,

for each x, s ∈ [0, 1].

2.4.3. The dependence of the surface holonomy on a smooth family of surfaces. The
discussion in this subsection will be very similar to that of Subsection 1.1.4. We
want to prove an analogue of Lemma 1.2 for the surface holonomy of a family of
2-paths Γx.

Consider a smooth map J : [0, 1]3 → M , where J(t, s, x) = Γx(t, s); ∀t, s, x ∈
[0, 1]. Given x, s ∈ [0, 1], a smooth curve γx

s : [0, 1] → M is defined as γx
s (t) =

J(t, s, x), where t, s, x ∈ [0, 1]. Suppose that, for each x ∈ [0, 1], there exists
q(x) ∈ M such that J(0, s, x) = J(1, s, x) = q(x) for each s ∈ [0, 1]. In other
words, ∂l(Γ

x) = ∂r(Γ
x) = q(x). Note that the map x ∈ [0, 1] �→ q(x) ∈ M is

necessarily smooth. Let q(0) = ∗ ∈ M . Choose u ∈ P∗, the fibre of P at ∗. Also,
let ux = Hω(q, x, u), where x ∈ [0, 1]. In particular, u0 = u.
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Note that the conditions above imply that

(2.14) Rank(D(s,x)J)(t,s,x) ≤ 1 if t = 0 or t = 1, for each s, x ∈ [0, 1].

Suppose that we also have

(2.15) Rank(D(t,x)J)(t,s,x) ≤ 1 if s = 0 or s = 1, for each t, x ∈ [0, 1].

For each x ∈ [0, 1], let s ∈ [0, 1] �→ eΓx(s) ∈ E be the solution of the differential
equation in E:

(2.16)
d

ds
eΓx(s) = eΓx(s)

∫ 1

0

m

(
∂̃

∂t
γx
s (t),

∂̃

∂s
γx
s (t)

)
Hω(γx

s ,t,ux)

dt,

with initial condition

(2.17) eΓx(0) = 1E , ∀x ∈ [0, 1].

See equation (2.11). Our purpose is to calculate the x-dependence of eΓx = eΓx(1),
the element of E assigned to Γx, by calculating d

dxeΓx . The result of this calculation,
Theorem 2.17, is entirely analogous to Lemma 1.2, with the 2-curvature 3-form M

replacing the curvature 2-form Ω.
Lemma 2.16 leads to

(2.18)
d

dx
eΓx = eΓx

∫ 1

0

∫ 1

0

∂

∂x

⎛⎝m

(
∂̃

∂t
γx
s (t),

∂̃

∂s
γx
s (t)

)
Hω(γx

s ,t,ux)

⎞⎠ dtds

−eΓx

∫ 1

0

dθ

(
∂

∂x
eΓx(s),

∂

∂s
eΓx(s)

)
ds.

Let

Ax =

∫ 1

0

∫ 1

0

∂

∂x

⎛⎝m

(
∂̃

∂t
γx
s (t),

∂̃

∂s
γx
s (t)

)
Hω(γx

s ,t,ux)

⎞⎠ dtds ∈ e,

Bx =

∫ 1

0

dθ

(
∂

∂x
eΓx(s),

∂

∂s
eΓx(s)

)
ds ∈ e.

Thus

(2.19)
d

dx
eΓx = eΓx(Ax −Bx).

Let us analyze Ax and Bx separately. Consider the map f : [0, 1]3 → P such
that f(x, s, t) = Hω(γ

x
s , t, ux), for each x, s, t ∈ [0, 1]. This map is smooth; see [KN,

page 74]. By definition we have ∂
∂tf(x, s, t) =

∂̃
∂tγ

x
s (t)Hω(γx

s ,t,ux)
. Also, we trivially

get
(

∂
∂sf(x, s, t)

)H
= ∂̃

∂sγ
x
s (t)Hω(γx

s ,t,ux)
and

(
∂
∂xf(x, s, t)

)H
= ∂̃

∂xγ
x
s (t)Hω(γx

s ,t,ux)
;

see Subsection 1.1.4. Therefore, since m(X,Y ) vanishes if either X or Y is vertical,
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it follows that

Ax =

∫ 1

0

∫ 1

0

∂

∂x
m

(
∂

∂t
f(x, s, t),

∂

∂s
f(x, s, t)

)
dtds

=

∫ 1

0

∫ 1

0

dm

(
∂

∂x
f(x, s, t),

∂

∂t
f(x, s, t),

∂

∂s
f(x, s, t)

)
dtds

−
∫ 1

0

∫ 1

0

∂

∂t
m

(
∂

∂s
f(x, s, t),

∂

∂x
f(x, s, t)

)
dtds

−
∫ 1

0

∫ 1

0

∂

∂s
m

(
∂

∂x
f(x, s, t),

∂

∂t
f(x, s, t)

)
dtds.

We have used the well-known equation

dα(X,Y, Z) = Xα(Y, Z) + Y α(Z,X) + Zα(X,Y )

+ α(X, [Y, Z]) + α(Y, [Z,X]) + α(Z, [X,Y ]),

valid for any smooth 2-form α in a manifold. Therefore,

Ax =

∫ 1

0

∫ 1

0

dm

(
∂

∂x
f(x, s, t),

∂

∂t
f(x, s, t),

∂

∂s
f(x, s, t)

)
dtds

−
∫ 1

0

[
m

(
∂

∂s
f(x, s, 1),

∂

∂x
f(x, s, 1)

)
−m

(
∂

∂s
f(x, s, 0),

∂

∂x
f(x, s, 0)

)]
ds

−
∫ 1

0

[
m

(
∂

∂x
f(x, 1, t),

∂

∂t
f(x, 1, t)

)
−m

(
∂

∂x
f(x, 0, t),

∂

∂t
f(x, 0, t)

)]
dt.

We analyze each term separately. Since m(X,Y ) = 0 if either X or Y is vertical,
we have

m

(
∂

∂x
f(x, 1, t),

∂

∂t
f(x, 1, t)

)
= m

(
∂̃

∂x
γx
1 (t),

∂̃

∂t
γx
1 (t)

)
Hω(γx

1 ,t,ux)

= 0,

by equation (2.15). Analogously from equation (2.14) or equation (2.15) it fol-
lows that m

(
∂
∂xf(x, 0, t),

∂
∂tf(x, 0, t)

)
= 0, m

(
∂
∂sf(x, s, 0),

∂
∂xf(x, s, 0)

)
= 0, and

m
(

∂
∂sf(x, s, 1),

∂
∂xf(x, s, 1)

)
= 0. Therefore we have

(2.20) Ax =

∫ 1

0

∫ 1

0

dm

(
∂

∂x
f(x, s, t),

∂

∂t
f(x, s, t),

∂

∂s
f(x, s, t)

)
dtds,

for each x ∈ [0, 1].
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We now analyze Bx, for each x ∈ [0, 1]. We have

dθ
( ∂

∂x
eΓx(s),

∂

∂s
eΓx(s)

)
=

∫ 1

0

dθ
( ∂

∂x
eΓx(s), eΓx(s)m

(
∂̃

∂t
γx
s (t),

∂̃

∂s
γx
s (t)

)
Hω(γx

s ,t,ux)

)
dt

=

∫ 1

0

dθ
(
eΓx(s)−1 ∂

∂x
eΓx(s),m

(
∂̃

∂t
γx
s (t),

∂̃

∂s
γx
s (t)

)
Hω(γx

s ,t,ux)

)
dt

= −
∫ 1

0

[
eΓx(s)−1 ∂

∂x
eΓx(s),m

(
∂̃

∂t
γx
s (t),

∂̃

∂s
γx
s (t)

)
Hω(γx

s ,t,ux)

]
dt

= −
∫ 1

0

∂

(
eΓx(s)−1 ∂

∂x
eΓx(s)

)
� m

(
∂̃

∂t
γx
s (t),

∂̃

∂s
γx
s (t)

)
Hω(γx

s ,t,ux)

dt.

The first equation follows by definition of eΓx(s), the second since the e-valued
2-form dθ on E is left invariant (since θ is left invariant) and the third by the
well-known formula (2.13). Finally, the last equation follows since (∂ : e → g, �) is
a differential crossed module.

By Lemma 2.15, we also have that gγx
0
∂(eΓx(s)) = gγx

s
, for each s, x ∈ [0, 1].

Therefore,

∂
(
e−1
Γx (s)

∂

∂x
eΓx(s)

)
= ∂

(
e−1
Γx (s)

)
∂
( ∂

∂x
eΓx(s)

)
= g−1

γx
s
gγx

0

∂

∂x

(
g−1
γx
0
gγx

s

)
=

∫ 1

0

Ω

(
∂̃

∂t
γx
s (t),

∂̃

∂x
γx
s (t)

)
Hω(γx

s ,t,ux)

dt,

where the last equation follows by Lemma 1.2. We also use the fact that ∂
∂xgγx

0
= 0.

This follows from Lemma 1.2 and equation (2.15). Putting everything together, we
obtain

dθ

(
∂

∂x
eΓx(s),

∂

∂s
eΓx(s)

)
= −

∫ 1

0

Ω

(
∂̃

∂t
γx
s (t),

∂̃

∂x
γx
s (t)

)
Hω(γx

s ,t,ux)

dt

�

∫ 1

0

m

(
∂̃

∂t
γx
s (t),

∂̃

∂s
γx
s (t)

)
Hω(γx

s ,t,ux)

dt.

Due to the fact that (∂ : e → g, �) is a differential crossed module, given e, f ∈ e we
have ∂(e) � f = [e, f ] = −[f, e] = −∂(f) � e. If we use this, together with the fact
that Ω(X,Y ) and m(X,Y ) vanish if either of the vectors X or Y is vertical, it thus
follows that (since ∂(m) = Ω)

(2.21) Bx =

∫ 1

0

(∫ 1

0

Ω

(
∂

∂t
f(x, s, t),

∂

∂s
f(x, s, t)dt

)
�

∫ 1

0

m

(
∂

∂t
f(x, s, t),

∂

∂x
f(x, s, t)

)
dt

)
ds.
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The following is a 2-dimensional version of Lemma 1.2.

Theorem 2.17. Let M be a smooth manifold. Let G = (∂ : E → G, �) be a Lie
crossed module and let P → M be a principal G-bundle over M . Consider a G-
categorical connection (ω,m) on P . Let J : [0, 1]3 → M be a smooth map and
let J(t, s, x) = Γx(t, s) = γx

s (t); ∀t, s, x ∈ [0, 1]. Suppose that ∂l(Γ
x) = ∂r(Γ

x) =
q(x), ∀x ∈ [0, 1], where q : [0, 1] → M is a smooth curve. Choose u ∈ Pq(0), the fibre
of P at q(0). Also, let ux = Hω(q, x, u), where x ∈ [0, 1]. In particular, u0 = u.

Consider the map (s, x) ∈ [0, 1]2 �→ eΓx(s) ∈ E defined by equations (2.16) and
(2.17). Let eΓx = eΓx(1). For each x ∈ [0, 1], we have

d

dx
eΓx = eΓx

∫ 1

0

∫ 1

0

dm

(
∂̃

∂x
γx
s (t),

∂̃

∂t
γx
s (t),

∂̃

∂s
γx
s (t)

)
Hω(γx

s ,t,ux)

dtds

= eΓx

∫ 1

0

∫ 1

0

M

(
∂̃

∂x
γx
s (t),

∂̃

∂t
γx
s (t),

∂̃

∂s
γx
s (t)

)
Hω(γx

s ,t,ux)

dtds.

Proof. By the 2-structure equation, see Subsection 2.2.2, and equation (2.2) it
follows that

∫ 1

0

∫ 1

0

dm

(
∂̃

∂x
γx
s (t),

∂̃

∂t
γx
s (t),

∂̃

∂s
γx
s (t)

)
Hω(γx

s ,t,u)

dtds

=

∫ 1

0

∫ 1

0

M

(
∂

∂x
f(x, s, t),

∂

∂t
f(x, s, t),

∂

∂s
f(x, s, t)

)
dtds

=

∫ 1

0

∫ 1

0

dm

(
∂

∂x
f(x, s, t),

∂

∂t
f(x, s, t),

∂

∂s
f(x, s, t)

)
dtds

+

∫ 1

0

∫ 1

0

ω

(
∂

∂x
f(x, s, t)

)
� m

(
∂

∂t
f(x, s, t),

∂

∂s
f(x, s, t)

)
dtds

−
∫ 1

0

∫ 1

0

ω

(
∂

∂s
f(x, s, t)

)
� m

(
∂

∂t
f(x, s, t),

∂

∂x
f(x, s, t)

)
dtds.

Note that ω
(

∂
∂tf(x, t, s

)
) = ω

(
∂
∂tHω(γ

x
s , t, ux)

)
= 0.

Also, by Lemma 1.1 and the fact that Ω is horizontal, we obtain

∫ 1

0

ω

(
∂

∂s
f(x, s, t)

)
� m

(
∂

∂t
f(x, s, t),

∂

∂x
f(x, s, t)

)
dt

=

∫ 1

0

∫ t

0

Ω

(
∂

∂t′
f(x, s, t′),

∂

∂s
f(x, s, t′)

)
dt′ � m

(
∂

∂t
f(x, s, t),

∂

∂x
f(x, s, t)

)
dt

=

∫ 1

0

Ω

(
∂

∂t′
f(x, s, t′),

∂

∂s
f(x, s, t′)

)
dt′ �

∫ 1

0

m

(
∂

∂t′
f(x, s, t′),

∂

∂x
f(x, s, t′)

)
dt′

−
∫ 1

0

Ω

(
∂

∂t
f(x, s, t),

∂

∂s
f(x, s, t)

)
�

(∫ t

0

m

(
∂

∂t′
f(x, s, t′),

∂

∂x
f(x, s, t′)

)
dt′

)
dt.
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The last equation follows from integrating by parts. Indeed, given a smooth g-
valued function V (t) and a smooth e-valued function W (t), each defined on [0, 1],
we have∫ 1

0

∫ t

0

V (t′)dt′ � W (t)dt

=

[(∫ t

0

V (t′)dt′
)
�

(∫ t

0

W (t′)dt′
)]

t=1

−
∫ 1

0

V (t) �

(∫ t

0

W (t′)dt′
)
dt.

Let us analyze the very last term. Applying the fact that (∂ : e → g, �) is a differen-
tial crossed module together with ∂(m) = Ω, part of the definition of a categorical
connection (ω,m), we have, since ∂(e) � f = −∂(f) � e; ∀e, f ∈ e,∫ 1

0

Ω

(
∂

∂t
f(x, s, t),

∂

∂s
f(x, s, t)

)
�

(∫ t

0

m

(
∂

∂t′
f(x, s, t′),

∂

∂x
f(x, s, t′)

)
dt′

)
dt

= −
∫ 1

0

∫ t

0

Ω

(
∂

∂t′
f(x, s, t′),

∂

∂x
f(x, s, t′)

)
dt′ � m

(
∂

∂t
f(x, s, t),

∂

∂s
f(x, s, t)

)
dt

= −
∫ 1

0

ω

(
∂

∂x
f(x, s, t)

)
dt′ � m

(
∂

∂t
f(x, s, t),

∂

∂s
f(x, s, t)

)
dt.

Therefore,∫ 1

0

∫ 1

0

M

(
∂̃

∂x
γx
s (t),

∂̃

∂t
γx
s (t),

∂̃

∂s
γx
s (t)

)
Hω(γx

s ,t,ux)

dtds = Ax −Bx,

by equations (2.20) and (2.21). Comparing this with equation (2.19) yields Theorem
2.17. �

From this theorem and the fact that the horizontal lift X �→ X̃ of vector fields
on M defines a linear map X(M) → X(P ), we obtain the following:

Corollary 2.18. Let M be a smooth manifold with a base point ∗. Also, let
G = (∂ : E → G, �) be a Lie crossed module. Let P → M be a principal G-bundle
over M , and let u ∈ P∗, the fibre at ∗ ∈ M . Consider a G-categorical connection
(ω,m) on P . Let Γ be a 2-path in M with ∂l(Γ) = ∂r(Γ) = ∗. Let Γ(t, s) = γs(t),
for each t, s ∈ [0, 1]. Then F 2

(ω,m,u)(Γ) = (g−1
γ0

, eΓ) depends only on the rank-2

homotopy class of 2-tracks [Γ] to which Γ belongs.

Consider a crossed module G = (∂ : E → G, �). Let the categorical group it de-
fines be C(G); see Subsection 1.2.1. Also, let be given a smooth manifold M with a
base point ∗, a principal G-bundle P over M and G-categorical connection (ω,m)
on P . We defined maps F 1

(ω,m,u) : π
1
1(M, ∗) → G (the sets of objects of P(M, ∗)

and of C(G), respectively) and F 2
(ω,m,u) : P2(M, ∗) → G�E (the sets of morphisms

of P(M, ∗) and C(G), respectively). We now prove that this assignment, defined
in Subsection 2.4.1, is a categorical holonomy. This will complete the proof of
Theorem 2.14.

2.4.4. Re-scaling. Let Γ be a 2-path in M such that ∂l(Γ) = ∂r(Γ) = ∗. As usual
put Γ(t, s) = γs(t); s, t ∈ [0, 1]. Consider a smooth map f : [a, b] → [0, 1], where
−∞ < a < b < +∞. We suppose that f(a) = 0 and f(b) = 1. Let Γ′(s, t) = γ′

s(t)
be such that γ′

s(t) = γf(s)(t), where s ∈ [a, b] and t ∈ [0, 1]. Even though Γ′ is not a
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2-path (for its domain is [0, 1]× [a, b]), the elements gγ′
s
∈ E and eΓ′(s) ∈ E, where

s ∈ [a, b], defined in Subsection 2.4.1, still make sense.

Lemma 2.19. We have

gγ′
s
= gγf(s)

and eΓ′(s) = eΓ(f(s)),

for each s ∈ [a, b].

Proof. The first equation follows since γ′
s = γf(s), as curves [0, 1] → M , for each

s ∈ [a, b]. As for the second one we have

d

ds
eΓ′(s) = eΓ′(s)

∫ 1

0

m

(
˜∂

∂t
Γ′(t, s),

˜∂

∂s
Γ′(t, s)

)
Hω(γ′

s,t,u)

dt

= eΓ′(s)
d

ds
f(s)

∫ 1

0

m

(
˜∂Γ

∂t
(t, f(s)),

˜∂Γ

∂s
(t, f(s))

)
Hω(γf(s),t,u)

dt,

whereas

d

ds
eΓ(f(s)) = eΓ(f(s))

d

ds
f(s)

∫ 1

0

m

(
˜∂Γ

∂t
(t, f(s)),

˜∂Γ

∂s
(t, f(s))

)
Hω(γf(s),t,u)

dt.

Therefore s �→ eΓ′(s) and s �→ eΓ(f(s)) are both solutions of the same differential
equation and they have the same initial conditions. �

2.4.5. Verification of the axioms for a categorical holonomy. Let G = (∂ : E → G, �)
be a Lie crossed module and let G = (∂ : e → g, �) be the associated differential
crossed module. Fix a smooth manifold M with a base point ∗, a principal G-
bundle P over M and an element u ∈ P∗, the fibre of P over ∗. Consider a
categorical connection (ω,m) on P . Let us prove that the assignments

[γ] ∈ π1
1(M, ∗) �→ F 1

(ω,u)([γ]) ∈ G

and

[Γ] ∈ P2(M, ∗) �→ F 2
(ω,m,u)([Γ]) ∈ G� E,

defined in Subsection 2.4.1, yield a categorical holonomy F(ω,m,u) : P(M, ∗) → C(G).
To begin with, let us see that F(ω,m,u) defines a monoidal functor P2(M, ∗) → C(G).
Here C(G) is the categorical group constructed from G; see Subsection 1.2.1.

Claim. F(ω,m,u) is a functor.

Proof. Recall that the source and target maps in a category are denoted by σ and
τ , respectively. Let Γ be a 2-path in M such that ∂l(Γ), ∂r(Γ) = ∗. As usual put
Γ(t, s) = γs(t); t, s ∈ [0, 1]. We have

σ
(
F 2
(ω,m,u)([Γ])

)
= σ

(
g−1
γ0

, e[Γ]
)
= g−1

γ0
= F1 (σ([Γ])) .

On the other hand, by Lemma 2.15,

τ
(
F 2
(ω,m,u)([Γ])

)
= τ

(
g−1
γ0

, e[Γ]
)
= ∂(e−1

Γ )g−1
γ0

= g−1
γ1

= F1 (τ ([Γ])).
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Therefore we can represent F(ω,m,u) as

∂u([Γ])�⏐⏐[Γ]

∂d([Γ])

∈ P2(M, ∗) �−→

g−1
γ1

= ∂(eΓ)
−1g−1

γ0�⏐⏐eΓ

g−1
γ0

∈ C(G),

where, as usual, Γ(t, s) = γs(t); s, t ∈ [0, 1].
Let Γ1 and Γ2 be 2-paths in M with ∂l(Γ

1), ∂r(Γ
1) = ∗ and ∂l(Γ

2), ∂r(Γ
2) = ∗.

Suppose also that ∂u(Γ
1) = ∂d(Γ

2). For each s, t ∈ [0, 1], put Γ1(t, s) = γ1
s (t)

and Γ2(t, s) = γ2
s (t). Let Γ = Γ1 ◦v Γ2. Put Γ(t, s) = γs(t); s, t ∈ [0, 1]. Suppose

s ∈ [0, 1/2]. We have

d

ds
eΓ(s) = eΓ(s)

∫ 1

0

m

(
∂̃

∂t
γs(t),

∂̃

∂s
γs(t)

)
Hω(γs,t,u)

dt.

By Lemma 2.19, eΓ(1/2) = eΓ1 . Let e′Γ(s) = eΓ(1/2)
−1eΓ(s), where s ∈ [1/2, 1].

Then

d

ds
e′Γ(s) = e′Γ(s)

∫ 1

0

m

(
∂̃

∂t
γs(t),

∂̃

∂s
γs(t)

)
Hω(γs,t,u)

dt.

Since e′Γ(1/2) = 1E , it follows, by Lemma 2.19, that e′Γ = eΓ2 . Putting everything
together yields eΓ = eΓ1eΓ2 . Therefore we have

F 2
(ω,m,u)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂u([Γ
2])�⏐⏐[Γ2]

∂d([Γ
2])�⏐⏐[Γ1]

∂d([Γ
1])

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

F 1
(ω,m,u)

(
∂u([Γ

2])
)�⏐⏐F 2

(ω,m,u)

(
[Γ2]

)
F 1
(ω,m,u)

(
∂u([Γ

1])
)�⏐⏐F 2

(ω,m,u)

(
[Γ1]

)
F 1
(ω,m,u)

(
∂d([Γ

1])
)
,

given any two elements [Γ1] and [Γ2] of P2(M, ∗), with ∂d(Γ
2) = ∂u(Γ

1).
If we are given elements [Γ1] and [Γ2] of P2(M, ∗), such that ∂d([Γ

2]) = ∂u([Γ
1]),

then, for some representatives Γ1
1 ∈ [Γ1] and Γ2

1 ∈ [Γ2]), we have ∂d(Γ
2
1) = ∂u(Γ

1
1).

For example, take a rank-1 homotopy H connecting ∂u(Γ
1) with ∂d(Γ

2), and put
Γ1
1 = Γ1 ◦v H and Γ2

1 = Γ2. Hence F(ω,m,u) : P2(M, ∗) → C(G) is a functor. �

Claim. F(ω,m,u) is a monoidal functor.

Proof. Let Γ1 and Γ2 be 2-paths in P2(M, ∗). Also, let Γ = Γ1 ◦hΓ2. Put Γ1(s, t) =
γ1
s (t), Γ

2(s, t) = γ2
s (t) and Γ(s, t) = γs(t). Here s, t ∈ [0, 1]. We want to prove that

eΓ(s) =
(
g−1
γ1
0
� eΓ2(s)

)
eΓ1(s) for any s ∈ [0, 1]; see Subsection 1.2.1. Note that this
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equation holds for s = 0. Furthermore, we have

d

ds

((
g−1
γ1
0
� eΓ2(s)

)
eΓ1(s)

)
=

(
g−1
γ1
0
�

d

ds
eΓ2(s)

)
eΓ1(s) +

(
g−1
γ1
0
� eΓ2(s)

) d

ds
eΓ1(s)

=
(
g−1
γ1
0
�
(
eΓ2(s)

∫ 1

0

m

(
∂̃

∂t
γ2
s (t),

∂̃

∂s
γ2
s (t)

)
Hω(γ2

s ,t,u)

dt
))

eΓ1(s)

+
(
g−1
γ1
0
� eΓ2(s)

)
eΓ1(s)

∫ 1

0

m

(
∂̃

∂t
γ1
s (t),

∂̃

∂s
γ1
s (t)

)
Hω(γ1

s ,t,u)

dt

= Cs +Ds.

Let us analyze each of the terms above separately:

Cs =
(
g−1
γ1
0
� eΓ2(s)

)(
g−1
γ1
0
�

∫ 1

0

m

(
∂̃

∂t
γ2
s (t),

∂̃

∂s
γ2
s (t)

)
Hω(γ2

s ,t,u)

dt
)
eΓ1(s)

=
(
g−1
γ1
0
� eΓ2(s)

)
eΓ1(s)

·
((

∂(eΓ1(s))−1g−1
γ1
0

)
�

∫ 1

0

m

(
∂̃

∂t
γ2
s (t),

∂̃

∂s
γ2
s (t)

)
Hω(γ2

s ,t,u)

dt
)

=
(
g−1
γ1
0
� eΓ2(s)

)
eΓ1(s)

(
g−1
γ1
s
�

∫ 1

0

m

(
∂̃

∂t
γ2
s (t),

∂̃

∂s
γ2
s (t)

)
Hω(γ2

s ,t,u)

dt
)
.

Given that m is G-equivariant, given X,Y ∈ X(M) we have

(2.22) g−1 � m(X̃, Ỹ )v = m(X̃g, Ỹ g)vg = m(X̃, Ỹ )vg.

Here v ∈ P and g ∈ G. Therefore (recall γs = γ1
sγ

2
s ),

Cs =
(
g−1
γ1
0
� eΓ2(s)

)
eΓ1(s)

∫ 1

0

m

(
∂̃

∂t
γ2
s (t),

∂̃

∂s
γ2
s (t)

)
Hω(γ2

s ,t,u)gγ1
s

dt

=
(
g−1
γ1
0
� eΓ2(s)

)
eΓ1(s)

∫ 1

0

m

(
∂̃

∂t
γ2
s (t),

∂̃

∂s
γ2
s (t)

)
Hω(γ2

s ,t,ugγ1
s
)

dt

=
(
g−1
γ1
0
� eΓ2(s)

)
eΓ1(s)

∫ 1

1/2

m

(
∂̃

∂t
γs(t),

∂̃

∂s
γs(t)

)
Hω(γs,t,u)

dt.

On the other hand,

Ds =
(
g−1
γ1
0
� eΓ2(s)

)
eΓ1(s)

∫ 1/2

0

m

(
∂̃

∂t
γs(t),

∂̃

∂s
γs(t)

)
Hω(γs,t,u)

dt.
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Putting everything together, it follows that

d

ds

((
g−1
γ1
0
� eΓ2(s)

)
eΓ1(s)

)
=

(
g−1
γ1
0
� eΓ2(s)

)
eΓ1(s)

∫ 1

0

m

(
∂̃

∂t
γs(t),

∂̃

∂s
γs(t)

)
Hω(γs,t,u)

dt.

Therefore, s ∈ [0, 1] �→
(
g−1
γ1
0
� eΓ2(s)

)
eΓ1(s) ∈ E and s ∈ [0, 1] �→ eΓ(s) ∈ E are

both solutions of the same differential equation in E and have the same initial
condition.

In particular,
(
g−1
γ1
0
� eΓ2

)
eΓ1 = eΓ. Therefore,

F

⎛⎜⎜⎝
∂u([Γ

1])�⏐⏐[Γ1]

∂d([Γ
1])

⊗

∂u([Γ
2])�⏐⏐[Γ2]

∂d([Γ
2])

⎞⎟⎟⎠ =

g−1
γ1
1
g−1
γ2
1�⏐⏐(
g−1

γ1
0
�eΓ2

)
eΓ1

g−1
γ1
0
g−1
γ2
0

=

F1

(
∂u([Γ

1])
)�⏐⏐F2([Γ
1])

F1

(
∂d([Γ

1])
) ⊗

F1

(
∂u([Γ

2])
)�⏐⏐F2

(
[Γ2]

)
F1

(
∂d([Γ

2])
) .

We have therefore proven that F(ω,m,u) : P2(M, ∗) → C(G) is a monoidal functor,
and is therefore a categorical group map. �

Claim. The functor F(ω,m,u) : P2(M, ∗) → C(G) is smooth, both on the sets π1
1(M, ∗)

and P2(M, ∗) of objects and the morphisms of P2(M, ∗).

Proof. This follows directly from the definition of F(ω,m,u) and from the lemma on
page 74 of [KN]. �

The proof of Theorem 2.14 is complete.

2.4.6. 2-Bundles. Let G = (∂ : E → G, �) be a Lie crossed module. Let the associ-
ated differential crossed module be G = (∂ : e → g, �). Fix a smooth manifold M
and a smooth principal G-bundle π : P → M .

A natural weakening of the notion of a categorical connection (ω,m) in P is to
consider m to be only locally defined on P , but so that ∂(mi) = Ω, for any i. Here
mi ∈ A2(Pi, e), where Pi = π−1(Ui) and {Ui} is an open cover of P . This can be
done by using the general theory of 2-bundles [BS1, BS2], or non-abelian gerbes
[BrMe], which correspond to 2-bundles with structure crossed modules of the form
G = Aut(E) of Example 1.11.

To this end, let {Ui} be an open cover of M . We can suppose that, for any
i1, . . . , in, the n-fold intersection Ui1,...,in

.
= Ui1 ∩ . . . ∩ Uin is contractible. A G-2-

bundle can be described by using smooth maps gij : Uij → G and hijk : Uijk → E.

These have to satisfy the cocycle conditions ∂(h−1
ijk)gijgjk = gik and hijkhikl =

(gij � hjkl)hijl for any i, j, k, l. Therefore, a G-2-bundle does not necessarily define
a G-principal bundle, unless ∂(hijk) = 1 for each i, j, k. If this condition is satisfied,
a G-2-bundle will be called a special G-2-bundle.

The main purpose of this article was the construction of categorical holonomies.
In other words, of smooth categorical group maps P2(M, ∗) → C(G), or, equiva-
lently of smooth crossed module maps Π2,1

2 (M, ∗) → G; see Subsection 1.3 for this
notation. From the point of view of 2-dimensional holonomy, G-2-bundles are nat-
ural objects; see [BS1, BS2]. However, our notion of categorical holonomy requires
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the existence of a smooth group morphism π1
1(M, ∗) → G, and therefore of a princi-

pal G-bundle with connection; see [CP]. This makes it natural to work with special
G-2-bundles.

A special G-2-bundle with connection can be specified by the following data:
(here A = ker(∂) ⊂ E, and a is its Lie algebra; note that A is central in E).

(1) A principal G-bundle π : P → M with a connection ω.
(2) An open cover {Ui} of M such that for any i1, . . . , in the n-fold intersection

Ui1,...,in is contractible. Let Pi1,...,in = π−1(Ui1,...,in).
(3) G-equivariant A-valued functions eijk : Pijk → A. These are required to

satisfy eijkeikl = ejkleijl.
(4) G-equivariant horizontal 2-forms mi ∈ A2(Pi, e). These are required to

satisfy ∂(mi) = Ω, the curvature 2-form of ω.
(5) G-equivariant horizontal 1-forms ηij ∈ A1(Pij , a). These are required to

satisfy

mi −mj = Dηij and
(
De−1

ijk

)
eijk = ηij + ηjk − ηik,

where D denotes the exterior covariant derivative with respect to ω. In
other words, by using Lemma 2.5,

mi −mj = dηij + ω ∧� ηij and
(
de−1

ijk + ω ∧� e−1
ijk

)
eijk = ηij + ηjk − ηik.

One passes from this setting to the setting in [BS1, BS2] by choosing local sections
fi of Pi and by defining the functions gij : Uij → G in the usual way: figij = fj .
Next define hijk = f∗

i (eijk), Ai = f∗
i (ω), Bi = f∗

i (mi) and aij = f∗
i (ηij). Then

this data defines the local differential forms of Baez and Schreiber [BS1, BS2],
satisfying equations corresponding to our special G-2-bundles with connection; in
particular, with the transition functions gij satisfying the usual cocycle condition
for a principal G-bundle. Note that the Baez-Schreiber local differential forms can
be seen as a generalisation to arbitrary G of the local description of non-abelian
gerbes, with G = Aut(E), of Breen and Messing [BrMe].

Special G-2-bundles with connection define group morphisms π1
1(M, ∗) → G.

However, the definition of the categorical holonomy on a 2-track [Γ] ∈ P2(M, ∗)
is tricky if one is to deal with the fact that m is not globally defined. This can
be done (and will appear in a future work); however, it will only be, a priori,
defined up to multiplication by central elements of E, and thus it should not define
holonomies P2(M, ∗) → C(G), unless we restrict to elements of π2

2(M, ∗), as in [MP].
For instance, it is easy to see that, given two categorical G-connections (ω,m) and
(ω,m′) in P and then given a 2-path Γ ∈ P2(M, ∗), we have

e′Γ = exp
(∫ 1

0

η

(
d̃

dt
γ1(t)

)
Hω(γ1,t,u)

dt
)
exp

(
−
∫ 1

0

η

(
d̃

dt
γ2(t)

)
Hω(γ2,t,u)

dt
)
eΓ,

where m − m′ = Dη = dη + ω ∧� η; moreover, η ∈ A1(P, a) is G-equivariant and
horizontal. We have put γ1 = ∂u(Γ) and γ2 = ∂d(Γ). Also eΓ and e′Γ denote
2-dimensional holonomy with respect to (ω,m) and (ω,m′), respectively.

For this reason we feel that it is likely that the construction in this article, with
a globally defined m, will describe all categorical holonomies P2(M, ∗) → C(G),
especially if we consider a generalised unbased setting. We will investigate this
issue in a future publication.
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2.5. Wilson Spheres. Let G = (∂ : E → G, �) be a Lie crossed module, and let
G = (∂ : e → g, �) be the associated differential crossed module. Fix a smooth man-
ifold M and a smooth principal G-bundle P → M , with a connection ω ∈ A1(P, g),
as well as a G-categorical connection (ω,m). The aim of this subsection is to define
the categorical holonomy of a 2-sphere Σ embedded in M .

2.5.1. The dependence of a categorical connection holonomy on the elements of the
fibre. Choose u, v ∈ P . We want to relate F(ω,m,u) with F(ω,m,v). Suppose first
that u, v each belong to the fibre Px of P at a certain point x ∈ M . Let g ∈ G
be the unique element such that u = vg. Let γ be a 1-path of M starting and
ending at x. Then Hω(γ, 1, u) = Hω(γ, 1, vg) = Hω(γ, 1, v)g. Therefore, since
Hω(γ, 1, u)F

1
(ω,u)(γ) = u and Hω(γ, 1, v)F

1
(ω,v)(γ) = v, we have the well-known

formula

(2.23) F 1
(ω,v)(γ) = gF 1

(ω,u)(γ)g
−1,

for γ a smooth curve starting and ending at x and u = vg, where u, v ∈ Px and
g ∈ G.

Let us now see how F 2
(m,ω,u) is related to F 2

(m,ω,v).

Lemma 2.20. For any 2-path Γ in M , with ∂l(Γ) = ∂r(Γ) = x, we have

(2.24) F 2
(ω,m,v)(Γ) = g � F 2

(ω,m,u)(Γ),

where u, v belong to the fibre Px of P , and g ∈ G is such that u = vg.

Proof. As usual, put Γ(t, s) = γs(t); s, t ∈ [0, 1]. Let eΓ(s) and fΓ(s) be defined by
the differential equations

d

ds
eΓ(s) = eΓ(s)

∫ 1

0

m

(
∂̃

∂t
γs(t),

∂̃

∂s
γs(t)

)
Hω(γs,t,u)

dt

and
d

ds
fΓ(s) = fΓ(s)

∫ 1

0

m

(
∂̃

∂t
γs(t),

∂̃

∂s
γs(t)

)
Hω(γs,t,v)

dt,

with initial conditions eΓ(0), fΓ(0) = 1E ; see equation (2.11). Then

d

ds
g−1 � fΓ(s) = g−1 �

d

ds
fΓ(s)

= g−1 �
(
fΓ(s)

∫ 1

0

m

(
∂̃

∂t
γs(t),

∂̃

∂s
γs(t)

)
Hω(γs,t,v)

dt
)

=
(
g−1 � fΓ(s)

) (
g−1 �

∫ 1

0

m

(
∂̃

∂t
γs(t),

∂̃

∂s
γs(t)

)
Hω(γs,t,v)

dt
)

=
(
g−1 � fΓ(s)

) ∫ 1

0

m

(
∂̃

∂t
γs(t),

∂̃

∂s
γs(t)

)
Hω(γs,t,ug−1)g

dt

=
(
g−1 � fΓ(s)

) ∫ 1

0

m

(
∂̃

∂t
γs(t),

∂̃

∂s
γs(t)

)
Hω(γs,t,u)

dt.

The fourth equation follows from (2.22). Therefore, g−1 � fΓ(s) = eΓ(s), for each
s ∈ [0, 1]; thus, in particular, F 2

(ω,m,v)(Γ) = g � F 2
(ω,m,u)(Γ). �
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There is a natural left action of G on G�E, given by g � (h, e) = (ghg−1, g � e).
Using this, we can summarise the results of this subsection, equations (2.23) and
(2.24), in the following:

Theorem 2.21. If v ∈ Px, then

(2.25) F(ω,m,vg) = g−1 � F(ω,m,v)

for any g ∈ G.

2.5.2. The dependence of a categorical connection holonomy on the point in the
principal bundle. Let G = (∂ : E → G, �) be a Lie crossed module. Fix a smooth
manifold M , and a smooth principal G-bundle P → M with a connection ω ∈
A1(P, g). Let (ω,m) be a G-categorical connection on P . Let x, y ∈ M . Choose
v ∈ Py. Let μ be a 1-path connecting y with x. This curve μ defines a categorical
group isomorphism Tμ : P2(M, y) → P2(M,x) in the obvious way, by considering
horizontal compositions. More precisely, let Γμ be the 2-path such that Γμ(t, s) =
μ(t); ∀s, t ∈ [0, 1]. Also, let Γμ−1(t, s) = μ−1(t); ∀s, t ∈ [0, 1]. Then Tμ([Γ])

.
=

[Γμ−1 ] ◦h [Γ] ◦h [Γμ] ∈ P2(M,x) for each [Γ] ∈ P2(M, y), and Tμ([γ]) = [μ−1γμ] for
[μ] ∈ π1

1(M, y).

Theorem 2.22. Let u = Hω(μ, 1, v). We have

(2.26) F(ω,m,v) = F(ω,m,u) ◦ Tμ.

Proof. Let [Γ] ∈ P2(M, y). Then [Γ] = [Γμ] ◦h Tμ([Γ]) ◦h [Γμ−1 ]. Let Γ1 = Γμ ◦h
Γμ−1 ◦h Γ ◦h Γμ ◦h Γμ−1 ; thus [Γ1] = [Γ]. Put γs(t) = Γ1(t, s); ∀s, t ∈ [0, 1]. Also, let
Γ′ = Γμ−1 ◦h Γ ◦h Γμ; thus [Γ

′] = Tμ[Γ]. Put γ
′
s(t) = Γ′(t, s); ∀s, t ∈ [0, 1]. We have

d

ds
eΓ1(s) = eΓ1(s)

∫ 1

0

m

(
∂̃

∂t
γs(t),

∂̃

∂s
γs(t)

)
Hω(γs,t,v)

dt

= eΓ1(s)

∫ 1

0

m

(
∂̃

∂t
γ′
s(t),

∂̃

∂s
γ′
s(t)

)
Hω(γ′

s,t,Hω(μ,1,v))

dt

= eΓ1(s)

∫ 1

0

m

(
∂̃

∂t
γ′
s(t),

∂̃

∂s
γ′
s(t)

)
Hω(γ′

s,t,u)

dt.

The second equation follows since Γμ(s, t) does not depend on s. Comparing this
with equation (2.11), it follows that eΓ1(s) = eΓ′(s), for each s ∈ [0, 1]. Therefore,

F 2
(ω,m,v)([Γ]) = F 2

(ω,m,v)([Γ
1]) = eΓ1 = eΓ′ = F 2

(ω,m,u)([Γ
′]) = F 2

(ω,m,u)(Tμ([Γ])).

This completes the proof of the result at the level of the elements of P2(M, y). The
proof at the level of the elements of π1

1(M, y) is similar. �

2.5.3. Associating 2-holonomies to embedded spheres. Let G = (∂ : E → G, �) be a
Lie crossed module and let M be a smooth manifold. Consider a principal G-bundle
P over M with a G-categorical connection (ω,m). Consider an embedded oriented
2-sphere Σ ⊂ M . We want to define the categorical holonomy of Σ, which we call
a Wilson Sphere, by analogy with Wilson loops, familiar in gauge theory.

Definition 2.23. Choose an orientation preserving parametrization

S2 = D2/∂D2 φ−→ Σ ⊂ M
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of Σ. Let ∗ = φ(∂D2) ∈ Σ ⊂ M . Choose u ∈ P∗, the fibre of P at ∗. The categorical
holonomy of Σ is defined as

W(ω,m)(Σ, φ, u) = F 2
(ω,m,u)(φ) ∈ ker(∂) ⊂ E.

The fact that the categorical holonomy W(ω,m)(Σ, φ, u) lives in ker(∂) ⊂ E fol-
lows from the fact that ∂d(φ) = ∂u(φ) = ∗ and from Lemma 2.15.

Theorem 2.24. The categorical holonomy W(ω,m)(Σ, φ, u) does not depend on φ
and u, up to acting by an element of G. Therefore, we can define a categorical
holonomy W(ω,m)(Σ) of embedded 2-spheres Σ in M (the Wilson Sphere), tak-
ing values in E/G. If Σ∗ is obtained from Σ by reversing its orientation, then

W(ω,m)(Σ
∗) =

(
W(ω,m)(Σ)

)−1
.

Example 2.25. Consider the U(1)-bundle Pn over S2 with Chern class n, where
n ∈ Z. Define a crossed module G given by the exponential map exp: iR → U(1),
considering the trivial action of U(1) on iR. Consider some connection 1-form ω
on Pn; thus (ω,Ω) is a categorical G-connection on Pn. We will then have that
W(ω,Ω)(S

2) = n.

Proof of Theorem 2.24. The independence of W(ω,m)(Σ, φ, u) on the choice of u ∈
P∗, up to acting by an element of G, follows from Theorem 2.21.

Choose a different orientation preserving parametrisation D2/∂D2 φ′

−→ Σ of Σ.
Since both φ and φ′ are orientation preserving, there exists a smooth 1-parameter
family of embeddings x ∈ [0, 1] �→ φx connecting φ and φ′. Here φx is an orientation
preserving parametrisation φx : D

2/∂D2 → Σ, for each x ∈ [0, 1].
Let q : [0, 1] → M be the map such that q(x) = φx(∂([0, 1]

2)), ∀x ∈ [0, 1];
therefore ∗ = q(0). Put Γx(t, s)

.
= φx(t, s), where t, s, x ∈ [0, 1]. Therefore,

∂l(Γ
x) = ∂r(Γ

x) = q(x), for each x ∈ [0, 1]. Let also J(t, s, x)
.
= Γx(t, s), where

t, s, x ∈ [0, 1].
The map J : [0, 1]3 → Σ ⊂ M satisfies the conditions of Theorem 2.17. In

particular,

W(ω,m)(Σ, φ0, u) = eΓ0 = eΓ1 = W(ω,m)(Σ, φ1,Hω(q, 1, u)),

since certainly Rank(DzJ) ≤ 2, ∀z ∈ [0, 1]3.
Finally, let φ−1(x, y) = φ(1−x, y); ∀x, y ∈ [0, 1]. It does not follow that φ−1 ◦h φ

is rank-2 homotopic to ∗ in a strict sense, since a homotopy connecting φ−1 ◦h φ
with ∗ will have some singular points, as φ and φ−1 are not 2-paths, because they
fail the sitting instant conditions.

Let γs(t) = φ(t, s) and γ′
s(t) = φ−1(t, s), where t, s ∈ [0, 1]. Let us analyse

eφ−1(s) directly. We have

d

ds
eφ−1(s) = eφ−1(s)

∫ 1

0

m

(
∂̃

∂t
γ′
s(t),

∂̃

∂s
γ′
s(t)

)
Hω(γ′

s,t,u)

dt

= −eφ−1(s)

∫ 1

0

m

(
∂̃

∂t
γs(t),

∂̃

∂s
γs(t)

)
Hω(γs,t,ugγ′

s
)

dt.
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Therefore,

d

ds
eφ−1(s) = −eφ−1(s)

(
g−1
γ′
s
�

∫ 1

0

m

(
∂̃

∂t
γs(t),

∂̃

∂s
γs(t)

)
Hω(γs,t,u)

dt
)

= −eφ−1(s)
(
∂
(
e−1
φ−1(s)

)
�

∫ 1

0

m

(
∂̃

∂t
γs(t),

∂̃

∂s
γs(t)

)
Hω(γs,t,u)

dt
)

= −
(∫ 1

0

m

(
∂̃

∂t
γs(t),

∂̃

∂s
γs(t)

)
Hω(γs,t,u)

dt
)
eφ−1(s).

The result follows from the fact that if A(t) is a smooth function [0, 1] → E and if
w(s) is a solution of d

dsw(s) = w(s)A(s), then the smooth function v(s)
.
= w(s)−1

is a solution of d
dsv(s) = −A(s)v(s). In particular, eφ−1(1) = e−1

φ (1). �

Note that the previous proof uses, in an essential way, the fact that the mapping
class group of S2 is {±1}. Therefore, it is likely that the previous theorem does not
extend to an embedded surface of genus greater than zero. However, it is probable
that this can be fixed if any embedded surface Σ ⊂ M is assigned an equivalence
class of embedding S → Σ, where two embeddings φ, φ′ : S → Σ are equivalent if
φ−1 ◦ φ′ is isotopic to the identity diffeomorphism. We will analyse this issue in a
subsequent publication.

3. Appendix: Technical lemmas

The following lemmas provide the foundation for the construction of the 2-
category S2(M), defined for any smooth manifold M . Specifically, Lemma 3.2
is used to prove that the vertical composition of 2-tracks is well defined; see Sub-
section 1.3.3.

Lemma 3.1. Let M be a smooth manifold and let f : S2 → M be a smooth map.
Consider a handle decomposition H of M . Let Hi be the i-skeleton of H; in other
words, Hi is the handlebody made from the handles of H of index less than or equal
to i, where i = 0, 1, . . . , dim(M). There exists an ambient isotopy of M , sending
H to a handle decomposition I of M , such that f(S2) ⊂ I2, the 2-skeleton of the
handle decomposition I.

Proof. Let m = dim(M).
Let J be the handle decomposition of M which is dual to H. If m = 2, there is

nothing to prove. Otherwise, f(S2) is a compact set with zero measure in M , by
Sard’s theorem; see [H]. Therefore, there exists an ambient isotopy of M , sending
J to a handle decomposition J0 of M , such that the 0-handles of J0 are contained
in M \ f(S2), a non-empty open set of M . If m = 3, taking the dual handle
decomposition of J0 yields a handle decomposition I of M with f(S2) ⊂ I2.

Suppose that m > 3. Let {h1
i } be the set of handles of J0 of index 1. Then each

1-handle h1
i is of the form h1

i = D1
i ×Dm−1

i and attaches to the 0-skeleton J0
0 of J0

along S0
i × Dm−1

i . For each i, let p1i : h
1
i → Dm−1

i be the obvious projection. Here
Dm is the m-disk. Then p1i can be extended to a smooth map q1i : V

1
i → Rm−1,

where V 1
i is an open neighbourhood of h1

i in M . For each i, let A1
i = f−1(V 1

i ) ⊂ S2.
It is an open set in S2. Since m− 1 > 2, the set (q1i ◦ f)(A1

i ) ⊂ Rm−1 has measure
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zero, for q1i is smooth. Therefore, p1i (f(S
2)) ⊂ (q1i ◦ f)(A1

i ) has measure zero in
Dm−1

i .

Choose an (m − 1)-ball cm−1
i ⊂ Dm−1

i , not intersecting p1i (f(S
2)); note that

p1i (f(S
2)) is compact. There exists an ambient isotopy of M which restricts to an

ambient isotopy of J0
0 (the 0-skeleton of J0) whilst sending each h1

i = D1
i × Dm−1

i

to D1
i × cm−1

i . Let J1 be the handle decomposition of M to which J0 is sent by
the ambient isotopy. By construction, J1

1 ∩ f(S2) = ∅. If dim(M) = 4, taking the
dual handle decomposition to J1 yields the handle decomposition I of M , and by
construction f(S2) ⊂ I2.

Suppose m > 4. The argument is the same. As above, let {h2
i } be the set of

2-handles of J1. Then, for any i, h2
i = D2

i × Dm−2
i , and h2

i attaches to J1
1 along

S1
i × Dm−2

i . For each i, let p2i : h
2
i → Dm−2

i be the obvious projection. As before,

since m − 2 > 2, the set p2i (f(S
2)), which is compact, has zero measure in Dm−2

i .

Therefore, there exists an (m−2)-ball cm−2
i ⊂ Dm−2

i such that p2i (f(S
2))∩cm−2

i = ∅.
There exists an ambient isotopy of M , restricting to an ambient isotopy of J1

1 , and
sending h2

i = D2
i × Dm−2

i to D2
i × cm−2

i , for each i. Let the handle decomposition
J2 be the image of J1 under the ambient isotopy. As before, by construction,
J2
2 ∩ f(S2) = ∅. If m = 5, letting I be the handle decomposition of M dual to J2,

we have that f(S2) ⊂ J2.
An obvious inductive argument will finish the proof for any m ∈ N. �

Lemma 3.2. Let f : ∂(D3) → M be a smooth map such that Rank(Dvf) ≤ 1, ∀v ∈
∂(D3). Here D3 = [0, 1]3. Suppose that f is constant in a neighbourhood of each
vertex of ∂(D3). In addition, suppose also that in a neighbourhood I× [−ε, ε] of each
edge I of ∂(D3), f(x, t) = φ(x), where (x, t) ∈ I × [−ε, ε] and φ : I → M is smooth.
Then f can be extended to a smooth map F : D3 → M such that Rank(DwF ) ≤
2, ∀w ∈ D3. Moreover, we can choose F so that it has a product structure close to
the boundary of D3.

Proof. The conditions of the statement imply that f is of the form f ′ ◦ r, where
f ′ : S2 → M is a smooth map and r : ∂(D3) → S2 is some smooth homeomorphism.

By using the previous lemma, we can see that there exists a handle decomposition
of M such that f(∂(D3)) is contained in the 2-skeleton M2 of M (the handlebody
made from the 0-, 1- and 2-handles of M). Let us prove that we can suppose further
that f(∂(D3)) is contained in the 1-skeleton M1 of M . This will be completely
analogous (though dual) to the proof of the previous lemma.

Let n = dim(M). Suppose that n ≥ 2. Let {hi} be the set of 2-handles of M .
Therefore, for each i, hi = D2

i ×Dn−2
i , and hi attaches to M1 along S1

i × Dn−2
i =

(∂D2
i )×Dn−2

i . It suffices to prove that for each i there exists an xi ∈ D2
i (thus an

open 2-ball) such that f(∂D3) does not intersect {xi} ×Dn−2
i .

Let pi : hi = D2
i × Dn−2

i → D2 × {0} be the obvious projection. Given that
Rank(Dvf) ≤ 1, ∀v ∈ ∂D3, it follows that Zi = pi(hi ∩ f(∂D3)) has zero measure
in D2. Thus that we can choose an xi in the interior of D2 not intersecting Zi.
Therefore, some open ball in D2 containing xi does not intersect Zi. This proves
that there exists a handle decomposition of M such that f(∂D3) is contained in the
interior of the 1-skeleton M1 of M , analogously to the proof of the previous lemma.

Consider the universal cover N
p−→ M1 of M1. It is a contractible smooth

manifold. We can lift f as f = p◦g′, where g′ : ∂D3 → N is a smooth map, such that
Rank(Dvg

′) ≤ 1, ∀v ∈ ∂D3, since p is a local diffeomorphism. Let c : N× [0, 1] → N
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be a smooth contraction of N to a point of it. We can suppose that there exists an
ε > 0 such that c does not depend on t for t ∈ [0, ε]∪[1−ε, 1]. The smooth homotopy
g(v, t) = p(c(g′(v), t)), where t ∈ [0, 1] and v ∈ ∂(D3), will permit us to extend
f : ∂(D3) → M to a smooth map F : D3 → M , with a product structure close to the
boundary of D3. By construction we also have that Rank(DwF ) ≤ 2, ∀w ∈ D3. �
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